

SWAMI DAYANANDA COLLEGE OF ARTS & SCIENCE, MANJAKKUDI. (Affiliated to Bharathidasan University, Tiruchirappali) UGC Recognized under section 2(f) & 12(B)

DEPARTMENT OF MATHEMATICS

16SCCMM9:

NUMERICAL METHODS

CLASS:

III – B.Sc., MATHEMATICS

Prepared by: Dr.R.SURENDAR, M.Sc., B.Ed., M.Phil., Ph.D., Assistant Professor of Mathematics

NUMERICAL METHOD WITH MAT LAB PROGRAMMING 13/6/19 UNIT- IV :-Curve fitting - hirear and parabolic curve by the method of least squares principles - solving Algebric and transcendental equations - B?section Method, false position method and Newton. Raphson method - solving simultanous algebraic equations - Grauss - seedal methods - Grauss elemin ation methods. UNIT- Y :-Interpolation - Newton's farward and backward différence formulae - regranges is terpulation formulae - Numerical Ategration usprg Trapezaidal and sempson's 1/3 rd rule -Solution of ODE's - culer method and Range-Kutta fouts order method. AUTHOR :-M.K. Venkatraman numerical methods in suènce and engineering 5th edition. mader Henry In an cleased Scanned with CamScanne

UNIT-IV 14/6/19 Curve fitting :-The principles of heast squares:-We have disvibed,) The Graphical method. 2) The method of group averages to determine the constants that occur in the equation choose an to represent a given Vernetata. - Mennel zaatusta - autologiatat PULLEN PULL In the graphical method of forthing a straight line Y= a+bx to a given data the constant b is the slope which can be calculated with the help of any two poppts on the lines. In the method of guoup averages different groupings of the observation can be made. Hence it is clearly that

These two methods well give different values of the constant. Depending on the judgement of the Pholevidual. The method of the least squares has the advantages of giving a lineque set of values to the constant. $dn = 2n - f(z_0) = Po(Mn)$ у the Resteries dudy Y={(x) head Pr $P_{\rm H} = \frac{1}{2} \frac{$ nio -Mn 2 24 C (Mix) respected in the guarde Normanner Will d5 NI P2 error of the stillar early of theory XIMI M2 Mn 0 Ten we and any we aby ... Faby ib =] het $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ be n sets of abservation of related data and $Y = f(x) \rightarrow D$ be the suggested relationship between x and and the more it all all the second the second When X= XI and the observed value 4=4,= PIMI from the relationship O Y= f(XI)= NIM, and this is known as the excepted value of y. The expression $d_1 = Y_1 - f(x_1)$ which is the difference between the observed and

calculated values of y is called a resudia Thus we have a resudial de, d3....d. for all the remaining observations. $d_{1} = Y_{1} - f(x_{1}) = P_{1}M_{1} - N_{1}M_{1} = P_{1}N_{1}$ the att $d_2 = Y_2 - f(x_2) = P_2 N_2 \dots$ Laution !! $dn = (n - f(x_n) = Pn Nn.$ 1716/19 It is clear that some of the Residuals didy In will be positive and the remaining WPII be negative resplicate, we square each of them and form the sum of the squares re., we consider $\frac{F}{ds_2} = d_1^2 + d_2^2 + \dots + d_n^2$ $= \left[y_{1} - f(x_{1}) \right]^{2} + \left[y_{2} - f(x_{2}) \right]^{2} + \cdots + \left[y_{n} - f(x_{n}) \right]^{2}$ The quantity F is clearly a measure of how well the unive y= f (x) fits the set of points as a whole. FOM F will be zero iff each of the points P1, P2, lie on y=f(x) and it will devease in value depending on the closeness of the points P to the curve.

" Hence," The best representative curve to the set of point is that for which E, sum of the square of the residuals is a minimum" This is known as the least square crutinian ar the publicle of least square. Fitting a straight line: het (x1, y1) (x2, y2).... ()(n, yn) be n sets of Observation of related data and Y = ax+b the equation to the line of the best fit for them. Equations that to c we have to find the constants a and b for any x; the expected value of y (re, the value calculated from the equation) is ax;+b and the observed value of y is y; Hence residual di? = observed value - expected value. axa-karltand de y: - f(x:) - f(x:) - axadi = y; - (axi+b) ; i=1,2,.... het E be the sum of square of the respond $\leq E = \frac{1}{2} \left(\frac{y_i}{y_i} - \frac{y_i}{x_i} \right)^2$ i = 1, 2, ..., n $F = \frac{2}{2} [y_i - (ax_i + b)]^2$ Scanned with CamScanne

 $F = [Y_1 - (ax_1 + b)]^2 + [Y_2 - (ax_2 + b)]^2 + ...$ $\frac{1}{2} \int \frac{1}{2} dx = \frac{1}{2} dx = \frac{1}{2} dx = \frac{1}{2} \frac{1$ a munimum The E is the function of the parameters a and b for E to be minimum the condition are $\frac{\partial E}{\partial a} = 0$ and $\frac{\partial E}{\partial b} = 0$ partially differentiating E with respect to a, $\frac{\partial E}{\partial a} = 2\left[Y_{1} - (ax_{1}+b)\right](-x_{1})+$ $2[y_1 - (ax_2) + b](-x_2) + \cdots + 2[y_n - (ax_n + b)]$ (-xn) Sold There Equating this to 0 $2[Y_1 - (a_{11}+b)](-x_1) + 2[Y_1 - (a_{12}+b)](-x_2) + \cdots +$ 2 (and only all and 2 [4n-(axn+b)] ()(n) $\chi_1 \left[\gamma_1 - (\alpha \chi_1 + b) \right] + \chi_2 \left[\gamma_2 - (\alpha \chi_2 + b) \right] + \cdot \cdot + \chi_n \left[\gamma_n - (\alpha \chi_n + b) \right]$ $[x_1y_1 - ax_1^2 - bx_1] + [x_2y_2 - ax_2^2 - bx_2] + \cdots + [x_ny_n - ax_n^2]$ -b x b = 0 $[x_1y_{n_1} + x_2y_2 + \dots + x_ny_n] - a[x_1^2 + x_2^2 + \dots + x_n^2]$ $-b[x_1+x_2+\ldots+x_n]=0$ $2 xiyi - a 2 [xi]^2 - b 2 [xi] = 0 - 7 0$ Scanned with CamScanne

Pordially diffuentating f with respect to b

$$\frac{\partial F}{\partial b} = 2 \left[Y_{1} - (ax_{1}+b) \right] (-1) + 2 \left[Y_{2} - (ax_{2}+b) \right] (-1) + \dots + 2 \left[Y_{1} - (ax_{2}+b) \right] (-1) = 0$$
Equating this to Zero, we get

$$-n \left[Y_{1} - (ax_{1}+b) \right] + (-1) \left[Y_{2} - (ax_{2}+b) \right] + \dots + (-1) \left[Y_{0} - (ax_{1}+b) \right] + (-1) \left[Y_{1} - (ax_{1}+b) \right] + (-1) \left[Y_{2} - (ax_{2}+b) \right] + \dots + (-1) \left[Y_{0} - (ax_{1}+b) \right] = 0$$

$$= \frac{2}{12} \times 2^{n} = \frac{2}{2} \times 2^{n} + \frac{2}{12} + 2^{n} + \frac{2}{12} + 2^{n} + 2^{n}$$

Equation () and () are called normal Jrr. equations . This is of the form of into $a \pm x^2 + b \pm x = \pm xy$ and $a \neq x + nb = \pm y$ Problem: 1. Using the method of least square to fit a straight line to the following data. x: 0 5 10 15 20 Y: 7 11 16 20 26 Estimate the value of y when x = 25 dolution :-+ ···+ skink) of (about alt 18) het the straight line fit y=ax+6-75 The normal equations are $a & x^2 + b & x = & xy - o and$ now something alex the = xy -> 3 equalities from ones a and b and be 1-1-1 Scanned with CamScanne

148 de	1).) 1).)		19.5	1
	x	Ч	X 2	ХҮ
t od Nat Sala	0	7	O sub	0 1 6 1 6 1 9
	5		25	55 160
	(0	16	100	300
di ye	15	20	da5	520·
	20	26	400	Y
	£x=50	2y=80	2x ² =750	£7(y=1035
() ×2 =>	a (100)	+ 106	= 207. Uub = 160 	au M
the of values	TME 11:4 21	$a = \frac{47}{50}$		Jue June and be
e velation.	velo	a = 0.94	Ingreugua de	H adol
Ø =	0.94	(50) +5	56 = 80	1.50
	47	(50)+5	6 = 80	201910
	50)		
	SU	, Ц7 + 5b	= 80 = 80-47	10/02

$$N^{p_{1}p_{1}} du^{p}_{1}g eqn 0 \quad ling \quad x \neq y$$

$$\frac{1}{x} = \frac{a}{xy} + b \rightarrow \emptyset$$

$$Putting \frac{1}{x} = v ; \frac{1}{xy} = u$$

$$\therefore \quad \emptyset = \gamma \quad v = au + b \rightarrow \emptyset$$

$$\forall he nownal \quad equations \quad aue$$

$$a \neq u^{2} + b \neq u = \neq av \rightarrow \pi$$

$$a \neq u + hb = \neq v \rightarrow \pi$$

$$\frac{x}{y} \quad u = \frac{1}{xy} \quad v = \frac{1}{x} \quad u^{a} \quad uv$$

$$-4 \quad 4 \quad -0.06e^{2} \quad -0.25 \quad 0.0039 \quad 0.0155$$

$$1 \quad b \quad 0.1667 \quad 1 \quad 0.0277 \quad 0.1667$$

$$\frac{a}{10} \quad 0.05 \quad 0.5 \quad 0.0085 \quad 0.025$$

$$3 \quad 8 \quad 0.0416 \quad 0.33 \quad 0.0017 \quad 0.0137$$

$$\frac{1}{2}u = 0.1958 \quad \frac{1}{2}v = 1.5800 \quad \frac{1}{2}u^{a} \cdot 0.210$$

$$\emptyset = \gamma \quad a \quad (0.1432) + b \quad (0.1578) = \quad 0.2210$$

$$\emptyset x + = \gamma \quad a \quad (0.1432) + b \quad (0.1732) = \quad 0.8840$$

$$(\emptyset \times 4 = \gamma \quad a \quad (0.1432) + b \quad (0.1732) = \quad 0.8840$$

$$(\emptyset \times 4 = \gamma \quad a \quad (0.1432) + b \quad (0.1732) = \quad 0.8840$$

$$(\emptyset \times 4 = \gamma \quad a \quad (0.1432) + b \quad (0.1732) = \quad 0.8840$$

Art

le

$$a(0,1049) = 5.4360 \ 0,5746$$

$$\boxed{a = 5.4776}$$

$$(0 = 5.4776)(0,1958) + 4b = 1.58$$

$$1.0725 + 4b = 1.58$$

$$4b = 1.58 - 1.0725$$

$$b = \frac{0.5075}{4}$$

$$\boxed{b = 0.1269}$$
3. Find by the method of least squares us stratfield with the best fit the data is the following case.

$$x : 1 = 2 = 3 = 4 = 5$$

$$Y : 16 = 19 = 43 = 46 = 30$$

$$x : 1 = 2 = 3 = 4 = 5$$

$$Y : 16 = 19 = 43 = 46 = 30$$

$$x : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 1.8 = 3.3 = 4.5 = 6.3$$

$$(17)$$

$$x : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 2 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 3 = 4 = 5$$

$$Y : 1 = 4 = 4 = 4 = 5 = 6$$

7) Solv:
hat the schedight line fit
$$y = ax+b = -7^{\circ}$$
.
She nownal equation are
 $a \le x^{2} + b \le x = \le xy + 2^{\circ}$.
 $a \le x + nb = \le y - 7^{\circ}$.
 $\boxed{x \quad y \quad x^{2} \quad xy}$
 $a \le x + nb = \le y - 7^{\circ}$.
 $\boxed{x \quad y \quad x^{2} \quad xy}$
 $1 \quad 16 \quad 1 \quad 16$
 $2 \quad 19 \quad 4 \quad 38$
 $3 \quad 23 \quad 9 \quad 69$
 $4 \quad 26 \quad 16 \quad 10.4$
 $-5 \quad 30 \quad 3^{\circ} \quad 150$
 $\boxed{x = 15 \ xy = 114} \ x^{2} = 55 \ x^{2}x = 377$
 $(?) = a (55) + b (15) = 377 \quad -7^{\circ}$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $(?) = a (55) + b (15) = 377$
 $a = 35$
 $a =$

() - () => 3.5(15) + 5b = 114 52.5+55 = 114 5b= 114-52.5 b= 61.5 b = 12.3118 16 P?) Solni het the straight line fit Y=ax+b->6 The normal equations are $a x^2 + b x = x y -70$ azx+nb= ky -> @ 24 NC 2 4 26 18 = (RI) 8 + 101 0 Ka 30 6 6 111-8-d T + (1) 0 < d 8 Sr-4 6.6 3.3 2 13.5 3 4.5 (2.9 25.2 6.3 016 4 f x = 1024= 16.9 $\pounds xy = 47.1$ & x = 30

$$\begin{array}{c}
0 = 3 \quad a(30) + b(10) = 47.1 \quad \neg (3) \\
\hline
0 = 3 \quad a(10) + 5b = 16.9 \quad \neg (3) \\
\hline
0 = 3 \quad a(30) + b(10) = 47.1 \\
\hline
0 \times 2 = 3 \quad (30) + b(10) = 47.1 \\
\hline
0 \times 2 = 3 \quad (30) + b(10) = 47.1 \\
\hline
0 \times 2 = 3 \quad (30) + 5b = 16.9 \\
\hline
1 = 13.3 \\
\hline
a(10) = 13.3 \\
\hline
a(10)$$

.

2

$$\begin{split} \hline \frac{x}{1} \frac{y}{14} \frac{x^2}{14} \frac{x^4}{14} \\ \hline \frac{x}{2} \frac{y}{27} \frac{y}{4} \frac{y}{54} \\ \hline \frac{x}{3} \frac{y}{40} \frac{y}{120} \\ \hline \frac{x}{4} \frac{55}{5} \frac{16}{16} \frac{220}{220} \\ \hline \frac{x}{55} \frac{x}{5} \frac{x}{340} \\ \hline \frac{x}{25} \frac{x}{55} \frac{x}{5} \frac{x}{24} \frac{y}{148} \\ \hline \frac{x}{25} \frac{x}{5} \frac{x}$$

125 hRd (f) = a(15) + 5b = 204e di T 13.6 (15) +5b = 204 204 + 5b = 2045b = 204 - 204is a supple attern a particular part utterber 24/10/19 Fitting a parabola: het (x1, 4,1), (x2, 42), (xn, 4n) be n sets of observations of related data and y=ax2+bx+C the equation of the parabola of best fit for them. We have to find the constants a, b, c for any si the expected value (re., value calculated from the quation) is ax12+bxitc and the observed value of y is y: Hence the responded di = Y; - (ax;2+bxi+c) l=1,2.... D () F- 11 1 het F be the some of the squares of the respondent. $Pe., F = \sum_{n=1}^{n} [Y_{i} - (ax)^{2} + bx_{i}^{n} + c)]^{2}$ $F = \left[Y_1 - (ax_1^2 + bx_1 + c) + (Y_2 - (ax_2^2 + bx_2) + c) + (x_1 + c) + (x_2 + bx_2) + c \right]$

 $+bxn+c]^2$. E B a function of the pairameters a, b and c For E to be minimum the conditions are $\frac{\partial F}{\partial n} = 0$, $\frac{\partial F}{\partial b} = 0$ and $\frac{\partial F}{\partial c} = 0$. Partially differentiating F with respect to 'a' $\frac{\partial F}{\partial \alpha} = 2 \left[Y_{1} - \left(\alpha x_{1}^{2} + b \alpha_{1} + c \right) \right] - \left(x_{1}^{2} \right) + 2 \left[Y_{2} - \left(\alpha \alpha 2^{2} + b \alpha_{1} + c \right) \right]$ $-(9(_2^2)+\cdots+$ $2\left[Y_n - (\alpha x_n^2 + b x_{\#} c)\right] - (x_n^2).$ Equating this to zero we get. $\frac{\partial 1}{\partial 1} = -2\frac{2}{2} \left\{ \sum_{i=1}^{n} \frac{1}{2} \left(\alpha x_{i}^{n^{2}} + bx_{i}^{n} + c \right) \right\} \left(\alpha x_{i}^{n^{2}} \right)^{2} = 0$ $\frac{1}{2} \left[y_{i}^{2} - (ax_{i}^{2} + bx_{i}^{2} + c) \right] (x_{i}^{2})^{2} = 0$ $\frac{2}{2}\left[\left(y_{i}^{*}(x_{i}^{*})^{2}\right) - \left(\alpha_{x_{i}^{*}}^{*} + b_{x_{i}^{*}}^{*} + (x_{i}^{*})^{2}\right)\right] = 0$ $\frac{1}{2} y_{i} x_{i}^{2} - \alpha \frac{1}{2} x_{i}^{4} + b \frac{1}{2} x_{i}^{3} + c \frac{1}{2} x_{i}^{2} = 0$ Źy:xi² = aźxi⁴ + bźxi³ + cźxi² → () Partially differentiating & with respect to 'b' $\frac{\partial F}{\partial b} = 2 \left[Y_{1} - (0x^{2} + bx_{1} + c) \right] - (x_{2}) + 2 \left[Y_{2} - (0x^{2} + bx_{1} + c) \right]$ $+ 2 \left[y_n - (a x_n^2 + b x_n + c) \right] - (x_n)$

Scanned with CamScanne

- 2 2 { [4: - (axi2+bxi+c)] (xi)3=0 Equating this to zero we get $\frac{\xi}{\xi} \left[y_{i}^{\circ} - (ax_{i}^{\circ} + bx_{i}^{\circ} + c) \right] (x_{i}^{\circ}) = 0$ $\frac{1}{2} \left[Y_{i}^{\circ}(x_{i}^{\circ}) - (ax_{i}^{\circ} + bx_{i}^{\circ} + (x_{i}^{\circ})) \right] = 0$. $\frac{1}{2}$ yixi - $a \stackrel{1}{2} xi^{3} + b \stackrel{1}{2} xi^{2} + c \stackrel{1}{2} xi = 0.$ $\frac{1}{2} Y_{i}^{0} x_{i}^{0} = a \frac{1}{2} \frac{1}$ Partially differentiating & with respect to c' $\frac{\partial F}{\partial x} = 2 \left[Y_1 - (ax_1^2 + bx + c) \right] + (ax_2^2 + bx + c) \right] - (1)$ $+ + 2 \int y_n - (a_{2n}^2 + b_{2n} + c_1^2 - (1))$ $-2\frac{2}{2}\left\{ E_{1}^{*}-(a_{1}^{*})^{2}+b_{1}^{*}+c_{1}^{*}\right\} =0$ Equating this to zero we get 1. She $\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{y_{i}}{y_{i}} - \frac{fax_{i}^{2}}{f} + bx_{i}^{2} + c) \sum_{i=1}^{n} \frac{(-i)}{r} = 0$ $\sum_{i=1}^{n} \left[-y_{i}^{*} - (-ax)^{2} - bx^{i} - c \right] = 0$ $\int_{i=1}^{n} \left[Y_i^{\circ} - (ax_i^{\circ^2} + bx_i^{\circ} + c) \right] = 0$ Dare Levet 38

	$zyi^{\circ} = a z xi^{\circ} - b z xi^{\circ} - nc = 0$	and the second
	$2Y_{1}^{\circ} = a 2 2 x_{1}^{\circ 2} + b 2 x_{1}^{\circ} + nc -73$	
	Hence equations 0, @ and 3 are the	
	normal equations it can be wortten as	
	$\xi x^2 y = a \xi x^4 + b \xi x^3 + c \xi x^2$	
	$4xy = \alpha \xi x^3 + b \xi x^2 + c \xi x.$	
	$4y = a 2x^2 + b 2x + nc$	
	By Solving these normal equations	
()-}	we get the values of a, b and c	
Da	and hence the equation to the best	
	firting parabola.	
	Problem:-	
1.	she following table gives the levels of prizes	
/	in contain years lit a second degree	
	parabola to the data.	
	Year : 1875 1876 1877 78 \$9 81)
	Préze level: 88 87 81 78 74 79	
	Yean : 82 89 89 84 85	
	Pointo lavel ! 85 84 90 92 100	And a

 $\sqrt{}$

)	For the year or take the origin at 1880 and for the prince level y take the origin at 87								
	The normal equations are								
	$\frac{2}{3} \frac{1}{3} = a \frac{2}{3} x^2 + b \frac{2}{3} x + hc - \frac{1}{3}$								
	<u>x</u>	<u> </u>	X = X-1880	Y=y-87	X ²	X ³	x4	хy	x ² 4
• • • • • •	875	88	-5	ì	25	-125	625	-5	25
	76	87	2-4 (m	P10 (11	16	-640	256	0	
	77	81	-3	-6	9	-27	81		0
2.5	78	78	-2+	-9	4	-8	16	18	-54
	79	74	-1	-18		-1	من ا	18	-36
	80	79	0	-8	0	0	80	13 0	- 13
							1	v	0
	81	85	١	-2	1.	1	.1		0
		85 84	۱ 2	-2 -3	3321	8	.1 16	-2 -6	-2 -12
5	81		1		4	1 8 27	-	-2	-12
5	81 82	84	2	-3 3	9	27	16 81	-2 -6	-12 27
5	81 82 83	84 90	2 3	-3			16 81 256	-2 -6 9	-12

0 = 340 = a(1958) + b(0) + c(110)() = 130 = a(0) + b(10) + c(0)i jung $(3) = -19 = \alpha(10) + b(0) + (11) C.$ 340 = a(1958) + c(1/0)()=> (110) =>-190 = a(1100)+((110) (+)530 = a(858) R=1 0881-X = X Ta= 0.6177] 17 11-0 = 340 = (0.6171)(1958) + ((110))Y P 3169.6104 340= 1209.4566 + C[110) 340 = 1209,4566 + ((110) - 2829-6104 -869.4566 = ((110) C = -7.904203 3 = -19 = (0.6/77)(110) + 11(-7.9042)-19 = 67.9470 - 86.9462 Scanned with CamScanner

$$\begin{aligned} & \textcircled{O} = 7 \ 130 = b(110) \\ \hline b = 1.1818 \\ \\ & Henia the best fitting panabala Y = ax^{2}+bx+e \\ \Rightarrow Y = 0.6177 x^{2} + 1.1818 x - 7.9042 \\ & Where, Y = Y - 87; X = 9x - 1880 \\ & \because Y - 87 = 0.6177 x^{2} + 1.1818 x - 7.9043 \\ & \because Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \swarrow Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \swarrow Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \swarrow Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \checkmark Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \checkmark Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \checkmark Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \checkmark Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \checkmark Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & (X - 7x - 1880) \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & \land Y = 0.6177 x^{2} + 1.1818 x + 79.0957 \\ & \land Y = 0.6177 x^{2} + 1.1818 x^{2} + 1.181$$

.

۴) Soln:-The normal equations are $\pounds x^2 y = a \pounds x^4 + b \pounds x^3 + c \pounds x^2$ $\xi x y = \alpha \xi y c^3 + b \xi x^2 + c \xi \xi x \Rightarrow 0$ £y = a ± x² +b ± x + hε →3 $x^3 x^4$ χ^2 xy 224 X Y 0 0 0 0 1 0 0 5 11 10 10 5 15 BR. s.tt 10 4 8 16 20 40 2 . 3 27 8) 9 66 22 198 16 64 256 152 38 4. 608 $\pm x = 10 = 16 = 30 = 30 = 2x^3 = 100 = 2x^4 = 334 = 243 = 243 = 2x^2 = 1000$ \bigcirc =7 851 = a(354) + b(100) + c(30) $\otimes = 243 = \alpha (100) + b(30) + c(10)$ (9 =) 76 = a(30) + b(10) + 5c'() = 7 851 = a (354) + b(100) + c (30) $(2 \times 3 =) 729 = 9(300) + b(90) + c(30)$ 122= 549+106

$$(\widehat{\Theta} = 7 \ 243 = a(100) + b(26) + (110)$$

$$(\widehat{\Theta} \times 3 = 7 \ 243 = a(100) + b(30) + 152$$

$$15 = a(10) + 52$$

$$(\widehat{\Theta} = 7 \ 243 = a(100) + b(30) + (110)$$

$$(\widehat{\Theta} \times 2 = 7 - 152 = a(36) + b(10) + 7(\widehat{\Theta})$$

$$(\widehat{\Theta} \times 2 = 7 - 152 = a(354) + b(100) + (120)$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(90) + (130)$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(90) + (130)$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 7(\widehat{\Theta})$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 7(\widehat{\Theta})$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 7(\widehat{\Theta})$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 7(\widehat{\Theta})$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 729 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(300) + b(10) = 91$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = a(30) (a(3143)) + (0(34438))(10) + 5C$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = (39)(a(3143)) + (0(34438))(10) + 5C$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = (39)(a(3143)) + (0(34438))(10) + 5C$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = (39)(a(3143)) + (0(34438))(10) + 5C$$

$$(\widehat{\Theta} \times 3 = 7 \ 749 = (39)(a(3143)) + (0(34438))(10) + 5C$$

76 = 68.8570 + 50 76-68.8570 = 5C 7.1430 = 50 (0) C=1.4286 0 = 6 % = 0 Hence the best fitting parabola 4=a>r²+bas $Y = 2.2143x^2 + 0.2428x + 1.4286.$ (192))+ (0P) d+ (002) p = 10, (90) + ((20)) (11) Soln:-(1) (1) (1) (14 (A21 n - 2) The normal equations are 2 x2y= a2x4+b2x3+C2x2 ->0 $2xy = a 2x^3 + b 2x^2 + (2x - 72)$ 24 = a2x2 +b2x + nc ->3 (P= (01) d+ (0/4) = 410, = 91 新·路尔波 医无指的 盖雪子 The a Box & Charles) + (C-MARRS) (Los - 50 Scanned with CamScanne

and the co				11 s. 11 v					
a se la	20	Ч	x2-	x ³	x4°	2C Y	x ² Y		
	1	5		a ()sr	- 50.11	5	5		
	2	12 0	4	8	16	24	48		
	3	26	9	27	81	78	234 ©		
ŀ	4	60	16	64	256	240	960		
	5	97	25	125	625	485	2425		
	£x= 15	2y= 200	±1: 55	2x= 225	5xt= 979	£xy= 832	5×4=3672		
	0 => 3672 = a (979) + b(225) + ((55))								
- 5C -	$(2) = 7 832 = \alpha(225) + b(55) + c(15)$								
	(3 =) 200 = a(55) + b(15) + 5c								
	(2) = 3 = 32 = a(225) + b(55) + c(15)								
	(2) = 7 832 = a(2as) + b(55) + c(1s) $(3)x_3 = 7 600 = a(16s) + b(45) + c(1x)$								
-	$a_{32} = a(60) + b(0) - 7$ (4) 0 = 3672 = a(979) + b(225) + c(55)								
	3 ×11	=> 22	00 = 0	a (605)	+6 (16.	r) + c(55)		

1472 = a(374) + b(60) -7 5

$$\begin{aligned} (9) \times (9) &= \rangle \quad 1392 = a(360) + b(60) \\ (9) &= \rangle \quad 1472 = a(374) + b(60) \\ (9) &= \rangle \quad 1472 = a(374) + b(60) \\ -80 = a(-14) \\ a = 80/14 \\ \hline a = 5 \cdot 7143 \\ a = 5 \cdot 7143 \\ a = 5 \cdot 7143 \\ (9) = \rangle \quad 238 = 5 \cdot 7143 \cdot (50) + b(10) \\ 238 = 348 \cdot 8580 + b(10) \\ -110 \cdot 8580 = b(10) \\ \hline b = -11 \cdot 0858 \\ (9) = \rangle \quad 200 = 5 \cdot 7143 \cdot (55) + (-11 \cdot 0858)(15) + 5c \\ 200 = 314 \cdot 2865 - 166 \cdot 2870 + 5c \\ 200 = -147 \cdot 9995 = 5c \\ 52 \cdot 0005 = 5c \\ \hline c = 10 \cdot 4001 \\ \hline Henca + bas = best = f^{PHUng} = g/ parabola \\ Yax^{2} + bx + c \\ Y = 5 \cdot 7143 x^{2} - 11 \cdot 0858 x + 10 \cdot 400 \end{aligned}$$

(1999) Solu: (cours) are (crorar) a size ch (a The normal equations are $\pm xy = a \pm x^3 + b \pm x^2 + c \pm x + c = 0$ 2y = azx2 + bzx +nc. -73 Y α^2 x3 x4 x^2y xy 9-11-2 (8) 12. 10,000 2x= 30 2y= 196 2x= 220 2x= 1800 2x4= 15,664 2xy=16D Exy = 14,084 $D => 14,084 = \alpha (15,664) + b(1800) + c(220)$ () = (1800) + b(220) + c(30) $(3 =) 196 = \alpha (220) + b (30) + 6C$

$$\begin{array}{l} 0 \times 3 = 3 + 42852 = a (46992) + b (5400) + c (660) \\ (3 \times 28 = 3 + 35420 = a (39600) + b (4840) + c (660) \\ \hline a (1392) + b (560) = 6832 = -7(3) \\ (3 = 3) + b (560) + b (50) + b (220) + ((30) \\ (3 = 3) + b (560) + b (50) + b (50) \\ \hline (3 = a (100) + b (10) + 7(3) \\ \hline (3 = a (100) + b (10) + 7(3) \\ \hline (3 = a (100) + b (560) = 5040 \\ \hline a (1792) = 1792 \\ \hline a (1192) = -70 \\ \hline b = -1 \\ (3 = 3) + 196 = 220 - 30 + 6c \\ 196 = 190 + 6c \\ 196 - 190 = 6c \end{array}$$

10

 $\frac{6}{(c=1)} = \frac{6}{6} =$ ciama another me thods $Y = x^2 - x + 1$. Hence the best firtung parabola Y=ax2+bx+c $Y = x^2 + 1.$ Turning adapted fundation -Solution of Algebric and Transcendental Equations :-If ((x) is a quadratic, cubic are biquadratic expuession then algebraic formulae are available for expressing the roots interms of the coefférients. BIGECTION METHOD -On the other hand when f(x) is a polynomeal of higher degree or an expression involving transcendental functions, algebrare methods are not available and recourse must be taken to find the woots by approxiate methods. Now f(x) is the algebraic function of the four would $f_n(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$

are called polynomials and we have some special methods for determining theen woots. WHERE SHE bask AND A non-algebraic function is called a Transcendental function. Example That Strapped in Tailules $f(x) = \log x^3 - 0.7$ 10 Comparing the $\phi(x) = e^{-0.5x} - 5x$ 2019 Mars $\phi(x) = \beta^2 n^2 x - x^2 - 2$, etc., BISECTION METHOD:-. Dawillow If a function fix is continous between a and b and fra) and fres are of opposite signs then there exists atleast one most between a se b. For definteness let f (a) be negative and f(b) be positive then the most lies between a ce b and let it approximate value is given by

 $\infty = \frac{\alpha+b}{2}$ and $\infty = 0$ If f(xo) = 0 we conclude that sho is a root of the equation f (rr) = 0 otherwise the most lies between either to and be are no and a depending on whether p(no) is regative ou posptive We designed is new internal as (a1, b1) whose length is 1b-al as before this is bisected at x, and the new interval will be exactly half the length of the previous one. We repeat this process until the latest internal is as small as desired. (day E) would will ton It is clear that the interval with this is reduced by a pactor of one-half at each astep and at the end of the nth step. The new Polerival will be [an, bn] of length [b-a]

Then we have $\frac{|b-a|}{2^n} \neq \varepsilon \rightarrow 0$ The eqn of gives the number of literation required to anchieve an accurracy E. PROBLEM :- " " A province & but on MAG 1. FPnd a real root of the egn $\beta(x) = 2c^3 - 2c - 1 = 0$ (a) bi) where langth is 10-01 as Soln: Some $f(n) = x^3 - x - 1 = 0$ 8 - 2 - 1\$10) = -1 => -ve the motion with $\begin{cases} (1) = -1 = -\gamma e \\ f(2) = 5 = \gamma + \gamma e \end{cases}$ a branchi haladi i :. The most lies between 1 and 2 het a=1 ; b=2 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ at to board get to An your That I we phenodel 201 - 21 - 40 x a long of the Long of the Scanned with CamScanner

19 10 10 10					MEL CO			
	n	A (-vP)	6 (ive)	$x_0 = \frac{\alpha + b}{2}$	$\int (x_0)$ $\int (x) = x^3 - x - 1$			
	Ð	t t	2	$\chi_0 = \frac{1+2}{2} = 1.5$				
	1	1	1.5	$x_1 = \frac{1+1\cdot 5}{2} = 1\cdot 25$	- 0, 2969 (-ve)			
	2	(.25)	しち	X2 = 1.25+1.5 = 1.3750	5			
	5.	าอุธ	1.375	$x_3 = \frac{1.25+1.375}{2} = 1.3125$				
	4.	1.3125	1.375	$x_4 = \frac{1.3125 + 1.375}{1.3438} = 1.3438$				
	5.	1.3125	1.3438	$\chi_5 = \frac{1 \cdot 3125 + 1 \cdot 33138}{2} = 1 \cdot 3282$	0,0149 (+ve)			
	6.	1.3125	1,3282	$\chi_{6} = \frac{1 \cdot 3125 + 1 \cdot 3282}{2} = 1 \cdot 3204$	-0.0183 (-ve)			
	7.	1.3204	1.3282	$x_{7} = \frac{1.3204 + 1.3282}{2} = 1.324$	3 -0.0018 (-10)			
	8.	+1.3243	1.3282	×8= 1.3263	0,0068 (+10)			
	9.	1.3243	1.3263	Xq= 1.3253	0,0025 (tve)			
	10 .	1.3243	1.3253	2(10= 1.3248	0.0003 (+ve)			
		Hence	the	most of the	giren			
	eque	equations is 1.3253						

Find the wood of the equation x3-220-5. 2. soln:-Guiver $f(x) = x^3 - 2x - 5 = 0$ f(0) = -5 = -10f(1) = 1 - 2 - 5 = -6 = -10f(2) = 8 - 4 - 5 = -1 = -12f(3) = 27 - 6 - 5 = 16 = + ve:. The root hes between 2 and 3 het a = 2; b = 323 0.0 - $\therefore x_0 = \frac{a+b}{2}$ ALMARYS I LEBORD I MERCEN I REPORTE 10 8400.0 6. 1. 82/3 1. 88 53 . 29/6 - 1. -248 . 61861 equalities and a sector Scanned with CamScanner

	Gry			noresinestentes i ponere internet enternet enternet enternet enternet enternet enternet enternet enternet enter 1	115,M1245900,G994441
	n	(-ve)	b (tve)	$x_0 = \frac{a+b}{2}$	f (xo) f(x): x ³ -2x-5
1001	0	2	3	$x_0 = \frac{2+3}{2} = 2.5$	5,6250
and the	a fair	2	25	X1 = 2.25	1,8906
1.676)	2.	2	2.25 1-8906	X2 = X.94 2.125	(tre) 0,3457
(201-)	3.	2	2.125	x3 = 2.0625	(+*) -0:3513(-+0)
, 1777 -	4	2.0625	2.125	24 = 2.0938	-0,0084 (-ve)
0111.	5	2.0938	2.125	x5 = 2, 1094	0.1671 (+ve)
8540	6	2.0938	2. 1094	$\chi_6^2 = 2.1016$	0.0790 (+ve)
0325	9	2.09.38	2. 1016°	27 = 2.0977	0.0352 (+140)
2) 30 . (2)		2.0938	2.0977	X8 = 2.0958	0,0139 (40)
reto.	9	2.0938	2.0958	$\chi_9 = 2.0948$	0·0028(+ve)
60,27 - 5023	He	ince the	400	t of the given equa	lion
1000 - T000	ı.	2.0948			8
and .	H.w FPna	5. dige		of the equation	
	$\chi^3 +$	x ² +x+7	= D	Bred Lat	
	delar	Gures	(()()	$= x^{3} + x^{2} + x + 7 = 0$	
BRAMATHAT		Į	f(0) = 0 $f_{1}(-1) = 0$	$7 = + \sqrt{2}$. -1+1+1+7 = 8+ $\sqrt{2}$ Scanned with CamSca	

f(g) = -8 + 4 - 2 + 7 = 1 + ve(ax) f(-3) = -27 + 9 - 3 + 7 = -14 - ve.1120 b-(ve) $x_0 = \frac{\alpha + b}{2}$ (tre) f(x). 3124 n $-3 \qquad \chi_0 = -\frac{2-3}{2} = -2.5 - 43.87_{50}$ 0 -2 -3.5 $x_1 = -2.7500$ - 1.578, - 2.1 1 -0.2051 2 -2 -2.25 x2=-2.1250 -2 -2.1250 x3= -2.0625 3 0.4177 4 -2.0625 -2.1250 X4 = -2.0938 0.1110 -2.0938 -2.1250 5 25= -2.1094 -0.0458 6 -2.0938 -2.1094 26= -2.1016 0.0329 -2.1016 -2.1094 X7=-2.1055 -0.0063 7 -2.1016 -2.1055 28=-2.1036 8 0.0128 320 -2.1036 -2.1055 9 29=-2.1046 0.0027 -2.1046 -2.1055 X10 = -2.1051 10 -0.0023 XII = -2.1049 -0.0003 -2.1046 -2.1051 11 -2.1046 -2.1049 ×12= -2.1048 0.0007 12. -2 and lies between roots The HARLE hall lik -3 het a=-2 and b=-3 idaks $x_0 = \frac{a+b}{a+b}$ SHOW

	8. <u>1</u> <u>1</u> <u>1</u> .		- 84 - T.A.L.	
4	Soln:-	the 2001	of the equa	uon x - 4x - 4 - 2
	50007	Curen f (x	$x^{3} = x^{3} - 4x - 9 = 0$	
ι ^δ ι	A CONTRACTOR OF		= -9 = -ve	
	rjæligi i		= 1-4-9=-12=	
		f (2)	= 8-8-9=-9=	- YP
	6	f (3)	= 27-12-9=6	= + ve
		The 400	t lies between	en 2 and 3
		het a	a=2; b=3	
		.: 2	$0 = \frac{a+b}{a+b} + - = (0)$	
-			-= n + 1 - 1 = (n)	8
	n a ev	e) b que	$\chi_0 = \frac{a+b}{2}$	$\frac{\beta(x_0)}{\beta(x)=x^3-4x-9}$
	D 2	3	$x_0 = 2.5$	-3.3750
. 1	2.5	10 00 0 3 3	X1 = 2.75	0,7969
2	. 2.95	2.75	$x_2 = 2.6250$	-1,4121
3.	2.625	2.75	$x_3 = 2.6875$	-0.3391
4.	2.6875	2, 75	$x_4 = 2.7188$	0,2218
5.	2. 6875	2, 3, 188	x5 = 2, 7032,	-0.0577
6.	21' 7032	21 7188	X6 = 2. THO	0.0806
7.	2. TO 32	2. "דווס	X7 = 2. Tot!	0.0103

$$\begin{array}{c} 8 \cdot \frac{3}{2} \cdot \frac{1}{102} \frac{3}{2} \cdot \frac{1}{102} \frac{1}{2} \frac{3}{2} \cdot \frac{1}{102} \frac{1}{2} \frac{3}{2} \frac{2}{2} \cdot \frac{1}{101} \frac{1}{2} \frac{3}{2} \frac{2}{2} \cdot \frac{1}{101} \frac{1}{2} \frac{3}{2} \frac{2}{2} \cdot \frac{1}{1057} \frac{1}{2} \frac{1}{2} \frac{1}{2} \cdot \frac{1}{1057} \frac{1}{2} \frac{1}{2} \cdot \frac{1}{1057} \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{1057} \frac{1}{1057}$$

- 0	The Cas	<u> </u>	T	1.
- N	a (-ve)	b _(tye)	$x_0 = \frac{\alpha \pm b}{2}$	$\int f(x_0) \\ f(x) = x^3 - x - 4$
0	ł	2 .	80 = 1.5	- 2.12.50
1	いち	້ 2 🚥	$x_{1} = 1.75$	-0,3906
2.	1.75	ຊ	×2 = 1.875	
3	1.95	1.875	9°3 = 1,8125	0,7168
4	1.75	1.8125	X4 = 1.7813	-0.1292
5	1.7813	1.8125	25 = 1.7969	0.0050
6 8	1.7813	1.7969	$\chi_6 = 1.7891$	- 0.0624
٩	1.7 891	1.7969	X7 = 1.7930	- 0 10288
8	1.7930	1.7969	28= 1.7950	- 0.0115
9	1.7950	1.7969	29 = 1,7960	-0.0028
10	1.7960	1		0.0015
18-5 11:	1.7960	1.7969	xn= 1.7963	-0.0002
2	1.7963	1.7965	$X_{12} = 1.7964$	0.0007
- 1		1.7964	X13= 1.7964	0.0007
113			s wiends is	8 8
A S.M	ence t	the lloo	ts of the gove	on equation
			sas in a	
r 0.,	0 ~ sī	THE E	894 26 Les 24	i la la

_					
G		$x^{3} - 18 = 0$	440	e di di	
	So	<u>n:-</u>		er. • §	00
			รีเพื่อ ((ม+)	3-18=0	an in the
1	3008		e - 1	-18 = -70	erd in film
	8.41		f (1) =	1-18=-17=-18	31.1
	812		<i>u</i>	8-18 = -10=-10	2 .
	292	,	61000	27 - 18 = 9 = + r	
	0 34 (100 - 10 1010	$\int_{a}^{b} (3) =$	5 1 SUSI 6	18 14 1 18 19
		: The	. Moot	lies between	243.
	11.1		06pa=	2; b=3	5811 . T
	-201	5.3 - 1 - 1 S	TO MT H	29 1.7959 416	854 8
			NI KILLI	$= \frac{a+b}{2}$.	
	n	a (-re)	b (+ve)	$\Re o = \frac{q+b}{2}$	f (20) x ³ -18.
	0	2	3	$x_0 = d \cdot b$	- 2,3750
	1 V 59	2.5	de ³	$\mathfrak{R}_1 = \mathfrak{d}, 75$	2,7969
	2.00	2.5	2:75	$x_2 = 2.625$	0.0879
	З.	2.5	2.625	$x_3 = 2.5625$	-1.1736
aoj	4.	2.5625	2.625	$214 = a^{2} \cdot 5938$	-0.5494
	5.	2.5938	2.625	25= 2,6094	-0.2327
	6 .	2.6094	2.625	26= Q.6172	~0.0729

$$7 \cdot \frac{1}{2} \cdot$$

	ח	a (rue)	b tre,	$x_0 = \frac{a+b}{2}$	4 (x)
	0	1	2	ao= 1.5	0.1250
	Ŋ	١	1.5	X1 = 1.25	- 0.6094
-	2	1.25	1.5	X2= 1.3750	-0.2910
	3.	1.3750	1.5	x3 = 114375	- 0. 0959
	4.	1.4375	1.5	X4 = 1,4688	0.0114
	4	1.4375	1.4688	X5= 1.4532	- 0.0429
	6	1.4532	1,4688	26= 1.4610	- 0.0160
	7.	1.4610	1.4688	$x_7 = 1.4649$	-0.0024
	8	1.4649	1.4688	28= 1.4669	0.0047
14	9	1,4649	1.4669	Xq = 1.4659	0.0012
	10	1.4649	1.4659	X10 = 1.4654	-0.0006
		Hence th	e Koot	of the give	ven egn
	us	1.4654		, ,	
		- ARRINAND MANDAGANA			

8.	$x^3 + x^2 - 1 = 0$	0 ·	~	t and				
	Gura	$\sin \sqrt{(\alpha)} =$	$x^3 + x^2 - 1 = 0$	90 M)				
	$\sum_{k=1}^{n-1} \sum_{k=1}^{n-1} \lambda_{jk}$	l (a)	0+0-1=-1=10	6. inpr				
12		V	1 + 1 - 1 = 1 = + ve					
	The root lies b/w o & 1							
	97 - 5 - 7	a = 0	b=1					
	sv + = A = ₹	- 11 i ci , Xe	$b = \frac{a+b}{2}$					
n	a Ever	b (vo)	xo = 0+b	\$ (xo)				
0	D	970 -						
8-250	S.	Ξ la X	2(0=0.5	-0.6250				
1	0.5	1	X1= 0,75	-0.0156				
1978 - J.	0.75		X2 = 0.8750	0,4355				
3	0.75	0, 8750	x3 = 0.81.25	0,1965				
692 40	0:75	0.8125	x4 = 0.7813	0.0874				
1200.5	0,75	0.7813	25= 0.7657	0.0352				
6	0,7657	0,7657 0,7813	$x_{6} = 0.7579$ $x_{6} = 0.17735$	0,0098 0,0617				
7	0.75	0,7579	77= 0,7540	-0.0028				
8	0.7540	0.7579	x8 = 0.7560	0.0036				
SACA-0.9	0,7540	0.7560	29= 0.7550	0.0004				
	0.7540	0.7550	X10= 0.7545	-0.0012				

Hence the 400t of the given
eqn is 0.71545
9.
$$x^3 - 3x - 5 = 0$$

SMN¹⁷ (HWVon $f(x) = x^3 - 3x - 5 = 0$
 $f(0) = -5 = -ve.$
 $f(1) = 1 - 3 - 5 = -71 = +ve$
 $f(2) = 8 - 6 - 5 = 3 = -ve$
 $f(3) = 27. -9 - 5 = 13 = +ve$
 $r = 4cve)$ $b_{(1,vo)}$ $x_0 = \frac{a+b}{2}$
 $\frac{1}{2^{-2}3^{-2}, 5}$
 0 2 3 $x_0 = 2.5$ 3.1250
 1 2 2.55 $x_1 = 2.55$ -0.359
 2 2.25 2.55 $x_2 = 2.3150$ 1.2715
 3 2.255 2.31255 $x_4 = 2.2813$ 0.0287
 5 2.255 2.31255 $x_4 = 2.2813$ 0.0287
 5 2.255 2.2813 $x_5 = 2.2657$ -0.1664
 6 2.2657 2.2813 $x_6 = 2.2774$ -0.0293

2.2813 8 2. 2714 X8 = 2.2794 0.0048 2.2774 9 2.2794 x9 = 2·2784 -0.0078 2.2784 10 2,2794 X10 = 2.2789 -0.0015 2.2789 li 2.2794 211 = 2.2865 0.0945 2.2789 2-2865 12 X12 = 2-2827 0.0464 Hence the root of the given equation is 2.2827 $x^{3}_{5}x + 3$ 10. Soln:- $\int (x) = 2(^3 - 5x + 3) = 0$ f(0)= 3=+re f(1) = 1 - 5 + 3 = -1 = -re.0 mosts lies blu o q , The and a=0; b=1 all arroll ing $\frac{1}{2} 2 = \frac{a+b}{2}$

2 400	-0	arrs. A		3	
-	n	(+ve)	b (- ve)	$x_0 = \frac{q+b}{2}$	B(x0) x3-5x+3
7.100 ·	0	0		Xo=0,5	0.6250
110	, st	0.5	= 1 1	$x_{1}=0.75$	-0.3281
9464 9464	2	0.5	0.75	$X_2 = 0.6250$	0.1191
	3	0.6250	0.75	$x_3 = 0.6875$	-0.1125
	4	0.6250	0.6875	x4= 0.6563	0.0012
	5	0.6563	0.6875	x5=0.6719	-0.0562
	6	0.6563	0.6719	$\pi_6 = 0.6641$	= 010276
	7	0.6563	0.6641	$\chi_7 = 0.6602$	-000132
	8	0.6563	0.6602	28 = 0,6583	- 0.0062
	9	0.6563	0.6583	$\chi_q = 0.6573$	-0.0025
	10	0.6563	0.6573	$x_{10} = 0.6568$	-0.0007
		8 0 016	1 40	Jona WT	1200
	He	nce th	re de	ot of the	given
		in is		2 6 8	

$11. \chi^{3} + \chi - 1 = 0$
Las don't private and pressions and the
Guiven $f(x) = x^3 + x - i = 0$
f(0) = -1 = -ve
f(1) = 1 + 1 - 1 = + ve.
The roots lies b/w o ce i
$x_0 = \frac{a+b}{a^2}$ $a = 0; b = 1$
$\frac{d}{dt} = \frac{d}{dt} $
$x_{0} = 0.5^{-1} - 0.3750$
$x_{i} = 0.75$
10 2 0.5 0.75 22 = 0.6250 -0.1309
3 0.625 0.75 $2C_3 = 0.6875$ 0.0125
4 0.625 0.6875 94 = 0.6563 - 0.3610
5 0.6563 -0.6875 $x_5 = 0.6719$ -0.0248
6 0.6719 0.6875 26 = 0.6797 -0.0063
7 0.6797 0.6875 $2(7 = 0.6836$ $0.003)$
8 0.6797 0.6836 x8 = 0.6817 -0.0015
9 0.6817 0.6836 $\chi q = 0.6827$ 0.0009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	A DECEMBER		illini Salasia	HERIKARI KANGGARANAN MANANAN MA	
	<u>n</u> .	0.6822	0.6821	9(11 = 0.6825	0.0.004
	12.	0,6822	0.6825	$x_{12} = 0.6824$	0.0002
	13.	016822	0.6824	X13 = 016823	-0.0001
	-		.91 1	- 1-1-51 - 119	
		Hence	the ra	ot in the given c	egn is
	0.68	23			17.5
6/7/19	METH	DD AI	່ ເດິ	SE POSITION(OR) R	EGULA
	6				Charles Carl
		MET		4	
(a)	N N	this the	is of the	e oldest method	Korr funding
a gast con Cata	The	real	root	of non-linear	equation
	f(x)=0) and	clos	sely resembles the	blaseition
5.6	method	a U	this	method also :	known as
	Regula	falsi	(M)	the method of a	chouds.
	ero -W	e estach	091e	two points A	and B
1) and f(b) are o	
,				0+67(9 · * \$\$\$740)	
				ecosts must lie	
	in	this	two	points of how big	- 2
	×000 + 0		a	(b) - b f(a)	1 9
	0.00	L.	m = 0/x	f(b) - bf(a) f(b) - f(a)	0]

104 1	. FP	nd the	real e	wot	of the equa	tion
٤	60	$x) = x^{3} - 2$	x-5=0		All Alexandress (
	Soli	Addition	J. 0813(16)			
1		Buch	lim)			
			$\int (x) = x^3$			
			$\int (0) = -1$		•	
		17 C	f(1) = 1 - 2			
		6	f(2) = 8- f(3) = 27-	6-5-	lb=tvp,	
÷		에 다 나는 것을 했다.	11190.S -		5 100. A	
		The	root	lies	blw 2 &	3
ing		6.130.0-18-6	0 a \$2 a 6	1	. 11.5 1.4.5	
	n	(ve)a	b (1ve)	XH=	$\frac{a(b) - b(a)}{b(b) - b(a)}$	1(X2) x3-2X-5
)	1	2	3	X1 = :	$\frac{2f(3) - 3f(2)}{f(3) - f(2)}$	
	2.	नर्म ल	1. 81			-0.3911
		3 -	01.2 4		$\frac{2(16) - 3(-1)}{16 + 1} = \frac{35}{17}$	- ,
				=	2.0588	
	2	2.0588	3	0	2.0588 (3) - 3 (9)58)	
	a	2010300		X2 =	d (3) - f (2.0588)	
	65			- (2.0588[16] - 3 (-0.391))	
EVAC	0- 1			^_	16- (-0.3911)	
			Q -	e e	32,9408+1.1733	
			<u>\$</u> 1_ = [16.3911	
		AL LOC	d j	- 11	34.1141	
		15 0	So =	4	16.391) 2.0813	- 0.1468
i in it				P	Q10815	
					Scanned with CamSca	

2.0939 3 26 = 2.0939 /(3)-3/ (2.039) 6 (A) = (A) = U.R. dirny. f(3)-f(2.0939) 1 -0.0028 = 2.0939 (-0.007)-32 (-0.003) 16- 1 (-0.0073) - 0.2582 $= \frac{33.5243}{16.0073}$ = 2.0943 Hence the poot of the given equation is 2.0943 2. Quiver that the equation $9c^{2.2} = 69$ has the root b/w 5 & 8 use the method of regula fals? to determine ", +" doln- - Cere Citopie Univer $f(x) = x^{2} - 69 = 0$ f(0)= 0-69=-ve f(1) = 1 - 69 = 68 = 1 ve $\int (2) = 2^{2 \cdot 2} - 69 = 4 \cdot 5948 - 69 = -64 \cdot 4052$ $f(5) = 5^{2.2} - 69 = -34,5068 = -ve$ ((6)= 6^{2.2}-69= -17.4851 =-ve $\int (7) = 7^{2.2} - 69 = 3.3129 = + re$ B(B) = 822 - 69 = 28.0059 = + Ve

n $\mathfrak{A}_{\mathcal{H}} = \frac{\alpha f(b) - b f(a)}{f(b) - f(a)}$ x2.2. 69 Q (10) 6.6, 1 5 $x_{1} = \frac{5f(8) - 8f(5)}{f(8) - f(5)}$ 8 = 5(28,0059)-8(-34,5068) 28.0059+34.5068 - 4 .2754 = 416.0839 62.5127 = 6.6560 x2 = 6.6560 f(8)-8/16.6560) 6.6560 2. 8 f(8) - f (6.6560) =6.6560 (28.0059)-8(4.279) 28.0059+4.2754 -0.4062 = 220.6105 32.2813 6.8340 2 6.8340 213 = 6.8340/18) - 8- (6.8340) 3. 8 618) - 2 (6.8340) -0.0369 - 6.8340 (28.0059)-8(-0.406) (28.0059)+0.4062 = 194.6419 28.412) = 6.8507

A4= 6.8507 ((8) - 8f (6.8507) 6.8507 8 4 f(8) - f(6.8507) = 6.8507 (28.0059)+8/0.0387 28.0059+0.0369 -0.0037 N3496.5082 192.1552 28.0428 = +6.8592 Hence the root of the quer equations ションションにはないたいとうないのない is 6.8522. Solve the equation $x \tan x = -1$ by regula 817119 3. false method starting with xo = 2.5 and $x_1 = 3.0$ convect to three decimal places. 2010:-Ouver $f(x) = \gamma(tan)(t) = 0$ $(2.5) = 2.5 \tan 2.5 + 1 = -0.8676$ B(3) = 3 tan 3+1= 0.5724 noots lies 6/3 2.5 & 3 The a: 2.5 b: 3 Scanned with CamScanner

$$\frac{n}{(x^{0}0)} \frac{(x^{0}0)}{(x^{1}+2)} \frac{(x^{1}+2)}{(x^{0}+2)} \frac{(x^{1}+2)}{(x^{1}+2)} \frac{(x^{1}+2)}{($$

Hence the Juppet of the generation
is 2.1984
4.
$$x \log_{10} x = 1.2$$

 gdb^{-}
 $Guven x \log_{10} x - 1.2 = 0$
 $f(1) = 1 \log_{10} 1 - 1.2 = -1.2 = -Ve$
 $f(2) = 2 \log_{10} 2 - 1.2 = -0.5979 = 3.Ve$
 $f(3) = 2 \log_{10} 3 - 1.2 = 0.2314 = 4.Ve$
 $f(3) = 2 \log_{10} 3 - 1.2 = 0.2314 = 4.Ve$
 $f(3) = 2 \log_{10} 3 - 1.2 = 0.2314 = 4.Ve$
 $f(3) = 2 \log_{10} 3 - 1.2 = 0.2314 = 4.Ve$
 $f(3) = 2 \log_{10} 3 - 1.2 = 0.2314 = 4.Ve$
 $f(3) = 2 \log_{10} - b f(3)$
 $gas = \frac{2}{f(b) - b} f(3)$
 $gas = \frac{2}{f(b) - f(a)}$
 $f(b) - f(a)$
 $f(b) - f(a)$
 $f(b) - f(a)$
 $f(2) - f(2)$
 $f(2) - f(2)$
 $f(2) - f(2)$
 $gas = \frac{2}{f(2) - g(2)}$
 $f(2) - f(2)$
 $gas = 2.7210$
 0.8293
 $gas = 2.7210$
 $gas = 2.7400$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 $0.2314 + 0.0711$
 0.2006
 $= \frac{0.6809}{0.2485} = 2.7400$

A BO		and the bi				
	-	3	2.7400	3	R3 = 2.7400 (0.2314)+ 3 (0.000	
					0,2314+0.0006	
			· ·		= 0.6358	-0.0001
					0.2320	X. N
	y				= 2.7405	Sp. 1027
				2=0	न - २८ हिंग हो गठेकार)	
		4 3	2.7405	3	x4= 2.7405(0.2314)+3 (0.0	b))
		314	= PTP3	0 C	0.2314 +0.0001	
		. 9v-f	314 -		- 0.6345	0.0001
			8-3	i. Tric	0.2315 at 1	
					= 2.7408	
			_	<u> </u>	D	
			Hence	the	most of given eqn	قد (
	60}	8.74	08 (10)	à₫ (a) (a)	0. b / x = 2 f	d I
					2 - 3 4.	j I
				e F(Mei e V		
	1710-0-			T RIGE		
1 1.41			6753	A & George		
				1919		
				- 2 B	е., д	
			2, 12.2	2 码(() (147
			27122 	》码((、 、 82.c),14	е., д	ilen i
	10, 1206	171	21922 - 4 +3 (; -	2 2 2 2 5 1 8 2 . c) 1 4 8 2 . c) 1 4 6 2 . 2 . 5		Here a
	10, 1206	171	21922 - 4 +3 (; -	2 2 2 2 5 1 8 2 . c) 1 4 8 2 . c) 1 4 6 2 . 2 . 5		16
	10, 1206	171	21922 - 4 +3 (; -	》码((、 、 82.c),14		1

 $5 = \frac{2}{10^{1}} = 3$ Soln:-Cuuven $f(x) = xe^{x} - 3 = 0$ (10) = -3 = - Verdac? - aicusit -1/1 $\beta(i) = -0.2817 = -ve$ out of taus f(1.5) = 3.7255 = 4 re. The 4007 lies b/10 1 & 1.5 Some and ? - adent ; Mb= 1.5 - 100 . worker b (+*) AH= <u>af(b) -bf(a)</u> f(b)-f(a) \$ (xo) xo^x-3=0 1) QL (ve) 1.5 x 1.5 1(3.7225)+1.5 (0.2817) 3.7225+0.2817 Joeffert d. = 4.1451 -0.0852 4.0042 1:0352 = 1 du o स्राजितो है। sing most of granting $x_2 = 1.0352(3.7225) + 1.5$ 2 1.5 1.0352 (0.0852) 3,7225 +0.0852 -0-0252 = 3.98133.8077 119:2 VEN. = 1.0456 x3 = 1.0456 (3.7225) + 1.56.0250 1.5 3 1.0456 3.7225+0.0252 -0.0077 = <u>3,9300</u> <u>3,7477</u> = 1.0486

Hence the most of the given agn is. 1.0486 9/4/19 Newton - Raphson Method: When the deverative of f(x) is a strongle expression and easily found the roots of f(x)=0 can be computed rapidly by a PHOCESS Called the Newton-Raphson Method. This method is a particular form the ileration method and can be derived as follows. -20852 het x=xo be an approximate value of one most of equation f(x) = 0. 2 1 IN362 15 (28.9f) x=xi is the exact most then $f(x_i) = 0 \quad \text{also} \quad -7 \quad O$ Also, x1-x0 will be small. het $x_1 - x_0 = h$ then $2c_1 = x_0 + h - 7 \textcircled{2}$ Putting @ Pn () f(xoth) = 0 - 1-01136 -

$$\begin{array}{c} 1e_{r} \\ f(x_{0}) + \frac{h}{1!} f'(x_{0}) + \frac{h^{2}}{2!} f''(x_{0}) + \dots = 0 \quad \Rightarrow r \circledast \\ (Taylor's theorem) \\ \end{array}$$

$$\begin{array}{c} \text{Since h & \& small we can omit h^{2} and \\ \text{higher pewers of h and from @ we have } \\ f(x_{0}) + b f'(x_{0}) = 0 \\ \Rightarrow h = -\frac{f(x_{0})}{f'(x_{0})} \rightarrow \textcircled{O} \\ \end{array}$$

$$\begin{array}{c} \text{Putting this value of h by using @ n @ we get \\ x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} \rightarrow \textcircled{O} \\ \end{array}$$

$$\begin{array}{c} \text{Putting this value of h by using @ n @ we get \\ x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} \rightarrow \textcircled{O} \\ \end{array}$$

$$\begin{array}{c} \text{Putting this value of h by using @ n @ we get \\ x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} \rightarrow \textcircled{O} \\ \end{array}$$

$$\begin{array}{c} \text{Putting this value x: given by equation (b) will \\ \text{be a closer approximation to the read of } \\ f(x) = 0 \quad \text{than } x_{0} \\ \end{array}$$

$$\begin{array}{c} \text{strudardy starding with x_{1} we (an get on formula \\ \hline given by \\ x_{0} = x_{1} - \frac{g(x_{0})}{f'(x_{0})} \\ \end{array}$$

$$\begin{array}{c} \text{and so on } \\ f'(x_{0}) \\ \end{array}$$

$$\begin{array}{c} \text{Thus we get the general formula } \\ \hline y(n_{1}) = x_{1} - \frac{g(x_{0})}{f'(x_{0})} \\ \end{array}$$

is known as hearton Raphson formula.
Convergence of Newton's method and rate of
tonvergence:
She Newton Raphson formula is

$$\Re n_{\pm 1} = \Re n - \frac{f(\Re n)}{f'(\Re n)}$$

 $\Re n_{\pm 1} = \Re n - \frac{f(\Re n)}{f'(\Re n)}$
 $\Re n_{\pm 1} = \Re n - \frac{f(\Re n)}{f'(\Re n)}$
 $\Re n_{\pm 1} = \Re n - \frac{f(\Re n)}{f'(\Re n)}$
 $\Re n_{\pm 1} = \Re n - \frac{f(\Re n)}{f'(\Re n)}$
Now above equation sourcehouthat
this is seally an iteration method.
She general form eqn 0 is
 $\chi = \varphi(\chi) \rightarrow 0$
By using the convergence condition by
an playation method in eqn 0 we get
If $\varphi(\pi)$ is converges then $|\varphi'(\pi)| < 1$
here $\varphi(\pi) = \pi - \frac{f(\pi)}{f'(\pi)}$
 $f(\pi) = 1 - \left[\frac{f'(\pi) \cdot f'(\pi) - f(\pi) f''(\pi)}{(f'(\pi))^2}\right]$

$$\begin{cases} 10) = -5 = -42 \\ f(1) = 1 - 2 - 5 = -6 = -42 \\ f(2) = 8 - 4 - 5 = -1 = -42 \\ f(3) = 16 + 16 \\ f(3) = 27 - 6 - 5 = 16 = +42 \\ f(3) = 27 - 6 - 5 = 16 \\ f(3) = 27 - 6 - 5 = 16 \\ f(3) = 27 - 6 - 5 = 16 \\ f(3) = 27 - 6 - 5 \\ f(3) = 27 -$$

Hui

$$X = e^{-X}$$

$$Y = e^{-X}$$

Λ	Xn			
		b(xn)	('1xn)	$x_{n+1} = 2c_n - \frac{1(x_n)}{1/(x_n)}$
0	X0=1	0.63 ଥା	1. 3619	$x_1 = 1 - \frac{0.6321}{1.3679}$
		9 4	- (x) }	$x_1 = 0.5379$
1	0.5379	-0.0461	1.5840	$\chi_2 = 0.5379 + 1$
		Cant V.	· · · · · · · · · · · · · · · · · · ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		(ant)		X2= 0.5670
2	0.5670	2 x k -	= 1 - = (0)	
	0.2010	-0.0002	1.5672	$9C_3 = 0.5670 + \frac{0.6}{1.3}$
9	(+ = 1)4		- 2 = (-	X3 = 0.5671
3	0.5671	-0-000)		924 = 0.5671 + 0.00
		211=063	a G • () = 1 ((a) \ / X4= 0.5672
4	0.2612	0.0001	1 ·5671 지난 × (G)	95-DETTO DOG
			1 > (\$.8.1.(2(5=0.5671
:	Hence th	e scot	of the	given equation
ى رى	5671 Mit	th 4 de	umal o	laus.
)	

.

1.
$$x^{2} - 5x + 3 = 0$$

Solut:
 $0 \text{ Winon } f(x) = x^{2} - 5x + 3 = 0$
 $f'(x) = 3x^{2} - 5$
By newton waphson fournula
 $x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}$
 $f(0) = t = 1 - 5 + 3 = -1 = -ve$
 $f(2) = 8 - 10 + 3 = 1 = +ve$
She woot was blue $0 \le 2$
Here $1f(0)1 = 1 = 1 = 1$
 $(te) = 1f(0)1 \ge 1g(2)1$
het $x_{0} = 1$

L				,£	1
	n	Xn	$\int_{a} (x_n) \int_{a} (x_n) \int_{a$	$\chi_{n+1} = \chi_n - \underline{f(\chi_n)}$	63(20)
	0	Xo=1	-1	$\mathcal{X}_1 = \frac{-1}{-2} + \frac{-1}{-$	- 21
a na anna an ann an an ann an ann an ann an a	۱ [′]	X1=0.5	0.6250	$\begin{array}{l} X_1 = 0.5 \\ X_2 = 0.5 + \frac{0.6250}{4.2500} \end{array}$	-412500
		. <i>ж</i>	u striaj L	$9f_2 = 0.6471$	
	2	X2=0.647	0.0355	$x_3 = 0.6471 + 0.0355$ 3.7438	-3. 743
				X3=0.6566	
3		13=0.6566	0.0001 9V-2	74 = 0.65661 - 0.0001 3.7066	- 3. 7066
,i		3	:+ = =	264 = 0.656 6	
	Ŀ	ý Ó		Sil the 18	

i. The most of the given equation with connect to 4 definal places is 0.6566

I have that

3.
$$x^4 + x^2 - 80 = 0$$

whit:
Curves $f(x) = x^4 + x^2 - 80 = 0$
 $f'(x) = 4x^3 + 2x$
By newton raphson formula.
 $x_{n+1} = 90n - \frac{f(x_n)}{f'(x_n)}$
 $f(0) = -80 = -Ve$
 $f(0) = 1 + 1 - 80 = -78 = -Ve$
 $f(2) = 16 + 4 - 80 = -60 = -Ve$
 $f(5) = 81 + 9 - 80 = 10 = +Ve$.
The root result of $0 \le 4$ (3).
Here $|f(2)| = |-60| = 60$
 $|f(2)| = 10| = 10$.
(1e) $|f(2)| = |-60| = 60$
 $|f(2)| = 10| = 10$.

3×25 1×+ 80 x4+x2-20 10m) \$1(xm) $\chi_{n+1} = \chi_n - \frac{\beta(\chi_n)}{\beta'(\chi_n)}$ ち xn 3 10 10 - 11/14 (21) 21 = 3-10 114 Ô X 4 KH = (R) X1 = 2.9123 $a.9123 0.4172 104.6272 \chi_2 = a.9123 - \frac{0.4172}{104.6272}$ 1 (10) - 100 - 11 02 = 2.9083 2. 2.9083 -0.0005 104.2126 X3= 2.9083+ 0.0005 104.2126 81- - 08 -1 + 1 = x = x = x = x = x = 2.9083 ... The most bis of the given equation 00 = 0. with convect to H definal places is 2.9083 Lat Xor 3 Scanned with CamScanne

4:
$$9t^3+32t^2-3=0$$

dolln':
Cuwen 'f(x) = $9t^3+3x^3-3=0$.
 $f'(x) = \frac{3}{2}x^2+6x$
By newton raphson formula
 $x_{h+1} = x_h - \frac{f(x_h)}{f'(x_h)}$
 $f(0) = -3 = -x_e$
 $f(1) = 1+3-3 = 1 = +x_e$.
The root we blue 0 $q_e 1$
Here $1f(0)1 = 1-31 = 3$
 $1f(0)1 = 1 = 1$.
(re) $1f(0)1 > 1f(0)1$
 $hot 9t0 = 1$

,

 $\alpha n+1 = 2(n - \frac{\beta(x_n)}{\beta'(x_n)})$ 6(Xn) 3 (Xn) D xn $x_1 = 1 - \frac{1}{0}$ 0 20=1 1 89 X1 = 0.8889 200 1 - - E 7.7038 $2e_2 = 0.8889 - \frac{0.369}{0.369}$ 1 x1=0.8889 0,3691 7.7038 x2= 0,8495 9(3 = 0.8795 - 0.0009)2 x2=0.8495 0,000 9,5976 7.5976 83 = 0.8794 was bro a ca $\pi_4 = 0.8794 - 0.0001$ X3=0.8794 0,0001 7.5964 3 7.5964 74 = 0.8794 1003 × 10081 3 i. The not of the green equation with convect to 4 decimal places is 0.8794

5.
$$x + \log x = 2$$

Soluri-
Curves $f(x) = 9(+\log x - 2) = 0$
 $f'(x) = 1 + \frac{1}{2x}$
By newton Raphoen formula
 $x_{n+1} = x_n - \frac{f(9n)}{f(2n)}$
 $f(0) = -2 = -ve$
 $f(1) = 1 + 0 - 2 = -1 = -ve$
 $f(2) = 2 + 0.3010 - 2 = 0.3010$
Here $1f(1)1 = +11 = 1$
 $1f(2)1 = 1130(0) = 0.3010$
 $(1e) 1f(1) > 1f(2)$
 $pet = x_0 = 0.8010 = 2$.

.

40 $\int f(xn)^{1+1/2} = \alpha n - \int f(xn) \\ \int f(xn) = \alpha n - \int f(xn) \\ \int f(xn) \\ \int f(xn) = \alpha n - \int f(xn) \\ \int f(xn)$ b(xn)In n $\Re_1 = 2 - \frac{0.8010}{1.5} = 1.7993$ 1.5 2 0.3010 0 $1.7993 0.0544 1.5558 x_2 = 1.7993 - 0.0544 = 1.764$ 1 23= 1.7643 - 0.0109=1.753 2 1.7643 0.0109 1.5668 $1.7573 \quad 0.0021 \quad 1.5691 \quad \chi_4 = 1.7573 - \frac{0.0021}{1.5691} = 1.7560$ 3 $|-7560| 0.0005 | .5695 | <math>x_5 = |-7560 - \frac{0.0005}{1.5695} = |-7557$ 4 1.7557 0.0002 1.5696 76 = 1.7557 - 0.0002 = 1.7556 1.56965 $1.7556 0.0000 1.5696 <math>\chi_{7.511.7556} - 0.0000$ 1.56966. = 1.7556. (a) [2 [m] (St) .. The most of the given equation with convict to A decemal places is 1.1556 .

5.
$$x \sinh^{2} - 4 = 0$$

Solution $\int (x) = x \cdot s - 4 = 0$
 $\int (x) = 8 \ln 2 \cdot x \cdot s - 4 = 0$
 $\int (x) = 8 \ln 2 \cdot x \cdot s - 4 = 0$
 $\int (x) = 8 \ln 2 \cdot x \cdot s - 4 = 0$
By newton raphion formula.
 $9\pi + x \cdot n - \int (x\pi) - \frac{1}{2}(x\pi) - \frac{1}{2}(x\pi)$

10.0

(5:n2-) sin2 X si - 4 sin2+x = 0.864 ŋ simi = xn -(2n) b(xn) ('IXD) $0.3209 \quad 0.7858 \quad 901 = 5 - \frac{0.3209}{0.7858}$ 0 5 P M L (ret) x1= 4.5916 1 $H \cdot 5916 - 0.0013$ 0.7919 $x_2 = H \cdot 5916 + 0.0000$ 22= 4.5932 941+1 = 2(1) - 12 $H.5932 0.0000 0.7919 x_3 = 4.5932 - 0.0000 0.7919$ 2 x3=4.5932 12)- -2, 1019- -VE. . The most of the given equation with convect to A definal places is H. 5932 16/7/19 1101 - 1-0447261 - 0.4726. Use the newton raphson method to find the 1. noot of the equation asphort-cas x = 0 Soln:-Guven f(x) = x sinx + cos x = 0 $f'(x) = x \cos x + sin x - sin x$ $f'(x) = 2000 x^{-1}$

Rock of the states in -: alos Gausen ((R) = SMDC-1+2C $\int (\mathcal{N}n) \int \int (\mathcal{R}n) = \mathcal{N}n+1 = \mathcal{N}n - \frac{\int (\mathcal{R}n)}{\int (\mathcal{R}n)}$ (xn) n $x_1 = \overline{11} - \frac{1}{8.1416}$ -3,1416 ~1 T Ð 21= 2.8233 2.8233 - 0.0662 - 2.6815 92 = 2.8233 - 0.06621 SEIP 0 - EN = 18 2.1 SEIP. 92 = 102.7986 2.7986 - 0.0006 - 2.6356 $x_3 = 2.7986 - \frac{0.0006}{2.6356}$ X3= 2.7984 0-+ 1860-0 0.0000 - 2-6352 x 4 21 2.79 84 + 0.0000 2.6352 2.6352 2.4 2.7984 2.6352 0.3 $\chi_4 = 2.7984$ X2=0.5104 i The most of the given equation with. convect to 4 definal places is 2.7984. R3= U.5110 3. 0.5110 0-8600 1.9723 . 24 - C.5110 - The exots of the given equation with connect to redevision places 0112.0 Scanned with CamScanne

2. Solve $\partial inx = 1 - x$. Soln:-Guven f(x) = SPnnc - 1 + 2c $\int f'(x) = \cos x + 1.$ $d_{1+1+8} = \Pi = 1R \quad d_{1+1+8} = - \Pi \quad \Theta_{0-9132}$ X1= 2, 82.33 $\frac{1}{2} \frac{1}{2} \frac{1}$ 218d. n 0.97.211/3 0.9132 1.5 $x_1 = 11/3 - 0.9132$ $\frac{9000.7}{5220.2} + \frac{110}{100} \frac{90000}{100000} + \frac{1100000}{100000} + \frac{100000}{100000} + \frac{100000}{1000000} + \frac{100000}{100000} + \frac{1000000}{100000} + \frac{100000}{100000} + \frac{1000000}{100000} + \frac{100000}{100000} + \frac{100000}{100000} + \frac{100000}{100000} + \frac{100000}{100000} + \frac{1000000}{100000} + \frac{1000000}{10000} + \frac{10000000}{10000} + \frac{1000000}{10000} + \frac{10000$ 24 = 2.7484 $x_2 = 0.5104$ At the address of the part to the entry $\frac{0.0011}{1.8725}$ 2. 0.5104, -0.0011 1.8725 33 = 0.5104 + 0.0011 1.8725 1.8725 1.8725R3= 0.5110 0.5110 0.0000 1.8723 964 = 0.5110 3. .: The mosts of the given equation with connect to 4 definal places is 0.5110

3. Solve
$$H(x-sPnx)=1$$

Solve $H(x-sPnx)=1$
 $f(x) = 4x - 4sPnx - 1 = 0$
 $f(x) = 4x - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 4 - 4sPnx - 1 = 0$
 $f(x) = 1 - 2sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 2sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 2sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 2sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPax - 4sPnx - 4sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x) = 1 - 12sPnx - 1 = 0$
 $f(x)$

AD. X-105x =0. Ouver $\int (x) = x - 0 + x = 0$ 0 = 1 - x - 0 + - x + - (x) = 0 $\int (x) = 1 + s + s + - (x) = 0$ $\int (x) = 1 + s + s + - (x) = 0$ Soln:- $\int (xn) \int (n+1) = xn - \frac{\int (xn)}{\beta(xn)}$ f(xn) (χ_n) n $\overline{\Pi}_{2}$ | 1.5708 2 $x_1 = \overline{\Pi}_2 - \frac{1.5708}{2}$ 0 1865.9 HOXI = 0.7854 R2= 1.25 - 0.2041 2(2 = 1.1755 2010 - 2271.1 = EX. 1934.2 20102 = 017395 5 0.7395 0.0007 1.6739 23 = 0.7395 - 0.0007 1.67392 1000.0 + SITI-1 = HR 8844.8. 000. 83= 0.7991 2 44 58 3. \$4= 0.7397 4 Mos adioups navie ant 10 bour 25=10:7391 2551 = 0.7391 = 0.0000 = 1.6736 = 0.7391 - 0.0000 = 0.7391 - 0.0000 = 0.7391 = 0.7391 = 0.0000 = 0.7391 = 0.7.: The most of the gn egn with connect to 4 decimal

Plaus is 0.7391 - Jonney Married TI, 5) SINX = X/2 aut $\frac{30\ln^2}{6}$ Guven $f(x) = \sin 2\pi - \frac{3}{2} = 0$ $\frac{1}{\beta} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0$ this equation in my form or = \$ (01) -1(3) Share any many ways of doing this 10 worth 30 no b(xn) & (xn) & b(xn) & b(xn) & p(n+1=xn-b(xn)) 11/2 0.2148 -0.5 $X_1 = 11/2 + \frac{0.2146}{0.5}$ 0 $\frac{1}{22} = \frac{1}{2} x^{2} = \frac$ olespied sout and sublituding it for x'0109.1 = 2× on the segue sede of equation & we obtain $\frac{2}{2} - \frac{8}{14} = \frac{8}{14} = \frac{8}{3} = \frac{1}{3} = \frac{$ (-12) 3 = 1-8955 0.0000 = 0.8(90) 2(4 = 1.8955 + 0.0000 0.8190 when on the approximation of the approximation so, and ... The most of the given we the connect to 140 derinal places our 1.8955 - Jul

1 M 1965.0 W 1991 INTERATION METHOD :to desurbe this method for finding the roots of the equation fix)=0 -> 0 we rewrig this equation in the form $3c = \phi(3c) - \frac{1}{2}$ There are many ways of doing this For example! x³ + 2c²-1=0 can be expressed as either of the + form = 12 2.0 - 21112.0 217 $\chi = (1-\chi^2)^{\frac{1}{3}}$ or $\chi = \sqrt{1-\chi^3}$ or $\chi = \frac{1}{\chi^2 + \chi}$ 10PO.0 het = 200 bellan - approxemates value of deserved voot and substituting it for x' on the neight spole of equation @ we obtain - 0 0045 $s + s = \phi(x_0)$. $(10P - 1) = p(x_0) x^2 mate = \phi(x_0)$. (10P - 1) = gThe duccessive approximations are then given 2^{p} by $\pi_2 = \phi(\pi_1)^2$, $x_3 = \phi(2^{p})^2$, $x_n = \phi(2^{n-1})^2$ The sequence of the approximations xo, x1, 22, toma does not always & sonveyge. tom att ... het E be a scoot of f(x)=0 and het I be

on interval containing the polat
$$\epsilon$$
.
Let $\phi(x) \neq \phi'(x)$ be continuous $\beta = 1$, where $\phi(x)$
is defined by the equation $x = \phi(x_0)$ which
equivalent to $f(x_0) = 0$. Then if $(\phi'(x_0) \mid z_1, for$
all x is T .
The dequance of approximations $x_0, x_1, x_2, \dots, x_n$
defined by $x_{n+1} = \phi(x_0)$ converges to the root ϵ .
Provided that the initial approximation is is
choosen in T .
Properent solution $x^3 + x^2 - i = 0$
on the induct (o_1) with an accuracy of 10^4 .
Sup interval $f(x) = x^3 + x^2 - i = 0$
 $2^3 + x^2 = 1$ with $a = conx^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $2^3 + x^2 = 1$ with $a = conx^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$
 $T = 2^3 + x^2 - i = 0$. $x^3 + x^2 - i = 0$.
 $T = 1 + x$ or $x = x^3 + x^2 - i = 0$.
 $T = 1 + x$ or $x = x^3 + x^2 - i = 0$.
 $T = 1 + x$ or $x = x^3 + x^2 - i = 0$.
 $T = 1 + x$ or $x = x^3 + x^2 - i = 0$.
 $T = 1 + x = 1 + x = 1$.
 $T = 1 + x = 1$.
 $T = 1 + x = 1$.

$$\begin{aligned} \psi'(x) = \sqrt{1+x} \psi_{-1} + (\sqrt{1+x})^{-1} + (\sqrt$$

2.
$$xe^{x} = 1$$
, the most lies $b | w | o q_1 | y$.
 $d(m)^{x} = xe^{x} = 0$
 $f(x) = xe^{x} = 0$
 $x = \frac{1}{e^{2x}} \Rightarrow \phi(x) = e^{-x}$ RTR $0 = 1x$
 $1e^{-x} = 1e^{-x}$
 $1e^{-x$

6.
$$x_6 = 0.5682$$

7. $x_7 = 0.5685$
8. $x_8 = 0.5675$
9. $x_9 = 0.5669$
10. $x_{10} = 0.5673$
10. $x_{10} = 0.5673$
11. $x_{11} = 0.5671$
12. $x_{11} = 0.5671$
13. $x_{11} = 0.5671$
14. $x_{11} = 0.5671$
15. $x_{12} = 0.5672$
16. $x_{12} = 0.5673$
17. $x_{13} = 0.5671$
18. $x_{11} = 0.5671$
19. $x_{12} = 0.5672$
10. $x_{12} = 0.5672$
11. $x_{12} = 0.5672$
11. $x_{12} = 0.5672$
12. $x_{13} = 0.5671$
13. $x_{12} = 0.5672$
14. $x_{13} = 0.5671$
15. $x_{2} = 0.5672$
16. $y_{12} = \frac{2}{2}x_{1} \cos x + 3$
17. $0 = x^{2}$
17. $0 = x^{2}$
17. $0 = x^{2}$
16. $y_{12} = \frac{2}{2}x_{13} = 0.5$
16. $y_{12} = \frac{567}{2}$
17. $0 = x^{2}$
16. $y_{12} = \frac{567}{2}$
17. $0 = x^{2}$
16. $y_{13} = \frac{567}{2}$
17. $y_{2} = \frac{56}{2}$
16. $y_{13} = \frac{567}{2}$
17. $y_{2} = \frac{56}{2}$
18. $y_{2} = \frac{56}{2}$
19. $y_{2} = \frac{56}{2}$
10. $y_{13} = \frac{567}{2}$
10. $y_{13} = \frac{567}{2}$
10. $y_{13} = \frac{567}{2}$
10. $y_{13} = \frac{567}{2}$
10. $y_{13} = \frac{56}{2}$
10. y_{1

n	At (x) b	$\frac{1}{2} 2 2(n+1) = \phi(x_n)$
0	xo= 11/2 - ().)	$x_{1} = \frac{\cos(\pi/2) + 3}{2} = 1.5$
	x1=(1.50 = 1(x)))	X2 = 1.5354
2	x2=1.5354 (m) +1	Xz = 1.5177
3.	x3= 1.5.177 = 019	X4 = 1.5265
4.	9C4 = 1.5865	x5 = 1.5221
1+(1)(20) = 19	25=1.5221 11:0X	26 = 1.5243
٤6.	26 = 1.5243	XI= 1.5232
$x_i = c \mathbf{p} s x_{i-1}$	Xy = 1.5232 EEEE.0 = 1X	28 =1.5238
22=0 8 6483	7(8 = 1.5238	$x_q = 1.5235^{-1}$
X3= 6 9 5480	269 = 1:52 35 - 2%	9°10 = 1-5236
980 2 · 0 = 10 · 6	X10 = 1.5236 OPP 2.0 = 8×	$\chi_{11} = 1.5236$
8909-9-2-2	211= 1.5236 2802-0 = 42	×12= 1.5236
stod-0 = She woots of given eqn is 1.5236.		
$\frac{4}{1000} \cdot 1000000000000000000000000000000000000$	Xe= 6-6072	
$17pd \cdot 0 = 8x$ Guiven $11f(x) = cosx - 3x + 1 = 0$		
$3x = \cos x + 1$ $x = \cos x + 1$ $x = \cos x + 1$		
ONCREASE	3	

$$\oint (x) = \frac{(05)x+1}{3}$$

$$\oint '(x) = -\frac{5\ln x}{3}$$

$$(\phi'(x)) = \frac{5\ln x}{3$$

5.
$$x = \frac{1}{(x+y^2)}$$
 the scot subsolution of (x) .
Solutions $f(x) = x - \frac{1}{(x+y^2)}$
 $x = \frac{1}{(x+y^2)}$
 $x = \frac{1}{(x+y^2)}$
 $\frac{g'(x) = \frac{1}{(x+y^2)}}{g'(x) = \frac{1}{(x+y^2)}}$
 $g'(x) = \frac{2}{(x+y^2)}$
 $g'(x) =$

1

89=014685 x 8 = 0.4689 9. 210= 0.4669 X9= 0.4635 01 9(1=0.4647 2010= 0.4669 11 X1= 0.4661 9(1) = 0.464712. X13 = 0-4652 X12 = 0.4661 - - X 13. 214=0.4658 X13= 0.4652 14. 7(15=0.4654 X14 = 0.4658 15. $\chi_{15} = 0.4654$ 9(16 = 0.4651 16. X16 = 0.4657 ×17 = 0.4655 17. Хи = 0.4655 X18= 0.4656 18. $x_{18} = 0.4656$ $x_{19} = 0.4656$ 19. (m) a - rende The mosts of the given equation is - Ct . 0.4856 24/1/19 solutions of linear algebruale equations:-Quants elimination method: (Direct method) Basically the most effective derect solution to maques couvertly being used are applications of gauss climination methods.

Bh this method the ighter dyster is
thandowned into
$$\mu a_1$$
 equivalent system with
upper transguter coefficients mature. That is is
a mature in when elements below the
diagonal elements are are able can be solved
by Back substitution.
by Back substitution.
 $\mu = \frac{1}{2}$
solve the dyster of Equation by Daws elementer
is a solve the dyster of Equation by Daws elementer
 $2x + 2y + 2z = 3$
 $2x + 2y + 2z = 3$
 $2x + 2y + 2z = 3$
 $2x + 2y + 2z = 13$
 $f = -1$
Solve the augmented matrix is
 $Ax = B$
 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}$
New the augmented matrix is
 $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 10 \\ -2 - 4 - 2 - 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ -2 - 4 - 2 - 4 \end{bmatrix}$
 $R[A,B] $-\begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & -1 & 1 & 13 \end{bmatrix}$$

$$\sum_{i=1}^{n} \left[\begin{array}{c} 1 & 2 & 1 & 3 \\ 0 & -1 & +1 & 4 \\ 0 & -7 & -1 & -4 \\ 0 & -7 & -1 & -4 \\ 0 & -7 & -1 & -4 \\ 0 & 0 & -8 & -29 \end{array} \right]
 \begin{array}{c} R_{3} - R_{3} - 3R_{1} \\ 3 & -1 & 2 & 13 \\ -3 & -k & -3 & -9 \\ \hline \\ R_{3} - R_{3} - R_{3} R_{2} + R_{2} \\ R_{3} - R_{3} R_{3} + R_{3} - R_{3} \\ R_{3} - R_{3} R_{3} + R_{3} - R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} R_{3} + R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} - R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} + R_{3} + R_{3} \\ \hline \\ R_{3} - R_{3} \\ \hline \\ R_$$

$$\begin{bmatrix}
 1 & 10 & 1 & 12 \\
 0 & 1 & 1 & 12 \\
 0 & 0 & 1 & 1
 \end{bmatrix}
 \begin{bmatrix}
 1 & 10 & 1 & 12 \\
 0 & 1 & 11 & 12 \\
 0 & 1 & 11 & 12 \\
 0 & 1 & 11 & 12 \\
 0 & 1 & 11 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 0 & 1 & 12 \\
 1 & 0 & 1 & 12 \\
 1 & 0 & 1 & 12 \\
 1 & 0 & 0 & 0 & 1 \\
 1 & 1 & 1 & 12 \\
 1 & 1 & 1 & 12 \\
 1 & 1 & 12 \\
 1 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\
 1 & 10 & 1 & 12 \\$$

Assignment NO:02
1.
$$9(-4+z = 1)$$

 $-3x+Ry-3z=-6$
 $dx-5Y+Hz=5$
Solution
Matrion form of the gives dystem is
 $Ax=B$
 $\begin{bmatrix} -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & 2 & -3 \\ -3 & -5 & H \end{bmatrix} \begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ -5 \end{bmatrix}$
Now the augmented matrix,
 $\begin{bmatrix} -p,B \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -3 & -6 \\ -2 & -5 & 4 & 5 \end{bmatrix}$
 $R_2 \rightarrow R_3 + 3R_1$
 $R_2 \rightarrow R_3 - 2R_1$
 $R_2 \rightarrow R_3 - 2R_1$
 $R_3 \rightarrow R_3$
 $R_$

$$\boxed{\begin{array}{c} \boxed{x=6} \\ x-3+6=1 \\ x=1-3 \\ \hline{x=-2} \end{array}}$$

a. $a^{3} \underbrace{z+4y-z=32}_{x+3y+10z=34}$

a. $a^{3} \underbrace{z+4y-z=32}_{x+3y+10z=34}$

a. $a^{3} \underbrace{z+4y-z=32}_{x+3y+10z=34}$

a. $a^{3} \underbrace{z+4y-z=32}_{x+3y+10z=34}$

a. $a^{3} \underbrace{z+3y+10z=34}_{x+11y} \underbrace{z-35}_{x+3} \\ \underbrace{z+3y+10z=34}_{x+11y} \underbrace{z-35}_{x+3} \\ \underbrace{z+3y+10z=34}_{x+3y+10z=34} \\ \underbrace{z+3y+10z=3$

$$\begin{cases} 1 & 3 & 10 & 24 \\ 0 & i & 3.5125 & 8 \\ 0 & 0 & 54.6315 & 101 \\ \\ By back substitution method, \\ \hline \\ & X + 3Y + 10 & Z = 24 \\ & Y + 3.5125 & X = 8 \\ & (54.6375) & X = 101 \\ \hline \\ & X + 3Y + 10 & X = 23 \\ \hline \\ & Y + 5.6125 & X = 8 \\ \hline \\ & (54.6375) & X = 101 \\ \hline \\ & X + 3.5125 & (1.8485) = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & Y + 5.4939 = 3 \\ \hline \\ & X + 23.00635 = 24 \\ \hline \\ & X +$$

Now, the augumated mature is,

$$\begin{bmatrix} P_{1}P_{2} \end{bmatrix} = \begin{bmatrix} 10 + -2 & 3 & 23 \\ 2 & 10 - 5 & -33 \\ 3 & -4 & 10 & 41 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1/5 & 3/10 & 23/10 \\ 2 & 10 & -5 & -33 \\ 3 & -4 & 10 & 41 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & -1/5 & 3/10 & 23/10 \\ 0 & 52/5 & -28/5 & -188/5 \\ 0 & -17/5 & -7/13 & -17/13 \\ 0 & -7/13 & -47/13 \\ -7/13 & -47/13 \end{bmatrix}$$

$$R_{2} + R_{2}$$

$$R_{3} - R_{3}$$

$$R_{3} - R$$

$$\begin{aligned} y &= -\frac{hT}{l_{3}} - \frac{7(3)}{l_{3}} \\ y &= -\frac{hT}{l_{3}} - \frac{7(3)}{l_{3}} \\ x &= \frac{23}{l_{0}} + \frac{(-3)}{5} - \frac{3(3)}{l_{0}} \\ \hline x &= \frac{23}{l_{0}} + \frac{(-3)}{5} - \frac{3(3)}{l_{0}} \\ \hline x &= \frac{1}{l_{0}} \\ \hline x &= \frac{1}{l_{0$$

-

By back substitution method x-2y+9z=8 $y + \frac{172}{4} = \frac{21}{4}$ $\frac{-33}{4}Z = -\frac{33}{4}$ Z=1 $y = \frac{21}{4} - \frac{17}{L} = 1$ y=1 : alaz mataple (81) 2 = 8+2(1) -9(1) witch Now the outpromisel matrix is E. X1+X2+X3 +X4=2 $x_{1} + x_{2} + 3x_{3} - 2x_{4} = 6 - 5$ $2x1 + 3x_2 - x_3 + 2x_4 = 7$ $x_1 + 2x_2 + x_3 - x_4 = -2$ Solp:-Matur form of the given system is Ax=B $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & -2 \\ a & 3 & -1 & 2 \\ 1 & 2 & 1 & -4 \end{bmatrix} \begin{bmatrix} x \\ x \\ x \\ x \\ x \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ -6 \\ 7 \\ -2 \end{bmatrix}$

Scanned with CamScanner

Now in the augmental mature is

$$\begin{bmatrix} A, B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ NA + (1, 3, 2, 2, 1, 1_{0}) \\ R & 3, -1 & 2 & 7 \\ 1 & 2 & 1 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} A + (1, 1, 2) \\ B & 3, -1 & 2 & 7 \\ 1 & 2 & 1 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} A + (1, 1, 1) & 2 \\ 0 & 0 & R & -3 & -8 \\ 0 & 1 & 0 & -R & -4 \end{bmatrix}$$

$$\begin{bmatrix} A + (1, 1, 1) & 2 \\ 0 & 0 & R & -3 & -8 \\ 0 & -1 & 0 & -R & -4 \end{bmatrix}$$

$$\begin{bmatrix} A + (1, 1, 1) & 2 \\ 0 & 1 & 0 & -R & -4 \\ 0 & -1 & 0 & -R & -4 \end{bmatrix}$$

$$\begin{bmatrix} A + (1, 1, 1) & 2 \\ 0 & 1 & 0 & -R & -4 \\ 0 & -1 & 0 & -R & -4 \\ 0 & -1 & 0 & -R & -4 \\ 0 & 0 & -1 & R_{13} & Y_{13} & Y_{13} \\ 0 & 0 & -1 & R_{13}$$

By wback substitution method," $x_1 + x_2 + x_3 + x_4 = 2$ [4, A] $\begin{bmatrix} 7 & 2 & - & 2 \\ - & 2 & - & - & - \\ - & x_3 + 2 & - & - & - \\ - & x_3 + 2 & - & - & - & - \\ \end{array}$ S 1-5/6 X4 = -5/3 19-69F-0 19-19-19 $- \frac{x_{3} + 4}{3} = \frac{7}{3}$ $8 - \frac{2}{3} - \frac{2}{3} = \frac{7}{3} - \frac{4}{3} = \frac{3}{3}$ $7 - \frac{2}{3} = \frac{7}{3} - \frac{4}{3} = \frac{3}{3}$ 1- 2- 0 X3=-1 22-4 =-4 $\begin{array}{c} 2 \\ + 2 \\ + 2 \\ - 2 \\ - 2 \\ - 2 \\ - 1 \\ + 2 \\ - 2 \\ - 1 \\ + 2 \\ -$ P3-783 - RU 8- E- & x1+1=2 $x_1 = 2 - 1$ $\frac{2}{1-2} = 0$ 895-89 $6 = 32ii + x_2 + x_3^8 = 4 - 1 0 0$ x1+4x2=x3=-5 SAT PLIT IS Matux form of the given equation is Scanned with CamScanne

$$\begin{aligned} \mathbf{A} \times = \mathbf{B} \\ \begin{cases} 3 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & 1 & -6 \end{cases} \begin{bmatrix} \mathbf{X} & \mathbf{X} \\ \mathbf{X} & \mathbf{X} \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ -1 \end{bmatrix} \\ \text{Now the suggestide notion:} \\ \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} = \begin{bmatrix} 3 & 3^{1} & 1 & 4 \\ 1 & \mathbf{A} & -1 & -5 \\ 1 & 1 & -6 & 12 \end{bmatrix} \\ \mathbf{A} = \begin{bmatrix} 1 & 3 & 4 & 1 & 1 \\ 1 & \mathbf{A} & -1 & -5 \\ 0 & -1 & \mathbf{A} & 1 & 19 \\ 0 & -3 & -5 & -7 \end{bmatrix} \\ \mathbf{R} \times = \mathbf{R} = \mathbf{R$$

がたい

Now the augmented matrix $\begin{bmatrix} A, B \end{bmatrix} = \begin{bmatrix} a & 4 & a & 15 \\ a & 1 & a & -5 \\ a & 1 & -2 & 0 \end{bmatrix} = \begin{bmatrix} a & 4 & a & 15 \\ a & 1 & a & -5 \\ a & 1 & -2 & 0 \end{bmatrix} = \begin{bmatrix} a & 4 & a & 15 \\ a & 1 & a & -5 \\ a & 1 & -2 & 0 \end{bmatrix}$ R1-7_R1 $\begin{bmatrix} 1 & 2 & 1 & 157_2 \\ 2 & 1 & 2 & -5 \\ 4 & 1 & -2 & 0 \end{bmatrix} \begin{bmatrix} R_3 - 7 & R_3 - 4R_1 \\ R_2 - 7 & R_2 - 2R_1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 & \frac{15}{2} \\ 0 & 1 & 0 & \frac{20}{3} \\ 0 & 0 & -6 & \frac{50}{3} \end{bmatrix} \xrightarrow{R_2 - 7 R_2} \frac{-3}{-3}$ $\begin{bmatrix} 1 & 2 & 1 & \frac{15}{2} \\ 0 & 0 & -6 & \frac{50}{3} \end{bmatrix} \xrightarrow{R_3 - 7 R_3 + 7R_2}$ $\begin{bmatrix} 1 & 2 & 1 & \frac{15}{2} \\ 0 & 1 & 0 & \frac{20}{3} \\ 0 & 0 & 1 - \frac{25}{a} \end{bmatrix}$ By back substitution method, $\chi_1 + 2\chi_2 + \chi_3 = \frac{15}{2}$ $x_2 = 20/3$; $x_2 = 6.6667$ x3=-25/q ; [x3=-2-7778 X1 +2 (6.6667) +2.7778 = 7.5 $x_1 + 10.556 = 7.5$ X1=-3.055Q

818/19 Grauss-Seedel Method:- with with Consider 1 1 1 1 1 = [8.1] Iterative method: This siterative method is not alway successfull state all system of equations un this method is to succeed each equation of the system must posses one large coefficient and the large coefficient must - be- attached to a different unknowns in that equations. These Condition will be satisfied large wefficient are along leading diagonal elements of the coefférient matruse. When thus condition is satisfied when thus condition is satisfied is a condition is satisfied SITT the system as - will be solvable by Plarative Trimethod and a) it is Pere The dystem of equations SC1 = - 3-0556

 $\begin{array}{l} a_{11} & x_1 + a_{12} & x_2 + a_{13} & p(_3 = b) \\ a_{21} & x_1 + a_{22} & p(_2 + a_{23} x_3 = b) \\ a_{31} & x_1 + a_{32} & x_2 + a_{33} & x_3 = b) \end{array}$

Will be solvable by iterative method is $|a_{11}| > |a_{12}| + |a_{13}|$ $|a_{22}| > |a_{21}| + |a_{23}|$ $|a_{33}| > |a_{31}| + |a_{32}|$

Gauss-seidal method:-

(In this method we first verify the given dystem is diagonally domenant or not?

If it is not diagonally dominant we Prturchange the equation its eff we Obtain diagonally dominant system then

het us consider the dystem of equations are,

 $a_1x + b_1y + q_2 = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$ Rewnite the above equations are

$$\begin{split} \mathcal{X} &= \frac{1}{a_1} \begin{pmatrix} d_1 - b_1 4 - (1, z) & - \mathbf{O} & (1, z_1), \\ g \to z_2 & (u_{21}) \\ g \to z_2 & (u_{21}) \\ &= \frac{1}{b_2} \begin{pmatrix} d_2 - d_2 x - (2z) & \mathbf{T} & \mathbf{O} & (1, z_{21}), \\ g \to z_1 & (z_{21}) \\ &= z_2 & (d_3 - a_3 x - b_3 y) & \mathbf{T} & \mathbf{O} \\ g \to z_1 & (z_{21}), \\ &= z_1 & (d_1) \\ &= z_1 & (d_1) \\ &= z_1 & (d_1) \\ &= z_1 & (d_2 - a_2 x^*) \\ &= z_1 & (d_2 - a_2 x^*) \\ &= z_2 & (d_2 - a_3 x^* - b_3 y^*) \\ &= z_2 & (d_3 - a_3 x^* - b_3 y^*) \\ &= z_2 & (d_1 - b_1 y^* - c_1 z^*) \\ &= z_1 & (d_1 - b_1 y^* - c_1 z^*) \\ &= z_1 & (d_2 - a_2 x^{**} - (y_1 x^*) \\ &= z_1 & (d_2 - a_2 x^{**} - (y_1 x^*) \\ &= z_1 & (d_1 - b_1 y^* - c_1 z^*) \\ &= z_1 & (d_2 - a_2 x^{**} - (y_1 x^*) \\ &= z_1 & (d_2 -$$

Put
$$x = x^{**}$$
, $y = y^{**}$
 $x^{**} = \frac{1}{c_3} (d_3 - a_3 x^{**} - b_3 y^{**})$
Continuing thus improves. Within the convergency
assured the convergency in the gauss second
nethod is very fast.
(ait 6) $= [(a_3) + f(a_1) + a_2] = x$
solve the following dystem of equations by
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - selded method. $10x - 5y - 2z = 3$ %
(auss - se

$$\begin{aligned} \lambda &= -\frac{1}{10} \left[3 + x + 6y \right] - 7 \textcircled{3} \\ \hline \text{Theration : 1} \\ \text{Put} , \gamma = 0 \text{ and } x = 0 \quad 5 \quad egn \ 0 \\ x &= \frac{1}{10} \left[3 \right] = \frac{3}{10} = 0.3 \\ \Rightarrow \textcircled{3} \quad y = \frac{1}{10} \left[3 + h(0.3) \right] = \frac{1}{10} (3 + 1.2) + \frac{1}{10} \\ &= 0.42 \\ \Rightarrow \textcircled{3} \\ x &= -\frac{1}{10} \left[3 + 0.3 + 6 (0.42) \right] * \\ &= -\frac{1}{10} \left[3 + 0.3 + 2.52 \right] \\ &= -\frac{1}{10} \left[3 + 0.3 + 2.52 \right] \\ &= -\frac{1}{10} \left[5 + 82 \right] \\ &= -0.582 \\ x &= 0.3 \quad x \neq 0.42^{-3}; \quad x = -0.582 \\ \hline \text{Theration : 2 and the set of the set$$

ないしたい

=

$$\begin{split} & (\textcircled{O}) = \begin{pmatrix} y = \frac{1}{10} \left[3 + 4_1 (0.3936) + 3(-0.592) \right] = 0.2828 \\ & (\textcircled{O}) = \begin{pmatrix} z = -\frac{1}{10} \left[3 + (0.3936) + 3(-0.592) \right] = -0.5090 \\ & \therefore & x = 0.3936 ; y = 0.2828 ; z = -0.5090 \\ & \text{Tunation} : 3 \\ & \text{Put } y = 0.2828 , z = -0.5090 \\ & \text{Put } y = 0.2828 , z = -0.5090 \\ & \text{Put } y = 0.2828 , z = -0.5090 \\ & \text{Put } y = \frac{1}{10} \left[3 + 5(0.2823) + 2(-0.5090) \right] = 0.3396 \\ & (\textcircled{O}) = \begin{pmatrix} z = -\frac{1}{10} \left[3 + 0.3396 + 46(0.2831) \right] = -0.5038 \\ & (\textcircled{O}) = \begin{pmatrix} z = -\frac{1}{10} \left[3 + 0.3396 + 46(0.2831) \right] = -0.5038 \\ & (\textcircled{O}) = \begin{pmatrix} z = -\frac{1}{10} \left[3 + 0.3396 + 46(0.2831) \right] = -0.5038 \\ & (y = -\frac{1}{10} \left[3 + 5(0.2831) + 2(-0.5038) \right] = 0.3408 \\ & (y = -\frac{1}{10} \left[3 + 5(0.2831) + 2(-0.5038) \right] = 0.3408 \\ & (\textcircled{O}) = \begin{pmatrix} z = -\frac{1}{10} \left[3 + 4(0.3408) + 3(-0.5038) \right] = 0.2852 \\ & (\therefore & z = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (\therefore & z = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.3408 + 6(0.2852) \right] = -0.5052 \\ & (x = -\frac{1}{10} \left[3 + 0.2852 , x = -0.5052 \right] \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[3 + 5(0.2852) + 2(-0.5052) \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[-\frac{1}{10} \left[-\frac{1}{10} \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[-\frac{1}{10} \left[-\frac{1}{10} \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[-\frac{1}{10} \left[-\frac{1}{10} \right] = -0.3416 \\ & (x = -\frac{1}{10} \left[-\frac{1}{10} \left[-\frac{1}{10} \right] \right] = -0.34$$

•14 •14

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 & \text{ if } P \cdot 1 \le x \\ \end{array} \\ \begin{array}{c} 4 + 2y + z = 14 + (4 + 1) + 11 \\ \end{array} \\ \begin{array}{c} 1 + 2y + z = 10 \\ \end{array} \\ \begin{array}{c} x + y + 8z = 20^{1} \\ \end{array} \\ \begin{array}{c} x + y + 20^{1} \\ \end{array} \\$$

Put,
$$Y = 1.3$$
, $z = 1.4$ in eqn 0.
 $x = \frac{1}{4} \begin{bmatrix} 14-2(1.3)-1.9\end{bmatrix} = 2.375$
 $x = \frac{1}{4} \begin{bmatrix} 10-2.375+1.9\end{bmatrix} = 1.9050$
 $x = \frac{1}{5} \begin{bmatrix} 20-2.375-1.9050\end{bmatrix} = 1.965$
 $x = 2.375$; $Y = 1.9050$; $z = 1.965$
 $x = 2.375$; $Y = 1.9050$; $z = 1.965$
 $x = 2.375$; $Y = 1.9050$; $z = 1.965$
 $x = 2.375$; $Y = 1.9050$; $z = 1.965$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0563+1.965\end{bmatrix} = 2.0563$
 $y = \frac{1}{5} \begin{bmatrix} 10-2.0563+1.965\end{bmatrix} = 1.9817$
 $x = \frac{1}{5} \begin{bmatrix} 20-2.0563+1.965\end{bmatrix} = 1.9817$
 $x = \frac{1}{5} \begin{bmatrix} 20-2.0563+1.965\end{bmatrix} = 1.9953$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0563+1.9817\end{bmatrix} = 1.9953$
 $x = 2.0563 \Rightarrow 14=1.9817$; $z = 1.9953$
 $x = 2.0563 \Rightarrow 14=1.9817$; $z = 1.9953$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0103+1.9953\end{bmatrix} = 2.0103$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0103+1.9953\end{bmatrix} = 1.9970$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0103+1.9953\end{bmatrix} = 1.9971$
 $x = 2.0103$; $y = 1.9970$; $z = 1.9991$
 $x = 1.9970$; $z = 1.9991$
 $x = \frac{1}{5} \begin{bmatrix} 10-2.0103+1.9970\end{bmatrix} = 1.9991$

$$\begin{split} & \textcircled{()} = Y \quad Y = \frac{1}{5} \left[10 - 2 \cdot 0017 + 1 \cdot 9991 \right] = 1 \cdot 9497 \quad 9997 \\ & \textcircled{()} = X = \frac{1}{8} \left[20 - 2 \cdot 0017 + 1 \cdot 9997 \right] = 1 \cdot 9999 \\ & \textcircled{()} \times X = 2 \cdot 0017 + Y = 1 \cdot 9997 \\ & \textcircled{()} \times X = 2 \cdot 0017 + Y = 1 \cdot 9997 \\ & \textcircled{()} \times X = 2 \cdot 0017 + Y = 1 \cdot 9997 \\ & \textcircled{()} \times X = 2 \cdot 0017 + Y = 1 \cdot 9997 \\ & \textcircled{()} = \frac{1}{4} \left[14 - 2(1 \cdot 9997) - 1 \cdot 99997 \right] = 2 \cdot 0003 \\ & \textcircled{()} = Y \quad Y = \frac{1}{5} \left[10 - 2 \cdot 0003 + 1 \cdot 9997 \right] = 2 \\ & \textcircled{()} \times X = 2 \cdot 0003 + 1 \cdot 9997 \\ & \textcircled{()} = X \\ & \textcircled{()} = \frac{1}{7} \left[20 - 2 \cdot 0003 - 1 \cdot 9997 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = \frac{1}{7} \left[20 - 2 \cdot 0003 - 1 \cdot 9997 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = \frac{1}{7} \left[10 - 2 \cdot 0003 + 1 \cdot 9997 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = \frac{1}{7} \left[10 - 2 \cdot 0003 + 1 \cdot 9997 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = \frac{1}{7} \left[10 - 2 \cdot 0001 + 1 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times Y = \frac{1}{7} \left[10 - 2 \cdot 0001 - 1 \cdot 9997 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = 2 \cdot 0001 \\ & \textcircled{()} = 2 \\ & \textcircled{()} \times X = 2 \cdot 0001 \\ & \textcircled{()} = 2 \\ & \therefore \\ & X = 2 \cdot 0001 \\ & \therefore \\ & X = 2 \cdot 0001 \\ & \vdots \\ & Y = 2 \\ & \vdots \\ & Z = \frac{1}{7} \left[14 - 2(2) - 2 \\ & = 2 \\ & \end{matrix} \right] \\ & Twattion : 3 \\ & Put \quad y = 2 \\ & Y = \frac{1}{7} \left[10 - 2 \cdot 2 \\ & y = 2 \\ & Y = \frac{1}{7} \left[10 - 2 \cdot 2 \\ & y = 2 \\ & \end{matrix} \right] \\ & Y = \frac{1}{7} \left[20 - 2 \cdot 2 \\ & y = 2 \\ & Y = \frac{1}{7} \left[20 - 2 \cdot 2 \\ & y = 2 \\ & Y = \frac{1}{7} \left[20 - 2 \cdot 2 \\ & y = 2 \\ & y =$$

....

$$\begin{aligned} \mathbf{I} \text{toration} : \mathbf{f} : \mathbf{f} := \frac{1}{2} \left[1 = 0.2360 + 30 \ \mathbf{Z}_{2} = 0.65556 \right] = 0.0361 \\ \text{Put} : 1: |Y_{2} = -0.2360 + 30 \ \mathbf{Z}_{2} = 0.65556 \right] = 0.0361 \\ \mathbf{O} := \left[9^{4} = 0.1 \right] \left(1 = 0.2360 - 10.65560 \right) = -0.2346 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0361) + 2(0.65560) \right] = -0.2346 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{7} \left[4.-3(0.0361) + 3(0.2366) \right] = 0.6574 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{7} \left[4.-3(0.0361) + 3(0.2366) \right] = 0.6574 \\ \mathbf{U} := \mathbf{Y} := \mathbf{O} : 0.2366 : \mathbf{Z} = 0.6574 \\ \mathbf{U} := \mathbf{Y} := \mathbf{O} : 0.2366 : \mathbf{O} : 0.6574 \\ \mathbf{Y} := \mathbf{O} : 0.2366 : \mathbf{O} : 0.6574 \\ \mathbf{Y} := \mathbf{O} : 0.2366 : \mathbf{O} : 0.6574 \\ \mathbf{Y} := \mathbf{O} : 0.0353 \\ \mathbf{X} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.6574) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0353) \pm 2(0.0357) \pm 2(0.0352) \right] = 0.6577 \\ \mathbf{Put} := \frac{1}{6} \left[1 - 0.2368 - 0.65771 \right] = 0.0352 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0352) \pm 2(0.65777) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = 0.0352 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[3(0.0352) \pm 2(0.65777) \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = 0.0352 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = 0.0352 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = 0.63572 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{6} \left[1 - 0.2368 - 0.65777 \right] = -0.2368 \end{bmatrix} = 0.4578 \\ \mathbf{O} := \mathbf{Y} := \frac{1}{$$

Ptuslion - 8:
Put
$$4 = -0.2368$$
; $z = 0.6578$ in epn ()
 $x = \frac{1}{3} \left[1 - 0.2368 - 0.6578 \right] = 0.0351$
(D=> $4 = \frac{1}{3} \left[3(0.0351) + 2(0.6578) \right] = -0.2368$
(D=> $7 = \frac{1}{7} \left[4 - 3(0.0351) + 3(0.2368) \right] = 0.6579$
 $\therefore x = 0.0351$; $4 = -0.2368$; $z = 0.6579$
 $x = \frac{1}{3} \left[1 - 0.2368 - 0.6579 \right]$
 $x = \frac{1}{3} \left[1 - 0.2368 - 0.6579 \right]$
 $x = \frac{1}{3} \left[1 - 0.2368 - 0.6579 \right] = 0.0351$
(D)=> $4 = \frac{1}{6} \left[3(0.0351) + 2(0.6579) \right] = -0.2369$
(D)=> $7 = \frac{1}{6} \left[3(0.0351) + 2(0.6579) \right] = -0.2369$
(D)=> $x = \frac{1}{7} \left[4 - 3(0.0351) + 3(0.2369) \right] = 0.6579$
 $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
Iteration -10:
Put $4 = -0.2369$; $z = 0.6579$.
 $x = \frac{1}{3} \left[1 - 0.2369 - 0.6579 \right] = -0.2369$
(D)=> $4 = -\frac{1}{6} \left[3(0.0251) + 2(0.6579) \right] = -0.2369$
(D)=> $4 = -\frac{1}{6} \left[3(0.0251) + 2(0.6579) \right] = -0.2369$
(D)=> $4 = -\frac{1}{6} \left[3(0.0251) + 2(0.6579) \right] = -0.2369$
(D)=> $4 = -\frac{1}{6} \left[3(0.0251) + 2(0.6579) \right] = -0.2369$
(D)=> $4 = -\frac{1}{6} \left[3(0.0251) + 2(0.6579) \right] = -0.579$.
 $\therefore x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = \frac{1}{7} \left[4 - 3(0.0251) + 3(0.2369) \right] = 0.6579$
 $\therefore x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = \frac{1}{7} \left[4 - 3(0.0251) + 3(0.2369) \right] = 0.6579$.
(D)=> $x = \frac{1}{7} \left[4 - 3(0.0251) + 3(0.2369) \right] = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 1 + \left[4 - 3(0.0251) + 3(0.2369) \right] = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0.2369$; $z = 0.6579$.
(D)=> $x = 0.0351$; $4 = -0$

Itaration 3: Y= 3.5720 : Z= 1.9258 in egn @ Put $x = \frac{1}{27} \left[85 - 6(3.5720) + 1.9258 \right] = 2.4257$ $\Rightarrow Y = \frac{1}{15} \left[72 - 6(2.4257) + -2(1.9258) \right] = 3.5729$: x = 2.4257 ; Y= 3.5729 ; Z=1.9260 Iteration 4: Put Y= 8.5729; z=1.9260 Pn egn O $\chi = \perp_{27} \left[85 - 6(3.5729) + 1.9260 \right] = 2.4255$ $(3) = 7 \quad \chi = \frac{1}{54} \left[110 - 2.4255 - 3.5730 \right] = 1.9260$: x= 2.4255 ; Y= 3.5730; Z=1.9260 Itation 5: Put y= 3.5730; Z=1.9260 in 891 . $\mathcal{D}(=\frac{1}{25}\left[\frac{85-6(3.5730)+1.9260}{25}=2.4255\right]$ $\left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \end{array}\right) \left$ $3 = 7 = \frac{1}{54} \begin{bmatrix} 110 - 2.4255 - 3.5730 \end{bmatrix} = 1.9260.$: x=2.4255; Y=3.5730; Z=1.9260. 4) 8x - y + z = 18I-tomation 3: Onse of 2x754-22=3 (RTOP OSY 109 x+y-3z=-69972 Soln:-The matrix form of given system of

$$\begin{array}{l} \left(\begin{array}{c} e_{quation} & i_{o} \\ & Ax = B \\ \left(\begin{array}{c} 2 & 5 & -2 \\ 1 & 1 & -3 \end{array} \right) \left(\begin{array}{c} X \\ Y \\ Y \end{array} \right) = \left(\begin{array}{c} 18 \\ -6 \end{array} \right) \\ & x = \frac{1}{8} \left[18 + Y - z \right] & -7 \left(\begin{array}{c} 0 \\ Y = \frac{1}{5} \right] \left[3 - 2x + 2z \right] \\ & -7 \left(\begin{array}{c} 0 \\ Y = \frac{1}{5} \end{array} \right) \left[3 - 2x + 2z \right] \\ & z = \frac{1}{3} \left[6 + x + Y \right] & -7 \left(\begin{array}{c} 0 \\ Y = \frac{1}{5} \end{array} \right] \left[3 - 2(2 - 25) \right] \\ & z = \frac{1}{3} \left[18 \right] = 2 \cdot 25 \\ \left(\begin{array}{c} 0 \\ 9 \end{array} \right) + Y = \frac{1}{5} \left[3 - 2(2 - 25) \right] = -5 \cdot 3 \\ & (\begin{array}{c} 0 \\ 3 \end{array} \right] = 7 \\ & z = \frac{1}{3} \left[6 + 2 \cdot 25 - 6 \cdot 3 \right] = 2 \cdot 65 \\ \end{array} \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 65 \\ \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 92 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = -0 \cdot 3 ; \quad Z = 2 \cdot 92 \\ \text{Put} \quad Y = 0 \cdot 90 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = 0 \cdot 90 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = 0 \cdot 90 \\ \text{Put} \quad Y = 0 \cdot 90 \\ \text{Put} \quad Y = 0 \cdot 90 \\ \text{Put} \quad Y = 0 \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = 0 \cdot 90 \\ \text{Put} \quad Y = 0 \cdot 90 \\ \text{Put} \quad Y = 2 \cdot 92 \\ \text{Put} \quad Y = \frac{1}{5} \\ \end{array}$$

$$\begin{array}{c} \text{Put} \quad Y = 0 \\ \text{Pu$$

$$\begin{split} & (\widehat{P} = \widehat{P} \quad \widehat{Y} = \frac{1}{5} \begin{bmatrix} 3 - 2(a) + 2(3) \end{bmatrix} = 1 \\ & (\widehat{P} = \widehat{Y} \quad \widehat{Z} = \frac{1}{3} \begin{bmatrix} 6 + 2 + 1 \end{bmatrix} = 3 : n \text{ matrix} d 1 \\ & (\widehat{Z} = 2; \quad Y = 1; \quad Z = 3 \\ & (\widehat{P} = 1; \quad Z = 3 \quad \widehat{P} = 1; \quad Z = 3 \\ & (\widehat{P} = 1; \quad Z = 3 \quad \widehat{P} = 1; \quad Z = 3 \\ & (\widehat{P} = 1; \quad Z = 3 \quad \widehat{P} = 1; \quad \widehat{P} = 1; \quad \widehat{P} = 2; \\ & (\widehat{P} = 1; \quad Z = 3; \quad \widehat{P} = 1; \quad \widehat{P} = 2; \quad \widehat{P} = 1; \quad Z = 3 \\ & (\widehat{P} = 1; \quad \widehat{P} = 1; \quad Z = 3; \quad \widehat{P} = 1; \quad$$

Therdium:
Put
$$X_{2=0}$$
; $X_{3=0}$; $X_{4=0}$ in eqn(0)
 $x_{1} = \frac{1}{10} = 0.3$
(9) =7 $X_{2} = \frac{1}{10} [15 + 210.3] = 1.55$
(9) =7 $X_{2} = \frac{1}{10} [27 + 0.311.56] = 2.886$
(9) =7 $X_{3} = \frac{1}{10} [27 + 0.311.56] = 2.886$
(9) =7 $X_{4} = \frac{1}{10} [-9 + 1.56 + 2.886(2) + 0.3] = -0.1368$
 $\therefore X_{1} = 0.3$; $X_{2} = 1.56$; $X_{3} = 2.886$; $X_{4} = -0.1368$
They atum : w
Put $X_{2} = 1.56$; $X_{3} = 2.886$; $X_{4} = -0.1368$ in GP(0)
 $X_{1} = \frac{1}{10} [3 + 2(1.56) + 2.886] = 0.8869$
 $X_{2} = \frac{1}{10} [15 + 2(0.8869] + 2.986 - 0.1368] = 1.9523$
 $X_{3} = \frac{1}{10} [27 + 0.8869 + 1.9523 + 2(2.9566]] = -0.0248$
 $X_{4} = \frac{1}{10} [-9 + 0.8869 + 1.9523 + 2(2.9566)] = -0.0248$
 $\therefore x_{1} = 0.8869$; $X_{2} = 1.9523$; $X_{3} = 2.9566$; $X_{4} = -0.0248$. In GP(0)
 $X_{1} = \frac{1}{10} [3 + 2(1.9523) + 2.9566 + (-0.0248)] = 2.93766$
 $X_{4} = \frac{1}{10} [-9 + 0.8869 + 1.9523 + 2(2.9566)] = -0.0248$
 $\therefore x_{1} = 0.8869$; $X_{2} = 1.9523$; $X_{3} = 2.9566$; $X_{4} = -0.0248$. In GP(0)
 $X_{1} = \frac{1}{10} [3 + 2(1.9523) + 2.9566 + (-0.0248)] = 0.9838$
 $X_{2} = \frac{1}{10} [15 + 2(0.9836) + 2.9566 + (-0.0248)] = 0.9838$
 $X_{2} = \frac{1}{10} [15 + 2(0.9836) + 2.9566 + (-0.0248)] = 0.9838$
 $X_{2} = \frac{1}{10} [21 + 0.9836 + 1.9899 + 2(2.9924)] = -0.0042$
 $X_{1} = \frac{1}{10} [-9 + 0.9836 + 1.9899 + 2(2.9924)] = -0.0042$
 $X_{1} = 0.9836$; $X_{2} = 1.9899$; $X_{2} = 0.9244$]
 $X_{2} = \frac{1}{10} [-9 + 0.9836 + 1.9899 + 2(2.9924)] = -0.0042$

Iteration -4:
Put
$$x_{2} = 1.9999$$
; $x_{3} = x^{3}.9924$; $X_{4} = 0.004$;
 $X_{1} = \frac{1}{10} \begin{bmatrix} 3 + 2(1.9899) + 2.9924 + (-0.0043)] \\ => 0.9962$;
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.9968) + x^{2}.9924 + (-0.0043)] \\ => 0.9962$;
 $X_{3} = \frac{1}{10} \begin{bmatrix} 27 + 0.9968 + 1.9982 + 2(-0.0043)] \\ => 2.999$;
 $X_{4} = \frac{1}{10} \begin{bmatrix} -9 + 0.9968 + 1.9982 + 2(2.9191)] \\ == -0.007$
Put $X_{2} = 1.9982$; $X_{3} = 2.9991$; $X_{4} = -0.007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 3 + 2(1.9982) + 2.9991 \\ = 0.9995 \end{bmatrix}$;
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.99495) + 2.9991 \\ = 0.9995 \end{bmatrix}$;
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.99495) + 2.99491 \\ = 0.0007 \end{bmatrix} = 0.9995$
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.99495) + 1.9997 + 2(-0.0007) \end{bmatrix} = 0.9995$
 $X_{4} = \frac{1}{10} \begin{bmatrix} 27 + 0.99975 + 1.9997 + 2(-0.0007) \end{bmatrix} = 2.9997$
 $X_{4} = \frac{1}{10} \begin{bmatrix} 27 + 0.99975 + 1.9997 + 2(-0.0007) \end{bmatrix} = 2.9997$
 $X_{4} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = -0.0007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = -0.0007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = -0.0007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = -0.0007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = -0.0007$
 $X_{10} = \frac{1}{10} \begin{bmatrix} 15 + 2(1.9997) + 2.9998 \\ = 0.0007 \end{bmatrix} = 0.9997$
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.9999) + 2.9998 \\ = 0.0007 \end{bmatrix} = 0.9997$
 $X_{2} = \frac{1}{10} \begin{bmatrix} 15 + 2(0.9999) + 2.9998 \\ = 0.0007 \end{bmatrix} = 0.9997$

$$X_{4} = \frac{1}{10} \left[-9 + 0.9999 + 2 + 2(3) \right] = 10$$

Iteration :7

Put
$$X_{2=2}$$
; $X_{3=3}$; $X_{4=0}$
 $X_{1=1}$ $[3+2(2)+3+0] = 1$
 $X_{2} = \frac{1}{10}$ $[15+2(1)+3+0] = 2$
 $X_{3} = \frac{1}{10}$ $[27+1+2+2(0)] = 3$
 $X_{4} = \frac{1}{10}$ $[-9+1+2+2(3)] = 0$

Iteration : 8

Put
$$X_{2}=2$$
; $X_{3}=3$; $X_{4}=0$
 $X_{1}=\frac{1}{10}\left[3+2(2)+3+0\right]=1$
 $X_{2}=\frac{1}{10}\left[15+2(1)+3+0\right]=2$
 $X_{3}=\frac{1}{10}\left[27+1+2+2(0)\right]=3$
 $X_{4}=\frac{1}{10}\left[-9+1+2+2(3)\right]=0$
 $X_{4}=\frac{1}{10}\left[-9+1+2+2(3)\right]=0$
 $X_{4}=\frac{1}{10}\left[-9+1+2+2(3)\right]=0$

UNE differences - & TIAU UNE differences - & These firet differences arong 186 FINITE DIFFERENCES : EDITOR bollos het y=f(x) be a given function of x and let Yo, Y1, Y2,... be the values of y corresponding to 20, 20th, rotah, of the values of x 1e, $y_0 = f(x_0)$, $y_1 = f(x_0 + h)$, $y_a = f(x_0 + ah)$, $y_n = f(x_0 + nh)$. $\Delta^{2}(y_{1}) = \Delta(\Delta y_{1})$ Here the independent variable or providues at equally spared intervals & and h (constant). différence between two consequtive value of x The difference between two consequences is called the potential of differencing. · xu Now 1+2: 41- 40; yey, Journap 110 Now 1+2: 41- 40; yey, J3- 42 yn- 4n-1 are called the first differences of the function y and differences of the yn values are denoted by " E 4 yn = yn+1 - Yn, prenward dyfference operator (n=0,1,2...)Here 'A' astignan operator called Forward différence operator. \mathcal{X}_{1} 18 $y_3 = y_2 - y_1^{U\Delta} = y_2 - y_1^{U\Delta}$ $\Delta y_n = y_{n+1}^{e} y_n^{\Delta}$ 24 34

The differences of these first differences are called second differences a participation of this tet (dy= 1/0 x p mit 2 (y y 2 (w y x mit Let So. Si. Sz. ... be the veluce of & coversponding to x to soular att to y2-y; - (y, y0, 1+0x, ox $\Delta_{2}^{2}(y_{0}) = \frac{y_{2}}{2} - 2y_{1} + y_{0} = \frac{y_{1}}{2} - \frac{y_{1}}{2} + \frac{y_{0}}{2} = \frac{y_{1}}{2} + \frac{y_{0}}{2} + \frac{y_{1}}{2} + \frac{y_{0}}{2} + \frac{y_{1}}{2} + \frac{y_{0}}{2} + \frac{y_{0$ ind with an $\Delta^{2}(y_{1}) = \Delta(\Delta y_{1})$ the subscript of prevention of preventions at equality spared intervals & and h (unstant). x journe $U_{1,2} = U_{2,2} = U_{2,2} = U_{2,2} = U_{2,2} = U_{2,2}$ $J_{10} = U_{1,2} = U_{2,2} = U_{2,$ $\begin{array}{c} \forall h \quad \text{general} \\ I = n \psi - n \psi \\ I = 2 \psi - 2 \psi \\ I =$ are called the fact differences of the function of Formand -: Allerence -: Table :- concregiles true $X Y A A^2 A^3$ Δ^4 Hore ' 2' astronom rot-physicalsof called PONDIAN OF Δyo D2 yo _ waterene oneregue χ_1 У, X2 Rz $\Delta y_{3} \Delta^{2} y_{2}$ Xy 94

INTERPOLATION (A+1) = " & LONDAR ME Consider the table By using Banumlal itwaveni, $x : x_0 x_1 x_2 \dots x_n$ $x : x_0 x_1 x_2 \dots x_n$ $y : x_0 x_1 x_2 \dots x_n$ Grace ght the convalue of f(y) is to be formed at dome point y is the interval [20, 2n] and y is not one of the tabulated points then the value of (14) is estimated by using. the known values of ((x) at the during points. This process are computing the value of the function Prispale the given hange is called Poterpolation. EXTRAPOLATION: - 18 PI 18 PI 11 PI : 109 domain desed [200, 2n] then the estimation of called extrapolation. (y) is -10/02 . WO NEWTON'S FORWARD INTERPOLATION FORMULA: $\Delta y_0 = y_1 - y_0 \Rightarrow y_1 = y_0 + \Delta y_0 = (H\Delta) y_0.$ $\Delta y_1 = y_2 - y_1 = y_2 = y_1 + \Delta y_1 = (1 + \Delta) y_1 = (1 + \Delta)^2 y_0.$ $\Delta y_2 = y_3 - y_2 \Longrightarrow y_3 = y_2 + \Delta y_2 = (1 + \Delta) y_2 = (1 + \Delta)^3 y_0.$

In general, $y_n = (1+\Delta)^n y_0$. By using Binomlal Theorem, $y_n = \sum_{i+n\Delta_i} \frac{n(n-i)}{2!} (\Delta_i^2 + \frac{n(n-i)(n-2)}{3!} \Delta_i^3 + \dots + \sum_{i=1}^{n} y_i$ $\lim_{n \to \infty} y_n = \int (x_0 + nh) = \langle y_0 + n\Delta y_0 + \frac{n(n-1)}{21} \Delta^2 y_0 + \frac{n(n-1)(n-2)}{21}$ y bio [axix] lovente the the gater and [xorxa] and y nut date (:byo w (xh); if 2n= xot nh) for a 1. The following table gives the population of a town during the last six senses. Estimate, using - Newton's Porterpolation formula all the mirease there population induring the pould 1946 to 1948 wit abrand mathemy tice bloged in Year ; 1911 1921 1931 1941 1951 1961 Population: 12 13 20 27 39 52 (In 1000's) it with [ax, ox] 2021 automatic to noit ((y) is called extrapolation. Soln:-Fonward déférence fable is as follous. $\Delta y_0 = y_1 - y_0 \Rightarrow y_1 = y_0 + \Delta y_0 = (1 + \Delta) y_0.$ $\Delta y^{e}(\Delta H) = y(\Delta H) = y\Delta + y = b <= y - b = y\Delta$ $\Delta y_{2} = y_{3} + y_{4} \implies y_{3} = y_{2} + \Delta y_{2} = (1 + \Delta)y_{2} = (1 + \Delta)y_{2} = (1 + \Delta)y_{2} = 0$

$$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{$$

:. The population in althe year 1946 is 7/9/19/ 32.18 an . g-alt - alt = And the population in the year 1948 is 13 34.49 8-116-2-168+1-188-14 = 18 - 18 Hence & Proverise In the population during the period 1946 to 1948 = Population Pn 1948 - Population 9n 1946 4-2 BACKWARD DIFFERENCES: use another operator called the backward We difference operator V and is denoted by $\nabla y_n = y_n - y_{n-1}$ For n= 0, 1, 2, ... we get No Know that i-E-oK = oK Relation (AA Cardal - AR - B = 1812 $0 \leftarrow \nabla y_2 = (y_z, y_z) = and do on.$ The second backward difference is. () ~ ×√245) = √(yyn) $= \nabla(y_n - y_{n-1})$ $(\Delta + 1) = (\nabla y_n - \nabla y_{n-1}) \quad (D \cap D \times -)$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

 $y_{n} = (1 + \Delta)^{n} y_{0} = (1 - \nabla)^{-1} y_{0}$ $\frac{1}{2} \int \frac{1}{2} \int \frac{1}$ 1. Ouven x: 1 2 3 4 5 6 7 8 $1 y^{57} (x) y^{51} (y^{51}) (y^{$ Estemate f (7.5) use Newton's fournula 801h?-Xn = 1.57 Backward differences table is as follows $\nabla \nabla^2 \nabla^3$ Y 74 X Ì n = -0.5 1 0 0 512 (190) 8 (20).

$$\frac{1}{10} \frac{1}{10} \frac$$

FORWARD DIFFERENCE :-1) The function $\beta(x)$ is given by the following table. Find f (0.2) by a sultable formula X: 0 1 (8.0) 3 4 5 6 B(X): 176 185 194 203 212 220 229 Soln;différence table is as follours. Forward $\frac{Y}{\Delta} \qquad \Delta^{2} \qquad \Delta^{3} \qquad \Delta^{4} \qquad \Delta^{5} \qquad \Delta^{5} \qquad \Delta^{3} \qquad \Delta^{4} \qquad \Delta^{5} \qquad \Delta^{5} \qquad \Delta^{3} \qquad \Delta^{4} \qquad \Delta^{5} \qquad \Delta^$ × 1-2-0) (8-2 Here 20=0; h=1 By Newton's Forward difference formula we have would so short subscription and

$$J_{n} = \int (x_{0} + nh) = y_{0} + nay_{0} + \frac{mn-1}{2} A y_{0} + \frac{mn-1}{2} A + \frac{mn-1}{2} A$$

$$= 5.4739 \pm 0.8636 \pm 0.0227 - 0.0004 \pm 0.0004 \pm$$

$$h = 0.3$$

$$y(4,2) = 184 + 0.3 (20) + 0.3 (-0.7) (2) + 0$$

$$g(4,2) = 184 + 0.3 (20) + 0.3 (-0.7) (2) + 0$$

$$g(4,2) = 189.79$$
4. Using newton forward formula find sin (0.1604)
from the following table.
X : 0.160 0.161 0.162
Si DX : 0.1593182066 10.16030533741 0.161292.4/2
The allforma table os follows
21 Y A A²
0.160 0.15931820 00098714484 00 00000016/
0.0010 0.000957874 0
0.0010 0.000957874 0
0.161 0.160303241 0.000957874 0
0.0010 0.162
90 = 0.160 h = 0.0010⁻¹
By newton forward difference formula we have
 $y_{11} = \int (2011h) = y_{0} + Ay_{0} + \frac{h(n-1)}{21} A^{2}y_{0} + ...$
To furly y (Sin (0.1604))
X = 0.160 + n (0.00 m)² T
0.0000 4
h = 0.400 + n (0.00 m)² T

$$Sin(0, 1604) = 0.1593182066 \pm 0.4 (0.000)$$

$$Sin(0, 1604) = 0.1593182066 \pm 0.4 (0.000)$$

$$= 0.1593182066 \pm 0.0004$$

$$= 0.1593182066 \pm 0.0004$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.1593182066$$

$$= 0.01495 = 0.0540$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.0024 = 0.0024$$

$$= 0.002$$

$$\frac{1.8}{0.5} = \frac{2}{0.0} + 0.5 \text{ m}$$

$$\frac{0.5 \text{ m} = -0.2}{\text{ m} = -0.4}$$

$$\frac{1}{9} (1.8) = 0.05 \text{ µ0} + \frac{(-0.4)(-0.07155)}{1} + \frac{(-0.4)(0.6)(-0.6)(-0.6)}{2} \text{ heave}$$

$$\frac{1}{100} + \frac{(-0.4)(0.6)(-0.6)(-0.6)(-0.6)(-0.6)}{2} + \frac{1}{100} + \frac{(-0.4)(-0.6)(-0.6)(-0.6)(-0.6)}{2} + \frac{1}{100} + \frac{$$

$$\begin{aligned}
 & J_{n} = \int (x_{0} + nh)^{n} = y_{0}^{n} + n x_{0} + n(n+1) - x_{0}^{2} + \dots + \frac{1}{2!} +$$

$$\frac{4}{2} = \sqrt{(100+h)} = \sqrt{9} + h \nabla y_{0} + h (h+1)}{2!} + \sqrt{2}y_{0} + \cdots$$

$$\frac{7}{2!}$$

$$\frac{7}{2!} = \sqrt{10} \frac{1}{2!} (38)^{2} + \frac{1}{2!} + \frac{1}{2!} (1.14.0) = \frac{1}{2!}$$

$$\frac{7}{2!} = \sqrt{10} = \sqrt{2} + \frac{1}{2!} = \sqrt{2} + \frac$$

$$\frac{20 \pm 0}{(1 + 1)} (x_{1} + x_{1})(x_{2} + x_{2})(x_{2} + x_{3})}{(x_{1} + 1)(x_{1} + x_{3})(x_{2} + x_{3})(x_{3} + x_{3})}$$

$$\frac{20 \pm 0}{(1 + 1)(x_{1} + 1)(x_{1} + x_{3})(x_{2} + x_{3})(x_{3} + x_{3})$$

$$\frac{1}{3} + \frac{1}{3} = \frac{1}{3} + \frac{1}$$

 $+\frac{(3)(2)(2)(-2)(-2)(-2)(-2)(-2)}{(2)(-2)(-2)(-2)(-2)(-2)}$ $\dots = \frac{1}{20} = \frac{21}{5} + \frac{45}{4} + \frac{15}{4} = \frac{9}{5} + \frac{19}{20}$ high nonten 1130-13,5 + 1122 + 3.42-418,49.93,00 this enterpolation of β extends of $N = \alpha \epsilon$, $N = \alpha \epsilon$, $\beta = 1 + \alpha \epsilon$, $\beta = 1 - \alpha \epsilon$, $\beta = 1 + \alpha \epsilon$, $\beta = 1$ 23/a/19 Numerical Integration : We know that first die seepresents the area between y = f(x), re-aris and the ordenates x = a and x = b. This principle in the point of principle in (x) if which is is possible only of the f(x) is explicitly geven and it it is enteguable. The publicit of Numerical Integuation can be stored as follows given a set of (n+1) pouved values (xr, y;), P=0,1,7,...,n of a function y = f(x), where g(x) B not

low explicitly it is required to compa Prtegration Sydre. general quadrature formula far equilaistant A ordunates (OH) Newton's formula. for equally spaced interval, we have Newton's forward differences formula as. $y(x) = y(x_0 + nh) = y_0 + n\Delta y_0 + \frac{n(n-1)}{2!} \Delta^2 y_0 +$ $n(n-1)(n-2) = A^{3}y_{0} + n(n-1)(n-2)(n-3) = A^{4}y_{0} + \cdots$ 470 Now, instant of f(x), we will suplace it be this Poterpolating formula of Newton. Here, $n = \frac{x-x_0}{h}$, where h interval of differencing. the specific petween y = y(x), no-ancis and the volue alt des bro perso storithy where Pn(x) is proporting polynomial polyno a a i by pint For Sigo + n Ayo + h(n-1) A 2 yo + n(n-1)(n-2) 33 yo potoz n (1011) en alla) n(n-1)(n-2)(m-3)? 24 yot ...) uhidn (mit) pouved voltage (xer y:), P=0,1, P..., n of a fundion & = {(x), where fix is not

$$\begin{array}{l} (1 = h, \int_{0}^{h} (\frac{1}{10} + h^{2} \frac{1}{10} + \frac{h^{2} - h}{2}, \frac{h^{2}}{10} \frac{h^{4}}{10} \frac{h}{10} + \frac{h^{2} - h^{2}}{2} \frac{h^{4}}{10} \frac{h^{4}}{10} \frac{h^{2}}{10} \frac{h^{4}}{10} \frac{h^{2}}{10} \frac{h^{4}}{10} \frac{h^{2}}{10} \frac{h^{4}}{10} \frac{h^{2}}{10} \frac{h^{4}}{10} \frac{h^{4$$

+
$$dx - dx + u_{n} = h E_{y0} + \frac{1}{2} \left[y_{1} - y_{0} \right] \left[u_{1}^{n} + \frac{1}{2} y_{0} - \frac{1}{2} y_{0} \right]$$

 $dy \left(\dots + \frac{1}{2} h \left(\frac{y_{0} + y_{1}}{2} \right) \right]$
 $dy \left(\dots + \frac{1}{2} h \left(\frac{y_{0} + y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} + y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} - y_{1}}{2} \right) \right]$
 $dy \left(\frac{y_{0} + y_{1}}{2} \right) + \frac{1}{2} \left(\frac{y_{0} + y_{0}}{2} \right) + \frac{1}{2$

94 is called Thepercold Hule.
By putting n=a in cole's formula conget,
notah

$$\int_{x_0}^{x_0} f(x)dx = h \left[3y_0 + \frac{a}{4} Ay_0 + \frac{a}{4} A_0^{x_0} + \frac{a}{4} A_0^{x$$

Putting
$$n=2$$
 pr cote formula weiget?
Softah x_2
 $\int f(x)dx = \int f(x)dx = h [Ay_0 + \frac{h}{2}Ay_0 + \frac{h}{2}(\frac{g}{3} - \frac{h}{2})$
 $f(x)dx = \int f(x)dx = h [Ay_0 + \frac{h}{2}Ay_0 + \frac{h}{2}(\frac{g}{3} - \frac{h}{2})$
 $= h [Ay_0 + \frac{h}{2}(x)] (A^{2}y_0]$
 $= h [Ay_0 + \frac{h}{2}(x)] (A^{2}y_0]$
 $= h [Ay_0 + \frac{h}{2}(y_0) + \frac{h}{3}(y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(x)] (A^{2}y_0 + \frac{h}{3}(y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(x)] (A^{2}y_0 + \frac{h}{3}(y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(y_0 + \frac{h}{3}(y_0 - \frac{h}{3})] (A^{2}y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(y_0 + \frac{h}{3}(y_0 - \frac{h}{3})] (A^{2}y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(y_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{2}(y_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 - \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3})] (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3})]$
 $= h [Ay_0 + \frac{h}{3}(y_0 + \frac{h}{3}) (A^{2}y_0 + \frac{h}{3}) (A^{2}y_$

$$\frac{(1-x)}{(1)} = \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{y_{i}} + \frac{y_{i}}{y_{i}} + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{y_{a}}{y_{a}} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{y_{a}}{y_{a}} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} + \frac{h}{2} \right) + \frac{h}{2} \left(\frac{h}{2} + \frac{h}{2$$

$$\sum_{i=1}^{n} \frac{1}{12} \sum_{i=1}^{n} \frac{1}{12} \sum_{i=1}$$

$$\frac{+(x-5)(x-a)(x-a)(x-a)}{(k^{2}+b)(k^{2}+b)(k^{2}+b)(k^{2}+b)(k^{2}+b)(k^{2}+b)(k^{2}+b)} = 14$$

$$\frac{+(x-5)(x-b)(x-b)(x-a)}{((x-5)(x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-5)(x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-5)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-5)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-a)(x-a)}{((x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-b)(x-a)(x-a)}{((x-a)(x-a))} = 14$$

$$\frac{+(x-5)(x-b)(x-b)(x-a)(x-a)}{((x-a)(x-a)(x-a))} = 16$$

$$\frac{(x-x)(x-x)(x-a)(x-a)}{((x-a)(x-a)(x-a))} = 12$$

$$\begin{array}{c} \begin{array}{c} (11-x) & (11-x) & (11-x) & + \\ = & \overline{\mathcal{Q}} & \overline{\mathcal{H}} & H_{1} & \overline{\mathbf{3}} & \overline{\mathbf{3}} & \overline{\mathbf{3}} & \overline{\mathbf{1}} & \overline{\mathbf{11}} & \overline{\mathbf{5}} & \overline{\mathbf{5}} & \overline{\mathbf{7}} + 5 \cdot \overline{\mathbf{3}} & \overline{\mathbf{3}} \\ \end{array} \\ \begin{array}{c} (11-x) & (1-1) & (\overline{\mathbf{7}} - \mathbf{7}) & + \\ (11-1) & (1-1) & (\overline{\mathbf{7}} - \mathbf{7}) & + \\ (11-1) & (1-1) & (\overline{\mathbf{7}} - \mathbf{7}) & \end{array} \\ \begin{array}{c} \mathbf{A} \end{array} \\ \begin{array}{c} \begin{array}{c} Use & \left| & \log uange(x) & (\operatorname{det} ui) \operatorname{polynom} da \\ \overline{\mathbf{p}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & \vdots & 0 & 1 & 3 & \frac{1}{y} & J = x & \overline{\mathbf{1}} & \mathcal{G} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & \vdots & 0 & 1 & 3 & \frac{1}{y} & J = x & \overline{\mathbf{1}} & \mathcal{G} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & x & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & \vdots & 0 & 1 & 3 & \frac{1}{y} & J = x & \overline{\mathbf{1}} & \mathcal{G} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & \overline{\mathbf{1}} & x & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & \overline{\mathbf{1}} & x & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & \overline{\mathbf{1}} & x & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & \overline{\mathbf{1}} & x & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J & \overline{\mathbf{1}} & x & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J & \overline{\mathbf{1}} & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J & \overline{\mathbf{1}} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \end{array} \\ \begin{array}{c} \mathbf{A} & J & J \end{array} \\ \begin{array}{c} \mathbf{A} & J$$

1

$$\begin{cases} (x) = \frac{(x-1)(x-3)(x-4)}{(1-0)(1-3)^{2}(0-4)} (x) \\ + \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)} (x) \\ + \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)} (x) \\ + \frac{(x-0)(x-1)(x-3)}{(1-0)(1-3)(1-4)} (x) \\ + \frac{(x-0)(x-1)(x-3)}{(1-0)(1-1)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-4)}{(1-0)(1-1)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-4)}{(1-0)(1-1)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-4)}{(1-0)(1-1)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-4)}{(1-0)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-4)}{(1-0)(1-3)} (x) \\ + \frac{(x-0)(x-1)(x-3)}{(1-0)(1-3)} \\ = (x^{2}-x^{2}+3x+3)(x+4) - (x^{2}-x)(x-4) \\ + \frac{(x-0)(x-1)(x-3)}{(1-0)(1-3)} \\ = (x^{2}-x^{2}+3x+3)(x+4) - (x^{2}-x)(x-4) \\ + \frac{(x-0)(x-1)(x-3)}{(1-0)(1-3)} \\ = (x^{3}-x^{2}+3x^{2}+520+4x^{2}+4x) + (x^{3}-3x^{2}-x^{2}+3x) \\ = (x^{3}-8x^{2}+19x+12) - (x^{3}-5x^{2}+4x) + (x^{3}-8x^{2}+4x) + (x^{3}-8x^{2}+19x+12) - (x^{3}-5x^{2}+4x) + (x^{2}-x^{2}+3x) \\ = x^{3}-8x^{2}+19x+12 - x^{3}-5x^{2}+4x + x^{3} - 4x^{2}+3x - 4x^{2}+3x$$

$$\begin{cases} (h \cdot x) (g + x)^{2} (g + x$$

$$(=1, (x-1)(x-2) (x, 0) + (x-0)(x-2) + (x-0)(x-2) + (x-0)(x-2) + (x-0)(x-2) + (x-0)(x-2) + (x-1)(x-2) + (x-1$$

$$= \frac{(x)(x-2)(x-3)}{-4x^2} \cdot -x^4 + \frac{(x+1)(x-2)(x-3)}{6} \cdot 3 + \frac{-1x^2}{6}$$

$$= \frac{x^2 - 2x(x-3)}{-6} \cdot 4 + \frac{(x^2 - 2x + x-3)(x-3)}{6} \cdot 3 + \frac{(x^2 + x)(x-3)}{6} \cdot 3 + \frac{(x^2 + x)(x-3)}{6} \cdot 1$$

$$= \frac{(x^2 - 2x(x-3))}{6} \cdot 4 + \frac{(x^2 + x)(x-3)}{6} \cdot 1$$

$$= \frac{(x^2 - 2x(x-3))}{6} \cdot 4 + \frac{(x^2 + x)(x-3)}{6} \cdot 1$$

$$= \frac{(x^2 - 2x^2 + 6x^2) \cdot 4}{6} + \frac{(x^2 + 2x^2 + x^2 - 2x - 3x^2 + 5x^2 + 5x$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(x + x \right) \left(+ x \right) \left(+ x \right) + y - \left(x + x \right) \left(x + x \right) \left(x + x \right) \left(x + y \right)$$

.

A State State

LID mit los almin alter a - - - and

 $-(\chi)$ Sempson's 1 Rule: $y = 4x^2 - 8x$ Putting n=2 pn the above relation and neglecting, all defferences above the second we get, $\left(\frac{1}{2}-\frac{2}{3}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{$ 024 $y(x)dx = h \left[\frac{ay_0}{2} + \frac{a^2}{2} \Delta y_0 + \frac{1}{2} \left(\frac{a^3}{3} - \frac{a^2}{2} \right) A^2 y_0 \right]$ +、ビターと、シーンの)+よ(シーンの)+よ(ションソート = ah [yo+Ayo+ + Ayo] [(ob [dd+14+102= 2h=[6yo+ 6Ayo + A2yo 6 122-18-+ 8++ 2h [-6 yo +6 (y) - yo) + y2-24,+ y0 Levelier volt and the transferred the second $+ - + \chi h(x) \int \left(-\frac{y(x)}{y(x)} dx \right) = \left(-\frac{h}{3} \left[-\frac{y_0}{y(x)} + \frac{y_0}{y(x)} \right] \right)$ $\rightarrow 0$ xbarg "x xo ex

Similarly for the next two provides rotation to
rotation
$$y(x) dx = \frac{h}{3} [y_1 + 4y_3 + 4y_4] \rightarrow 0$$

rotation
 $y(x) dx = \frac{h}{3} [y_1 - 3 + 4y_1 + 4y_1] \rightarrow 0$
rotation
 $y(x) dx = \frac{h}{3} [y_0 - 3 + 4y_{0-1} + 4y_1] \rightarrow 0$
rotation
rotation
 $y(x) dx = \frac{h}{3} [y_0 - 3 + 4y_{0-1} + 4y_1] \rightarrow 0$
rotation
 $y(x) dx = \frac{h}{3} [y_0 + 4(y_1 + y_3 + \cdots) + a(y_3 + y_4 + \cdots)]$
 x_0
 $y_0 = \frac{h}{3} [(y_0 + y_0) + h (sum of odd prolinates)]$
 $x_1 = \frac{h}{3} [(y_0 + y_0) + h (sum of odd prolinates)]$
Thus is called som pson's one thurd
rule on som pson's $\frac{1}{3}$ rule.
Euler's Method:
 $\frac{dy}{dx} = f(x_1 + y_1) - 7(0)$

at de la doutetre out solve this differential equation under the condition y(xo) = yo . The dolution O gives y as a function & which may be witten symbollically as y=f(2)-7@. The graph of @ & a mure in the XY plane, and sence à smooth curve is De ractically straight for a short distance form any point on pt we have from (..., NH LUX + (... + LUT , W) Ht ould = xbappely yo tand $\approx \Delta \frac{\Delta y}{\Delta x}$ to $\frac{1}{\Delta x}$ Had production (Pie) Correction and a de [[(estoubronors forme] & 20 (dy) [:: slope at (20, y_)= (dx)= brut and z' maginize - bullo Δy in ant tang YI = to F (dy) Ax to shure y, ≈yo+fr (xo, yo)h [Assuming doc=h] $\begin{bmatrix} \vdots & dy \\ dx &= f(x, y) f uom OT \\ \vdots & (dy) \\ \vdots & (dy) \\ \vdots & (dy) \\ 0 &= f(x_0, y_0) \end{bmatrix}$

an The whent walks of y coursesponding to may 1 2 = 22 21 (= 20+ h2, 42 be subor storatix anog i ya ≈ y, + (dy), k dontation ant K $(A = y_a (= y_{at} + y'_{at}, y_{b}) h, y' := (a = y_{b}), = g(x_{b}, y_{b})$ ou Dat is your yo the man yohis etait Jue (10.pc) fin general " yn+, 2 yn + fran yn th. to g By Faking the small enough and purceeding in brui this manner we could tabulate the expression of as a set of conversionaling This is method is given by Euler. values of 2 47. This is method is either too. alow (Pr case of his small) on two practivate (In case h is not small for practical use. astally ITMPROVED FULER'S METHOD: het the green juist order differential equalton of be BAt & = it and Kou and het us solve this eqn under condition 3n ganaral. y(xn)= yo Scanned with CamScanne

stanting with the Philial value yo, as approxemate value of y, is computed from the relation al . He is a of Graxin- (th) is youth (xou yo)h -> @ sub, this approximate value of y, Pn () we get an approximate value of dy (x,y) of fruitsering the, (dy)) = of E.X. y. (1) Now an emphaved value of Sy. Ps found by multiply h weth the mean value of Judz på norig i bartion i give 2(0) (1) - Pe, $\Delta y = \sqrt{\frac{dy}{dx}} + \left(\frac{dy}{dx}\right)^{\mu} h_{\alpha}$ and of his small) Sex two indecurrate (in rate h 2001 100 = of (20, yo) + 1 (x1, y (1)) } h well thought for the grow have the chart of the growthe Now $y_1 = y_0 + \Delta y$... $y_1 = y_0 + \alpha y_1$ yoth got h (nor yo) + & Looth yoth f (20, yo) het us serve this' egn under condution In general. 5K = (ax) K

 $dm_{H} = 4m t \frac{h}{2} \left\{ 1(xm, ym) t f [xm, th, ym, th, f(xm, ym)] \right\}$ This formula is called gmpuoved culer's founula. tance Ay MODIFIED FULER'S METHOD :-In propuoved Euler's method the solution curve is approximated in the interval [xo, xo+h] by a straight line. This line is passing through (no, yo) whose slope is the To unremages of the slope viz. (c) rule (d' all dy) the dy) R - Uning pororto the co-endinals is the point Pr. is 41 But Pr modefied Euler's method the curve is 20+h/2 20 appuoximated by averaging the points Colleve Het B(20, yo) be the point on the solution where het PA be the tangent at (200,40) to the where het PA be the tangent at (200,40) to the where het PA be the tangent at (200,40) to the whet: this tangent meet the co-ordinates at Q (xo + h/2) at Pi. The Y co-ondubates of the popul Pi is yot Ay (+1) where Ay is the small nciement "ilongrant@Pi. (19 do anale)

Now, consplaining the truingle PPM The family is called simplify and $tano = \Delta y$ maiture ett per ut gy = 2/4 dhide). Jog und (idy) it is unt all summated in the entre 2 2 sch approx simated in the interval entre (eviox) & de even at une. This une is [sui suith] av a strangent une. This une is En aquis estimation (Rei 40) conose slope 23 Hue Suls (2) in (1) we get the y coordinate poput Pi (15) yot by (10, 40) of the Hence the co-ordinates of the popul P1 is Exo + 12, yo + 12/17 (20, yo)]) (2) tug The slope at Prois (dy) at P. 190. ciaitu 32 2019 But (dy) = f(x,y) or (busiven diff- equation) to standbro- a set tourd Replacing in (4): to by "Lia is in Introq 20 th & y by yoth (200, yo)? More mit be storthous of the property with this slope (slope at Pi) Then draw a line through

P(x0, y0) and parallel to the line PiB.
This like is taken to the approximate to
the unue is the interval (x0, 20+h). The
equation of this line viz.; PC is,

$$J \cdot J_0 = \int [x_0 + \frac{h}{2}, y_0 + \frac{h}{2} \int (x_0, y_0)](x_0, x_0) \rightarrow t^{(2)}$$

is using the formula $Y \cdot y_0 = m(x_0, x_0)$ which
is the equation of the straight line
Passing through $h(x_0, y_0)$ and having slope mg.
Let this line (s) meets the andinate
 $\chi = \chi_1 = (\chi_0 + h)$ is on the line (s) we have
 $y_1 \cdot y_0 = (\chi_1, \chi_1)$ lies on the line (s) we have
 $y_1 \cdot y_0 = (\chi_1, \chi_2) \int [\chi_0 + \frac{h}{2} \int (\chi_0, y_0)]$
 $= h \int [x_0 + \frac{h}{2}; y_0 + \frac{h}{2} \int (\chi_0, y_0)]$
Pe, $y_1 = y_0 + h \int [\chi_0 + \frac{h}{2}, g_0 + \frac{h}{2} \int (\chi_0, y_0)]$.
Ingeneral.
 $y_{1+1} = J_n + h \int [x_1 + \frac{h}{2}, y_1 + \frac{h}{2} \int (\chi_0, y_0)]$.
 (w^1)
 $y(\chi_1 + h) = Y(\chi) + h \int [\chi_1 + \frac{h}{2}, y_1 + \frac{h}{2} \int (\chi_1, y_1)]$
this formula is called modified
Fuller's formula.

P(surso) and parallet to the line PIB This like is" lation to the approximate to 1. Evaluate J da vistar est au surs dat surle with h=0.2 hence obtain an approximate Value of TT $\frac{1}{2}$ using the fermula $\frac{1}{2}$, $\frac{1$ $\frac{1}{n} = \frac{1}{20} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10} +$ since (π_1, y_1) his on the lune (s) we have o = 0[(02.0x) Juie + 310+ 6= 1012 7 (000x 12) 70 +11/h [(02(2=) protah = 0.4 din 2 1 0.2 1 0/00= 0+ 0(0.2)=0 (Cottok) 1963 = 960 + 3h1 = 0:6 101 + 06 = 16 x 1.590+ 1(0.2)-0 20- 20-11 294= 20+4h= 0.8 Brigeneral. $x_5 = x_0 + 5h = 1.0$ Fuler's formula.

$$\int_{x_{0}}^{x_{1}} \int_{x_{0}}^{x_{1}} dx = \frac{h}{2} \left[(y_{0}+y_{n}) + a (y_{1}+y_{2}+y_{3}+\dots+y_{n}-y) \right]$$

$$= \frac{h}{2} \left[(y_{1}+y_{1}) + a (y_{1}+y_{2}+y_{3}+\dots+y_{n}-y) \right]$$

$$\int_{0}^{x} \frac{dx}{1+x^{2}} = \frac{0 \cdot 2}{2} \left[(1+0x) + 2 (0.96x + 0.8621 + 0.73x^{3} + 0.409x^{3}) \right]$$

$$= \frac{0 \cdot 2}{2} \left[1 \cdot x + 6 \cdot 2374 \right]$$

$$= 0 \cdot 1 \left[7 \cdot 8374 \right]$$

$$= 0 \cdot 78374$$
Adduition::

$$\int_{0}^{x} \frac{dx}{1+x^{2}} = \left(\tan^{1} x \right)^{1}$$

$$= \tan^{1} (1) - \tan^{1} (e)$$

$$= \frac{\pi}{4} - 0$$

$$\int_{0}^{x} \frac{dx}{1+x^{2}} = \frac{\pi}{4}$$

$$h = \frac{2}{4} + \frac{\pi}{4}$$

$$h = 3 \cdot 135$$

$$\frac{h}{2} = x^{2}$$

$$h = \frac{2\pi}{4}$$

$$het f(x) = e^{x^{2}}$$

$$h = \frac{\pi}{4} - 0 \cdot 25$$

$$h = \frac{\pi}{4} - 0$$

$$h=0.85$$

$$g(x^{2})$$

$$\chi: 0 0.85 0.50 0.75 1.00$$

$$Y: 1 0.9394 0.7188 0.5698 0.3679$$

$$Y: 1 0.9394 0.7188 0.5698 0.3679$$

$$\int_{0}^{50} f(x)dx = \frac{h}{2} \left[(y_{0} + y_{H}) + 2(y_{1} + y_{2} + y_{3}) \right]$$

$$\int_{0}^{50} e^{-x^{2}} dx = \frac{0.85}{2} \left[(1 + 0.3679) + 2(0.93944) + 0.71788 + 0.56989 \right]$$

$$= \frac{0.27}{2} \left[1.3679 + 4.5760 \right]$$

$$= 0.1250 \left[5.94439 \right]$$

$$= 0.71430$$
3) Compute the value of definite Pritagnal 0.13499

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} 1.006 \times dx (04) \int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} \ln x dx us Prig Tiuppezolded$$

$$\int_{0}^{52} \ln x dx us Prig Prigo Pri$$

$$h_{z} = \frac{5 \cdot 2 - 4}{6} = 0 \cdot 2$$

$$\chi_{1} = \chi_{0} + h = \frac{1}{2} + \frac{1}{2} +$$

Use sempson's 1/3 rule to estimate the value of J f(x)dx 20: 1 2 3 H 5 46(x): 13 50 70 80 100 $\frac{\text{Solm:-} \int d(x) dx}{3} \frac{3h}{8} \int (Y_0 + Y_n) + 3(Y_1 + Y_2 + Y_1 + Y_5 + y_5),$ $\int f(x) dx = \frac{h}{3} \int (Y_0 + Y_n) + 4 \int (Y_1 + Y_3 + Y_5 + \dots + Y_5 +$ $= \alpha^2 \{ y_2 + y_4 + y_6 + \cdots \} \}$ Here, h=15 $\int f(x) dx = \frac{1}{3} \left\{ \left(y_0 + y_4 \right) + 4 \left(y_1 + y_3 \right) + 2 \left(y_2 \right) \right\}$ $=\frac{1}{2}\left\{ (13+100)+4(50+80)+2(70)\right\}$ $= \frac{1}{3} \{ (113) + 520 + 140 \}$ $=\frac{1}{3}\{773\}$ = 257.67

a)
$$\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx$$

$$\frac{x}{y} + \frac{x}{x} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{y}{y} = \frac{x}{y} + \frac{x}{x} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{y}{y} = \frac{x}{y} + \frac{x}{x} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{y}{y} = \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{x}{y} = \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{x}{y} = \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y} + \frac{x}{y} = \frac{x}{y} + \frac{x}{y}$$

$$\frac{x}{y} = \frac{x}{y} + \frac{x}{y} + \frac{x}{y} \frac$$

$$\int_{0}^{4} e^{x} dx = \frac{h}{3} \left\{ (y_{0} + y_{n}) + 4 (y_{1} + y_{3} + y_{5} + ...) \right\}$$

$$= \frac{h}{3} \left\{ (1 + 54, 5982) + 4 (\frac{a}{2}, 7183 + a_{0}, 0_{0}) + 4 (\frac{54}{2}, 73891) + 4 (\frac{54}{2}, 58, 5982 + 91, 2152 + 109, 1964) \right\}$$

$$= \frac{1}{3} \left\{ 55, 5982 + 91, 2152 + 109, 1964 \right\}$$

$$= \frac{1}{3} \left\{ 55, 5982 + 91, 2152 + 109, 1964 \right\}$$

$$= \frac{1}{3} \left\{ 55, 5982 + 91, 2152 + 14, 7782 \right\}$$

$$\frac{W_{1}}{5} = 53, 8639$$

$$\frac{W_{2}}{5} = \frac{11}{12}$$

$$x : 0, \quad \overline{W}_{12} = 2\overline{W}_{2} - 3\overline{W}_{2} - 4\overline{W}_{2} = 5\overline{W}_{2} - 6\overline{W}_{1}$$

$$\frac{W_{1}}{5} = \frac{1}{9} \left\{ 12, -0 - \frac{1}{9} - \frac{11}{12} - 2\overline{W}_{2} - 3\overline{W}_{2} - 4\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{1} - \frac{1}{12} - 2\overline{W}_{2} - 3\overline{W}_{2} - 4\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{1} - \frac{1}{12} - 2\overline{W}_{2} - 3\overline{W}_{2} - 4\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{1} - \frac{1}{12} - 2\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{1} - \frac{1}{12} - 2\overline{W}_{2} - 3\overline{W}_{2} - 4\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{1} - \frac{1}{12} - 2\overline{W}_{2} - 5\overline{W}_{2} - 6\overline{W}_{2} - 5\overline{W}_{2} -$$

$$= \frac{\pi}{3(n)} \left\{ (1) + 7.7269 + 8.7380 \right\}$$

$$= \frac{\pi}{3(n)} \left\{ (1) + 7.7269 + 8.7380 \right\}$$

$$= \frac{\pi}{3(n)} \left\{ 11.4589 \right\}$$

$$= 0.0873 \left\{ 11.4589 \right\}$$

$$= 1.0003.$$

$$5) \int_{0}^{1} \frac{dx}{1+x^{2}}$$

$$dx = \frac{1}{1+x^{2}}$$

$$\frac{1}{1+x^{2}}$$

$$\frac{1$$

$$f(x) = \frac{1}{2} \begin{cases} x^{2} dx & by a eviding the hange of Pritigualities into a equal points using ormpoon's hule.
$$f(x) = e^{-x^{2}}$$

$$f(x) = e^{x$$$$

$$= 0.0833 \left[1.3649 + 6.0368 + 1.5576 \right]$$

$$= 0.7466$$

5.2
4
3017
 $f(r) = tr(\infty)$
het us divided the integral of the integral
integral
 $h = \frac{5.2.4}{6} = 0.2$
 $x : 4 + 2.4.4 + 4.6 + 8.5.0 = 5.2$
 $y : 1.3868 + 1.4351 + 1.5686 + 1.6694 + 1.6487$
 $y : 1.3868 + 1.4351 + 1.5686 + 1.6694 + 1.6487$
 $x_{1} = \frac{1}{3} \left[(y_{0} + y_{0}) + 4 (y_{1} + y_{3} + ...) + 2(y_{2} + y_{4} + ...) \right]$
 $s.2$
 $\int th x dx = \frac{1}{3} \left[(y_{0} + y_{0}) + 4 (y_{1} + y_{3} + ...) + 2(y_{2} + y_{4} + ...) \right]$
 $= 0.0667 \left[(3.0355^{-}) + 13.2824 + 6.1004 \right]$
 $= 1.8288$

$$f_{uppe x0/del} = \frac{1}{12} \int_{0}^{\infty} \frac{1}{12} \int_{0}^{2} \frac{3}{12} \int_{0}^{4} \frac{1}{2} \int_{0}^{2} \frac{1}{12} \int_{0}^{2} \frac{3}{12} \int_{0}^{4} \frac{1}{2} \int_{0}^{1} \frac{1}{12} \int_{0}^{2} \frac{3}{12} \int_{0}^{4} \frac{1}{2} \int_{0}^{1} \frac{1}{12} \int_{0}^{2} \frac{1}{12} \int_{0}^$$

$$\int_{0}^{3} \frac{x^{2}}{1+x^{3}} dx = \frac{0.35}{2} \left[(0+0.5) + 2(0.0645 + 0.2222 + 0.3956) \right]$$

$$= 0.1250 \left[0.5 + 1.3586 \right]$$

$$= 0.1250 \left[1.8588 \right]$$

$$= 0.1250 \left[1.8588 \right]$$

$$= 0.2323$$

$$\int_{0}^{3} s^{2} n x dx$$

$$\int_{0}^{3} s^{2} n x dx$$

$$\int_{0}^{3} \frac{1}{12} s^{2} n x dx$$

$$\int_{1}^{3} \frac{1}{12} s^{2} \frac{1}{12} s^{2} \frac{1}{12} s^{2} \frac{1}{12} s^{2} \frac{1}{12} \frac{1}{12} s^{2} \frac{1}{12} \frac{1}{12$$

$$h = \frac{4-9}{4} = 1$$

$$x : 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$Y : \quad 1 \quad \sqrt{3} \quad \sqrt{$$

By Euler's formula,

$$\begin{array}{c}
 \frac{Y_1 = Y_0 + h \int (x_0, y_0)}{y_0, i} \\
 = i + (0.01) \int (0, i) \\
 = i + (0.01) \int (0, i) \\
 = i + (0.01) (-i) \\
 = i - 0.01 \\
 = 0.99 \\
 \frac{Y_2 = Y_1 + h \int (x_1, y_1)}{y_2 = Y_1 + h \int (x_0, y_1)} \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.99 \\
 = 0.990 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.990 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9801 \\
 = 0.9903 \\
 = 0.9903 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99103 \\
 = 0.99104 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.9910 \\
 = 0.99$$

a) Complete y at x = 0.25 and 0.50 by modified Fuller method given that y'= axy and y(0)=1 h=0.25 h= 14 hold: (10,00) = 210)(1) -iullo Exact value of y 0.99005 0.980-18 Euler's Mettud 0.99 0.9801 Y0=1 α_{1} Entry to a 10.0 = x for 20=0 Da - Misophi Calk y= e^{-0.01} = 0.990049 = 0.99005 Y= 20th [of (200th/2, 20th/2 { (20, 40))] we have $\frac{dy}{dx} = \frac{dy}{dx} = \frac{1}{2} (my) (axy)$ X=0.02 (101) (110) 11 = x=0.03 y= e (1=0.9704 y = y 10+ + { [200, 40] = 1+ 0.25 + (0,1) 4= e^{-0.02} 0.980199= 0.9801 at x=0.01 x=0.02 X1= 0,25 -1+0.25 (210)(1) =1 92=0·JO (=2) \$07P.0 20 = 0.03ę. 0-9703

$$\int_{a}^{b} \left[x + h(x) + h(x)$$

1

3) Using impuoved Fullie's method ford is
at
$$x = 0.1$$
 and 0.0 given that $\frac{dy}{dx} = y - \frac{dx}{dx}$ and
 $y(0)=1$
Soln:
We have $\frac{dy}{dx} = y - \frac{dx}{dy} = f(x_1y_1)(s_0x_1)$
 $x_{0=0}$; $y_0(0)=1$
 $y_{0=1}$, $y_{1=0,1}$, $x_{2=0,2}$
 $x_{1=0,1}$
By Simpwored Fullie's Method:
 $y_{1=y_0} + \frac{1}{2} \left[f(x_0,y_0) + f(x_0+h, hf(x_0,y_0)) \right]$
 $f(x_0+h, hf(x_0,y_0)) = f[0+0+1, (0-1)f(0, 1)] dy = 1$
 $= f[0,1, (0,1)]$
 $= f[0,1, (0,1)]$
 $= f[0,1, (0,1)]$
 $= 0.1 - \frac{a(0,1)}{0.1}$
 $y_{1=y_0} + \frac{1}{2} \left[f(x_0, y_0) + f(x_0+h, hf(x_0,y_0)) \right]$

$$= [+0.05][-1.9]$$

$$= 1 + (0.05)(-0.9)$$

$$= 1 - 0.045$$

$$= 0.9555$$

$$y_{q} = y_{1} + \frac{h}{2} \left[\int_{0}^{1} (x_{1}, y_{1}) + \int_{0}^{1} (x_{1}+b, h + \int_{0}^{1} (x_{1}, y_{1})) \right]$$

$$= 0.955 + 0.1 \int_{0}^{1} \int_{0}^{1} (0.1, 0.955) + \int_{0}^{1} (0.1+0.1)$$

$$= 0.955 + 0.1 \int_{0}^{1} \int_{0}^{1} (10.1, 0.955) + \int_{0}^{1} (0.1+0.1)$$

$$= 0.955 + 0.1 \int_{0}^{1} \int_{0}^{1} (10.1, 0.955) + \int_{0}^{1} (0.1+0.1)$$

$$= 10.955 + 0.1 \int_{0}^{1} \int_{0}^{1} (10.1, 0.955) + \int_{0}^{1} (0.1+0.1)$$

$$= 1(0.2, (0.1)(0.955) + \int_{0}^{1} (0.1+0.1) \int_{0}^{1} (0.1+0.1)$$

$$= \int_{0}^{1} (0.2, 0.07456) = \int_{0}^{1} (0.1, 0.955) + (-5.97005) = 20.955 + 0.05 \left[0.955 - \frac{2001}{0.755} \right] - (5.49005) = 0.955 + 0.05 \left[0.955 - \frac{20042}{0.755} \right] - (5.49005) = 0.955 + 0.05 \left[0.955 - \frac{20042}{0.755} \right] - 5.29025$$

$$= 0. 955 + 0.057 [0.74558] - 5.29025$$

$$= 0.955 + 0.087279 - 5.29025 (0.05)$$

$$= 0.955 + 0.087279 - 0.26457$$

$$y_{2} = 0.7278.$$
H)
USPYIG Sinpuloved Eully's interhood findy (0.2) and
y(0.4) from $(y' = x + y)$. $y(0) = 1$ with $h = 0.8$
Splin:-
The Sinpuloved Eully's is.

Ym+1 = Ym + $\frac{h}{2}$ f f (xm, ym) + f (xm + h, ym + h f (xm, ym))
$$= 40 + \frac{h}{2}$$
 f f (x0.40) + f (x0 + h, ye + h, def 1.00, from
PuttPng m=0 Pn @ we get
$$y_{1} = y_{0} + \frac{h}{2}$$
 f f (x0.90) + f [x_{0} + h, y_{0} + h f (x_{0}, y_{0})]
Here x_{0} = 0, y_{0} = 1, f (x, y) = x + y, h = 0.2.
f (x0.90) = x_{0} + y_{0} = 01 = 1 - 7 @
Sub @ Pn @ we get
$$y_{1} = y_{0} + \frac{h}{2} \left\{ [1 + f (x_{0} + h, y_{0} + h, 1] \right\}$$

$$= 1 + 0.1 \left\{ 1 + f (x_{0} + h, y_{0} + h, 1] \right\}$$

$$= 1 + 0.1 \left\{ 1 + f (0.2, 1, 1 + 0.2) \right\}$$

$$= 1 + 0.1 \left\{ 1 + f (0.2, 1, 2) \right\} - 7 (5)$$

sub (C) Pri (A) weget.

$$y_1 = 1+0.1 \{ 1+1.4 \}$$

 $y_1 = 1+0.1 \{ 2:4 \} = 1+0.24$
 $y_1 = 1.24$
 $y_1 = 1.24$
 $y_1 = 1.24$
 $y_2 = y_1 + \frac{1}{4!} \{ \frac{1}{4!} (x_1, y_1) + \frac{1}{4!} (2x_1, y_1) + \frac{1}{4!} (2x_1, y_1) \}$
 $y_2 = y_1 + \frac{1}{4!} \{ \frac{1}{4!} (x_1, y_1) + \frac{1}{4!} (2x_1, y_1) + \frac{1}{4!} (2x_1, y_1) \}$
Here $x_{1} = 0.2, y_1 = 1.24$, $h = 0.2$
Now, $\frac{1}{4!} (2x_{1!}y_{1!}) = \frac{1}{4!} (0.2, 1.24) = 0.24 + 1.24$
 $\frac{1}{4!} (x_{1!}y_{1!}) = 1.44 - 7$ (F)
Sub (F) Pri (F) we get
 $y_2 = 1.24 + 0.1 \{ 1.44 + 4! [0.2 + 0.2] + 1.22 \}$
 $y_2 = 1.24 + 0.1 \{ 1.44 + 4! [0.4, 1.52.2] + 7(5) \}$
Now $\frac{1}{4!} (0.4, 1.52.2) = 0.41 + 1.52.28$
 $\frac{1}{4!} (0.4, 1.52.2) = 1.44 + 1.52.28$
 $\frac{1}{4!} (0.4, 1.52.2) = 1.44 + 1.52.28$
 $\frac{1}{4!} (0.4, 1.52.2) = 1.44 + 1.52.28$
 $\frac{1}{4!} (0.4, 1.52.2) = 1.24 + 0.1 (1.24.2)$
 $= 1.24 + 0.1 (1.2.36.2)$
 $y_2 = 1.24 + 0.1 (1.2.36.2)$
 $y_2 = 1.24 + 0.236.2 = 1.576.28$
 $\therefore y_1 (0.4) = 1.576.28$

(5) We suppored Fuller's method solve
$$y' = x_1 y_1 y_1 y_1 y_2 = 1$$
 compute y at $x = 0.1$, by taking $h = 0.1$
Support $y' = x + y_1 + xy_1$, $x0 = 0$, $y_0 = 0.1$ and $h_{-0.1}$
The Support of Fuller's algorithm is
 $y_{m+1} = y_m + \frac{h}{2} \int \{(x_m, y_m)\} + \int (x_m + h, y_m + h) \{(x_m, y_m)\}$
Putting $m = 0$ for (i) we get.
 $y_1 = y_0 + \frac{h}{2} \int \{(y_{10}, y_0)\} + \int (y_{10} + h, y_0 + h) \int (x_m, y_m) y_1 + \int (x_m, y_m) + \int (x_m, y_m) y_1 + \int (x_m, y_m) y_1 + \int (x_m, y_m) + \int$

6) Using Improved Fullow's multiple find
Y at
$$nc=0.1$$
 and $x=0.3$ given $\frac{dy}{dz} = y = \frac{2x}{y}$,
 $y(0)=1$
goint'
The Improved Fullow's algorithm is
Youth = You $\pm \frac{1}{2}$ if $(2000, y_{0}) \pm i (2000, \pm h, y_{0}) \pm h$
Putting $m=0$ Pr (1) we get
 $y_{1} = y_{0} \pm \frac{1}{4}$ if $(x_{0}, y_{0}) \pm i (2000, \pm h, y_{0}) \pm i (2000, \pm h)$
Here $x_{0}=0$, $y_{0}=1$, $j(200, y_{0}) \pm i (2000, \pm h, y_{0}) \pm i (2000, \pm h)$
 $y_{1}= y_{0} \pm \frac{1}{4}$ if $(2000, y_{0}) \pm i (2000, \pm h, y_{0}) \pm i (2000, \pm h)$
Here $x_{0}=0$, $y_{0}=1$, $j(200, y_{0}) = y - \frac{4x}{y}$
 $\therefore \int (2000, y_{0}) = y_{0} - \frac{4x_{0}}{y_{0}} = 1 - 0 - 1 - 7$ (3)
sub (3) Pr (3) we get
 $y_{1}= y_{0} \pm \frac{1}{4} \int [1 \pm j (200 \pm h, y_{0}) \pm h \cdot 1]^{2}$
 $= 1 \pm \frac{0.1}{2} \int 1 \pm j (0 \pm 0, 1 \cdot 1 \pm 0, 1)^{2}$
 $= 1 \pm \frac{0.1}{2} \int 1 \pm j (0 \pm 0, 1 \cdot 1 \pm 0, 1)^{2}$
 $y_{1}= 1 \pm \frac{0.1}{2} (1 \pm 0, 1 \cdot 0, 1 \cdot 1 \pm 0, 1)^{2}$
 $y_{1}= 1 \pm \frac{0.1}{2} (1 \pm 0, 1 \cdot 0, 1 \cdot 1)^{2} - 7$ (5)
Now $f(0, 1, 1, 1) = 1 \cdot 1 - \frac{2(0, 1)}{11} = 0.9(182 - 7)^{2}$
 $y_{1}= 1 \pm \frac{0.1}{2} (1 \pm 0.9(182))$
 $\therefore y(0, 1) = 1.0959$
Putting $m=1$ in (1) we get
 $y_{1}= 1 \pm \frac{0.1}{2} [4 + (x_{1}, y_{1}) + 5(x_{1} \pm h, y_{1} \pm h) [x_{1}, y_{1}]$

t, 2

Here
$$x_{1} = 0.1, y_{1} = 1.0959$$
 und y_{1}
Now $f(x_{1}, y_{1}) = g(0.1, 1.0959)$ is $f(x_{1}, y_{1}) = g(0.1, 1.0959)$
 $= 1.0959 - \frac{2(0.1)}{1.0959}$ $= (0.1)$
 $g(x_{1}, y_{1}) = 0.9135$
Sup \textcircled{O} Mr \textcircled{O} we get $f(x_{0} + y_{1}) = 1.0959 + g(0.2, 1.0959)$
 $= 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0959)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0959)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
Now $g(0.2, 1.1878) = 1.1872 - \frac{2(0.2)}{1.1872}$
 $= 0.8503$
Sup \textcircled{O} Pr \textcircled{O} we get
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 0.05 \{0.9135 + g(0.2, 1.0873)\}$
 $Y_{2} = 1.0959 + 1.1841$
 $Y_{2} = 1.0959 + 1.1841$
 $Y_{3} = 1.0959 + 1.1841$

7) solve
$$\frac{dy}{dx} = y + e^{x}$$
, $y(0) = 0$, for $x = 0, 2, 0, 4$ by using
Propuoved Fully's Heathod.
soln:
Given $\frac{dy}{dx} = y + e^{x}$; $x_{0=0}$, $y_{0} = 0$ and $h = 0.2$
The Simpuoved Fully's algorithm is
youth = $y_{m} + \frac{h}{a} \leq \frac{1}{b} (x_{m}, y_{m}) + \frac{1}{b} [x_{m} + h, y_{m} + h\frac{1}{d} (y_{m}, y_{m})]$
Putting m=0 Pri (1), we get,
 $y_{1} = y_{0} + h_{2} \leq \frac{1}{b} (x_{0}, y_{0}) + \frac{1}{b} [x_{0} + h, y_{0} + h\frac{1}{d} (y_{0}, y_{0})] = 0$
 $f(x_{1}y) = y + e^{x}$
 $\frac{1}{b} (x_{0}, y_{0}) = 0 + e^{0} = 1$, $-7(3)$
Subt (3) In (2), we get
 $y_{1} = y_{0} + \frac{h}{a} \leq 1 + \frac{1}{d} [h + 0 + h, y_{0} + h) \leq 1$
 $= 0 + 0.2$ $\int 1 + \frac{1}{d} [h + 0 + h, y_{0} + h) \leq 1$
 $y_{0} = y_{1} + \frac{h}{a} \leq 1 + \frac{1}{d} [h + 0 + h, y_{0} + h] \leq 1$
 $y_{1} = y_{0} - 2 = 0.2 + e^{0.2} + \frac{1}{a} + \frac{1}{a} = 0 + 1 + \frac{1}{a} = 0 + \frac{1}{a} = \frac{1}{a} = 0 + \frac{1}{a} = 0 + \frac{1}{a} = \frac{1}{a} = 0 + \frac{1}{a} = 0 + \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = \frac{1}{a} = 0 + \frac{1}{a} = \frac{1}{a$

.

$$\begin{array}{c} y_{1} = y_{0} + \frac{h}{2} \int_{2}^{1} (x_{0}, y_{0})^{*} + \int_{2}^{1} (x_{0} + h_{1}y_{0} + h_$$

Now
$$d(x_0, w) = \frac{2v_0}{x_0} + x_0^3 = i+i = 2 \cdot y_0$$

Sur $(a) n(a), we get
 $v_i = v_0 + \frac{1}{2} = \frac{2v_0}{20} \left\{ 2 + \int (x_0 + h_1 + v_0 + 2h_1) \right\}$
 $= 0.5 + 0.1 \left[2 + \int (1.2, 0.9) \right] - y(a)$
Now,
 $f(1.2, 0.9) = \frac{2(0.9)}{1.2} + (1.2)^3 = 8.228 - y(b)$
Suf (b) Pn (b) , we get
 $v_1 = y(1.2) = 0.5 + 0.1 \left[2 + 3.228 \right]$
 $= 1.0223$
 $y(1-2) = 1.0228$.
PuttPrig $m = 1 \cdot 3n(1)$ we get.
 $v_2 = v_1 + \frac{1}{2} f(x_1, y_1) + f(x_1 + h_1 + h_1 + h_1 + h_2 + h_1 + h_2 + h$$

141

$$y_{2} = 1: 0228 + 0:1 [9.43267 + f(1.4, 1.70933)] + 28$$
Now f (1.4, 1.90933) = 2(1.70932) + (1.4)³ - 7(9)
Sult f (1.4, 1.90933) = 2(1.70932) + (1.4)³ - 7(9)
Sult f (1.4) = 1:0228 + 0:1 [3.43267 + 5:18590]
= 1.884657
 $\therefore y(1.4) = 1.8847$
 $y_{1} = y_{1} + y_{1}$

$$\begin{split} y_{1} = 2 + 0.2 \oint \left[20:1; \frac{2+0.1}{(0.3010)} \right] \rightarrow \textcircled{0} \\ \text{Now } \oint (0.1; 2.030) = \log (0.1+2.030) \\ &= \log (2.1301) \\ &= 2+0.2 \\ &= 2.0657 \\ &= 2.067 \\ &=$$

$$\begin{aligned} & y_{1} = 0 + (0.1) \oint \left[0 + \frac{0.1}{2}, 0 + \frac{0.1}{12}, 0 \right] \\ & y_{1} = (0.1) \oint (0.05, 0.05) - -\gamma(4) \\ & \text{Now} \quad \int [0.05, 0.05] = 1 - 0.05 = 0.95 - -\gamma(4) \\ & \text{Now} \quad \int [0.05, 0.05] = 1 - 0.05 = 0.95 - -\gamma(4) \\ & \text{sub} \quad \bigotimes \operatorname{Pn} \bigotimes, & \operatorname{usget} \\ & y_{1} = [0.1] \quad (0.95] = 0.095 \\ & y_{10} = 0.1; \quad y_{10} = 0.095 \\ & y_{10} = 1 \quad \operatorname{Pn} \bigotimes, & \operatorname{usget} \\ & y_{2} = y_{1} + \operatorname{hd} \left[2\pi + \frac{1}{2}, y_{1} + \frac{1}{2} \int (2\pi y_{1}) \right] \\ & \text{Here} \quad 2\pi = 0.095 + (0.1) \oint \left[0.1 + \frac{0.1}{2}, \cdot 0.095 + \frac{0.1}{2} \right] \\ & y_{2} = 0.095 + (0.1) \oint \left[0.1 + \frac{0.1}{2}, \cdot 0.095 + \frac{0.1}{2} \right] \\ & y_{2} = 0.095 + (0.1) \oint \left[0.15, 0.095 + 0.095 \right] \\ & \text{Now} \quad \int \left[0.1, 0.095 \right] = 17 \quad Y_{1} = 1 - 0.095 = 0.905 \\ & y_{2} = 0.095 + 0.1 \oint \left[0.15, 0.095 + 0.095 \right] \\ & = 0.095 + 0.1 \oint \left[0.15, 0.095 + 0.095 \right] \\ & = 0.095 + 0.1 \oint \left[0.15, 0.095 + 0.095 \right] \\ & = 0.8597 \\ & y_{2} = 0.095 + (0.1) \oint \left[0.15, 0.14025 \right] = -\gamma(7) \\ & \int \left[0.15, 0.14025 \right] = (1 - 0.14025^{-1}) \\ & = 0.85977 \\ & = 0.859775 \\ & = 0.180975 \\ \end{aligned}$$

Putting
$$n=2$$
 Pn (1), we get
 $y_3 = y_3 + hq \left[x_2 + \frac{h}{2}, y_3 + \frac{h}{2} \int (x_2, y_3) \right]$
Here $x_{2=0,2}$; $y_{2=0}$. 1809 and $h=0.1$
 $y_3 = 0.1809 + 10.10 \int \left[0.2 + \frac{0.1}{2}, 0.1809 + \frac{0.1}{2} \right]$
 $\int (0.2, 0.1809) = 1.0.1809 = 0.8191$
 $y_{3=0.1809 + (0.1)} \int \left[0.25, 0.1809 + 0.05 \int (a_2, 0.16) \right]$
Now $\int (0.2, 0.1809) = 1.0.1809 = 0.8191$
 $y_{3=0.1809 + 0.1} \int \left[0.25, 0.1809 + 0.05 \int (a_2, 0.16) \right]$
Sub: (1) Pn (1), we get
 $y_{3=0.1809 + 0.1} \int \left[0.25, 0.1809 + 0.05 \int (a_{20}) \right]$
 $= 0.1809 + 0.1 \int \left[0.25, 0.221855 \right]$
Now.
 $\int \left[0.25, 0.221855 \right] = 1.0.2218553 \text{ [FO}$
 $\int \left[0.25, 0.221855 \right] = 0.718145 \text{ [J}$
Sub: (1) Pn (1), we get:
 $y_{3=0.1809 + 0.1} \int \left[0.778145 \text{ J} \right]$
 $= 0.1809 + 0.1 \int \left[0.778145 \text{ J} \right]$
 $= 0.1809 + 0.0778$
 $= 0.0587.$

THE RUNGE - KUTTA METHOD: This, method in was devered by Runge. Therefore we call this method as Runge. Kutta Method. Here the set of formulae are green without prove for solving the differential equation of the form. $\frac{dy}{dx} = f(x,y)(w)(x) = y_0.$ het h denotes the length of potenval b/w the equilatistaint tot values of or Runge-Kutta Second Quder: their initial values are xo, yo far 91 the differential equation turning (i) it with dy = f(x,y) are not work Then the 1st invienent in y sy is computed form. , senter regimes . $K_{1} = h_{1}(x_{0}, y_{0})$ (a) + 1 K2 = hf (xo+h/2, yo+ K/2) Now XI=xoth; YI=YOTAY, the Provement Pre for the second priterval is computed by y

$$h_{1} = h_{1}(x_{1}, y_{1}, y_{1}, h_{2})$$

$$k_{2} = h_{1}(x_{1} + h_{2}, y_{1} + h_{2})$$

$$A_{2} = k_{2} \text{ and so on.}$$
Runge - katta thurd Ouder Runge - kutta maka
B designed by the following formulae.

$$h_{1} = h_{1}(x_{0}, y_{0})(x) = \frac{1}{4}$$

$$k_{2} = h_{1}(x_{0} + h_{2}, y_{0} + k_{1}y_{0})$$

$$h_{3} = h_{1}(x_{0} + h, y_{0} + k_{2} - k_{1})$$
Now the glusst $(1 \text{ trungment}; f_{11}, y_{1}, \Delta y)$
is computed form.

$$\Delta y = \frac{1}{4}((k_{1} + 4k_{2} + k_{3}))$$
Now $x_{1} = x_{0} + h, y_{1} = y_{0} + \Delta y$, the finument

$$h = h_{1}(x_{1}, y_{1})'$$

$$k_{2} = h_{1}(x_{1} + h_{2}, y_{1} + k_{1}y_{0})$$

$$k_{3} = h_{1}(x_{1} + h, y_{1} + 2k_{3} - k_{1})$$
and $\Delta y = \frac{1}{6}((k_{1} + 4k_{2} + k_{3}))$

Runge-kutta fourth Ouder: The fourth order hunge-kutta method designed by the following formulae. rs $K_1 = H - f(x_0, y_0)$ K2= hf (x0+h/2, 40+k/2) K3=hf (x0+h12, y0+K2) K4= Ho (20+ H/2, Y0+ K3) $\Delta y = \frac{1}{h} (k_1 + 2k_2 + 2k_3 + k_4).$ Now XI=xoth; YI= YotAy The provement Pri y for the second, third and so on Priterivals (is) (computed in the Sprilar manner (1) (10) (6.0) (2-365) Puoblem:-Find the value of Y(11) and Y(1.2) wing the Runge- Kutta method of the fourth Order given that $\frac{dy}{dx} = y^2 + xy$ and $y(x_1) = 1$ Soln:-We have, $\frac{dy}{dx} = y^2 + xy = f(x, y)$ $x_0 = 1, y_0 = 1$ 42=2 Y0=1 20=1.2 x1=1.1 20=1 Ky = ity 1 to the physical h= 0.1 Scanned with CamScanne

$$K_{12} = hq (x_{0}, v_{0})$$

$$K_{12} = hq (x_{0}, v_{0})$$

$$= (0.1) q (1.1) \qquad [(x_{1}y) = y^{2} + y_{0}y_{0}]$$

$$= (0.1) (1^{2} + (y_{0})y_{0}) + [(y_{0}, y_{0}) = 1 + (y_{0})]$$

$$= (10.1) (2y^{3} + y_{0}) + 1 - c1 = 2$$

$$[K_{1} = 0.2]$$

$$K_{2} = hq (x_{0} + h/_{2}, y_{0} + k/_{2})$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2}{2})$$

$$= (0.1) q (1.05, 1.1) \qquad [((y_{0}))^{-1} + \frac{1}{2}y_{0}]$$

$$= (0.1) (1.21 + 1.165)$$

$$= (0.1) (1.21 + 1.165)$$

$$= (0.1) (2.365) \qquad \text{mid} y_{1}$$

$$K_{3} = hq (x_{0} + h/_{2}, y_{0} + k_{2}) \qquad \text{mid} y_{1}$$

$$K_{3} = hq (x_{0} + h/_{2}, y_{0} + k_{2}) \qquad \text{mid} y_{1}$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2})$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2})$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2})$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2})$$

$$= (0.1) q (1 + \frac{0.1}{2}, 1 + \frac{0.2365}{2})$$

$$= (0.1) ((1.1183)^{2} + (1.05) (1.1183))$$

$$[K_{3} = 0.2425]$$

$$K_{4} = hq (x_{0} + h, y_{0} + k_{3})$$

$$= (0.1) q (1 + 0.1, 1 + 0.2425)$$

$$= (0.1) \begin{cases} (1.1) 1.2425) \\ = (0.1) \{ (1.2425)^{2} + (1.1) (1.2425) \\ = 0.2911 \\ \therefore \Delta y = \frac{1}{6} (K_{1} + 215_{2} + 2K_{3} + K_{4}) \\ = \frac{1}{K} (0.3 + 3 (0.3365) + 3 (0.2425) + 0.2911) \\ = \frac{1}{K} (0.3 + 3 (0.3365) + 3 (0.2425) + 0.2911) \\ \Delta y = 0.2415 \\ = 1 + 0.2415 \\ = 1 + 0.2415 \\ = 1 + 0.2415 \\ = 1 + 0.2415 \\ = (0.1) \frac{1}{5} (1.1) \cdot 1.2455) \\ = (0.1) \frac{1}{5} (1.1) \cdot 1.2455) \\ = (0.1) \frac{1}{5} (1.1) \cdot 2455) \\ = (0.1) \frac{1}{5} (1.1) \cdot 2455) \\ = (0.1) \frac{1}{5} (1.1) \cdot 2455) \\ = (0.1) \frac{1}{5} (1.1 + 102)^{2} + (1.1) (1.2415)) \\ = 0.2907 \\ K_{2} = K_{1} \frac{1}{5} (X_{1} + M_{2}, Y_{1} + K_{2}) \\ = (0.1) \frac{1}{5} (1.1 + 102)^{2} + (1.15) (1.3869) \\ K_{3} = h_{1} \frac{1}{5} (21.1 + M_{2}, Y_{1} + K_{3}) \\ = (0.1) \frac{1}{5} (1.1 + 102)^{2} + (1.15) (1.3869) \\ = (0.1) \frac{1}{5} (1.1 + 102)^{2} + (1.15) (1.4174) \\ = (0.1) \frac{1}{5} ((1.4 + 174)^{2} + (1.15) (1.4174) \\ = (0.1) \frac{1}{5} ((1.$$

$$= 0.3439$$

$$K_{H} = h_{f} (XH h, Y_{1}+k_{3})$$

$$= (0.1)_{f} (1.1 + 0.1, 1.2415 + 0.3639)$$

$$= (0.1)_{f} (1.2, 1.6054)$$

$$= (0.1)_{f} ((1.6054)^{2} + (1.2)(1.6054))$$

$$K_{H} = 0.4504$$

$$A Y = V_{6} (K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

$$= \frac{1}{6} (0.2907 + 2(0.3518) + 2(0.3639) + 0.4504)$$

$$A Y = V_{6} (K_{1} + 2K_{2} + 2K_{3} + K_{4})$$

$$= \frac{1}{6} (0.2907 + 0.7036 + 0.7278 + 0.4504)$$

$$A Y = 0.3621$$

$$Y_{2} = 0.3621$$

$$Y_{2} = (1.2) = Y_{1} + AY$$

$$= 1.2415 + 0.3621$$

$$Y_{2} = 1.6036.$$
A Find the values of $Y(0.6) + Y(0.4)$ using R-k fourth Ouder method with $h = 0.2$

$$given that \frac{dy}{dx} = \sqrt{x^{2}+y} & Y(0) = 0.8$$

$$SM1$$
We have $\frac{dY}{dx} = f(x, y) = \sqrt{x^{2}+y}$

$$y_{0} = b \cdot 8$$

$$y_{1} = ?$$

$$y_{2} = ?$$

$$y_{2} = ?$$

$$y_{2} = 0 \cdot 2$$

$$x_{1} = 0 \cdot 2$$

$$x_{1} = 0 \cdot 2$$

$$y_{1} =$$

$$F_{OX} y_{2}$$

$$= (0.2) \oint (0.2, 0.9903)_{at}$$

$$= (0.2) \int \sqrt{(0,2)^{2} + 0.9903}_{at}$$

$$= (0.2) \sqrt{1.0303}_{at}$$

$$= 0.2030$$

$$\Delta y = 1/_{6} (K_{1}+2K_{2}+2K_{3}+K_{4})$$

$$= 1/_{6} (0.1789 + 2 (0.1897) + 2 (0.1903)_{4}, 0.2033)_{6}$$

$$= 1/_{6} (0.1789 + 0.3794 + 0.380610.2033)_{6}$$

$$\Delta y = 0.1903_{3}$$

$$y_{1} = y(0.2) = y_{0} + \Delta y$$

$$= 0.8 + 0.1903_{3}$$

$$= 0.9903_{3}$$
Fox y_{2}

$$K_{12} = h \oint (X_{1}, Y_{1})_{3}$$

$$= (0.2) \int (0.2)^{2} + 0.9903_{3}$$

$$K_{12} = 0.2030_{3}$$

$$K_{13} = h \oint (X_{1} + h/_{2}, Y_{1} + K_{3})_{3}$$

$$= (0.2) \int (0.2 + \frac{0.2}{2}, 0.9903 + \frac{0.2030}{2})_{3}$$

• 1

1

11

1

h

3.

$$= (0.2) \oint (0.3, 0.9903 + 0.1015)$$

$$= (0.2) \oint (0.3, 1.0918)$$

$$= (0.2) \int (0.3)^{2} + 1.0918$$

$$K_{2} = 0.2174 =$$

$$K_{3} = h_{4}^{-1} [X_{1} + h_{12}^{-1}, y_{1}^{-1} + K_{22}^{-1}]$$

$$= (0.2) \oplus [0.2, 1] \oplus [0.2, 1] \oplus [0.2, 2] \oplus [0.903 \oplus 1.027]$$

$$= (0.2) \oplus [0.3, 0.9903 \pm 0.1087]$$

$$= (0.2) \oplus [0.3, 1.0990]$$

$$= (0.2) \oplus [0.2, 1.0990]$$

$$= (0.2) \oplus [0.2030 \pm 0.2181]$$

$$= 1/6 [(0.2030 \pm 0.2174) \pm 2(0.2181)]$$

$$= 1/6 [(0.2030 \pm 0.4348 \pm 0.4362 \pm 0.2384)]$$

$$= 0.2340$$

$$= 1/6 [(0.2030 \pm 0.4348 \pm 0.4362 \pm 0.2384)]$$

$$= 0.2340$$

$$= 1/6 [(0.2030 \pm 0.4348 \pm 0.4362 \pm 0.2384)]$$

$$= 0.2340$$

 $y_2 = y(D-4) = y_1 + \Delta y_2$ $= 0.9903 \pm 0.2180$ = 1.2083 RK METHOD FOR SOLVING THE SIMULTANEOUS DIFFERENTIAL EQUVATION. Consider the differential equation $\frac{dy}{dr} = f(x,y,z)$ $\frac{dz}{dx} = g(x,y,z)$ $y(x_0) = y_0 + x z(x_0) = z_0$ To dolve this system the system of differential equation at an enterval of h, the invienent in y and z for the 1st Pricoment prix computed by. 없는 정도는 정도는 M - 5 위 (ストロータモーション しょう (日本) とう eters terretain - Stretain and a sta · Obland.

1) We Runge - Kutta method to appulse intate y,
when
$$x = 0.1$$
; $0.2, 0.3, h = 0.1$ given $x = 0$ where
 $y = 1$ and $\frac{dy}{dx} = x+y$.
Solution
Guiven $y' = x+y$ (soly hap of
 $1e, f(x,y) = x+y$ - method
And also given that $x_{0=0}, y_{0=1}$ and $h=0.1$.
To find $y(0.1)$ with the two of
 $= hExo + VoI$
 $K_{1=}(0.1)Eo + iJ = 0.1$
 $K_{2=} hif [x_{0} + \frac{h}{2}, y_{0} + \frac{k}{2}]$
 $= hf f[0, \frac{0.1}{2} + 1 + \frac{0.1}{2}]$
 $= (0.1)(0.05 + 1.05)$
 $[K_{2=} 0.1]$
 $K_{3} = hif (x_{0} + h, y_{0} + \frac{k}{2}k_{2}) - 151$)
 $= (0.1)(1.22)$
 $K_{3} = 0.122$
 $Ay = \frac{1}{6} [K_{1} + 4(K_{2} + K_{3}]$
 $= \frac{1}{6} [0.1 + 4(0.11) + 0.122]$
 $= \frac{1}{6} [0.1 + 4(0.11) + 0.122]$

$$\begin{aligned} & \lambda y = \frac{1}{6} \left[k_1 + 4 k_2 + k_3 \right] \\ &= \frac{1}{6} \left[0 \cdot (2103 + 410 \cdot 13208) + 0 \cdot 14534 \right] \\ &= \frac{1}{6} \left[0 \cdot (7947) \right] \\ &\therefore & \Delta y = 0 \cdot 1324 \\ & y_2 = y_1 + \Delta y \\ & y_1 = y_1 + \lambda y \\ & y_1 + \lambda y \\ & y_1 = y_1 + \lambda y \\ & y_1 + \lambda y \\ & y_1 + \lambda y \\ & y_1 = y_1 + \lambda y \\ & y_$$

$$k_{3} = 0.17114$$

$$\therefore \Delta y = \frac{1}{6} [k_{1} + 4k_{2} + k_{3}]$$

$$= \frac{1}{6} [0.14427 + 4 [0.15648]_{4}$$

$$0.17114]$$

$$= \frac{1}{6} [0.9413]_{.}$$

$$\therefore \Delta y = 0.1569$$

$$y_{3} = y_{2} + \Delta y$$

$$k_{3} = (0.2) + \Delta y$$

$$= \frac{1}{2} 1.2427 + 0.1569$$

$$\therefore y [0.3] = y (0.2) + \Delta y$$

$$= \frac{1}{2} 1.2427 + 0.1569$$

$$\therefore y [0.3] = 1.3996.$$

$$\frac{1}{2} \frac{1}{103} \frac{0.1}{1.2427} \frac{0.3}{1.396}$$

$$\frac{1}{103} \frac{1}{1.2427} \frac{0.3}{1.396}$$

$$\frac{1}{1.396} \frac{1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396}$$

$$\frac{1}{103} \frac{0.1}{1.2427} \frac{0.3}{1.396}$$

$$\frac{1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396}$$

$$\frac{1}{1.396} \frac{0.1}{1.396} \frac{0.1}{1.396}$$

Method:
Method:
Now.
$$K_{1} = H_{4} (x_{0}, y_{0})$$

 $= (0,1) [(1)^{2} + (1)(1)] = (0,1)(2)$
 $K_{1} = 0.2$
 $K_{2} = h_{4} [x_{0} + \frac{h_{1}}{2}, y_{0} + \frac{h_{1}}{2}]$
 $= h_{1} [(y_{0} + \frac{h_{1}}{2})^{2} + (x_{0} + \frac{h_{1}}{2})(y_{0} + \frac{h_{1}}{2})]$
 $= (0,1) [(1 + 0.2)^{2} + (1 + 0.1)(1 + 0.2)]$
 $= (0,1) [(1 + 0.1)^{2} + (1 + 0.05)(1 + 0.1)]$
 $K_{2} = 0.2365$
 $K_{3} = H_{4} (x_{0} + \frac{h_{1}}{3}, \frac{h_{2}}{4} + \frac{h_{2}}{3})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1})$
 $= (h_{1}) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 + 2(h_{2} + 2k_{2} - k_{1})^{2} + (x_{0} + h_{1})(y_{0} + 2k_{2} - k_{1}]]$
 $= (0,1) [[(1 - 2T_{3})^{2} + (1 - 1))(1 - 2T_{3})]$
 $= (0,1) [[(1 - 2T_{3})^{2} + (1 - 1))(1 - 2T_{3})]$
 $= (0,1) [[(1 - 2T_{3})^{2} + (1 - 1))(1 - 2T_{3})]$
 $= (h_{2} + h_{1} + h_{2} + k_{3}]$
 $= \frac{h_{2}} [[(1 - 2h_{1} + 4k_{2} + k_{3}]]$
 $= \frac{h_{3}} [(1 - 4h_{3} + 8)^{2}]$
 $\therefore \Delta y = 0.2.4135^{-1}$
 $y_{1} = y_{0} + \Delta y$
 $= y_{0} + \Delta y$

To find y (1.1) wing Runge Kutta Method of
Fourth onder:
Hore
$$x_0 = 1$$
, $y_0 = 1$ and $h = 0.1$
Now $K_1 = h f(x_0, y_0)$
 $= h(y_0^2 + x_0y_0)$
 $= h(y_0^2 + x_0y_0)$
 $= (0.1) [1^2 + (y_0(1)] = (0.1)(2)$
 $K_1 = 0.2$
 $K_2 = h f(x_0 + \frac{H}{2}) + (x_0 + \frac{H}{2})(y_0 + \frac{K_1}{2})$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1.1)^2 + (1.05)(1.1)]$
 $K_2 = 0.2365$
 $K_3 = h f(x_0 + \frac{H}{2}, y_0 + \frac{K_3}{2})$
 $= h[(y_0 + \frac{K_3}{2})^2 + (x_0 + \frac{H}{2})(y_0 + \frac{K_3}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$
 $= (0.1) [(1 + \frac{0.2}{2})^2 + (1 + \frac{0.1}{2})(1 + \frac{(0.2)}{2})]$

$$= (0.1) \left[\left(1 + 0.2265 \right)^{2} + \left(1 + 0.1 \right) \left(1 + 0.2265 \right)^{2} + \left(1 + 0.05 \right) \left(1 + 1825 \right)^{2} \right]$$

$$= (0.1) \left[2 + 4246 \right]$$

$$k_{3} = 0.24246$$

$$k_{4} = h_{4} \left(x_{0} + h, y_{0} + k_{3} \right)$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[(y_{0} + k_{3})^{2} + (x_{0} + h) (y_{0} + k_{3}) \right]$$

$$= (0.1) \left[2 + 9104_{4} \right] = 1$$

$$(k_{4} = 0, 29104_{4}) + 4 = 14$$

$$\therefore \Delta y = \frac{1}{6} \left[k_{1} + 2k_{2} + 2k_{3} + k_{4} \right]$$

$$= \frac{1}{6} \left[0 + 2 + 2(0.2365) + 2(0.24246) + 0.29104 \right]$$

$$= \frac{1}{6} \left[1 + 44896 \right]$$

$$= 0 + 24149$$

$$\therefore y_{1} = y_{0} + \Delta y = 1 + 0 + 24149 = 1 + 24149$$

$$= y_{0}(0.1) = 1 + 24149$$

$$y_{0}(0.1) = 2 + 6k$$

$$y_{0}(0.1) = 2k +$$

that the younth Oxolar Burge-ladta
formula for fibring the fruit intrements
y viz Ay & given by

$$A y = \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4)$$
where

$$K_1 = h f (z_0, v_0)$$

$$K_2 = h f (z_0 + \frac{H}{2}, y_0 + \frac{K_2}{2})$$

$$K_3 = h f (z_0 + \frac{H}{2}, y_0 + \frac{K_2}{2}) ((x_0, v_0) = (y_1 - x_0)$$

$$K_4 = h f (x_0 + h_0, y_0 + K_3) = 0.1(2 - 0) = 0.2$$

$$K_2 = (0.1) [(y_0 - z_0) = 0.1(2 - 0) = 0.2$$

$$K_2 = (0.1) [(y_0 + \frac{K_1}{2}) - (z_0 + \frac{H}{2})]$$

$$= (0.1) [(2 + \frac{0.2}{2}) - (0 + \frac{0.1}{2})]$$

$$= (0.1) [(y_0 + \frac{K_2}{2}) - (x_0 + \frac{H}{2})]$$

$$= (0.1) [(y_0 + \frac{K_2}{2}) - (x_0 + \frac{H}{2})]$$

$$= (0.1) [(y_0 + \frac{K_2}{2}) - (x_0 + \frac{H}{2})]$$

$$= 0.20525$$

$$K_4 = (0.1) [(y_0 + K_3) - (x_0 + \frac{H}{2})]$$

$$= (0.1) [(y_0 + K_3) - (x_0 + \frac{H}{2})]$$

$$= 0.20525$$

.

$$\begin{aligned} & Ay = \frac{1}{6} \left[(x_1 + 2x_2 + 2x_3 + k_4) \right] \\ &= \frac{1}{6} \left[(0.2 + 2(0.205) + 2(0.20525) + 0.210525) \right] \\ &= \frac{1}{6} \left[(0.2 + 0.41 + 0.4105 + 0.210525) \right] \\ &= 0.20517 \\ &: y(0.1) = y_1 = y_0 + Ay \\ &= 2 + 0.20517 \\ &: y(0.1) = 2.20517 \\ &: y(0.1) = 0.21057 \\ &: y(0.1) = 2.20517 + 0.21057 \\ &: y(0.1) = 0.21004 \\ &: y_3 = h \left\{ (x_1 + \frac{h}{12}, y_1 + \frac{h_2}{2}) \\ &= h \left[(y_1 + \frac{h_2}{2}) - (x_1 + \frac{h_2}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \\ &= (0.1) \left[(2.20517 + 0.21057) - (0.1 + \frac{0.21}{2}) \right] \end{aligned}$$

$$= (0.1) \left[\left(2.20517 + \frac{0.21604}{2} \right) - \left(0.1401 +$$

Find the value of
$$y(0.2)$$
 $\xi y(0.4)$ here $Aurge-$
kutta method of founth ander with $h=0.2$,
 $grven that $\frac{dy}{dx} = \sqrt{x^2+y}$; $y(0)=0.8$
 $gott:$
 $Guren y'= \sqrt{x^2+y}$
And also grven that $x_{0=0}$, $y_{0=0}$. 8 and $h=0.2$
To find $y(0.2)$:
We know that the founth onder Runge-kulla
formula to find the fust Provement Pri
 $y viz$. Ay B grven by
 $Ay = \frac{1}{6} [K_1 + 2K_2 + 2K_3 + K_4]$
Under $K_1 = hf(x_0, y_0) = h[\sqrt{x_0^2+y_0}]$
 $= (0.2)[\sqrt{0+0.8}]$
 $K_2 = Hd[X_0 + \frac{L}{2}, y_0 + \frac{K_1}{2}]$
 $= h[\sqrt{(x_0 + \frac{L}{2})^2 + (y_0 + \frac{K_1}{2})}]$
 $= (0.2)[\sqrt{(0+1)^2+0.8 + 0.089.44}$
 $K_2 = 0.189.68$
 $K_3 = hd[x_0 + \frac{L}{2}, y_0 + \frac{K_2}{2}]$
 $= h[\sqrt{(x_0 + \frac{L}{2})^2 + (y_0 + \frac{K_2}{2})}]$$

$$f = (0.2) \left[\int (0 + \frac{0.2}{2})^2 + (0.3 + \frac{0.139153}{210}) \right]$$

$$k = (0.2) \left[\int (0.1)^2 + 0.8 + 0.09484 \right]$$

$$k = 0.19025$$

$$k = h \int (20 + h, y_0 + k_3)$$

$$= h \int (20 + h)^2 + (\frac{1}{30} + k_3)$$

$$= h \int (0 + 0.2)^2 + (0.3 + 0.19025)$$

$$k = 0.20300$$

$$\therefore \Delta y = \frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right]$$

$$= \frac{1}{6} \left[0.17889 + 2(0.13968) + 2(0.19025) \right]$$

$$+ 0.20300$$

$$= \frac{1}{6} \left[1.14175 \right]$$

$$\Delta y = 0.19029$$

$$\therefore y (0.2) = y_0 + \Delta y$$

$$= 0.8 + 0.19029$$

$$y (0.2) = 0.99029$$

$$To f und y (0.4):$$

Here $x_1 = 0.2, y_1 = 0.99029$ and $h = 0$;

$$Now \quad k_1 = hr f (x_1, y_1) = h \left[\sqrt{2n^2 + y_1} \right].$$

$$= (0.2) \left[\sqrt{(0.2)^{2}+0.99029} \right]$$

$$k_{1} = 0.20301$$

$$k_{2} = h_{4} \left[x_{1} + \frac{h}{2}, y_{1} + \frac{k_{1}}{2} \right]$$

$$= h \left[\sqrt{(x_{1} + \frac{h}{2})^{2}} + (y_{1} + \frac{k_{1}}{2}) \right]$$

$$= (0.3) \left[\sqrt{(0.3)^{2}+ 0.99029 + 0.20201} \right]$$

$$= (0.2) \sqrt{(0.3)^{2}+ 0.99029 + 0.10150}$$

$$k_{2} = 0.21742$$

$$k_{3} = h_{4} \left[x_{1} + \frac{h}{2}, y_{1} + \frac{k_{2}}{2} \right]$$

$$= h \left[\sqrt{(x_{1} + \frac{h}{2})^{2}} + (y_{1} + \frac{k_{2}}{2}) \right]$$

$$= (0.2) \left[\sqrt{(0.3)^{2}+ 0.99029 + 0.10150} \right]$$

$$k_{3} = 0.21742$$

$$k_{3} = 0.21742$$

$$k_{3} = h_{4} \left[x_{1} + \frac{h}{2}, y_{1} + \frac{k_{2}}{2} \right]$$

$$= (0.2) \left[\sqrt{(0.3)^{2}+ 0.99029 + 0.10187} \right]$$

$$k_{3} = 0.21808$$

$$k_{4} = h_{4} \left(x_{1} + h, y_{1} + k_{3} \right)$$

$$= h \sqrt{(0.2 + 0.2)^{2}} + (0.99029 + 0.21808)$$

$$= h \sqrt{(0.2 + 0.2)^{2}} + (0.99029 + 0.21808)$$

$$= (0.2) \sqrt{1.36837} = 0.23394$$

$$\therefore \Delta y = \frac{1}{k} \left[k_{1} + 2k_{2} + 2k_{3} + k_{4} \right]$$

$$= \frac{1}{6} \left[0.20301 + 2(0.21742) + \frac{1}{2(0.21808) + 0.23394} \right]$$

$$= \frac{1}{5} \left[1 \cdot 30797 \right] = 0 \cdot 217995$$

$$\therefore 9_{2} = 9_{1} + \Delta 9$$

$$= 0 \cdot 99029 + 0 \cdot 2 \cdot 7995$$

$$\therefore 9 (0 \cdot 4) = 1 \cdot 20828$$

$$\boxed{\frac{x}{9} \cdot 0} \cdot \frac{0 \cdot 2}{0 \cdot 99029} + \frac{0 \cdot 2}{1 \cdot 20828}$$