
(Affiliated to Bharathidasan University, Tiruchirappalli)

UGC Recognized under section 2(f) & 12(B)

DEPARTMENT OF MATHEMATICSDEPARTMENT OF MATHEMATICS

16SCCMM916SCCMM9: :

NUMERICAL METHODS WITH MATLAB NUMERICAL METHODS WITH MATLAB

PROGRAMMINGPROGRAMMING

CLASS: CLASS:

IIIIII–– B.Sc., B.Sc., MATHEMATICSMATHEMATICS

Prepared by: Prepared by:

Dr. S. VINOTH KUMARDr. S. VINOTH KUMAR,,

M.ScM.Sc., ., M.PhilM.Phil.., Ph.D., M.Ed., B.Ed., , Ph.D., M.Ed., B.Ed., (Special Education)(Special Education)

Assistant Professor of MathematicsAssistant Professor of Mathematics

Unit-1 (Predefined Function)

• Arithmetic expressions often require computations
other than addition, subtraction, multiplication,
division and exponentiation.

• Many expressions require the use of logarithms,
exponentials, and trigonometric functions. MATLAB
includes a built-in library of these useful functions.

• For example, if we want to compute the square root
of x and store the result in b, we can use the
following command:

b = sqrt(x);

this statement is valid if x is a scalar or a matrix.

Unit-1 (Predefined Function)

• If x is a matrix, the function will be applied element by element to the values
in the matrix.

for example,

x = 9;

b = sqrt(x)

returns

b =

3

but if x is a matrix.

x = [4, 9, 16]

b = sqrt(x)

returns.

b =

2 3 4

Unit-1 (Predefined Function)

• All functions can be thought of as having three components; a
name, input and output.

• Some functions require multiple inputs. For example, the
remainder function requires two inputs – a dividend and a
divisor.

for example,

rem(10,3)

returns

ans =

1 (calculates the remainder of 10 divided by 3)

The size command is an example of a function that returns two
outputs. The size command determines the number of rows and
columns in a matrix. Thus,

Unit-1 (Predefined Function)

d = [1, 2, 3; 4, 5, 6];

f = size(d)

returns

f =

2 3

• When one function is used to compute the argument of
another function. Be sure to enclose the argument of each
function in its own set of parentheses. The nesting of functions
is also called composition of functions.

• MATLAB includes extensive help tools. Which are especially
useful for interpreting function syntax. A command line help
function (help), a separate windowed help function (helpwin).

Unit-1 (Predefined Function)

• To use the command line help function, type help in the command
window:

help

A list of help topics will appear, as follows:

HELP topics:

matlab\general – general purpose commands

matlab\ops - operations and special characters

matlab\lang - programming language constructs

matlab\elmat - elementary matrices and matrix manipulation

matlab\elfun - elementary math functions

matlab\specfun – specialized math functions

• To get help on a particular topic,

type ‘help <topic>’.

Unit-1 (Elementary Math Functions)

Math
function

Meaning Example Result

abs(x) Computes the absolute value of x abs(-3) ans = 3

sqrt(x) Computes the square root of x sqrt(85) ans = 9.2195

round(x) Rounds x to the nearest integer round(8.6) ans = 9

fix(x) Rounds x to the nearest integer toward zero fix(8.6) ans = 8

floor(x) floor(-8.6) ans = -9

ceil(x) ceil(-8.6) ans = -8

sign(x)
Returns a value of -1 if x is less than zero, a value of 0 if
x equals zero, and a value of +1 if x is greater than zero. sign(-8) ans = -1

rem(x,y) Computes the remainder of x/y rem(25,4) ans = 1

exp(x) exp(10) ans =
2.2026e+004

log(x) Computes the In(x), the natural logarithm of x to the
base e

log(10) ans = 2.3026

log10(x) log10(10) ans = 1

Unit-1 (Trigonometric Functions)

MATLAB
Command

Meaning
(Where x is radian measure)

Example Result

sin(x) Computes the sine of x sin(0) ans = 0

cos(x) Computes the cosine of x cos(0) ans = 1

tan(x) Computes the tangent of x tan(pi) ans = -1.2246e-016

asin(x) Computes the arcsine of x (or inverse) asin(-1) ans = -1.5708

sinh(x) Computes the hyperbolic sine of x sinh(pi) ans = 11.5487

Unit-1 (Data Analysis Functions)

• Analysing data is an important part of evaluating test results. MATLAB
contains a number of functions that make it easier to evaluate and analyze
data.

• Simple Analysis

Maximum and Minimum:

This is of functions can be used to determine maximum and minimum.

1. The command

max(x)

returns the largest value in a vector x.

for example, if x = [1 5 3], the maximum value is 5.

x = [1, 5, 3]

max(x)

ans =

5

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

5. The command

[a,b] = min(x)

returns both the smallest value in a vector x and its location in vector
x. for x = [1 5 3], the minimum value is named a and is found to be 1. the
location of the minimum value is element 1 and is named b.

x = [1, 5, 3];

[a,b] = min(x)

a =

1

b =

1

returns a row vector containing the minimum element from each column of a
matrix x, and returns a row vector of the location of the minimum in each
column of matrix x.

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

x = [1, 5, 3;2, 4, 6];

y = [10, 2, 4;1, 8, 7];

min(x,y)

ans =

1 2 3

1 4 6

• Mean and Median:

• The mean of a group of values is the average of the values.

• The median is the value in the middle of the group, assuming that the
values are sorted. If there is an odd number of values, the median is the
value in the middle position. If there is an even number of values, then the
median is the mean of the two middle values.

1) The command

mean(x)

Computes the mean value of a vector x.

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

x = [1 5 3;2 4 6]

prod(x)

ans =

2 20 18

3) The command

cumsum(x)

Computes a vector of the same size containing cumulative sums of the
elements of a vector x, for example, if x = [1 5 3], the resulting vector is x =
[1 6 9]

x = [1 5 3]

cumsum(x)

ans =

1 6 9

Computes a matrix containing the cumulative sum of the elements in each
column of a matrix x,

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

Unit-1 (Data Analysis Functions)

• Determining Matrix Size:

• MATLAB offers two functions that allow us to determine how big a matrix is,
size and length:

1) The command

size(x)

Determine the number of rows and columns in matrix x

x = [1 5 3;2 4 6]

size(x)

ans =

2 3

2) The command

[a,b] = size(x)

Determine the number of rows and columns in matrix x and assigns the number
of rows to a and the number of rows to b

[a,b] = size(x)

Unit-1 (Data Analysis Functions)

a =

2

b =

3

3) The command

length(x)

Determines the largest dimension of a matrix x.

x = [1 5 3;2 4 6];

length(x)

ans=

3

• Variance and Standard deviation:

• Two of the most important statistical measurements of a set of data are the
variance and standard deviation.

• The variance is the average squared deviation of the data from the mean.

• The standard deviation is defined as the square root of the variance.

Unit-1 (Data Analysis Functions)

Unit-1 (Manipulating Matrices)

• A matrix can be defined by typing in a list of numbers enclosed in square
brackets. The numbers can be separated by spaces or commas at the user’s
discretion.

For example:

A = [3.5]

B = [-1 0 0;1 1 0;0 0 2]

Note: A matrix can also be defined by listing each row on a separate line.

MATLAB also allows you to define a matrix by using another matrix that has
already been defined.

For example,

if S = [3.0 1.5 3.1], then T = [1 2 3; S]

Returns

T =

1 2 3

3 1.5 3.1

-

Unit-1 (Manipulating Matrices)

We can also change values in a matrix or include additional values, by using a
reference to specific locations. Thus, the command:

S(2) = -1.0

Returns

S =

3.0 -1.0 3.1

We can also extend a matrix by defining new elements. If we execute the
command S(8) by define the eight element in matrix S:

S(8) = 9.5;

In matrix S will have eight values, and the values of S(4),S(5),S(6) and S(7) will
be set to 0.

Thus S returns,

S =

3.0 -1.0 3.1 0 0 0 0 9.5

Unit-1 (Manipulating Matrices)

• Using the Colon Operator:

The colon operator is a very powerful operator for defining new matrices and
modifying existing matrices.

An evenly spaced matrix can be defined with the colon operator.

Thus,

H = 1:8

Returns

H =

1 2 3 4 5 6 7 8

Default spacing is 1. however, when colons are used to separate three numbers,
the middle value becomes the spacing. For example,

time = 0.0:0.5:2.0

Returns

time =

0 0.5000 1.0000 1.5000 2.0000

Unit-1 (Manipulating Matrices)

The colon operator can also be used to extract data from matrices, which
becomes very useful in data analysis. When a colon is used in a matrix reference
in place of a specific subscript, the colon represents the entire row or column.

If we define

M = [1 2 3 4 5;2 3 4 5 6;3 4 5 6 7];

Then we can extract column 1 from matrix M with the command

x = M(:,1)

Which returns

x =

1

2

3

You can extract any of the columns in similar manner, so that

y = M(:,4)

returns

Unit-1 (Manipulating Matrices)

y =

4

5

6

Similarly, to extract a row, use

z = M(1,:)

Which returns

z =

1 2 3 4 5

You don’t have to extract an entire row or an entire column. The colon operator
can also be used to mean “from row_to row_” or “from column_to column_”.
To extract the two bottom rows of the M matrix, type

w = M(2:3,:)

Which returns

Unit-1 (Manipulating Matrices)

w =

2 3 4 5 6

3 4 5 6 7

Similarly, to extract just the four numbers in the lower right-hand corner of
matrix M, use

w = M(2:3,4:5)

Which returns

w =

5 6

6 7

In MATLAB it is valid to have a matrix that is empty.

a = [];

Using the matrix name with a single colon, as in

M(:)

Transforms M into one long column matrix.

Unit-1 (Manipulating Matrices)

To find the value on row 2, column 3, use the following commands:

M(2,3)

ans =

4

Alternatively, you can use a single index number. The value on row 2. column 3
of matrix M is element number 8. that is,

M(8)

ans =

8

• Computational Limitations

• For example, suppose that we execute the following commands.

x = 2.5e200;

y = 1.0e200;

z = x*y

MATLAB responds with, z = Inf, because the answer (2.5*e400) is outside of the
allowable range. This error is called exponent overflow.

Unit-1 (Manipulating Matrices)

Exponent underflow is similar error. But, the
result of and exponent underflow is zero. MATLAB
may also print a warning telling you that division
by zero is not possible.

• A MATLAB function typically requires inputs
called arguments to compute a result. However,
some functions don’t require any input
arguments. Although used as if they were scalar
constants, the following functions do not
require any input:

Unit-1 (Manipulating Matrices)

MATLAB
Constants

Meaning

pi

i,j

Inf Represents infinity, which typically occurs as a result of division by zero.

NaN
Represents not-a-number and typically occurs when an expression is
undefined, as in the division of zero by zero

clock
Represents the current time in a six-element row vector containing year,
month, day, hour, minute and seconds.

date
Represents the current date in a character-string format, such as 28-July-
2020

eps
Represents the epsilon floating-point precision for the computer being
used. This epsilon precision is the smallest amount with which two values
can differ in the computer.

ans
Represents a value computed by and expression, but not stored in a
variable name.

Unit-1 (Commands and Functions)

Commands Meanings

abs Computes the absolute value

asin Computes the inverse sine or arcsine

ceil Rounds to the nearest integer toward positive infinity

cos Computes the cosine

cumprod Computes a cumulative product of the values in an array

cumsum Computes a cumulative sum of the values in an array

erf Calculates the error functions

exp Computes the value of e^x

fix Rounds to the nearest integer toward zero

floor Rounds to the nearest integer toward minus infinity

help Opens the help function

length Determines the largest dimension of an array

log Computes the natural log

log10 Computes the log base 10

log2 Computes the log base 2

Unit-1 (Commands and Functions)

Command Meaning

max Finds the maximum value in an array

min Finds the minimum value in an array

mean Computes the average of the elements in an array

median Finds the median of the elements in an array

prod Multiplies the values in an array

sum Sums the values in an array

sin Computes the sine

tan Computes the tangent

rand Calculates evenly distributed random numbers

randn Calculates normally distributed random numbers

rem Calculates the remainder in a division problem

round Rounds to the nearest integer

sign Determines the sign

sinh Computes the hyperbolic sine

Unit-1 (Commands and Functions)

Command Meanings

size Determines the number of rows and columns in an array

sort Sorts the elements of a vector in to ascending order

sqrt Calculates the square root of a number

std Determines the standard deviation

Unit – 1 over

UNIT – II

Plotting

Programming in MATLAB

Unit – II (Plotting)

• Introduction:

Large tables of data are difficult to

interpret. Engineers use graphing techniques to

make the information more accessible. With a

graph it is easy to identify trends, pick out highs

and lows, and isolate data points that may be

measurement or calculation errors. A graph can

also be used as a quick check to determine

whether or not a computer solution is yielding

expected results.

Unit – II (Plotting)

• Two – Dimensional Plots :

The most common plot used by engineers is
the x-y plot. The data that we plot are usually read
from a data like or computed in programs and
stored in vectors that we will call x and y.
Generally, the x values represent the independent
variable and the y values represent the dependent
variable. The y values can be computed as a
function of x, or the x and y values might be
measured in an experiment.

Unit – II (Plotting)

• Basic Plotting

Once the x and y vectors have been defined, MATLAB
makes it easy to create plots.

Assume that the trial values are stored in a vector called
x and the distance values are stored in a vector called y.

x = [1:10];

y = [58.5,63.8,64.2,67.3,71.5,88.3,90.1,89.5,
90.5];

To plot these points, we use the plot command , with x
and y as arguments.

Unit – II (Plotting)

plot(x,y)

A graphics window automatically opened.

The following commands add a title, x and y axis
labels, and background grid.

plot(x,y)

title(‘Laboratory Experiment’)

xlabel(‘Trial’)

ylabel(‘Distance, ft’)

grid on

These commands generated the plot.

Unit – II (Plotting)

As you type these commands into MATLAB,
notice that the type colour changes to red when
you enter a single quote (‘). This alerts you that
you are starting a string. The colour changes to
purple when you type the final single quote (‘).
Indicating that you have completed the string.

If you are working in the command window,
the graphics window will open on top of the other
windows. To continue working, either click in the
command window or minimize the graphics
window. You can also resize the graphics window.

Unit – II (Plotting)

If you are working in an M-file, when you request a plot and

then continue on with more computations. MATLAB will generate and

display the graphics window and then return immediately to execute

the rest of the commands in the program.

If you request a second plot, the graph you created will be

overwritten. You can layer plots on top of one another by using the

‘hold on’ command. MATLAB will continue to layer the plots until the

‘hold off’ command is executed. In the default mode, MATLAB uses a

blue line for the first set of data plotted and changes the colour for

subsequent sets of data.

By typing ‘help plot’ in the command window, you can

determine what choices are available to you. You can select solid,

dashed, dotted, and dash-dot styles. The choices include plus sign,

stars, circles, and x-marks among others. There are seven different

colour choice.

Unit – II (Plotting)

Line Type Indicator Point Type Indicator Colour Indicator

solid - point ∙ blue b

dotted : circle ∘ green g

Dash-dot -. x-mark x red r

dashed -- plus + cyan c

star ˚ magenta m

square s yellow y

diamond d black k

Triangle down ˅

Triangle up ˄

Triangle left ˂

Triangle right ˃

pentagram p

hexagram h

Unit – II (Plotting)

• Axes Scaling

MATLAB automatically scales the axes to fit the data
values. However, you can over-ride this scaling with
the axis command.

axis – freezes the current axis scaling for
subsequent plots.

axis(v) – specifies that the axis being used is a four-
element vector [xmin,xmax,ymin,ymax]

• Polar plots

MATLAB provides plotting capability with polar
coordinates

Polar(theta,rho) - generates a polar plot of angle
theta (radians) and radical distance (rho).

Unit – II (Plotting)

• Logarithmic plots

The MATLAB commands for generating linear and
logarithmic plots of the vectors x and y:

plot(x,y) – generates a linear plot of the vectors x and y.

semilogx(x,y) – generates a plot of the values of x and
y using a logarithmic scale for x and a
linear scale for y.

semilogy(x,y) – generates a plot of the values of x and
y using a linear scale for x and
a logarithmic scale for y

loglog(x,y) – generates a plot of the vectors x and y
using a logarithmic scale for both x and y.

Unit – II (Plotting)

• Bar graphs and Pie charts:

• bar(x) – when x is a vector, bar generates a vertical bar graph,

When x is a two-dimensional matrix, bar groups the data by

row.

• barh(x) – when x is a vector, barh generates a horizontal bar

graph. When x is a two-dimensional matrix, barh groups the

data by row.

• bar3(x) – generates a three-dimensional bar chart.

• barh3(x) – generates a three-dimensional horizontal bar chart.

• pie(x) – generates a pie chart. Each element in the matrix is

represented as a slice of the pie.

• pie3(x) – generates a three-dimensional pie chart. Each

element in the matrix is represented as a slice of the pie.

Unit – II (Plotting)

• Histograms:

• In MATLAB, the histogram computes the number

of values falling in 10 bins that are equally spaced

between the minimum and maximum values,

from the set of values. For example,

x = [100,95,74,87,22,78,34,35,93,88,86,42,55,48];

hist(x)

The default number of bins is 10, but if we have a

large data set we may want to divide up the data

into more categories(bins).

Unit – II (Plotting)

• Three – Dimensional line plots:

• The plot3 function is similar to the plot function, expect that it
accepts data in three dimensions. plot3(x,y,z) these ordered
‘triples’ are then plotted in three-spaces and connected with
straight lines.

• Mesh plots:

• There are several ways to use mesh plots. They can be used to
good effect with a single two-dimensional matrix. In the
application, the value in the matrix represents the z-value in
the plot. The x and y values are based on the matrix
dimensions.

• Surf plots:

• Surf plots are similar to mesh plots, but surf creates a three
dimensional coloured surface instead of a mesh. The colours
vary depending on the value of z.

Unit – II (Plotting)

• Contour plots:

Contour plots are two-dimensional representations of three-

dimensional surfaces. Maps often represent elevations with

contours.

• Editing Plots from the Menu Bar:

In MATLAB, you also edit a plot once you have created it. To

annotate the graph, select the insert menu, you can insert labels,

titles, legends, text boxes, etc., all by using this menu. The Tools

Menu allows you to change the way the plot looks by zooming in

or out, changing the aspect ratio, etc., the figure toolbar

underneath the menu tool bar offers icons that allow you to do

the same thing. Similarly, labels, a title, and a colour bar were

added using the insert menu option on the menu bar. Editing

your plot in this manner is more interactive and allows you.

Unit – II (Plotting)

• Creating plots from the Workspace window

A great feature of MATLAB is the ability to
inter-actively create plots from the workspace
window. In the workspace window, select a
variable, then select the dropdown menu on
the plotting icon. MATLAB will list the plotting
options it thinks are reasonable for the data
stored in your variable. Simply select the
appropriate option, and your plot is create in
the current figure window. If you don’t like
any of the suggested plot types, choose ‘More
plots...’ From the dropdown menu.

Programming in MATLAB

Unit – II (Programming in MATLAB)

• Problems with two variables:

Consider the following MATLAB statements,

x = 3

y = 5

A = x*y

Since x and y are scalars, it’s an easy calculation, x*y = 15. thus

A =

15

Now let’s see what happens if x is a matrix and y is still a scalar:

x= 1:5;

Returns five values of x. Because y is still a scalar with only one value,

A = x*y

Returns

A =

5 10 15 20 25

But what happens if y is also a vector?

Unit – II (Programming in MATLAB)

Then

y = 1:3;

A = x*y

returns an error statement. This error statement reminds us
that the asterisk is the operator for matrix multiplication,
which is not what we want. We want the dot-asterisk
operator(.*), which will perform an element-by-element
multiplication.

y = linspace(1,3,5)

creates a new y with five evenly spaced elements:

y =

1.0000 1.5000 2.0000 2.5000 3.0000

A = x .* y

A =

1 3 6 10 15

Unit – II (Programming in MATLAB)

In order for your answer, ‘A’ to be a two-dimensional matrix, the input

vectors have to be two-dimensional matrices. MATLAB has a built-in

function called meshgrid that will help you accomplish this and x and y

don’t even have to be the same size. First let’s change y back to a three-

element vector:

y = 1:3;

Then we’ll use meshgrid to create a new two-dimensional version of both x

and y that we’ll call new_x and new_y:

[new_x, new_y] = meshgrid(x,y)

The meshgrid command takes the two input vectors and creates two 2-D

matrices.

new_x =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Unit – II (Programming in MATLAB)

new_y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

We really want:

A = new_x .* new_y

A =

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

Unit – II (Programming in MATLAB)

• In put / Out put:

The input command pauses the program and prompts the user for

input. While the ‘disp’ and ‘fprintf’ commands provide output to

the command window. The pause command stops the program

execution until any key is typed.

• User Defined Input:

The input function allows us to do this. It displays a text string in the

command window, then waits for the user to provide the requested

input. For example,

z = input(‘Enter a value’)

Displays

Enter a value

In the command window. If the user enters a value such as

5

The program assigns the value of 5 to the variable z.

Unit – II (Programming in MATLAB)

If the input command does not end with a semicolon, the value
entered is displayed on the screen:

z =

5

The same approach can be used to enter a one or two-dimensional
matrix. The user must provide the appropriate brackets and
delimiters (commas and semicolons). For example:

z = input (‘Enter values for z in brackets’)

requests the user to input a matrix such as

[1, 2, 3;4, 5, 6]

and responds

z =

1 2 3

4 5 6

this user input value of z can then be used in subsequent calculations
by the script M-file.

Unit – II (Programming in MATLAB)

• Output Options

The simplest way is enter the name of the matrix, without a
semicolon. The name of the matrix will be repeated and
the values of the matrix will be displayed, starting on the
next line. For example, first define a matrix x:

x = 1:5;

Because there is a semicolon at the end of the assignment
statement, the values in x are not repeated in the
command window. However, if later in your program you
want to display x, simply type in the variable name, which
returns

x =

1 2 3 4 5

MATLAB offers two other approaches to displaying results:

The ‘disp’ function and the ‘fprintf’ function.

Unit – II (Programming in MATLAB)

• Display function:

The display function can be used to display the contents
of a matrix without printing the matrix’s name:

disp(x)

returns

1 2 3 4 5

The display command can also be used to display a string.

display (‘The values in the x matrix are: ‘);

disp(x);

returns

the values in the x matrix are:

1 2 3 4 5

The semicolon at the end of the disp function is optional.

Unit – II (Programming in MATLAB)

You can get around this by creating a matrix of your two outputs, using

the ‘num2str’ function:

disp([‘The values in the x array are: ‘num2str(x)])

which returns

the values in the x array are: 1 2 3 4 5

The disp function requires a matrix as input. It can be a string. A

variable that represents a matrix (or) the programmer can define

the matrix inside square brackets, using the standard matrix

definition rules. The num2str function changes an array of numbers

into a string.

You can see the resulting matrix by typing

A = [‘The values in the x array are: ‘num2str(x)]

which returns

A =

the values in the x array are: 1 2 3 4 5

Unit – II (Programming in MATLAB)

• Formatted Output:

The fprintf function gives you even more control over the output than

you have with the disp function. In addition to displaying both text

and matrix values, you can specify the format to be used in

displaying the values, and you can specify when to skip to a new

line.

The general form of this command contains two arguments – a string

and a list of matrices:

fprintf (format-string, var,….)

Consider the following example:

temp = 98.6;

fprintf (‘ The temperature is %f degrees F ‘, temp)

The string, which is the first argument inside the fprintf function,

contains a place holder (%) where the value of the variable will be

inserted. This place holder also contains formatting information.

Unit – II (Programming in MATLAB)

MATLAB allows you to specify an exponential format, %e, or let you

allow MATLAB to choose whichever is shorter, fixed point or

exponential %g.

MATLAB does not automatically start a new line after an fprintf

function is executed, so if the following new commands are issued.

To cause MATLAB to start a new line, you’ll need to use \n, called a

linefeed, at the end of the string:

temp = 98.6;

fprintf(‘The temperature is %f degrees F \n’, temp)

ftemp = 100.1

fprintf(‘ The temperature is %f degrees F \n’, temp)

Which returns

The temperature is 98.6000 degrees F

The temperature is 100.1000 degrees F

You can further control how the variables are displayed by using the

Unit – II (Programming in MATLAB)

optional ‘width field’ and ‘precision field’ with the format command.

The width field controls the minimum number of characters to be

printed. It must be a positive decimal integer.

The precision field is preceded by a period (.) and specifies the

number of decimal places after the decimal point for exponential

and fixed point types. For example,

fprintf(‘The temperature is %8.2f degrees F\n’, temp);

returns

The temperature is 100.10 degrees F

Where %8.2 specifies that the minimum total width available to

display your result is 8 digits, two of which are after the decimal

point.

Many times when you use the fprintf function, your variable will be a

matrix. For example,

temp = [98.6, 100.1, 99.2];

Unit – II (Programming in MATLAB)

MATLAB will repeat the string in the fprintf command until it uses all of

the values in the matrix:

fprint(‘ The temperature is %8.2f degrees F\n’, temp);

returns

The temperature is 98.60 degrees F

The temperature is 100.10 degrees F

The temperature is 99.20 degrees F

If the variable is a two dimensional matrix, MATLAB uses the values

one column at a time, going down the first column, then the

second,etc.

patient = 1:3;

temp = [98.6, 100.1, 99.2];

Combine these two matrices:

history = [patient ; temp]

Unit – II (Programming in MATLAB)

Returns

history =

1.0000 2.0000 3.0000

98.6000 100.1000 99.2000

Now we can use the fprintf function to create a table that
is easier to interpret:

fprintf(‘Patient %4f had a temperature of %8.2f \n’
,history)

Returns

Patient 1 had a temperature of 98.60

Patient 2 had a temperature of 100.10

Patient 3 had a temperature of 99.20.

Unit – II (Programming in MATLAB)

TYPE FIELD FORMAT

TYPE FIELD RESULT

%f Fixed point or decimal notation

%e Exponential notation

%g Whichever is shorter %f or %e

SPECIAL FORMAT COMMAND

FORMAT COMMAND RESULTING ACTION

\n Line feed

\r Carriage return

\t tab

\b Back space

UNIT – II (Programming in MATLAB)

• Functions

The MATLAB programming language is built
around functions. A function is simply a piece
of computer code that accepts an input
argument from the user and provides output
to the program. Functions allow us to program
efficiently, since we don’t need to rewrite the
computer code for calculations that are
performed frequently. User defined functions
are stored as M-files, and can be accessed by
MATLAB if they are in the current directory.

UNIT – II (Programming in MATLAB)

User defined functions are stored as M-files, and can be accessed by

MATLAB if they are in the current directory.

• Syntax

User defined MATLAB functions are written in M-files. Access a new

function M-file the same way a script M-file is created:

File → New →M-file from the menu bar.

For example,

function s = f(x)

% A function that adds 3 to every member of an array x

s = x+3;

These lines of code define a function called f. notice that the first line

starts with the word function. This is a requirement for all user

defined functions. Next, an output variable that we’ve named s is

set equal to the function name, with the input arguments enclosed

in parentheses (x). Finally, the output s, is defined as x+3.

UNIT – II (Programming in MATLAB)

More complicated functions can be written that require more than one
input argument. For example,

function output = g(x,y)

%This function multiplies x and y together

%Be sure that x and y are the same size matrices

a = x .* y;

output = a;

• Local Variables

The variable used in function M-files are known as local variable. The only
way that a function can communicate with the workspace is through
input arguments and the output returned. Any variables defined within
the function only exist for the function to use.

function output = g(x,y)

%This function multiplies x and y together

%Be sure that x and y are the same size matrices

a = x .* y;

output = a;

UNIT – II (Programming in MATLAB)

The inside the variable a is a local variable. It can be used for additional
calculations inside the g function, but it is not stored in the
workspace.

• Rules for writing and using Function M-files

Writing and using a function M-file requires user to follow very specific
rules, and a format when writing it. These rule are summarized as
follows:

o The function must begin with a line containing the word function,
which is followed by the output argument, an equals sign, and the
name of the function. The input arguments to the function follow
the name of the function and are enclosed in parentheses. This line
distinguishes the function file from a script M-file.

function output_name = function_name(input)

o The first few lines of the function should be comments because
they will be displayed if help is requested for the function name:

% comment your function so users will know how to use it

UNIT – II (Programming in MATLAB)

o The only information returned from the function is contained in the
output arguments, which are of course matrices. Always check to
be sure that the function includes a statement that assigns a value
in the output argument.

o A function that has multiple input arguments must list the
arguments in the function statement.

function error = mse(w,d)

o A function that is going to return more than one value should show
all values to be returned as a vector in the function statement as in

function [dist, vel, accel] = motion(x)

all output values need to be computed within the function.

o The same matrix names can be used in both a function and the
program that references it. No confusion occurs as to which matrix
is referenced. Because the function and the program are completely
separate.

o The special function nargin and nargout can be used to determine
the number of input arguments and the number of output
arguments for a function. Both require a string containing the
function name as input.

UNIT – II (Programming in MATLAB)

• Statement Level Control Structures:

One way to think of computer programs is to consider how the
statements that compose the program are organized. Usually,
sections of computer code can be categorized into on of three
structures:

sequences, selection structures and repetition structures.

� Sequences: Sequences are lists of commands that are executed one
after another.

� Selection structure: A selection structure allows the programmer to
execute one command or group of commands if some criteria is
true and a second set of commands if the criteria is false. A
selection statement provides the means of choosing between these
paths based on a logical condition. The conditions that are
evaluated often contain relational and logical operators or
functions.

� Repetition structure: A repetition structure or loop, causes a group
of statements to be executed zero, one, or more times. The number
of times a loop is executed depends on either a counter or the
evaluation of a logical condition.

UNIT – II (Programming in MATLAB)

• Relational and Logical Operators:

MATLAB has six relational operators for comparing two matrices of
equal size,

Comparisons are either true or false and most computer programs use
the number 1 for true and 0 for false. If we define two scalars

x = 5;

y = 1;

and use a relational operator such as <,

x < y

The result is either true or false. In this case, x is not less than y. so
MATLAB responds

ans =

0

Indicating the comparison was not true. MATLAB uses this answer in
selection statements and to repetition structures to make decisions.

Of course, variables in MATLAB usually represent entire matrices. If we
redefine x and y.

UNIT – II (Programming in MATLAB)

we can see how MATLAB handles comparisons between matrices:

x = 1:5;

y = x-4;

x<y

returns

ans =

0 0 0 0 0

MATLAB compares corresponding elements and creates and answer
matrix of zeros and ones. In the previous example, x was greater
than y for every element comparison, so every comparison was
false, and the answer was a string of zeros. If instead,

x = [1, 2, 3, 4, 5];

y = [-2, 0, 2, 4, 6];

x<y

ans =

0 0 0 0 1

Which tells us that the comparison was false for the first four elements

UNIT – II (Programming in MATLAB)

But true for the last. In order for MATLAB to decide that a comparison is true

for an entire matrix. It must be true for every element in the matrix.

MATLAB also allows us to combine comparisons with logical operators; and,

not, and or.

Consider the following:

x = [1, 2, 3, 4, 5];

y = [-2, 0, 2, 4, 6];

z = [8, 8, 8, 8, 8];

z>x & z>y

returns

ans =

1 1 1 1 1

Because z is greater than both x and y for every element. The statement

x>y | x>z

Is read as “x is greater than y or x is greater than z” and returns

UNIT – II (Programming in MATLAB)

Relational Operator Interpretation

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= = Equal to

~ = Not equal to

Logical Operator Interpretation

& and

~ not

| or

UNIT – II (Programming in MATLAB)

ans =

1 1 1 0 0

This result is interpreted to mean that the condition is true for the first

three elements and false for the last two.

• Selection structures

MATLAB offers two kinds of selection structures:

find and a family of if structures.

• Find

The find command is unique to MATLAB, and can often be used

instead of both if and loop structures. It returns a vector composed of

the indices of the nonzero elements of a vector x. those indices can

then be use in subsequent commands. The usefulness of the find

command is best described with examples.

Assume that you have a list of temperatures measured in a

manufacturing process. If the temperature is less than 95 degree F, the

UNIT – II (Programming in MATLAB)

widgets produced will be faulty:

temp = [100, 98, 94, 101, 93];

Use the find function to determine which widgets are family:

find(temp<95)

Returns a vector of element numbers:

ans =

3 5

Which tells us that items 3 and 5 will be faulty.

MATLAB first evaluated temp<95, which resulted in a vector of zeros
and ones. Which returns a vector indicating when the comparison was
true (1) and when it was false (0):

ans =

0 0 1 0 1

When the find command is used with a two-dimensional matrix, a
single element number is returned. For example, consider the
following two-dimensional matrix and use find to determine the

UNIT – II (Programming in MATLAB)

Location of all elements greater than 9:

x = [1, 2, 3;10, 5, 1;3, 12, 2;8, 3,1]

element = find(x>9)

[row, column] = find(x>9)

returns

x =

1 2 3

10 5 1

3 12 2

8 3 1

element =

2

7

row =

2

` 3

UNIT – II (Programming in MATLAB)

column =

1

2

Notice that the numbers 10 and 12 are the only two values greater
than 9. by counting down the columns, we see that they are elements
2 and 7 respectively, using the alternative designation, 10 is in row 2,
column 1 and 12 is in row 3, column 2.

• If, else and elseif

Most of the time, the find command can and should be used instead of
an ‘if’.

• If:

A simple if statement has the following form:

if comparison

statements

end

If the logical expression is true, the statements between the if
statement and the end statement are executed.

UNIT – II (Programming in MATLAB)

If the logical expression is false, program control jumps immediately to
the statement following the end statement. It is good programming
practice to indent the statements within an if structure for readability.
For example,

if G<50

count = count + 1;

disp(G);

end

This statement is easy to interpret if G is a scalar. For example, if G has
a value of 25, then count is incremented by 1 and G is displayed on the
screen. However, if G is not a scalar, then the if statement considers
the comparison true, if only is true for every element. If G is defined
from 0 and 80.

G = 0:10:80;

Then the comparison is false, and the statement inside the if
statement are not executed. If statement work best with scalars.

UNIT – II (Programming in MATLAB)

• Else

The else clause allows us to execute one set of statements if the
comparison is true, and a different set of statement if the comparison
is false. Assume that we have a variable interval. If the value of interval
is less than 1, we set the value of x_increment to interval/10.
otherwise, we set the value of x_increment to 0.1.

if interval < 1

x_increment = interval/10;

else

x_increment = 0.1;

end

When interval is a scalar, this is easy to interpret. However, when
interval is a matrix, the comparison is only true if it is true for every
element in the matrix. So, if

interval = 0:0.5:2;

The elements in the matrix are not all less than 1. therefore, MATLAB
skips to the else portion of the statement of the statement, and all

UNIT – II (Programming in MATLAB)

Values in the x_increment vector are set equal to 0.1. Again, if/else
statements are probably best confined to use with scalars, although
you may find limited use with vectors.

• Elseif:

In these cases, the elseif clause is often used to clarify the program
logic, for example,

if temperature >100

disp(‘Too hot-equipment malfuntioning’)

elseif temperature >90

disp(‘Normal operating temperature’)

elseif temperature >50

disp(‘Temperature below desired operating range’)

else

disp(‘Too cold-turn off equipment’)

end

In this example, temperature above 90 and below or equal to 100 are
in the normal operating range.

UNIT – II (Programming in MATLAB)

Temperature outside of this range generate an appropriate message.
Notice that a temperature of 101 does not trigger all of the responses.
Also notice that the final else does not require a comparison. In order
for the computation to reach the final else, the temperature must be
less than or equal to 50.

Again this structure is easy to interpret if temperature is a scalar. If it is
a matrix, the comparison must be true for every element in the matrix.
If you had a temperature matrix

temperature = [90, 95, 101]

The first comparison would be false. The second comparison would
also be false. Finally, the third comparison would be true, since all of
the temperature are above 50. As before, elseif structures work well
for scalars, but find is probably a better choice for matrices.

• Loops

A loop is a structure that allows you to repeat a set of statements. In
general, you should avoid loops in MATLAB because they are seldom
needed, and they can significantly increase the execution time of a
program.

UNIT – II (Programming in MATLAB)

UNIT – II (Programming in MATLAB)

UNIT – II (Programming in MATLAB)

a. If the expression matrix is a scalar, the loop will be executed one

time, with the index containing the value of the scalar.

b. If the expression is a row vector, each time through the loop the

index will contain the next column in the matrix.

c. If the expression matrix, each time through the loop the index will

contain the next column in the matrix. This means that the index

will be a column vector.

d. Upon completion of a for loop, the index contains the last value

used.

e. The colon operator can be used to define the expression matrix

using the following format:

for k = initial : increment : limit

UNIT – II (Programming in MATLAB)

• While loops:

The while loop is a structure used for repeating a set of statements as
long as specified condition is true. The general format for this control
structure is

while expression

statements

end

The statements in the while loop are executed as long as the real part
of the expression has all nonzero elements. The expression is usually a
comparison using relational and logical operators. When the result of a
comparison is true, the result is 1, and therefore ‘nonzero’. The loop
will continue repeating as long as the comparison is still true. When
the expression is evaluated as false, control skips to the statement
following the end statement . Consider the following example:

First initialize a:

a = 0;

Then find the smallest multiple of 3 that is less than 100:

UNIT – II (Programming in MATLAB)

while(a < 100)

a = a+3;

end;

The last time through the loop a will start out as 99, then will

become 102 when 3 is added to 99. The smallest multiple then

becomes

a – 3

Which returns

ans =

99

The variable modified in the statements inside the loop should

include the variables in the expression, or else the value of the

expression will never change. If the expression is always true,

then the loop will execute an infinite number of times.

UNIT – II (Programming in MATLAB)

COMMANDS AND FUNCTIONS

COMMAND MEANINGS

clock Determines the current time on the CPU clock

disp Displays matrix or text

else Defines the path if the result of an if statement is false

elseif Defines the path if the result of an if statement is false, and specifies a

new logical test

end Identifies the end of a control structure

etime Finds elapsed time

find Determines which elements in a matrix meet the input criteria

for Generates a loop structure

fprintf Prints formatted information

function Identifies an M-files as a function

UNIT – II (Programming in MATLAB)

COMMANDS AND FUNCTIONS

COMMAND MEANING

if Tests a logical expression

input Prompts the user to enter a value

meshgrid Maps two input vectors onto two 2-D matrices

nargin Determine the number of input arguments in a function

nargout Determines the number of output arguments from a function

num2string Converts an array into a string

ones Creates a matrix of ones

tic Starts a timing sequence

toc Stops a timing sequence

while Generates a loop structure

zeros Creates a matrix of zeros

UNIT - III

NUMERICAL TECHNIQUES

Unit – III (Numerical Techniques)

• Interpolation:

Interpolation is a technique by which we estimate a
variable’s value between two known values. There are a
number of different techniques for this, but in this section
we present the two most common types of interpolation:

(i) linear interpolation

(ii) cubic-spline interpolation

In both techniques, we assume that we have a set of data
points which represents a set of xy-coordinates for which
y is a function of x:

that is, y = f(x).

We then have a value of x that is not part of the data set
for which we want to find the y value.

Unit – III (Numerical Techniques)

• Linear Interpolation:

Linear interpolation is one of the most common
techniques for estimating data values between two given
data points. With this technique, we assume that the
function between the points can be estimated by a
straight line drawn between the points. If we find the
equation of a straight line defined by the two known
points, we can find y for any value of x. the closer
together the points are the more accurate our
approximation is likely to be. We could use the equation
to extrapolate points past out collected data. This is rarely
wise, however, and often leads to large errors.

Unit – III (Numerical Techniques)

• Cubic-Spline Interpolation:
A cubic spline is a smooth curve constructed to go through a set of
points. The curve between each pair of points is a third-degree
polynomial which is computed so that it provides a smooth curve
between the two points and a smooth transition from the third-degree
polynomial between the previous pair of points.
• Interp1 Function:
The MATLAB function that performs interpolation, interp1, has two
forms. Each form assumes that vectors x and y contain the original
data values and that another vector x_new contains the new point or
points for which we want to compute interpolated y_new values. For
example, the points were generated with the following commands:

x = 0:5;
y = [0, 20, 60, 68, 77, 110];

Suppose we would like to find a value for y, if x = 1.5. unfortunately 1.5
is not one of the elements in the x vector, so we’ll need to perform an
interpolation:

interp1(x,y,1.5)

Unit – III (Numerical Techniques)

returns
ans =

40
We can see from this answer corresponds to a linear interpolation
between the x,y points (1,20) and (2,60). The function interp1 defaults to
linear interpolation unless otherwise specified.
If, instead of a scalar value of new_x values, we define an array of new_x
values, the function returns an array of new_y values:

new_x = 0:0.2:5
new_y = interp1(x,y,new_x)

The new calculated points are plotted. They all full on a straight line
connecting the original data points. The commands to generate the graph
are

plot(x,y,new_x,new_y, ’o’)
axis([-1, 7, -20, 120])
title(‘Linear Interpolation Plot’)
xlabel(‘x values’)
ylabel(‘y vaues’)

Unit – III (Numerical Techniques)

If we wish to use a cubic spline interpolation approach, we must add a
fourth argument to the interp1 function. The argument must be a
string. To find the value of y at x = 1.5 using a cubic spline, type

interp1(x, y, 1.5, ‘spline’)
Which returns

ans =
42.2083

• Curve Fitting:
• Linear Regression
Linear regression is the name given to the process that determines the
linear equation which is the best fit to a set of data points, in terms of
minimizing the sum of the squared distances between the line and the
data points. For example,

x = 0:5;
y = [0, 20, 60, 68, 77, 110];

If we plot these points, it appears that a good estimate of a line
through the points is y = 20x.

Unit – III (Numerical Techniques)

(Note: this process is sometimes called “eyeballing it” – meaning that
no calculations were done, but it looks like a good fit)

Looking at the plot, we can see that the first two points appear
to fall exactly on the line, but the other points are off by varying
amounts. To compare the quality of the fit of this line to other possible
estimates, we find the difference between the actual y value and the
value calculated from the estimate.

If we sum the differences, some of the positive and negative
values would cancel each other out and give a sum that is smaller than
it should be. To avoid this problem, we could add the absolute value of
the differences, or we could square them. The least squared technique
uses the squared values. Therefore, the measure of the quality of the
fit of this linear estimate is the sum of the squared distances between
the points and the linear estimates. This sum can be calculated by the
following command:

sum_sq = sum((actual y – calculated y)^2)

Unit – III (Numerical Techniques)

If we drew another line through the points we could compute the sum
of square that corresponds to the new line. Of the two lines, the better
fit is provided by the line with the smaller sum of squared distances.

We call it linear regression when we derive the equation of a straight
line, but more generally it is called polynomial regression.

• Polynomial Regression:

Linear regression is a special case of the polynomial regression
technique.

The degree of a polynomial is equal to the largest value used as an
exponent. Therefore, the general form of a cubic polynomial is 𝑎0𝑥

3 +
𝑎1𝑥

2 + 𝑎2𝑥
1 + 𝑎3𝑥

0. We plot the original set of data points that we
used in the linear regression, along with plots of the best-fit
polynomials with degrees two through five. As the degree of the
polynomial increases, the number of points that fall on the curve also
increases. if a set of n+1 points is used to determine an nth degree
polynomial, all n points will fall on the polynomial.

Unit – III (Numerical Techniques)

• Polyfit and Polyval Function:
The MATLAB function for computing the best fit to a set of data with a
polynomial is “polyfit”. The function has three argument:

the x coordinate of the data points,
the y coordinate of the data points and
the degree n of the polynomial.

The function returns the coefficients, in descending powers of x, of the
nth degree polynomial used to model the data. For example,

x = 0:5
y = [0, 20, 60, 68, 77, 110]

The function
polyfit(x,y,1)

Returns
ans =

20.8286 3.7619
So the first order polynomial that best fits our data is

Unit – III (Numerical Techniques)

f(x) = 20.8286x + 3.7619
Similarly, we can find other polynomial to fit the data by specifying a
higher order in the polyfit equation. Thus,

polyfit(x,y,4)
Returns

ans =
1.5625 -14.5231 38.6736 -3.4511 -0.3770

Which corresponds to a fourth-order polynomial:
f(x) = 1.5625𝑥4 - 14.5231𝑥3 + 38.6736𝑥2 -3.4511𝑥 -0.3770
we could use the coefficients to create equation to calculate

new values of y. for example,
y_first_order_fit = 20.8286.*x + 3.7619;

Or we could use the function polyval provided by MATLAB to
accomplish the same thing.
The polyval function is used to evaluate a polynomial at a set of data
points. The first argument of the polyval function is a vector containing
the polynomial and the second argument is the vector of x values for

Unit – III (Numerical Techniques)

Which we want to calculate corresponding y values.

• Using the Interactive Fitting Tools:

In MATLAB, interactive plotting tools that allow you to annotate
your plots without using the command windows. The software
also includes basic curve fitting more complicated curve fitting
and statistics tools.

polyfit(x,y,n) Returns a vector of n+1 coefficients that represents the best fit
polynomial of degree n for the x and y coordinates provided.
The coefficient order corresponds to decreasing powers of x.

polyval(coef,x) Returns a vector of polynomial values f(x) that correspond to the
x vector values. The order of the coefficients corresponds to
decreasing powers of x.

Unit – III (Numerical Techniques)

• Basic Fitting Tools:

To access the basic fitting tools, first create a figure:

x = 0:5;

y = [0, 20, 60, 68, 77, 110]

plot(x,y, ’o’)

axis([-1, 7, -20, 120])

To activate the curve fitting tools, select Tools → Basic Fitting from the
menu bar on the figure. The Basic Fitting window opens on top of the
plots. By checking linear and cubic and show equations, the plot is
generated.

Checking the plot residuals box generates a second plot, showing how far
each data point is form the calculated line.

In the lower right-hand corner of the Basic Fitting window is an arrow
button. Selecting that button twice opens the rest of the Basic Fitting
window.

Unit – III (Numerical Techniques)

The centre panel of the window shows the results of the curve fit and
offers the select x values and calculate y values based on the equation
displayed in the centre panel.
In addition to the Basic Fitting window, you can also access the Data
Statistics window from the figure menu bar. Select Tools→Data
Statistics from the figure window. This window allows you to calculate
statistical functions interactively, such as mean and standard deviation,
based on the data in the figure, and allows you to save the results to
the workspace.
• Curve Fitting Toolbox:
In addition to the basic fitting utility, MATLAB contains toolboxes to
help you perform more specialized statistical and data fitting
operations. In particular, the Curve Fitting toolbox contains a Graphical
User Interface (GUI) that allows you to fit with more tools than just
polynomials.
Before you access the curve fitting toolbox, you’ll need a set of data to
analyze.

Unit – III (Numerical Techniques)

x = 0:5;
y = [0, 20, 60, 68, 77, 110];

To open the curve fitting toolbox, type
cftool

This launches the curve fitting tool window. Now you’ll need to tell the
curve fitting tool what data to use. Select the data button, which will
open a data window. The data window has access to the workspace
and will let you select an independent(x) and dependent(y) variable
from a drop-down list.
From the drop-down lists, you should choose x and y. At this point you
can close the data window.
Going back to the Curve Fitting Tool window, you now select the Fitting
button, which offers you choices of fitting algorithms. Select New Fit,
and select a fit type from the type of fit list. You can experiment with
fitting choices to find the best one for your graph. We choose an
interpolated scheme, which forces the plot through all points, and a
third order polynomial.

Unit – III (Numerical Techniques)

• Numerical Integration:

The integral of a function f(x) over the interval [a,b] is defined to be the
area under the curve of f(x) between a and b.

For many function, this integral can be computed analytically. However,
for a number of function, the integral cannot easily be computed
analytically and thus requires a numerical technique to estimate its value.
The numerical evaluation of an integral is also called quadrature.

The numerical integration techniques estimate the function f(x) by
another function g(x). Then, the better the estimate of g(x) to f(x). The
better will be the estimate of the integral of f(x). Two of the most
common numerical integration techniques estimate f(x) with a set of
piecewise linear functions or with a set of piecewise parabolic functions.

If we estimate the function with piecewise linear functions, we can then
compute the area of the trapezoids that compose the area under the
piecewise linear function, this technique is called the Trapezoidal rule. If
we estimate the function with piecewise quadratic functions, we can then
compute and add the areas of these components , this technique is called
Simpson’s rule.

Unit – III (Numerical Techniques)

• Trapezoidal Rule:
If the area under a curve is represented by trapezoids and if the
interval [a,b] is divided into n equal sections, then the area can be
approximated by the formula:

𝐾𝑇 =
ℎ

2
𝑓 𝑥0 + 2𝑓 𝑥1 + 2𝑓 𝑥2 +⋯+ 2𝑓 𝑥𝑛−1 + 𝑓(𝑥𝑛)

where the 𝑥𝑖 values represent the endpoints of the trapezoids and
where 𝑥0 = a, 𝑥𝑛 = b and h =

𝑏−𝑎

𝑛

• Simpson’s rule:
If the area under a curve is represented by area under quadratic
sections of a curve, and if the interval [a,b] is divided into 2n equal
sections, then the area can be approximated by the formula:

𝐾𝑠 =
ℎ

3

𝑓 𝑥0 + 𝑓 𝑥𝑛 + 4 𝑓 𝑥1 + 𝑓 𝑥3 +⋯𝑓 𝑥2𝑛−1
+2[𝑓 𝑥2 + 𝑓 𝑥4 +⋯+ 𝑓 𝑥2𝑛−2]

where the 𝑥𝑖 values represent the endpoints of the Simpson’s and
where 𝑥0 = a, 𝑥𝑛 = b and h =

𝑏−𝑎

𝑛

Unit – III (Numerical Techniques)

If the piecewise components of the approximating function are higher
degree functions the integration techniques are referred to as
Newton-Cotes integration techniques.

The estimate of an integral improves as we use more components to
approximate the area under a curve.

If we attempt to integrate a function with a singularity, we may not be
able to get a satisfactory answer with a numerical integration
technique.

• MATLAB Quadrature Functions

MATLAB has two quadrature functions for performing numerical
function integration. The quad function uses an adaptive form of
Simpson’s rule. The quad1 function is better at handling functions with
certain types of singularities.

The simplest form of the quad and quad1 functions requires three
arguments. The first argument is the name of the MATLAB function
that returns a vector of values of f(x) when given a vector of input
values x.

Unit – III (Numerical Techniques)

This function name can be the name of another MATLAB function. The
second and third arguments are the integral limits a and b.

These integration techniques can handle some singularities that occur
at one or the other interval endpoints. But they cannot handle
singularities that occur within the interval. For these cases, you should
consider dividing the interval into subintervals and providing estimates
of the singularities using other results, such as L’Hopital’s rule.

quad(‘function’,a,b) Returns the area of the ‘function’ between a and b,
assuming that ‘function’ is a MATLAB function

quad1(‘function’,a,b) Returns the area of the ‘function’ between a and b,
assuming that ‘function’ is a MATLAB function

Unit – III (Numerical Techniques)

• Numerical Differentiation:

The derivative of a function f(x) is defined to be a function 𝑓′(𝑥) that is
equal to the rate change of f(x) with respect to x. the derivative can be
expressed as a ratio, with the change in f(x) indicated by df(x) and the
change in x indicated by dx, giving

𝑓′(𝑥)=
df(x)
dx

The derivative 𝑓′(𝑥) can be described graphically as the slope of the
function f(x), where the slope of f(x) is defined to be the slope of the
tangent line to the function at the specified point.

Points with derivatives of zero are called critical points and can
represent either a horizontal region, a local maximum or a local
minimum of the function.

If we evaluate the derivative of a function at several points in an
interval and we observe that the sign of the derivative changes, then a
local maximum or local minimum occurs in the interval.

Unit – III (Numerical Techniques)

The second derivative can be used to determine whether or not the
critical points represent local maxima or local minima. More
specifically, if the second derivative of an extrema point is positive,
then the value of the function at the extreme point is a local minimum.
If the second derivative of an extrema point is negative, then the value
of the function at the extrema point is local maximum.

• Difference Expressions:

Numerical differentiation techniques estimate the derivative of a
function at a point 𝑥𝑘 by approximating the slope of the tangent line at
𝑥𝑘 using values of the function at points near 𝑥𝑘 . The approximation of
the slope of the tangent line can be done in several ways.

The derivative at 𝑥𝑘 is estimated by computing the slope of the line
between 𝑓 𝑥𝑘−1 and 𝑓 𝑥𝑘 is

𝑓′(𝑥𝑘) =
𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1

𝑥𝑘 − 𝑥𝑘−1

This type of derivative approximation is called backward difference
approximation.

Unit – III (Numerical Techniques)

Assume that the derivative at 𝑥𝑘 is estimated by computing
the slope of the line between 𝑓 𝑥𝑘+1 and 𝑓 𝑥𝑘 is

𝑓′(𝑥𝑘) =
𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘

This type of derivative approximation is called forward difference
approximation.

Assume that the derivative at 𝑥𝑘 is estimated by computing
the slope of the line between 𝑓 𝑥𝑘+1 and 𝑓 𝑥𝑘−1 is

𝑓′(𝑥𝑘) =
𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘−1

𝑥𝑘+1 − 𝑥𝑘−1

This type of derivative approximation is called central difference
approximation.

The quality of all of these types of derivative computations depends on
the distance between the points used to estimate the derivative.

Unit – III (Numerical Techniques)

• diff function:

The diff function computes differences between adjacent values in a
vector, generating a new vector with on fewer value. If the diff function is
applied to a matrix, it operates on the columns of the matrix as if each
column were a vector. A second, optional argument specifies the number
of times to recursively apply diff. Each time diff is applied, the length of
the vector is reduced in size. A third, optional argument specifies the
dimensions in which to apply the function. The forms of diff as follows:

diff(x)

for a vector x, diff returns

[x(2)-x(1), x(3)-x(2), … x(n)-x(n-1).

diff(x)

for a matrix x, diff returns the matrix of column difference

[x(2:m,:) – x(1:m-1,:)]

diff(x,n,dim)

Unit – III (Numerical Techniques)

The general form of diff returns the nth difference function along
dimension dim(a scalar). If n >= the length of dim, the diff returns an
empty array. We define vectors x, y, and z as follows;

x = [0 1 2 3 4 5];

y = [2 3 1 5 8 10];

z = [1 3 5;1 5 10];

Then the vector generated by diff(x) is

diff(x)

ans =

1 1 1 1 1

The vector generated by diff(y) is

diff(y)

ans =

1 -2 4 3 2

Unit – III (Numerical Techniques)

If you execute diff twice, the length of the returned vector is 4:

diff(y,2)

ans =

-3 6 -1 -1

The diff function can be applied to either dimension of matrix z:

diff(z,1,1)

ans =

0 2 5

diff(z,1,2)

ans =

2 2

4 5

An approximate derivative dy can be computed by using diff(y)./diff(x). Note
that these values of dy are correct for both the forward difference equation
and the backward difference equation. The distinction between the two
methods for computing the derivative is determined by the values of the
vector xd, which correspond to the derivative dy.

Unit – III (Numerical Techniques)

COMMANDS AND FUNCTIONS

COMMANDS MEANING

cftool Opens the curve fitting graphical user interface

diff Computes the differences between adjacent values

interp1 Computes linear and cubic interpolation

polyfit Computes a least-squares polynomial

polyval Evaluates a polynomial

quad Computes the integral under a curve

quad1 Computes the integral under a curve

