
DATA STRUCTURE AND ALGORITHM 

Unit I  
Arrays and sequential representations – ordered lists – Stacks and Queues – Evaluation 

ofExpressions – Multiple Stacks and Queues – Singly Linked List – Linked Stacks and 

queues – Polynomial addition. 

Data Structure Introduction: 

The data structure name indicates itself that organizing the data in memory. 

There are many ways of organizing the data in the memory as we have already seen 

one of the data structures, i.e., array in C language. Array is a collection of memory 

elements in which data is stored sequentially, i.e., one after another. In other words, 

we can say that array stores the elements in a continuous manner. This organization 

of data is done with the help of an array of data structures. There are also other ways 

to organize the data in memory. To structure the data in memory, 'n' number of 

algorithms were proposed, and all these algorithms are known as Abstract data 

types. These abstract data types are the set of rules.  

 
 

Types of Data Structures 

There are two types of data structures: 

o Primitive data structure 

o Non-primitive data structure 

Primitive Data structure 

The primitive data structures are primitive data types. The int, char, float, double, and 

pointer are the primitive data structures that can hold a single value. 

Non-Primitive Data structure 



The non-primitive data structure is divided into two types: 

 Linear data structure 

 Non-linear data structure 

Linear Data Structure 

The arrangement of data in a sequential manner is known as a linear data structure. 

The data structures used for this purpose are Arrays, Linked list, Stacks, and Queues. 

In these data structures, one element is connected to only one another element in a 

linear form. 

Non- Linear Structure: 

When one element is connected to the 'n' number of elements known as a non-

linear data structure. The best example is trees and graphs. In this case, the elements 

are arranged in a random manner. 

Data structures can also be classified as: 

 Static data structure: It is a type of data structure where the size is allocated 

at the compile time. Therefore, the maximum size is fixed. 

 Dynamic data structure: It is a type of data structure where the size is 

allocated at the run time. Therefore, the maximum size is flexible. 

Major Operations 

The major or the common operations that can be performed on the data structures 

are: 

o Searching: We can search for any element in a data structure. 

o Sorting: We can sort the elements of a data structure either in an ascending 

or descending order. 

o Insertion: We can also insert the new element in a data structure. 

o Updation: We can also update the element, i.e., we can replace the element 

with another element. 

o Deletion: We can also perform the delete operation to remove the element 

from the data structure. 

Advantages of Data structures 

The following are the advantages of a data structure: 



o Efficiency: If the choice of a data structure for implementing a particular ADT 

is proper, it makes the program very efficient in terms of time and space. 

o Reusability: The data structure provides reusability means that multiple client 

programs can use the data structure. 

o Abstraction: The data structure specified by an ADT also provides the level of 

abstraction. The client cannot see the internal working of the data structure, 

so it does not have to worry about the implementation part. The client can 

only see the interface. 

Arrays and Sequential Representation 

Definition 
o Arrays are defined as the collection of similar type of data items stored at contiguous 

memory locations. 

o Arrays are the derived data type in C programming language which can store the 

primitive type of data such as int, char, double, float, etc. 

o Array is the simplest data structure where each data element can be randomly 

accessed by using its index number. 

o For example, if we want to store the marks of a student in 6 subjects, then we don't 

need to define different variable for the marks in different subject. instead of that, we 

can define an array which can store the marks in each subject at a the contiguous 

memory locations. 

The array marks[10] defines the marks of the student in 10 different subjects where 

each subject marks are located at a particular subscript in the array 

i.e. marks[0] denotes the marks in first subject, marks[1] denotes the marks in 2nd 

subject and so on. 

Properties of the Array 

1. Each element is of same data type and carries a same size i.e. int = 4 bytes. 

2. Elements of the array are stored at contiguous memory locations where the first 

element is stored at the smallest memory location. 

3. Elements of the array can be randomly accessed since we can calculate the address of 

each element of the array with the given base address and the size of data element. 

Advantages of Array 
o Array provides the single name for the group of variables of the same type therefore, 

it is easy to remember the name of all the elements of an array. 

o Traversing an array is a very simple process, we just need to increment the base 

address of the array in order to visit each element one by one. 

o Any element in the array can be directly accessed by using the index. 



Memory Allocation of the array 

As we have mentioned, all the data elements of an array are stored at 

contiguous locations in the main memory. The name of the array represents 

the base address or the address of first element in the main memory. Each 

element of the array is represented by a proper indexing. 

The indexing of the array can be defined in three ways. 

1. 0 (zero - based indexing) : The first element of the array will be arr[0]. 

2. 1 (one - based indexing) : The first element of the array will be arr[1]. 

3. n (n - based indexing) : The first element of the array can reside at any random index 

number. 

In the following image, we have shown the memory allocation of an array arr of size 

5. The array follows 0-based indexing approach. The base address of the array is 

100th byte. This will be the address of arr[0]. Here, the size of int is 4 bytes therefore 

each element will take 4 bytes in the memory. 

 

 
 

In 0 based indexing, If the size of an array is n then the maximum index number, an 

element can have is n-1. However, it will be n if we use 1 based indexing. 

Accessing Elements of an array 

To access any random element of an array we need the following information: 

1. Base Address of the array. 

2. Size of an element in bytes. 

3. Which type of indexing, array follows. 

Address of any element of a 1D array can be calculated by using the following 

formula: 



        Byte address of element A[i]  = base address + size * ( i - first index ) 

2D Array 

2D array can be defined as an array of arrays. The 2D array is organized as matrices 

which can be represented as the collection of rows and columns. 

However, 2D arrays are created to implement a relational database look alike data 

structure. It provides ease of holding bulk of data at once which can be passed to 

any number of functions wherever required. 

How to declare 2D Array 

The syntax of declaring two dimensional array is very much similar to 

that of a one dimensional array, given as follows. 
1. int arr[max_rows][max_columns];    

however, It produces the data structure which looks like following. 

25M 

 
 

Above image shows the two dimensional array, the elements are organized in the form of 

rows and columns. First element of the first row is represented by a[0][0] where the number 

shown in the first index is the number of that row while the number shown in the second 

index is the number of the column. 



How do we access data in a 2D array 

Similar to one dimensional arrays, we can access the individual cells in a 

2D array by using the indices of the cells. There are two indices attached 

to a particular cell, one is its row number while the other is its column 

number. 

However, we can store the value stored in any particular cell of a 2D array to some 

variable x by using the following syntax. 

1. int x = a[i][j];    

where i and j is the row and column number of the cell respectively. 

We can assign each cell of a 2D array to 0 by using the following code: 

1. for ( int i=0; i<n ;i++)   

2. {   

3.     for (int j=0; j<n; j++)    

4.     {   

5.         a[i][j] = 0;    

6.     }   

7. }   

Initializing 2D Arrays 

We know that, when we declare and initialize one dimensional array in C 

programming simultaneously, we don't need to specify the size of the 

array. However this will not work with 2D arrays. We will have to define 

at least the second dimension of the array. 
 

The syntax to declare and initialize the 2D array is given as follows. 

1. int arr[2][2] = {0,1,2,3};    

The number of elements that can be present in a 2D array will always be equal to 

(number of rows * number of columns). 

Mapping 2D array to 1D array 

When it comes to map a 2 dimensional array, most of us might think that why this mapping is 

required. However, 2 D arrays exists from the user point of view. 2D arrays are created to 

implement a relational database table lookalike data structure, in computer memory, the 

storage technique for 2D array is similar to that of an one dimensional array. 



The size of a two dimensional array is equal to the multiplication of number of rows and the 

number of columns present in the array. We do need to map two dimensional array to the one 

dimensional array in order to store them in the memory. 

A 3 X 3 two dimensional array is shown in the following image. However, this array 

needs to be mapped to a one dimensional array in order to store it into the memory. 

 

 
 

There are two main techniques of storing 2D array elements into memory 

1. Row Major ordering 

In row major ordering, all the rows of the 2D array are stored into the memory 

contiguously. Considering the array shown in the above image, its memory allocation 

according to row major order is shown as follows. 

 

 

 

first, the 1st row of the array is stored into the memory completely, then the 2nd row 

of the array is stored into the memory completely and so on till the last row. 

 

 
 

2. Column Major ordering 



According to the column major ordering, all the columns of the 

2D array are stored into the memory contiguously. The memory 

allocation of the array which is shown in in the above image is 

given as follows. 

 

first, the 1st column of the array is stored into the memory completely, then the 

2nd row of the array is stored into the memory completely and so on till the last 

column of the array. 

 

 
 

Calculating the Address of the random element of a 2D array 

Due to the fact that, there are two different techniques of storing the two 

dimensional array into the memory, there are two different formulas to calculate the 

address of a random element of the 2D array. 

By Row Major Order 

If array is declared by a[m][n] where m is the number of rows while n is the number 

of columns, then address of an element a[i][j] of the array stored in row major order 

is calculated as, 

1. Address(a[i][j]) = B. A. + (i * n + j) * size    

     where, B. A. is the base address or the address of the first element of the array a[0][0] . 

Example : 

1. a[10...30, 55...75], base address of the array (BA) = 0, size of an element = 4 bytes .    

2. Find the location of a[15][68].    

3.    

4. Address(a[15][68]) = 0 +    



5. ((15 - 10) x (68 - 55 + 1) + (68 - 55)) x 4   

6.    

7. = (5 x 14 + 13) x 4   

8. = 83 x 4    

9. = 332 answer    

By Column major order 

If array is declared by a[m][n] where m is the number of rows while n is the number 

of columns, then address of an element a[i][j] of the array stored in row major order 

is calculated as, 

1. Address(a[i][j]) = ((j*m)+i)*Size + BA    

where BA is the base address of the array. 

Example: 

A [-

5 ... +20][20 ... 70], BA = 1020, Size of element = 8 bytes. Find the location of a[0][30].    

   

Address [A[0][30]) = ((30-20) x 24 + 5)  x 8 + 1020   =  245 x 8 + 1020 = 2980 bytes    

 

Ordered list 
       An ordered list is a list in which the order of the items is significant. 
However, the items in an ordered list are not necessarily sorted. 
Consequently, it is possible to change the order o items and still have a 
valid ordered list. 

Consider a list of the titles of the chapters in this book. The order of the 
items in the list corresponds to the order in which they appear in the book. 
However, since the chapter titles are not sorted alphabetically, we cannot 
consider the list to be sorted. Since it is possible to change the order of the 
chapters in book, we must be able to do the same with the items of the list. 
As a result, we may insert an item into an ordered list at any position. 

A searchable container is a container that supports the following additional 
operations: 

Insert 

  -used to put objects into a the container; 
withdraw 

-used to remove objects from the container; 
find 

-used to locate objects in the container; 



isMember 
-used to test whether a given object instance is in the container. 

stack 
 

A real-world stack allows operations at one end only. For example, we can place or 
remove a card or plate from the top of the stack only. At any given time, we can only 
access the top element of a stack. 

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, 
the element which is placed (inserted or added) last, is accessed first. In stack 
terminology, insertion operation is called PUSH operation and removal operation is 
called POP operation. 

Stack Representation 

The following diagram depicts a stack and its operations − 

     

A stack can be implemented by means of Array, Structure, Pointer, and Linked List. 
Stack can either be a fixed size one or it may have a sense of dynamic resizing. 
Here, we are going to implement stack using arrays, which makes it a fixed size 
stack implementation. 

Basic Operations 

Stack operations may involve initializing the stack, using it and then de-initializing it. 
Apart from these basic stuffs, a stack is used for the following two primary 
operations − 

 push() − Pushing (storing) an element on the stack. 

 pop() − Removing (accessing) an element from the stack. 

When data is PUSHed onto stack. 

To use a stack efficiently, we need to check the status of stack as well. For the 
same purpose, the following functionality is added to stacks − 

 peek() − get the top data element of the stack, without removing it. 

 isFull() − check if stack is full. 



 isEmpty() − check if stack is empty. 

At all times, we maintain a pointer to the last PUSHed data on the stack. 
The top pointer provides top value of the stack without actually removing it. 

First we should learn about procedures to support stack functions − 

peek() 

Algorithm of peek() function − 

begin procedure peek 

   return stack[top] 

end procedure 

isfull() 

Algorithm of isfull() function − 

begin procedure isfull 

 

   if top equals to MAXSIZE 

      return true 

   else 

      return false 

   endif 

    

end procedure 

isempty() 

Algorithm of isempty() function − 

begin procedure isempty 

 

   if top less than 1 

      return true 

   else 

      return false 

   endif 

    

end procedure 

Implementation of isempty() function in C programming language is slightly 
different. We initialize top at -1, as the index in array starts from 0. So we check if 
the top is below zero or -1 to determine if the stack is empty. Here's the code − 

Push Operation 

The process of putting a new data element onto stack is known as a Push 
Operation. Push operation involves a series of steps − 

 Step 1 − Checks if the stack is full. 

 Step 2 − If the stack is full, produces an error and exit. 



 Step 3 − If the stack is not full, increments top to point next empty space. 

 Step 4 − Adds data element to the stack location, where top is pointing. 

 Step 5 − Returns success. 

If the linked list is used to implement the stack, then in step 3, we need to allocate 
space dynamically. 

Algorithm for PUSH Operation 

A simple algorithm for Push operation can be derived as follows − 

begin procedure push: stack, data 

 

   if stack is full 

      return null 

   endif 

    

   top ← top + 1 

   stack[top] ← data 

 

end procedure 

Pop Operation 

Accessing the content while removing it from the stack, is known as a Pop 
Operation. In an array implementation of pop() operation, the data element is not 
actually removed, instead top is decremented to a lower position in the stack to 
point to the next value. But in linked-list implementation, pop() actually removes 
data element and deallocates memory space. 

A Pop operation may involve the following steps − 

 Step 1 − Checks if the stack is empty. 

 Step 2 − If the stack is empty, produces an error and exit. 

 Step 3 − If the stack is not empty, accesses the data element at which top is 
pointing. 

 Step 4 − Decreases the value of top by 1. 

 Step 5 − Returns success. 

Algorithm for Pop Operation 

A simple algorithm for Pop operation can be derived as follows − 

begin procedure pop: stack 

 

   if stack is empty 

      return null 

   endif 

    



   data ← stack[top] 

   top ← top - 1 

   return data 

 

end procedure 

 

Queue 

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is 
open at both its ends. One end is always used to insert data (enqueue) and the other is used 
to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item 
stored first will be accessed first. 

 

Queue Representation 

As we now understand that in queue, we access both ends for different reasons. 
The following diagram given below tries to explain queue representation as data 
structure − 

  

 

Basic Operations 
Queue operations may involve initializing or defining the queue, utilizing it, and then 
completely erasing it from the memory. Here we shall try to understand the basic 
operations associated with queues − 

 enqueue() − add (store) an item to the queue. 

 dequeue() − remove (access) an item from the queue. 

Few more functions are required to make the above-mentioned queue operation 
efficient. These are − 

 peek() − Gets the element at the front of the queue without removing it. 

 isfull() − Checks if the queue is full. 

 isempty() − Checks if the queue is empty. 

In queue, we always dequeue (or access) data, pointed by front pointer and while 
enqueing (or storing) data in the queue we take help of rear pointer. 

peek() 

This function helps to see the data at the front of the queue. The algorithm of 
peek() function is as follows − 

Algorithm 



begin procedure peek 

   return queue[front] 

end procedure 

isfull() 

As we are using single dimension array to implement queue, we just check for the 
rear pointer to reach at MAXSIZE to determine that the queue is full. In case we 
maintain the queue in a circular linked-list, the algorithm will differ. Algorithm of 
isfull() function – 

Algorithm 
begin procedure isfull 

 

   if rear equals to MAXSIZE 

      return true 

   else 

      return false 

   endif 

    

end procedure 

isempty() 
Algorithm of isempty() function − 
Algorithm 
begin procedure isempty 

 

   if front is less than MIN  OR front is greater than rear 

      return true 

   else 

      return false 

   endif 

    

end procedure 

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, 
hence empty. 

Enqueue Operation 

Queues maintain two data pointers, front and rear. Therefore, its operations are 
comparatively difficult to implement than that of stacks. 

The following steps should be taken to enqueue (insert) data into a queue − 

 Step 1 − Check if the queue is full. 

 Step 2 − If the queue is full, produce overflow error and exit. 

 Step 3 − If the queue is not full, increment rear pointer to point the next 
empty space. 

 Step 4 − Add data element to the queue location, where the rear is pointing. 

 Step 5 − return success. 



Sometimes, we also check to see if a queue is initialized or not, to 
handle any unforeseen situations.  

 

 

 

Algorithm for enqueue operation 

procedure enqueue(data)       

      if queue is full 

      return overflow 

   endif 

      rear ← rear + 1 

   queue[rear] ← data 

   return true 

   end procedure 

Dequeue Operation 

Accessing data from the queue is a process of two tasks − access the data 
where front is pointing and remove the data after access. The following steps are 
taken to perform dequeue operation − 

 Step 1 − Check if the queue is empty. 

 Step 2 − If the queue is empty, produce underflow error and exit. 

 Step 3 − If the queue is not empty, access the data where front is pointing. 

 Step 4 − Increment front pointer to point to the next available data element. 

 Step 5 − Return success. 



 

Algorithm for dequeue operation 

procedure dequeue 

    

   if queue is empty 

      return underflow 

   end if 

 

   data = queue[front] 

   front ← front + 1 

   return true 

 

end procedure 

 

 

 

Evaluation of Expression 

The way to write arithmetic expression is known as a notation. An arithmetic 
expression can be written in three different but equivalent notations, i.e., without 
changing the essence or output of an expression. These notations are – 

 Infix Notation 

 Prefix (Polish) Notation 

 Postfix (Reverse-Polish) Notation 

These notations are named as how they use operator in expression. We shall learn 
the same here in this chapter. 

Infix Notation 

We write expression in infix notation, e.g. a - b + c, where operators are used in-
between operands. It is easy for us humans to read, write, and speak in infix 
notation but the same does not go well with computing devices. An algorithm to 



process infix notation could be difficult and costly in terms of time and space 
consumption. 

Prefix Notation 

In this notation, operator is prefixed to operands, i.e. operator is written ahead of 
operands. For example, +ab. This is equivalent to its infix notation a + b. Prefix 
notation is also known as Polish Notation. 

Postfix Notation 

This notation style is known as Reversed Polish Notation. In this notation style, 
the operator is postfixed to the operands i.e., the operator is written after the 
operands. For example, ab+. This is equivalent to its infix notation a + b. 

The following table briefly tries to show the difference in all three notations − 

Sr.No. Infix Notation Prefix Notation Postfix Notation 

1 a + b + a b a b + 

2 (a + b) ∗ c ∗ + a b c a b + c ∗ 

3 a ∗ (b + c) ∗ a + b c a b c + ∗ 

4 a / b + c / d + / a b / c d a b / c d / + 

5 (a + b) ∗ (c + d) ∗ + a b + c d a b + c d + ∗ 

6 ((a + b) ∗ c) - d - ∗ + a b c d a b + c ∗ d - 

Parsing Expressions 

As we have discussed, it is not a very efficient way to design an algorithm or 
program to parse infix notations. Instead, these infix notations are first converted 
into either postfix or prefix notations and then computed. 

To parse any arithmetic expression, we need to take care of operator precedence 
and associativity also. 

Precedence 

When an operand is in between two different operators, which operator will take the 
operand first, is decided by the precedence of an operator over others. For example 
− 



  a+b*c   -  a+(b*c) 

As multiplication operation has precedence over addition, b * c will be evaluated 
first. A table of operator precedence is provided later. 

Associativity 

Associativity describes the rule where operators with the same precedence appear 
in an expression. For example, in expression a + b − c, both + and – have the same 
precedence, then which part of the expression will be evaluated first, is determined 
by associativity of those operators. Here, both + and − are left associative, so the 
expression will be evaluated as (a + b) − c. 

Precedence and associativity determines the order of evaluation of an expression. 
Following is an operator precedence and associativity table (highest to lowest) − 

Sr.No. Operator Precedence Associativity 

1 Exponentiation ^ Highest Right Associative 

2 Multiplication ( ∗ ) & Division ( / ) Second Highest Left Associative 

3 Addition ( + ) & Subtraction ( − ) Lowest Left Associative 

The above table shows the default behavior of operators. At any point of time in 
expression evaluation, the order can be altered by using parenthesis. For example 
− 

In a + b*c, the expression part b*c will be evaluated first, with multiplication as 
precedence over addition. We here use parenthesis for a + b to be evaluated first, 
like (a + b)*c. 

Postfix Evaluation Algorithm 
Step 1 − scan the expression from left to right  

Step 2 − if it is an operand push it to stack  

Step 3 − if it is an operator pull operand from stack and perform 

operation  

Step 4 − store the output of step 3, back to stack  

Step 5 − scan the expression until all operands are consumed  

Step 6 − pop the stack and perform operation 

A postfix expression is a collection of operators and operands in which the operator is placed 
after the operands. That means, in a postfix expression the operator follows the operands. 
 
 
 
Postfix Expression has following general structure... 



Operand1 Operand2 Operator 

Example 

 

Postfix Expression Evaluation using Stack Data 
Structure 

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix 
expression using Stack data structure we can use the following steps...Read all the symbols 
one by one from left to right in the given Postfix Expression 

1. If the reading symbol is operand, then push it on to the Stack. 
2. If the reading symbol is operator (+ , - , * , / etc.,), then perform TWO pop 

operations and store the two popped oparands in two different variables (operand1 
and operand2). Then perform reading symbol operation using operand1 and 
operand2 and push result back on to the Stack. 

3. Finally! perform a pop operation and display the popped value as final result. 

Example Consider the following Expression.. 

 



 

Multiple Stacks and Queues: 

Multiple Stacks: 

Following pictures are two ways to do two stacks in array: 

1. None fixed size of the stacks: 

 



 Stack 1 expands from the 0th element to the right 
 Stack 2 expands from the 12th element to the left  
 As long as the value of Top1 and Top2 are not next to each other, it has free elements for 

input the data in the array 
 When both Stacks are full, Top1 and Top 2 will be next to each other 
 There is no fixed boundary between Stack 1 and Stack 2 
 Elements –1 and –2 are using to store the information needed to manipulate the stack 

(subscript for Top 1 and Top 2) 
  

2. Fixed size of the stacks: 

 
 Stack 1 expands from the 0

th
 element to the right 

 Stack 2 expands from the 6
th

 element to the left 

 As long as the value of Top 1 is less than 6 and greater than 0, Stack 1 has free 

elements to input the data in the array 

 As long as the value of Top 2 is less than 11 and greater than 5, Stack 2 has free 

elements to input the data in the array 

 When the value of Top 1 is 5, Stack 1 is full 

 When the value of Top 2 is 10, stack 2 is full 
 Elements –1 and –2 are using to store the size of Stack 1 and the subscript of the array for 

Top 1 needed to manipulate Stack 1 
 Elements –3 and –4 are using to store the size of Stack 2 and the subscript of the array for 

Top 2 needed to manipulate Stack 2 

 procedure ADD (i,X ) //add element X to the i'th stack, 1 i n// 

 if T(i) = B(i + 1) then call STACK-FULL (i)  
T(i) ← T(i) + 1 
 V(T(i)) ← X //add X to the i'th stack// 
 end ADD  
 
procedure DELETE(i,X ) //delete topmost element of stack i// 
 if T(i) = B(i) then call STACK-EMPTY(i)  
X ← V(T(i)) 
 T(i) ← T(i) - 1  
end DELETE  
 



Multiple Queues: 

Following pictures are two ways to do two queues in array: 

1. None fixed size of the queues: 

 

 Queue 1 expands from the 0th element to the right and circular back to the 0th element  
 Queue 2 expands from the 8th element to the left and circular back to the 8th element 
 Temporary boundary between the Queue 1 and the Queue 2; as long as there has free 

elements in the array and boundary would be shift  
 Free elements could be anywhere in the Queue such as before the front, after the rear, and 

between front and rear in the Queue 
 Queue 1’s and Queue 2 ‘s size could be change if it is necessary.  When the Queue 1 is full 

and the Queue 2 has free space; the Queue 1 can increase the size to use that free space 
from the Queue 2. Same way for the Queue 2 

  Elements –1, –2, and –3 are using to store the size of the Queue 1, the front of the Queue 1, 
and the data count for the Queue 1 needed to manipulate the Queue 1 

 Elements –4, –5, and –6 are using to store the size of the Queue 2, the front of the Queue 2, 
and the data count for the Queue 2 needed to manipulate the Queue 2 

 Inserts data to the Queue 1, Q1Rear = (Q1Front + Q1count) % Q1Size 
 Inserts data to the Queue 2, Q2Rear = (Q2Front + Q2count) % Q2Size + Q1Size 
 Deletes data from the Queue 1, Q1Front = (Q1Front + 1) % Q1Size  
 Deletes data from the Queue 2, Q2Front = (Q2Front + 1) % Q2Size + Q1Size 

  

2. Fixed size of the queue: 



 
 Queue 1 expands from the 0th element to the 4th element and circular back to 0th element 
 Queue 2 expands from the 8th element to the 5th element and circular back to 8th element 
 The boundary is fixed between the Queue 1 and the Queue 2  
 Free elements could be anywhere in the Queue such as before the front, after the rear, and 

between front and rear in the Queue 
 Elements –1, –2, and –3 are using to store the size of the Queue 1, the front of the Queue 1, 

and the data count for the Queue 1 needed to manipulate the Queue 1 
 Elements –4, –5, and –6 are using to store the size of the Queue 2, the front of the Queue 2, 

and the data count for the Queue 2 needed to manipulate the Queue 2 
 Inserts data to the Queue 1, Q1Rear = (Q1Front + Q1count) % Q1Size 
 Inserts data to the Queue 2, Q2Rear = (Q2Front + Q2count) % Q2Size + Q1Size 
 Deletes data from the Queue 1, Q1Front = (Q1Front + 1) % Q1Size  
 Deletes data from the Queue 2, Q2Front = (Q2Front + 1) % Q2Size + Q1Size 

 

A linked list is a sequence of data structures, which are connected together via links. 

Linked List is a sequence of links which contains items. Each link contains a 
connection to another link. Linked list is the second most-used data structure after 
array. Following are the important terms to understand the concept of Linked List. 

 Link − Each link of a linked list can store a data called an element. 



 Next − Each link of a linked list contains a link to the next link called Next. 

 LinkedList − A Linked List contains the connection link to the first link called 
First. 

Linked List Representation 

Linked list can be visualized as a chain of nodes, where every node points to the 
next node. 

   

As per the above illustration, following are the important points to be considered. 

 Linked List contains a link element called first. 

 Each link carries a data field(s) and a link field called next. 

 Each link is linked with its next link using its next link. 

 Last link carries a link as null to mark the end of the list. 

Types of Linked List 

Following are the various types of linked list. 

 Simple Linked List − Item navigation is forward only. 

 Doubly Linked List − Items can be navigated forward and backward. 

 Circular Linked List − Last item contains link of the first element as next and 
the first element has a link to the last element as previous. 

Basic Operations 

Following are the basic operations supported by a list. 

 Insertion − Adds an element at the beginning of the list. 

 Deletion − Deletes an element at the beginning of the list. 

 Display − Displays the complete list. 

 Search − Searches an element using the given key. 

 Delete − Deletes an element using the given key. 

Insertion Operation 

Adding a new node in linked list is a more than one step activity. We shall learn this 
with diagrams here. First, create a node using the same structure and find the 
location where it has to be inserted. 



  

Imagine that we are inserting a node B (NewNode), between A (LeftNode) 
and C (RightNode). Then point B.next to C − 

NewNode.next −> RightNode; 

It should look like this − 

  

Now, the next node at the left should point to the new node. 

LeftNode.next −> NewNode; 

 

 

What is Single Linked List? 

Simply a list is a sequence of data, and the linked list is a sequence of data linked with each 
other. 
The formal definition of a single linked list is as follows... 

Single linked list is a sequence of elements in which every element has link to its next 
element in the sequence. 

In any single linked list, the individual element is called as "Node". Every "Node" contains two 
fields, data field, and the next field. The data field is used to store actual value of the node and 
next field is used to store the address of next node in the sequence. 
The graphical representation of a node in a single linked list is as follows... 



 

Example 

 

Operations on Single Linked List 

The following operations are performed on a Single Linked List 

 Insertion 
 Deletion 
 Display 

Before we implement actual operations, first we need to set up an empty list. First, perform the 
following steps before implementing actual operations. 

 Step 1 - Include all the header files which are used in the program. 
 Step 2 - Declare all the user defined functions. 
 Step 3 - Define a Node structure with two members data and next 
 Step 4 - Define a Node pointer 'head' and set it to NULL. 
 Step 5 - Implement the main method by displaying operations menu and make suitable 

function calls in the main method to perform user selected operation. 

Insertion 

In a single linked list, the insertion operation can be performed in three ways. They are as 
follows... 

1. Inserting At Beginning of the list 
2. Inserting At End of the list 
3. Inserting At Specific location in the list 

Inserting At Beginning of the list 

We can use the following steps to insert a new node at beginning of the single linked list... 

 Step 1 - Create a newNode with given value. 
 Step 2 - Check whether list is Empty (head == NULL) 
 Step 3 - If it is Empty then, set newNode→next = NULL and head = newNode. 
 Step 4 - If it is Not Empty then, set newNode→next = head and head = newNode. 



Inserting At End of the list 

We can use the following steps to insert a new node at end of the single linked list... 

 Step 1 - Create a newNode with given value and newNode → next as NULL. 
 Step 2 - Check whether list is Empty (head == NULL). 
 Step 3 - If it is Empty then, set head = newNode. 
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head. 
 Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list 

(until temp → next is equal to NULL). 
 Step 6 - Set temp → next = newNode. 

Inserting At Specific location in the list (After a 
Node) 

We can use the following steps to insert a new node after a node in the single linked list... 

 Step 1 - Create a newNode with given value. 
 Step 2 - Check whether list is Empty (head == NULL) 
 Step 3 - If it is Empty then, set newNode → next = NULL and head = newNode. 
 Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head. 
 Step 5 - Keep moving the temp to its next node until it reaches to the node after which 

we want to insert the newNode (until temp1 → data is equal to location, here location is 
the node value after which we want to insert the newNode). 

 Step 6 - Every time check whether temp is reached to last node or not. If it is reached to 
last node then display 'Given node is not found in the list!!! Insertion not 
possible!!!' and terminate the function. Otherwise move the temp to next node. 

 Step 7 - Finally, Set 'newNode → next = temp → next' and 'temp → next = newNode' 

Deletion 

In a single linked list, the deletion operation can be performed in three ways. They are as 
follows... 

1. Deleting from Beginning of the list 
2. Deleting from End of the list 
3. Deleting a Specific Node 

Deleting from Beginning of the list 

We can use the following steps to delete a node from beginning of the single linked list... 

 Step 1 - Check whether list is Empty (head == NULL) 
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head. 
 Step 4 - Check whether list is having only one node (temp → next == NULL) 
 Step 5 - If it is TRUE then set head = NULL and delete temp (Setting Empty list 

conditions) 
 Step 6 - If it is FALSE then set head = temp → next, and delete temp. 



Deleting from End of the list 

We can use the following steps to delete a node from end of the single linked list... 

 Step 1 - Check whether list is Empty (head == NULL) 
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and 

initialize 'temp1' with head. 
 Step 4 - Check whether list has only one Node (temp1 → next == NULL) 
 Step 5 - If it is TRUE. Then, set head = NULL and delete temp1. And terminate the 

function. (Setting Empty list condition) 
 Step 6 - If it is FALSE. Then, set 'temp2 = temp1 ' and move temp1 to its next node. 

Repeat the same until it reaches to the last node in the list. (until temp1 → 
next == NULL) 

 Step 7 - Finally, Set temp2 → next = NULL and delete temp1. 

Deleting a Specific Node from the list 

We can use the following steps to delete a specific node from the single linked list... 

 Step 1 - Check whether list is Empty (head == NULL) 
 Step 2 - If it is Empty then, display 'List is Empty!!! Deletion is not possible' and 

terminate the function. 
 Step 3 - If it is Not Empty then, define two Node pointers 'temp1' and 'temp2' and 

initialize 'temp1' with head. 
 Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the 

last node. And every time set 'temp2 = temp1' before moving the 'temp1' to its next 
node. 

 Step 5 - If it is reached to the last node then display 'Given node not found in the list! 
Deletion not possible!!!'. And terminate the function. 

 Step 6 - If it is reached to the exact node which we want to delete, then check whether 
list is having only one node or not 

 Step 7 - If list has only one node and that is the node to be deleted, then 
set head = NULL and delete temp1 (free(temp1)). 

 Step 8 - If list contains multiple nodes, then check whether temp1 is the first node in the 
list (temp1 == head). 

 Step 9 - If temp1 is the first node then move the head to the next node (head = head → 
next) and delete temp1. 

 Step 10 - If temp1 is not first node then check whether it is last node in the list (temp1 → 
next == NULL). 

 Step 11 - If temp1 is last node then set temp2 → next = NULL and 
delete temp1 (free(temp1)). 

 Step 12 - If temp1 is not first node and not last node then set temp2 → next = temp1 → 
next and delete temp1 (free(temp1)). 

Displaying a Single Linked List 

We can use the following steps to display the elements of a single linked list... 

 Step 1 - Check whether list is Empty (head == NULL) 
 Step 2 - If it is Empty then, display 'List is Empty!!!' and terminate the function. 
 Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head. 
 Step 4 - Keep displaying temp → data with an arrow (--->) until temp reaches to the last 

node 



 Step 5 - Finally display temp → data with arrow pointing to NULL (temp → data ---> 
NULL). 

Linked stack and Queue: 

Linked stack 

Instead of using array, we can also use linked list to implement stack. Linked list 

allocates the memory dynamically. However, time complexity in both the scenario is 

same for all the operations i.e. push, pop and peek. 

In linked list implementation of stack, the nodes are maintained non-contiguously in 

the memory. Each node contains a pointer to its immediate successor node in the 

stack. Stack is said to be overflow if the space left in the memory heap is not enough 

to create a node. 

 

 
 

The top most node in the stack always contains null in its address field. Lets discuss 

the way in which, each operation is performed in linked list implementation of stack. 

Adding a node to the stack (Push operation) 

Adding a node to the stack is referred to as push operation. Pushing an element to a 

stack in linked list implementation is different from that of an array implementation. 

In order to push an element onto the stack, the following steps are involved.OOPs 

Concepts in Java 

1. Create a node first and allocate memory to it. 



2. If the list is empty then the item is to be pushed as the start node of the list. This 

includes assigning value to the data part of the node and assign null to the address 

part of the node. 

3. If there are some nodes in the list already, then we have to add the new element in 

the beginning of the list (to not violate the property of the stack). For this purpose, 

assign the address of the starting element to the address field of the new node and 

make the new node, the starting node of the list. 

 

 

Deleting a node from the stack (POP operation) 

Deleting a node from the top of stack is referred to as pop operation. 

Deleting a node from the linked list implementation of stack is different from 

that in the array implementation. In order to pop an element from the stack, 

we need to follow the following steps : 

1. Check for the underflow condition: The underflow condition occurs when 

we try to pop from an already empty stack. The stack will be empty if the 

head pointer of the list points to null. 

2. Adjust the head pointer accordingly: In stack, the elements are popped 

only from one end, therefore, the value stored in the head pointer must be 

deleted and the node must be freed. The next node of the head node now 

becomes the head node. 



Display the nodes (Traversing) 

Displaying all the nodes of a stack needs traversing all the nodes of the linked 

list organized in the form of stack. For this purpose, we need to follow the 

following steps. 

1. Copy the head pointer into a temporary pointer. 

2. Move the temporary pointer through all the nodes of the list and print the 

value field attached to every node. 

Linked Queue 
In a linked queue, each node of the queue consists of two parts i.e. data part and the 

link part. Each element of the queue points to its immediate next element in the 

memory. 

In the linked queue, there are two pointers maintained in the memory i.e. front 

pointer and rear pointer. The front pointer contains the address of the starting 

element of the queue while the rear pointer contains the address of the last element 

of the queue.46Diference, and JVM 

Insertion and deletions are performed at rear and front end respectively. If front and 

rear both are NULL, it indicates that the queue is empty. 

The linked representation of queue is shown in the following figure. 

 

 
 

Operation on Linked Queue 
There are two basic operations which can be implemented on the linked 

queues. The operations are Insertion and Deletion. 
The insert operation append the queue by adding an element to the end of the 

queue. The new element will be the last element of the queue. 

Firstly, allocate the memory for the new node ptr by using the following statement. 

There can be the two scenario of inserting this new node ptr into the linked queue. 

we insert element into an empty queue. In this case, the condition front = 

NULL becomes true. Now, the new element will be added as the only element of the 

queue and the next pointer of front and rear pointer both, will point to NULL. 



Deletion operation removes the element that is first inserted among all the queue 

elements. Firstly, we need to check either the list is empty or not. The condition front 

== NULL becomes true if the list is empty, in this case , we simply write underflow on 

the console and make exit. Otherwise, we will delete the element that is pointed by 

the pointer front. For this purpose, copy the node pointed by the front pointer into 

the pointer ptr. Now, shift the front pointer, point to its next node and free the node 

pointed by the node ptr.  

 

Unit II  
Trees – Binary tree representations – Tree Traversal – Threaded Binary Trees – Binary Tree 

Representation of Trees – Graphs and Representations – Traversals, Connected 

Components and Spanning Trees – Shortest Paths and Transitive closure – Activity 

Networks – Topological Sort and Critical Paths. 

 

 Trees: Non-Linear data structure 
 A data structure is said to be linear if its elements form a sequence or a linear list. 

Previous  
linear data structures that we have studied like an array, stacks, queues and linked lists 
organize data in linear order. A data structure is said to be non linear if its elements form a 
hierarchical classification where, data items appear at various levels.  

Trees and Graphs are widely used non-linear data structures. Tree and graph structures 
represent hierarchical relationship between individual data elements. Graphs are nothing but 
trees with certain restrictions removed.  

Trees represent a special case of more general structures known as graphs. In a graph, 
there is no restrictions on the number of links that can enter or leave a node, and cycles may be 
present in the graph. The figure shows a tree and a non-tree.  

 
Tree is a popular data structure used in wide range of applications. A tree data structure 

can be defined as follows...  
Tree is a non-linear data structure which organizes data in hierarchical structure and 

this is a recursive definition.  
A tree data structure can also be defined as follows...  
A tree is a finite set of one or more nodes such that: 
There is a specially designated node called the root. The remaining nodes are partitioned 

into n>=0 disjoint sets T1, ..., Tn, where each of these sets is a tree. We call T1, ..., Tn are the 

subtrees of the root.  



 
A tree is hierarchical collection of nodes. One of the nodes, known as the root, is at the top of the 

hierarchy. Each node can have at most one link coming into it. The node where the link originates 

is called the parent node. The root node has no parent. The links leaving a node (any number of 

links are allowed) point to child nodes. Trees are recursive structures. Each child node is itself the 

root of a subtree. At the bottom of the tree are leaf nodes, which have no children.  

 

Advantages of trees  
Trees are so useful and frequently used, because they have some very serious advantages:  

Trees reflect structural relationships in the data  

Trees are used to represent hierarchies  

Trees provide an efficient insertion and searching  

Trees are very flexible data, allowing to move sub trees around with minimum effort  

 

Introduction Terminology  
In a Tree, Every individual element is called as Node. Node in a tree data structure, stores 

the actual data of that particular element and link to next element in hierarchical structure. 

Example 



 
1. Root  

In a tree data structure, the first node is called as Root Node. Every tree must have root node. We 

can say that root node is the origin of tree data structure. In any tree, there must be only one root 

node. We never have multiple root nodes in a tree. In above tree, A is a Root node  

2. Edge  

In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree 

with 'N' number of nodes there will be a maximum of 'N-1' number of edges.  

3. Parent  

In a tree data structure, the node which is predecessor of any node is called as PARENT NODE. 

In simple words, the node which has branch from it to any other node is called as parent node. 

Parent node can also be defined as "The node which has child / children". e.g., Parent (A,B,C,D).  

4. Child  

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In 

simple words, the node which has a link from its parent node is called as child node. In a tree, any 

parent node can have any number of child nodes. In a tree, all the nodes except root are child 

nodes. e.g., Children of D are (H, I,J).  

5. Siblings  

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple 

words, the nodes with same parent are called as Sibling nodes. Ex: Siblings (B,C, D)  

6. Leaf  

In a tree data structure, the node which does not have a child (or) node with degree zero is called 

as LEAF Node. In simple words, a leaf is a node with no child.  In a tree data structure, the leaf 



nodes are also called as External Nodes. External node is also a node with no child. In a tree, leaf 

node is also called as 'Terminal' node. Ex: (K,L,F,G,M,I,J)  
7. Internal Nodes  

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In 

simple words, an internal node is a node with atleast one child. In a tree data structure, nodes 

other than leaf nodes are called as Internal Nodes. The root node is also said to be Internal Node 

if the tree has more than one node. Internal nodes are also called as 'Non-Terminal' nodes. 

Ex:B,C,D,E,H  

8. Degree  

In a tree data structure, the total number of children of a node (or)number of subtrees of a node is 

called as DEGREE of that Node. In simple words, the Degree of a node is total number of 

children it has. The highest degree of a node among all the nodes in a tree is called as 'Degree of 

Tree'  

 
9. Level  

In a tree data structure, the root node is said to be at Level 0 and the children of root node are at 

Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In 

simple words, in a tree each step from top to bottom is called as a Level and the Level count starts 

with '0' and incremented by one at each level (Step). Some authors start root level with 1.  

10. Height  

In a tree data structure, the total number of edges from leaf node to a particular node in the 

longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to be 

height of the tree. In a tree, height of all leaf nodes is '0'.  

11. Depth  

In a tree data structure, the total number of edges from root node to a particular node is called as 

DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the 

longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in 

a tree is said to be depth of that tree. In a tree, depth of the root node is '0'. 

12. Path  

In a tree data structure, the sequence of Nodes and Edges from one node to another node is called 

as PATH between that two Nodes. Length of a Path is total number of nodes in that path. In 

below example the path A - B - E - J has length 4.  

 
13. Sub Tree  



In a tree data structure, each child from a node forms a subtree recursively. Every child node will 

form a subtree on its parent node

 
 

Tree Representations  
A tree data structure can be represented in two methods. Those methods are as follows...  

1.List Representation  

2. Left Child - Right Sibling Representation  

Consider the following tree... 

 
1. List Representation  

In this representation, we use two types of nodes one for representing the node with data and 

another for representing only references. We start with a node with data from root node in the 

tree. Then it is linked to an internal node through a reference node and is linked to any other node 

directly. This process repeats for all the nodes in the tree.  

The above tree example can be represented using List representation as follows...  

 
Fig: List representation of above Tree  

 
Fig: Possible node structure for a tree of degree k  

 

2. Left Child - Right Sibling Representation  
In this representation, we use list with one type of node which consists of three fields namely 

Data field, Left child reference field and Right sibling reference field. Data field stores the actual 



value of a node, left reference field stores the address of the left child and right reference field 

stores the address of the right sibling node. Graphical representation of that node is as follows...  

                                      
In this representation, every node's data field stores the actual value of that node. If that node has 

left child, then left reference field stores the address of that left child node otherwise that field 

stores NULL. If that node has right sibling then right reference field stores the address of right 

sibling node otherwise that field stores NULL. The above tree example can be represented using 

Left Child - Right Sibling representation as follows... 

                                    
Representation as a Degree –Two Tree  

To obtain degree-two tree representation of a tree, rotate the right- sibling pointers in the left 

child-right sibling tree clockwise by 45 degrees. In a degree-two representation, the two children 

of anode are referred as left and right children.  

                      
Binary Trees  
             In a normal tree, every node can have any number of children. Binary tree is a special 

type of tree data structure in which every node can have a maximum of 2 children. One is known 

as left child and the other is known as right child.  
~A tree in which every node can have a maximum of two children is called as Binary Tree.  

~In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than 

2 children. Example  

 
 



There are different types of binary trees and they are... 

1. Strictly Binary Tree  
In a binary tree, every node can have a maximum of two children. But in strictly binary tree, 

every node should have exactly two children or none. That means every internal node must have 

exactly two children. A strictly Binary Tree can be defined as follows...  

A binary tree in which every node has either two or zero number of children is called Strictly 

Binary Tree. Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-

Tree  

2. Complete Binary Tree  
In a binary tree, every node can have a maximum of two children. But in strictly binary tree, 

every node should have exactly two children or none and in complete binary tree all the nodes 

must have exactly two children and at every level of complete binary tree there must be 2 level 

number of nodes. For example at level 2 there must be 2^2 = 4 nodes and at level 3 there must be 

2^3 = 8 nodes.  

A binary tree in which every internal node has exactly two children and all leaf nodes are at same 

level is called Complete Binary Tree.  

Complete binary tree is also called as Perfect Binary Tree  

        

 
3. Extended Binary Tree  
A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes 

wherever required.  

The full binary tree obtained by adding dummy nodes to a binary tree is called as Extended 

Binary Tree.  

 

Abstract Data Type 
Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two 

disjoint binary trees called left subtree and right subtree.  

ADT contains specification for the binary tree ADT.  

Structure Binary_Tree(abbreviated BinTree) is  

objects: a finite set of nodes either empty or consisting of a root node, left Binary_Tree, and right 

Binary_Tree.  

Functions:  

for all bt, bt1, bt2 BinTree, item element  

Bintree Create()::= creates an empty binary tree  



Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE  

BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is bt1, whose right 

subtree is bt2, and whose root node contains the data item  

Bintree Lchild(bt)::= if (IsEmpty(bt)) return error else return the left subtree of bt  

element Data(bt)::= if (IsEmpty(bt)) return error else return the data in the root node of bt  

Bintree Rchild(bt)::= if (IsEmpty(bt)) return error else return the right subtree of bt 

                       

 
Differences between A Tree and A Binary Tree  

• The subtrees of a binary tree are ordered; those of a tree are not ordered.  

                                               
Above two trees are different when viewed as binary trees. But same when viewed as trees.  

Properties of Binary Trees  
1.Maximum Number of Nodes in BT  

 maximum number of nodes on level i of a binary tree is 2i-1, i>=1.  

k-1, k>=1.  

 

Proof By Induction:  

Induction Base: The root is the only node on level i=1.Hence ,the maximum number of nodes on 

level i=1 is 2i-1=20=1.  

Induction Hypothesis: Let I be an arbitrary positive integer greater than 1.Assume that maximum 

number of nodes on level i-1 is 2i-2.  

Induction Step: The maximum number of nodes on level i-1 is 2i-2 by the induction hypothesis. 

Since each node in a binary tree has a maximum degree of 2,the maximum number of nodes on 

level i is two times the maximum number of nodes on level i-1,or 2i-1.  

The maximum number of nodes in a binary tree of depth k is  

2.Relation between number of leaf nodes and degree-2 nodes: For any nonempty binary tree, 

T, if n0 is the number of leaf nodes and n2 the number of nodes of degree 2, then n0=n2+1.  

PROOF: Let n and B denote the total number of nodes and branches in T. Let n0, n1, n2 represent 

the nodes with zero children, single child, and two children respectively.  

B+1=n B=n1+2n2 ==> n1+2n2+1= n,  

n1+2n2+1= n0+n1+n2 ==> n0=n2+1  

3. A full binary tree of depth k is a binary tree of depth k having 2 -1 nodes, k>=0.  

A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered 

from 1 to n in the full binary tree of depth k.  

 

Binary Tree Representation  
A binary tree data structure is represented using two methods. Those methods are  



1)Array Representation  

2)Linked List Representation 

1)Array Representation: In array representation of binary tree, we use a one dimensional array 

(1-D Array) to represent a binary tree. To represent a binary tree of depth 'n' using array 

representation, we need one dimensional array with a maximum size of  

A complete binary tree with n nodes (depth = log n + 1) is represented sequentially, then for any 

node with index i, 1<=i<=n, we have: a) parent(i) is at i/2 if i!=1. If i=1, i is at the root and has no 

parent. b)left_child(i) ia at 2i if 2i<=n. If 2i>n, then i has no left child. c) right_child(i) is at 2i+1 

if 2i +1 <=n. If 2i +1 >n, then i has no right child 

 
2. Linked Representation : We use linked list to represent a binary tree. In a linked list, every 

node consists of three fields. First field, for storing left child address, second for storing actual 

data and third for storing right child address. In this linked list representation, a node has the 

following structure...  

 
typedef struct node *tree_pointer;  

typedef struct node  

{  

int data;  

tree_pointer left_child, right_child; 

};. 

 
Binary Tree Traversals  
When we wanted to display a binary tree, we need to follow some order in which all the nodes of 

that binary tree must be displayed. In any binary tree displaying order of nodes depends on the 



traversal method. Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree 

Traversal.  

There are three types of binary tree traversals.  

1)In - Order Traversal  2)Pre - Order Traversal  3)Post - Order Traversal  

Binary Tree Traversals 

  • 1. In - Order Traversal ( leftChild - root - rightChild )  

 I - D - J - B - F - A - G - K - C – H  

• 2. Pre - Order Traversal ( root - leftChild - rightChild )  

 A - B - D - I - J - F - C - G - K – H  

• 3. Post - Order Traversal ( leftChild - rightChild - root )  

 I - J - D - F - B - K - G - H - C – A 

 
1. In - Order Traversal ( leftChild - root - rightChild )  

In In-Order traversal, the root node is visited between left child and right child. In this traversal, 

the left child node is visited first, then the root node is visited and later we go for visiting right 

child node. This in-order traversal is applicable for every root node of all subtrees in the tree. This 

is performed recursively for all nodes in the tree. In the above example of binary tree, first we try 

to visit left child of root node 'A', but A's left child is a root node for left subtree. so we try to visit 

its (B's) left child 'D' and again D is a root for subtree with nodes D, I and J. So we try to visit its 

left child 'I' and it is the left most child. So first we visit 'I'then go for its root node 'D' and later 

we visit D's right child 'J'. With this we have completed the left part of node B. Then visit 'B' and 

next B's right child 'F' is visited. With this we have completed left part of node A. Then visit root 

node 'A'. With this we have completed left and root parts of node A. Then we go for right part of 

the node A. In right of A again there is a subtree with root C. So go for left child of C and again it 

is a subtree with root G. But G does not have left part so we visit 'G' and then visit G's right child 

K. With this we have completed the left part of node C. Then visit root node'C' and next visit C's 

right child 'H' which is the right most child in the tree so we stop the process. That means here we 

have visited in the order of I - D - J - B - F - A - G - K - C - H using In-Order Traversal.  

In-Order Traversal for above example of binary tree is  

I - D - J - B - F - A - G - K - C – H  

 

Algorithm  

Until all nodes are traversed −  

Step 1 − Recursively traverse left subtree.  

Step 2 − Visit root node.  

Step 3 − Recursively traverse right subtree.  

void inorder(tree_pointer ptr) /* inorder tree traversal */ Recursive  

{  

if (ptr) {  

inorder(ptr->left_child);  

printf(―%d‖, ptr->data);  

indorder(ptr->right_child);  

}  

}  



 

2. Pre - Order Traversal ( root - leftChild - rightChild )  

In Pre-Order traversal, the root node is visited before left child and right child nodes. In this 

traversal, the root node is visited first, then its left child and later its right child. This pre-order 

traversal is applicable for every root node of all subtrees in the tree. In the above example of 

binary tree, first we visit root node 'A' then visit its left child 'B' which is a root for D and F. So 

we visit B's left child 'D' and again D is a root for I and J. So we visit D's left child'I' which is the 

left most child. So next we go for visiting D's right child 'J'. With this we have completed root, 

left and right parts of node D and root, left parts of node B. Next visit B's right child'F'. With this 

we have completed root and left parts of node A. So we go for A's right child 'C' which is a root 

node for G and H. After visiting C, we go for its left child 'G' which is a root for node K. So next 

we visit left of G, but it does not have left child so we go for G's right child 'K'. With this we have 

completed node C's root and left parts. Next visit C's right child 'H' which is the right most child 

in the tree. So we stop the process. That means here we have visited in the order of A-B-D-I-J-F-

C-G-K-H using Pre-Order Traversal.  

 

Algorithm  

Until all nodes are traversed −  

Step 1 − Visit root node.  

Step 2 − Recursively traverse left subtree.  

Step 3 − Recursively traverse right subtree.  

void preorder(tree_pointer ptr) /* preorder tree traversal */ Recursive  

{  

if (ptr) {  

printf(―%d‖, ptr->data);  

preorder(ptr->left_child);  

preorder(ptr->right_child);  

}  

}  

 

 

 

3. Post - Order Traversal ( leftChild - rightChild - root )  

In Post-Order traversal, the root node is visited after left child and right child. In this traversal, 

left child node is visited first, then its right child and then its root node. This is recursively 

performed until the right most node is visited. Here we have visited in the order of I - J - D - F - B 

- K - G - H - C - A using Post-Order Traversal.  

 

Algorithm  

Until all nodes are traversed −  

Step 1 − Recursively traverse left subtree.  

Step 2 − Recursively traverse right subtree.  

Step 3 − Visit root node.  

void postorder(tree_pointer ptr) /* postorder tree traversal */ Recursive  

{  

if (ptr) {  

postorder(ptr->left_child);  

postorder(ptr->right_child);  

printf(―%d‖, ptr->data);  

}  

} 



 
Binary Search Trees  

Binary Search Tree Representation  
Binary Search tree exhibits a special behavior. A node's left child must have value less than its 

parent's value and node's right child must have value greater than it's parent value. 

                                             
 

We're going to implement tree using node object and connecting them through references.  

 

Definition: A binary search tree (BST) is a binary tree. It may be empty. If it is not empty,then 

all nodes follows the below mentioned properties −  

 

keys in a nonempty left subtree (right subtree) are smaller (larger) than the key in the root 

of subtree.  

 

 

 

left sub-tree and right sub-tree and can be defined as −  



left_subtree (keys) ≤ node (key) ≤ right_subtree (keys)  

 
Fig: Example Binary Search Trees 

 

 

Graph 
A graph G = (V,E) is composed of:  
V: set of vertices  
E: set of edges connecting the vertices in V  

• An edge e = (u,v) is a pair of vertices  
Example: 

  
V= {a,b,c,d,e}  
E={(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)}  

 
Graph Terminology  
Undirected Graph:  
An undirected graph is one in which the pair of vertices in a edge is unordered, 

(v0, v1) = (v1,v0)  
Directed Graph:  

A directed graph is one in which each edge is a directed pair of vertices, <v0, 
v1> != <v1,v0>  

                            
 

Complete Graph:  
A complete graph is a graph that has the maximum number of edges for undirected graph with 
n vertices, the maximum number of edges is n(n-1)/2 for directed graph with n vertices, the 
maximum number of edges is n(n-1) 



                                                                         
Adjacent and Incident:  
If (v0, v1) is an edge in an undirected graph,  
– v0 and v1 are adjacent  

– The edge (v0, v1) is incident on vertices v0 and v1  

 
If <v0, v1> is an edge in a directed graph  
– v0 is adjacent to v1, and v1 is adjacent from v0  

– The edge <v0, v1> is incident on v0 and v1  

 
Multigraph:  

In a multigraph, there can be more than one edge from vertex P to 
vertex Q. In a simple graph there is at most one.  

                                       
Graph with self edge or graph with feedback loops:  

A self loop is an edge that connects a vertex to itself. In some graph it makes sense to allow self-
loops; in some it doesn't. 

                                                                     
Subgraph:  



A subgraph of G is a graph G‟ such that V(G‟) is a subset of V(G) and E(G‟) is a 
subset of E(G) 

  

Path:  
A path from vertex vp to vertex vq in a graph G, is a sequence of vertices, vp, 

vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an 
undirected graph  

The length of a path is the number of edges on it.  
Simple Path and Style:  

A simple path is a path in which all vertices, except possibly the first and the 
last, are distinct.  

A cycle is a simple path in which the first and the last vertices are the same  
In an undirected graph G, two vertices, v0 and v1, are connected if there is a 

path in G from v0 to v1.  
An undirected graph is connected if, for every pair of distinct vertices vi, vj, 

there is a path from vi to vj  

                           
Degree  
The degree of a vertex is the number of edges incident to that vertex  

For directed graph,  
– the in-degree of a vertex v is the number of edges that have v as the head  

– the out-degree of a vertex v is the number of edges that have v as the tail  

– if di is the degree of a vertex i in a graph G with n vertices and e edges, the 

number of edges is  

                
Example:  



 
ADT for Graph  
Graph ADT is  

Data structures: a nonempty set of vertices and a set of undirected  
edges, where each edge is a pair of vertices  

Functions: for all graph Graph, v, v1 and v2 Vertices  

 Graph Create()::=return an empty graph 

 Graph InsertVertex(graph, v)::= return a graph with v inserted. V  
has no incident edge. 

 Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between 
v1 and v2  

 Graph DeleteVertex(graph, v)::= return a graph in which v and all edges 

incident to it are removed  

 Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge  

(v1, v2) is removed  

 Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE  

else return FALSE  

 List Adjacent(graph,v)::= return a list of all vertices that are adjacent  

to v  

Graph Representations  
Graph can be represented in the following ways:  
a) Adjacency Matrix  

b) Adjacency Lists  

c) Adjacency Multilists  

a) Adjacency Matrix  
Let G=(V,E) be a graph with n vertices.  

The adjacency matrix of G is a two-dimensional by array, say adj_mat.  
If the edge (vi, vj) is in E(G), adj_mat[i][j]=1  

If there is no such edge in E(G), adj_mat[i][j]=0  
The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph 
need not be symmetric 
Examples for Adjacency Matrix:  



   

  
Merits of Adjacency Matrix  
From the adjacency matrix, to determine the connection of vertices is easy  

The degree of a vertex is  
For a digraph, the row sum is the out_degree, while the column sum is the 

in_degree  

                   
b) Adjacency Lists  

Each row in adjacency matrix is represented as an adjacency list. 



   

  
 
 
Interesting Operations  

 degree of a vertex in an undirected graph  
# of nodes in adjacency list  

 # of edges in a graph  
determined in O(n+e)  

 out-degree of a vertex in a directed graph 
# of nodes in its adjacency list  

 in-degree of a vertex in a directed graph  
traverse the whole data structure  

Orthogonal representation for graph G3 



               

 

                                   
 
c) Adjacency Multilists  
An edge in an undirected graph is represented by two nodes in adjacency list 

representation.  
Adjacency Multilists  
– lists in which nodes may be shared among several lists. (an edge is shared by 

two different paths)  

 
Example for Adjacency Multlists  
Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5  

vertex 2: M2->M4->M6, vertex 3: M3->M5->M6  



       

 
Some Graph Operations  

The following are some graph operations:  
a) Traversal Given G=(V,E) and vertex v, find all w V, such that w connects v.  
– Depth First Search (DFS) preorder tree traversal  

– Breadth First Search (BFS) level order tree traversal  

b) Spanning Trees  

c) Connected Components  
Graph G and its adjacency lists 

  
depth first search: v0, v1, v3, v7, v4, v5, v2, v6  

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7  

 
Depth First Search  
Depth First Search (DFS) algorithm traverses a graph in a depthward motion 

and uses a stack to remember to get the next vertex to start a search, when a 
dead end occurs in any iteration. 



                                                       
As in the example given above, DFS algorithm traverses from A to B to C to D first then to E, then 
to F and lastly to G. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push 
it in a stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will 
pop up all the vertices from the stack, which do not have adjacent vertices.)  

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.  

Step 
 

Traversal 
 

Description 
 

1 

 

Initialize the 
stack. 

 
 

2 

 

Mark S as visited and put it onto 
the stack. Explore any unvisited 
adjacent node from S. We have 

three nodes and we can pick any 
of them. For this example, we 

shall take the node in an 
alphabetical order. 

 



3 

 

Mark A as visited and put it onto 
the stack. Explore any unvisited 

adjacent node from A. Both S and 
D are adjacent to A but we are 
concerned for unvisited nodes 

only. 
 

4 

 

Visit D and mark it as visited 
and put onto the stack. Here, 
we have B and C nodes, which 
are adjacent to D and both are 
unvisited. However, we shall 

again choose in an alphabetical 
order. 

 
 

5 

 

We choose B, mark it as visited 
and put onto the stack. Here B 

does not have any unvisited 
adjacent node. So, we pop B from 

the stack. 
 

6 

 

We check the stack top for return 
to the previous node and check if 
it has any unvisited nodes. Here, 
we find D to be on the top of the 

stack. 
 



7 

 

Only unvisited adjacent node is 
from D is C now. So we visit C, 

mark it as visited and put it onto 
the stack. 

 

 
As C does not have any unvisited adjacent node so we keep popping the stack 
until we find a node that has an unvisited adjacent node. In this case, there's 

none and we keep popping until the stack is empty.  
 

Breadth First Search  
Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a 
queue to remember to get the next vertex to start a search, when a dead end occurs in any 
iteration. 

                                                  

As in the example given above, BFS algorithm traverses from A to B to E to F 

first then to C and G lastly to D. It employs the following rules.  
Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in 

a queue.  

Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.  

Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.  

Step  

 
Traversal  

 
Description  

 



1 

 

Initialize the queue.  

 

2 

 

We start from visiting S 
(starting node), and mark it 
as visited.  

 

3 

 

We then see an unvisited 
adjacent node from S. In 
this example, we have three 
nodes but alphabetically we 
choose A, mark it as visited 
and enqueue it.  

 

4 

 

Next, the unvisited adjacent 
node from S is B. We mark 
it as visited and enqueue it.  

 

5 

 

Next, the unvisited adjacent 
node from S is C. We mark 
it as visited and enqueue it.  

 



6 

 

Now, S is left with no 
unvisited adjacent nodes. 
So, we dequeue and find A.  

 

7 

 

From A we have D as 
unvisited adjacent node. We 
mark it as visited and 
enqueue it.  

 

 
At this stage, we are left with no unmarked (unvisited) nodes. But as per the 
algorithm we keep on dequeuing in order to get all unvisited nodes. When the 

queue gets emptied, the program is over.  
 

Spanning Trees  
When graph G is connected, a depth first or breadth first search starting at any 

vertex will visit all vertices in G  
A spanning tree is any tree that consists solely of edges in G and that includes 

all the vertices  
E(G): T (tree edges) + N (nontree edges) where T: set of edges used during search 

N: set of remaining edges  

Examples of Spanning Tree  

 
Either dfs or bfs can be used to create a spanning tree  
– When dfs is used, the resulting spanning tree is known as a depth first 

spanning tree  

– When bfs is used, the resulting spanning tree is known as a breadth first 

spanning tree  

 
While adding a nontree edge into any spanning tree, this will create a cycle  

DFS VS BFS Spanning Tree 



 
 
A spanning tree is a minimal subgraph, G‟, of G such that V(G‟)=V(G) and G‟ is 
connected.  

Any connected graph with n vertices must have at least n-1 edges.  
A biconnected graph is a connected graph that hasno articulation points.  

 

    

 



biconnected component: a maximal connected subgraph H (no subgraph that is both 
biconnected and properly contains H). 

           

 
Minimum Cost Spanning Tree  

 cost of a spanning tree of a weighted undirected graph is the sum of the 

costs of the edges in the spanning tree  

 

 
– Kruskal  

– Prim  

– Sollin  

 

Kruskal’s Algorithm  
Build a minimum cost spanning tree T by adding edges to T one at a time  

Select the edges for inclusion in T in nondecreasing order of the cost  
An edge is added to T if it does not form a cycle  

Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected  
Kruskal’s algorithm  

1. Sort all the edges in non-decreasing order of their weight.  
2. Pick the smallest edge. Check if it forms a cycle with the spanning 
tree formed so far. If cycle is not formed, include this edge. Else, 
discard it.  
3. Repeat step#2 until there are (V-1) edges in the spanning tree.  
 
Psuedocode for Kruskal’s Algorithm  
Kruskal(G, V, E)  

{  
T= {};  

while(T contains less than n-1 edges && E is not empty)  
{  

choose a least cost edge (v,w) from E;  
delete (v,w) from E;  

if ((v,w) does not create a cycle in T)  
add (v,w) to T  

else  
discard (v,w);  

}  
if (T contains fewer than n-1 edges)  

printf(“No spanning tree\n”);  



} 
Examples for Kruskal’s Algorithm 

                                  

 

 
Prim’s Algorithm  
Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm) 
uses the greedy approach. Prim's algorithm shares a similarity with the 

shortest path first algorithms.  
Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a 

single tree and keeps on adding new nodes to the spanning tree from the given 
graph.  

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, 
we shall use the same example −  

Steps of Prim's Algorithm: The following are the main 3 steps of the Prim's 
Algorithm:  



1. Begin with any vertex which you think would be suitable and add it to the 
tree.  

2. Find an edge that connects any vertex in the tree to any vertex that is not in 
the tree. Note that, we don't have to form cycles.  

3. Stop when n - 1 edges have been added to the tree.  
 

Psuedocode of Prim’s algorithm  
Prims(G,V,E)  

{  
T={};  

TV={0};  
while (T contains fewer than n-1 edges)  

{  
let (u,v) be a least cost edge such that and if (there is no such edge ) break;  

add v to TV;  
add (u,v) to T;  

}  
if (T contains fewer than n-1 edges)  

printf(“No spanning tree\n”);  
} 

 



 



      

 

 



 

 
#define MAX_VERTICES 6  
int cost[][MAX_VERTICES]=  

{{ 0, 50, 10, 1000, 45, 1000},  
{1000, 0, 15, 1000, 10, 1000},  

{ 20, 1000, 0, 15, 1000, 1000},  
{1000, 20, 1000, 0, 35, 1000},  

{1000, 1000, 30, 1000, 0, 1000},  
{1000, 1000, 1000, 3, 1000, 0}};  

int distance[MAX_VERTICES];  
short int found{MAX_VERTICES];  

int n = MAX_VERTICES; 
void shortestpath(int v, int cost[][MAX_ERXTICES], int distance[], int n, 
short int found[])  

{  



int i, u, w;  
for (i=0; i<n; i++)  

{  
found[i] = FALSE;  

distance[i] = cost[v][i];  
}  

found[v] = TRUE;  
distance[v] = 0;  

for (i=0; i<n-2; i++)  
{  

determine n-1 paths from v  
u = choose(distance, n, found);  

found[u] = TRUE;  
for (w=0; w<n; w++)  

if (!found[w])  
if (distance[u]+cost[u][w]<distance[w])  

distance[w] = distance[u]+cost[u][w];  
}  

}  

 
 
All Pairs Shortest Paths  
All pairs shortest path algorithm finds the shortest paths between all pairs of 

vertices.  
 

Solution 1  
3)  

 
Solution 2  

 

iently large 

number  

vertices with an index <= k  

index greater than n-1  

t[i][j]  

 

 
 
 
 
 
 
 

Graph with negative cycle 



 
Algorithm for All Pairs Shortest Paths  
void allcosts(int cost[][MAX_VERTICES], int distance[][MAX_VERTICES], int n)  

{  

int i, j, k;  
for (i=0; i<n; i++)  

for (j=0; j<n; j++) distance[i][j] = cost[i][j];  
for (k=0; k<n; k++)  

for (i=0; i<n; i++)  
for (j=0; j<n; j++)  

if (distance[i][k]+distance[k][j] < distance[i][j])  
distance[i][j]= distance[i][k]+distance[k][j];  

}  
Example  

Directed graph and its cost matrix 

 



 
Transitive Closure  
           Goal: given a graph with unweighted edges, determine if there is a path 
from i to j for all i and j.  

(1) Require positive path (> 0) lengths. transitive closure matrix  

reflexive transitive closure matrix 

 
 
 

 



Unit III  
Algorithms – Priority Queues - Heaps – Heap Sort – Merge Sort – Quick Sort – 
Binary Search – Finding the Maximum and Minimum. 

 
Algorithm 

 An algorithm is a step-by-step procedure to solve a problem in a finite 
number of steps. 

 Branching and repetition are included in the steps of an algorithm. 

 This branching and repetition depend on the problem for which Algorithm is 
developed. 

 All the steps of Algorithm during the definition should be written in a 

human-understandable language which does not depend on any 
programming language. 

 we can choose any programming language to implement the Algorithm. 

 Pseudocode and flow chart are popular ways to represent an algorithm. 
 

An algorithm must satisfy the following criteria: 
1. Input: An algorithm should have zero or more but should be a finite number of 
inputs. We can also say that it is essential for any algorithm before starting. Input 
should be given to it initially before the Algorithm begins. 

2. Output: An algorithm must give at least one required result from the given set 

of input values. These output values are known as the solution to a problem. 

3. Definiteness: Each step must be clear, unambiguous, and precisely defined. 

4. Finiteness: Finiteness means Algorithm should be terminated after a finite 

number of steps. Also, each step should be finished in a finite amount of time. 

5. Effectiveness: Each step of the Algorithm must be feasible i.e., it should be 

practically possible to perform the action. Every Algorithm is generally expected to 
be effective. 

 
Divide and Conquer  
Divide and Conquer is one of the best-known general algorithm design 
technique. It works according to the following general plan:  

 Given a function to compute on „n‟ inputs the divide-and-conquer 
strategy suggests splitting the inputs into „k‟ distinct subsets, 1<k<=n, 
yielding „k‟ sub problems.  

 These sub problems must be solved, and then a method must be found 
to combine sub solutions into a solution of the whole.  

  If the sub problems are still relatively large, then the divide-and-conquer 
strategy can possibly be reapplied.  

  Often the sub problems resulting from a divide-and-conquer design are 
of the same type as the original problem. For those cases the 

reapplication of the divide-and- conquer principle is naturally expressed 
by a recursive algorithm. 

  

A typical case with k=2is diagrammatically shown below. 



      

  

In the above specification,  

 Initially DAndC(P) is invoked, where „P‟ is the problem to be solved.  

 Small (P) is a Boolean-valued function that determines whether the 

input size is small enough that the answer can be computed without 
splitting. If this so, the function „S’ is invoked. Otherwise, the problem P 

is divided into smaller sub problems. These sub problems P1, P2 …Pk are 
solved by recursive application of DAndC.  

 Combine is a function that determines the solution to P using the 

solutions to the „k‟ sub problems.  

 

Binary Search  
 Problem definition: Let ai, 1 ≤ i ≤ n be a list of elements that are sorted in non-

decreasing order. The problem is to find whether a given element x is present in the list 

or not. If x is present we have to determine a value j (element‘s position) such that aj=x. 

If x is not in the list, then j is set to zero.  

 Solution: Let P = (n, ai…al , x) denote an arbitrary instance of search problem where n 

is the number of elements in the list, ai…al is the list of elements and x is the key element 

to be searched for in the given list. Binary search on the list is done as follows:  

 Step1: Pick an index q in the middle range [i, l] i.e. q= [(n + 1)/2] and compare x with 

aq. Step 2: if x = aq i.e key element is equal to mid element, the problem is immediately 

solved.  

 Step 3: if x <aqin this case x has to be searched for only in the sub-list ai, ai+1, ……, aq- 

Therefore, problem reduces to (q-i, ai…aq-1, x).  

 Step 4: if x >aq,x has to be searched for only in the sub-list aq+1, ...,., al . Therefore problem 

reduces to (l-i, aq+1…al, x).  

 For the above solution procedure, the Algorithm can be implemented as recursive or non- 

recursive algorithm. 

Recursive binary search algorithm  



 
Iterative binary search: 

 

 
 
Finding the maximum and minimum  
Problem statement: Given a list of n elements, the problem is to find the maximum and 

minimum items.  

StraightMaxMin: A simple and straight forward algorithm to achieve this is given below. 

  

 
 



Explanation:  
StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases.  

By realizing the comparison of a[i]>max is false, improvement in a algorithm can be done. 

Hence we can replace the contents of the for loop by,  
If(a[i]>Max) then Max = a[i]; Else if (a[i]<min) min=a[i]  

On the average a[i] is > max half the time. So, the avg. no. of comparison is 3n/2-1.  

Algorithm based on Divide and Conquer strategy  
Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. Here ‗n‘ is the no. of 

elements in the list (a[i],….,a[j]) and we are interested in finding the maximum and minimum of 

the list. If the list has more than 2 elements, P has to be divided into smaller instances.  

For example, we might divide ‗P‘ into the 2 instances, P1= ( [n/2],a[1], a[n/2])  

P2= (n-[n/2], a[[n/2]+1],……., a[n])  

After having divided ‗P‘ into 2 smaller sub problems, we can solve them by recursively invoking 

the same divide-and-conquer algorithm. 

 Algorithm: 

 

 



 

 
 

Compared with the straight forward method (2n-2) this method saves 25% in 

comparisons.  
 

Space Complexity  
Compared to the straight forward method, the MaxMin method requires extra 

stack space for i, j, max, min, max1 and min1. Given n elements there will be 
[log2n] + 1 levels of recursion and we need to save seven values for each 

recursive call. (6 + 1 for return address).  
 

 Merge Sort  



Merge sort is a perfect example of a successful application of the divide-and 
conquer technique. It sorts a given array A [O ... n - 1] by dividing it into two 
halves A [0 .. \n/2]-1] and A [ ⎝n/2] .. n-1], sorting each of them recursively, and 

then merging the two smaller sorted arrays into a single sorted one.  

 
The merging of two sorted arrays can be done as follows.  

 Two pointers (array indices) are initialized to point to the first elements of 

the arrays being merged. 

  The elements pointed to are compared, and the smaller of them is added 
to a new array being constructed 

 After that, the index of the smaller element is incremented to point to its 

immediate successor in the array it was copied from. This operation is 
repeated until one of the two given arrays is exhausted, and then the 

remaining elements of the other array are copied to the end of the new 
array.  

 

Example:  
The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in 

the figure. 



Analysis  
Here the basic operation is key comparison. As merge sort execution does not 

depend on the order of the data, best case and average case runtime are the 
same as worst case runtime.  

Worst case: During key comparison, neither of the two arrays becomes empty 
before the  

other one contains just one element leads to the worst case of merge sort. 
Assuming for 

simplicity that total number of elements n is a power of 2, the recurrence 
relation for the  

number of key comparisons C(n) is 

  
where, Cmerge(n) is the number of key comparisons made during the merging 

stage.  
Let us analyze Cmerge(n), the number of key comparisons performed during the 

merging stage. At each step, exactly one comparison is made, after which the 
total number of elements in the two arrays still needing to be processed is 

reduced by 1. In the worst case, neither of the two arrays becomes empty before 
the other one contains just one element (e.g., smaller elements may come from 

the alternating arrays).Therefore, for the worst case, Cmerge(n) = n –1.  
Now, 

 
Solving the recurrence equation using master theorem:  
Here a = 2, b = 2, f (n) = n, d = 1. Therefore 2 = 21, case 2 holds in the master 

theorem  
Cworst(n) = Θ (nd log n) = Θ (n1 log n) = Θ (n log n)Therefore Cworst(n) = Θ (n log 

n)  
Advantages:  

 Number of comparisons performed is nearly optimal.  

 For large n, the number of comparisons made by this algorithm in the 

average case turns out to be about 0.25n less and hence is also in Θ(n log 

n).  



 Mergesort will never degrade to O (n2)  

 Another advantage of mergesort over quicksort and heapsort is its 
stability. (A sorting algorithm is said to be stable if two objects with 

equal keys appear in the same order in sorted output as they appear in 
the input array to be sorted.)  

Limitations:  

 The principal shortcoming of mergesort is the linear amount [O(n) ] of extra 
storage the algorithm requires. Though merging can be done in-place, the 

resulting algorithm is quite complicated and of theoretical interest only.  
 

Variations of merge sort  
1. The algorithm can be implemented bottom up by merging pairs of the array‟s 

elements, then merging the sorted pairs, and so on. (If n is not a power of 2, 
only slight bookkeeping complications arise.) This avoids the time and space 

overhead of using a stack to handle recursive calls.  
2. We can divide a list to be sorted in more than two parts, sort each 

recursively, and then merge them together. This scheme, which is particularly 
useful for sorting files residing on secondary memory devices, is called multiway 

mergesort. 

Quick sort  
Quicksort is the other important sorting algorithm that is based on the divide-and-conquer 

approach. Unlike mergesort, which divides its input elements according to their position in the 

array, quicksort divides (or partitions) them according to their value.  

A partition is an arrangement of the array‘s elements so that all the elements to the left of some 

element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are greater 

than or equal to it:  

 
Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array,  

and we can continue sorting the two subarrays to the left and the right of A[s] independently (e.g., 

by the same method).  

In quick sort, the entire work happens in the division stage, with no work required to combine the 

solutions to the sub problems. 

  
Partitioning  
We start by selecting a pivot—an element with respect to whose value we are going to divide  

the subarray. There are several different strategies for selecting a pivot. We use  



the sophisticated method suggested by C.A.R. Hoare, the prominent British computer scientist 

who invented quicksort.  

Select the subarray‘s first element: p = A[l].Now scan the subarray from both ends, comparing 

the subarray‘s elements to the pivot.  

The left-to-right scan, denoted below by index pointer i, starts with the second element. Since 

we want elements smaller than the pivot to be in the left part of the subarray, this scan skips over 

elements that are smaller than the pivot and stops upon encountering the first element greater than 
or equal to the pivot.  

The right-to-left scan, denoted below by index pointer j, starts with the last element of the 

subarray. Since we want elements larger than the pivot to be in the right part of the subarray, this 
scan skips over elements that are larger than the pivot and stops on encountering the first 
element smaller than or equal to the pivot.  

After both scans stop, three situations may arise, depending on whether or not 
the scanning indices have crossed.  

 If scanning indices i and j have not crossed, i.e., i< j, we simply exchange 
A[i] and A[j ] and resume the scans by incrementing I and decrementing j, 

respectively: 

 
                   If the scanning indices have crossed over, i.e., i> 

j, we will have partitioned the subarray after exchanging the pivot with 
A[j]: 

 

If the scanning indices stop while pointing to the same element, i.e., i = j, the 

value they are pointing to must be equal to p. Thus, we have the subarray 
partitioned, with the split position s = i = j : 

 



 

 

 



Analysis  
Best Case -Here the basic operation is key comparison. Number of key 

comparisons made before a partition is achieved is n + 1 if the scanning indices 
cross over and n if they coincide. If all the splits happen in the middle of 

corresponding subarrays, we will have the best case. The number of key 
comparisons in the best case satisfies the recurrence,  

 
According to the Master Theorem, Cbest(n) ∈Θ(n log2 n); solving it exactly for n = 

2k yields  
Cbest(n) = n log2 n.  

Worst Case – In the worst case, all the splits will be skewed to the extreme: one 
of the two subarrays will be empty, and the size of the other will be just 1 less 

than the size of the subarray being partitioned. This unfortunate situation will 
happen, in particular, for increasing arrays. Indeed, if A[0..n − 1] is a strictly 

increasing array and we use A[0] as the pivot, the left-to-right scan will stop on 
A[1] while the right-to-left scan will go all the way to reach A[0], indicating the 

split at position 0:So, after making n + 1 comparisons to get to this partition 
and exchanging the pivot A[0] with itself, the algorithm will be left with the 

strictly increasing array A[1..n − 1] to sort. This sorting of strictly increasing 
arrays of diminishing sizes will continue until the last one A[n−2.. n−1] has 

been processed. The total number of key comparisons made will be equal to  

 
Average Case - Let Cavg(n) be the average number of key comparisons made by 

quicksort on a randomly ordered array of size n. A partition can happen in any 
position s (0 ≤ s ≤ n−1) after n+1comparisons are made to achieve the partition. 

After the partition, the left and right subarrays will have s and n − 1− s 
elements, respectively. Assuming that the partition split can happen in each 

position s with the same probability 1/n, we get the following recurrence 
relation: 

  
Its solution, which is much trickier than the worst- and best-case analyses, 

turns out to be  

  
Thus, on the average, quicksort makes only 39% more comparisons than in the 
best case. Moreover, its innermost loop is so efficient that it usually runs faster 

than mergesort on randomly ordered arrays of nontrivial sizes. This certainly 
justifies the name given to the algorithm by its inventor. 

 
Variations: Because of quicksort‟s importance, there have been persistent 

efforts over the years to refine the basic algorithm. Among several 
improvements discovered by researchers are:  
Better pivot selection methods such as randomized quicksort that uses a 

random element or the median-of-three method that uses the median of the 
leftmost, rightmost, and the middle element of the array  



Switching to insertion sort on very small subarrays (between 5 and 15 
elements for most computer systems) or not sorting small subarrays at all and 

finishing the algorithm with insertion sort applied to the entire nearly sorted 
array  

Modifications of the partitioning algorithm such as the three-way partition into 

segments smaller than, equal to, and larger than the pivot  

 
Limitations: 1. It is not stable. 2. It requires a stack to store parameters of 

subarrays that are yet to be sorted. 3. While Performance on randomly ordered 
arrays is known to be sensitive not only to the implementation details of the 

algorithm but also to both computer architecture and data type. 
 

 

Unit - 4 
Greedy Method : The General Method – Optimal Storage on Tapes – Knapsack Problem – Job 

Sequencing with Deadlines – Optimal Merge Patterns. 

GENERAL METHOD  

Greedy Method  
Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset that 

satisfies these constraints is called a feasible solution. We need to find a feasible solution 

that either maximizes or minimizes the objective function. A feasible solution that does 

this is called an optimal solution.  

The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, a 

decision is made regarding whether or not a particular input is in an optimal solution. 

This is done by considering the inputs in an order determined by some selection 

procedure. If the inclusion of the next input, into the partially constructed optimal 

solution will result in an infeasible solution then this input is not added to the partial 

solution. The selection procedure itself is based on some optimization measure. Several 

optimization measures are plausible for a given problem. Most of them, however, will 

result in algorithms that generate sub-optimal solutions. This version of greedy 

technique is called subset paradigm. Some problems like Knapsack, Job sequencing with 

deadlines and minimum cost spanning trees are based on subset paradigm.  

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are 

based on ordering paradigm.  

 

CONTROL ABSTRACTION  

Algorithm Greedy (a, n)  

// a(1 : n) contains the „n‟ inputs  

{  

solution := ; // initialize the solution to empty for i:=1 to n do  

{  

x := select (a);  

if feasible (solution, x) then  

solution := Union (Solution, x);  

}  

return solution;  

}  



Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are 

properly implemented.  

The function select selects an input from „a‟, removes it and assigns its value to „x‟. Feasible is a 

Boolean valued function, which determines if „x‟ can be included into the solution vector. The 

function Union combines „x‟ with solution and updates the objective function. 

KNAPSACK PROBLEM  
Let us apply the greedy method to solve the knapsack problem. We are given „n‟ objects 

and a knapsack. The object „i‟ has a weight wi and the knapsack has a capacity „m‟. If a 

fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi xi is 

earned. The objective is to fill the knapsack that maximizes the total profit earned.  

Since the knapsack capacity is „m‟, we require the total weight of all chosen objects to be at 

most „m‟. The problem is stated as: 

 

The profits and weights are positive numbers.  

Algorithm  

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy.  

 

Algorithm GreedyKnapsack (m, n)  

// P[1 : n] and w[1 : n] contain the profits and weights respectively of  

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1].  

// m is the knapsack size and x[1: n] is the solution vector. 

{  

for i := 1 to n do x[i] := 0.0 // initialize x U := m;  

for i := 1 to n do  

{  

if (w(i) > U) then break;  

x [i] := 1.0; U := U – w[i];  

}  

if (i < n) then x[i] := U / w[i];  

}  

Running time:  

The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we disregard 

the time to initially sort the objects, the algorithm requires only O(n) time.  

Example:  

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = (25, 24, 

15) and (w1, w2, w3) = (18, 15, 10). 

 

 OPTIMAL STORAGE ON TAPES  
There are „n‟ programs that are to be stored on a computer tape of length „L‟. Each 

program „i‟ is of length li, 1 ≤ i ≤ n. All the programs can be stored on the tape if and 

only if the sum of the lengths of the programs is at most „L‟.  

We shall assume that whenever a program is to be retrieved from this tape, the tape is 

initially positioned at the front. If the programs are stored in the order i = i1, i2, . . . . .  

, in, the time tJ needed to retrieve program iJ is proportional to 



 

 

 

 

Example  

Let n = 3, (l1, l2, l3) = (5, 10, 3). Then find the optimal ordering?  

Solution:  

There are n! = 6 possible orderings. They are: 

 

 

Algorithm:  



The algorithm for assigning programs to tapes is as follows:  

Algorithm Store (n, m)  

// n is the number of programs and m the number of tapes  

{  

j := 0; // next tape to store on for i :=1 to n do  

{  

Print („append program‟, i, „to permutation for tape‟, j); j := (j + 1) mod m;  

}  

}  

On any given tape, the programs are stored in non-decreasing order of their lengths.  

 

 

JOB SEQUENCING WITH DEADLINES  
 

When we are given a set of „n‟ jobs. Associated with each Job i, deadline di > 0 and 

profit Pi > 0. For any job „i‟ the profit pi is earned iff the job is completed by its deadline. 

Only one machine is available for processing jobs. An optimal solution is the feasible 

solution with maximum profit.  

Sort the jobs in „j‟ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ k 

are the jobs in „j‟ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is 

feasible, we have just to insert i into J preserving the deadline ordering and then verify 

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1.  

 

 

Example:  

Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1 d2 d3 d4) = (2, 1, 2, 1). The  

feasible solutions and their values are: 

 

 



 

 

 

 

OPTIMAL MERGE PATERNS  
Given „n‟ sorted files, there are many ways to pair wise merge them into a single sorted 

file. As, different pairings require different amounts of computing time, we want to 

determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise 

merge „n‟ sorted files together. This type of merging is called as 2-way merge patterns. 

To merge an n-record file and an m-record file requires possibly n + m record moves, 

the obvious choice choice is, at each step merge the two smallest files together. The 

two-way merge patterns can be represented by binary merge trees.  

 

Algorithm to Generate Two-way Merge Tree:  

 

struct treenode  

{  

  treenode * lchild; 

  treenode * rchild;  

}; 



 

Example 1:  

Suppose we are having three sorted files X1, X2 and X3 of length 30, 20, and 10 records each. 

Merging of the files can be carried out as follows: 

 

Example 2:  

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to 

find optimal way of pair wise merging to give an optimal solution using binary merge 

tree representation.  

Solution:  

 
Merge X4 and X3 to get 15 record moves. Call this Z1.  

 
Merge Z1 and X1 to get 35 record moves. Call this Z2.  



 

 
 

 
Unit V  

Back tracking: The General Method – The 8-Queens Problem – Sum of Subsets – Graph Coloring.   

 

 Backtracking  
Some problems can be solved, by exhaustive search. The exhaustive-search technique 

suggests generating all candidate solutions and then identifying the one (or the ones) with a 

desired property.  

Backtracking is a more intelligent variation of this approach. The principal idea is to 

construct solutions one component at a time and evaluate such partially constructed 

candidates as follows. If a partially constructed solution can be developed further without 

violating the problem‘s constraints, it is done by taking the first remaining legitimate option 

for the next component. If there is no legitimate option for the next component, no 

alternatives for any remaining component need to be considered. In this case, the algorithm 



backtracks to replace the last component of the partially constructed solution with its next 

option.  

It is convenient to implement this kind of processing by constructing a tree of choices being 

made, called the state-space tree. Its root represents an initial state before the search for a 

solution begins. The nodes of the first level in the tree represent the choices made for the first 

component of a solution; the nodes of the second level represent the choices for the second 

component, and soon. A node in a state-space tree is said to be promising if it corresponds to 

a partially constructed solution that may still lead to a complete solution; otherwise, it is 

called non-promising. Leaves represent either non-promising dead ends or complete 

solutions found by the algorithm.  

In the majority of cases, a state space tree for a backtracking algorithm is constructed in the 

manner of depth-first search. If the current node is promising, its child is generated by adding 

the first remaining legitimate option for the next component of a solution, and the processing 

moves to this child. If the current node turns out to be non-promising, the algorithm 

backtracks to the node‘s parent to consider the next possible option for its last component; if 

there is no such option, it backtracks one more level up the tree, and so on. Finally, if the 

algorithm reaches a complete solution to the problem, it either stops (if just one solution is 

required) or continues searching for other possible solutions.  

 

General method 

 

 
 

 

 
 

 

 



 
 

 
 

General Algorithm (Recursive) 

 
 

General Algorithm (Iterative) 



 
  General Algorithm for backtracking 

 
 

N-Queens problem  
The problem is to place n queens on an n × n chessboard so that no two queens attack each other 

by being in the same row or in the same column or on the same diagonal.  
So let us consider the four-queens problem and solve it by the backtracking technique. Since each of the 

four queens has to be placed in its own row, all we need to do is to assign a column for each queen on the 

board presented in figure. 

 
We start with the empty board and then place queen 1 in the first possible position of its row, which is 

in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1 and 2, in the first 

acceptable position for it, which is square (2, 3), the square in row 2 and column 3. This proves to be a 

dead end because there is no acceptable position for queen 3. So, the algorithm backtracks and puts 

queen 2 in the next possible position at (2, 4). Then queen 3 is placed at (3, 2), which proves to be 

another dead end. The algorithm then backtracks all the way to queen 1 and moves it to (1, 2). Queen 2 

then goes to (2, 4), queen 3 to(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-

space tree of this search is shown in figure. 



 
 

Figure: State-space tree of solving the four-queens problem by backtracking. × denotes an 

unsuccessful attempt to place a queen in the indicated column. The numbers above the nodes indicate 

the order in which the nodes are generated.  

If other solutions need to be found, the algorithm can simply resume its operations at the leaf at 

which it stopped. Alternatively, we can use the board‘s symmetry for this purpose.  

Finally, it should be pointed out that a single solution to the n-queens problem for any n ≥ 4 can 

be found in linear time.  
Note: The algorithm NQueens() is not in the syllabus. It is given here for interested learners. The 

algorithm is referred from textbook T2. 

 
 



 
 

 

 Sum of subsets problem  
Problem definition: Find a subset of a given set A = {a1, . . . , an} of n positive integers whose 

sum is equal to a given positive integer d.  

For example, for A = {1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}. Of 

course, some instances of this problem may have no solutions.  

It is convenient to sort the set‘s elements in increasing order. So, we will assume that  

a1< a2< . . . < an.  

The state-space tree can be constructed as a binary tree like that in Figure shown below for the 

instance A = {3, 5, 6, 7} and d = 15.  
The number inside a node is the sum of the elements already included in the subsets represented by the 

node. The inequality below a leaf indicates the reason for its termination. 

 

 

 

 
The root of the tree represents the starting point, with no decisions about the given elements made 

as yet. Its left and right children represent, respectively, inclusion and exclusion of a1 in a set 

being sought.  

Similarly, going to the left from a node of the first level corresponds to inclusion of a2 while 

going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node on 

the ith level of the tree indicates which of the first in numbers have been included in the subsets 

represented by that node.  



We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a solution to 

the problem. We can either report this result and stop or, if all the solutions need to be found, continue by 

backtracking to the node‘s parent. If s is not equal to d, we can terminate the node as non-promising if 

either of the following two inequalities holds: 

 
Example: Apply backtracking to solve the following instance of the subset sum problem: A  

= {1, 3, 4, 5} and d = 11.  

 

Graph coloring 
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