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UNIT – I 

Introduction to compilers:  

Compiler Design is the structure and set of principles that guide the translation, analysis, 

and optimization process of a compiler. 

A Compiler is computer software that transforms program source code which is written 

in a high-level language into low-level machine code. It essentially translates the code 

written in one programming language to another language without changing the logic of 

the code. 

The Compiler also makes the code output efficient and optimized for execution time and 

memory space. The compiling process has basic translation mechanisms and error 

detection; it can’t compile code if there is an error. The compiler process runs through 

syntax, lexical, and semantic analysis in the front end and generates optimized code in the 

back end. 

When executing, the compiler first analyzes the entire language statements one after 

the other syntactically and then, if it’s successful, builds the output code, making sure that 

statements that refer to other statements are referred to appropriately, traditionally; the 

output code is called Object Code. 

Types of Compiler 

1. Cross Compiler: This enables the creation of code for a platform other than the one 

on which the compiler is running. For instance, it runs on a machine ‘A’ and produces 

code for another machine ‘B’. 

2. Source-to-source Compiler: This can be referred to as a transcompiler or transpiler 

and it is a compiler that translates source code written in one programming language 

into source code of another programming language. 

3. Single Pass Compiler: This directly transforms source code into machine code. For 

instance, Pascal programming language. 

4. Two-Pass Compiler: This goes through the code to be translated twice; on the first 

pass it checks the syntax of statements and constructs a table of symbols, while on the 

second pass it actually translates program statements into machine language. 
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5. Multi-Pass Compiler: This is a type of compiler that processes the source code or 

abstract syntax tree of a program multiple times before translating it to machine 

language. 

Language Processing Systems Steps 

1. High-Level Language: These are programs that 

contain #define or #include directives such as #include or #define.  

2. They are closer to human’s language but far from machines. The (#) tags are referred 

to as preprocessor directives. They tell the pre-processor about what to do. 

3. Pre-Processor: This produces input for the compiler and also deals with file 

inclusion, augmentation, macro-processing, language extension, etc. It removes all 

the #include directives by including the files called file inclusion and all 

the #define directives using macro expansion. 

4. Assembler: This translates assembly language code into machine understandable 

language. Each platform (OS + Hardware) has its own assembler. The output of an 

assembler is known as an object file which is a combination of machine instruction 

along with the data required to store these instructions in memory. 

5. Interpreter: An interpreter converts high-level language into low-level machine 

language almost similar to what Compiler does. The major difference between both is 

that the interpreter reads and transforms code line by line while Compiler reads the 

entire code at once and outputs the machine code directly. Another difference is, 

Interpreted programs are usually slower with respect to compiled ones. 

6. Reloadable Machine Code: This can be loaded at any point in time and can be run. 

This enables the movement of a program using its unique address identifier. 

7. Linker: It links and merges a variety of object files into a single file to make it 

executable. The linker searches for defined modules in a program and finds out the 

memory location where all modules are stored. 

8. Loader: It loads the output from the Linker in memory and executes it. It basically 

loads executable files into memory and runs them 

Features of a Compiler 

Correctness: A major feature of a compiler is its correctness, and accuracy to compile 

the given code input into its exact logic in the output object code due to its being 
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developed using rigorous testing techniques (often called compiler validation) on an 

existing compiler. 

Recognize legal and illegal program constructs: Compilers are designed in such a way 

that they can identify which part of the program formed from one or more lexical tokens 

using the appropriate rules of the language is syntactically allowable and which is not. 

Good Error reporting/handling: A compiler is designed to know how to parse the error 

encountered from lack be it a syntactical error, insufficient memory errors, or logic errors 

are meticulously handled and displayed to the user. 

The Speed of the target code: Compilers make sure that the target code is fast because 

in huge size code its a serious limitation if the code is slow, some compilers do so by 

translating the byte code into target code to run in the specific processor using classical 

compiling methods. 

Preserve the correct meaning of the code: A compiler makes sure that the code logic is 

preserved to the tiniest detail because a single loss in the code logic can change the whole 

code logic and output the wrong result, so during the design process, the compiler goes 

through a whole lot of testing to make sure that no code logic is lost during the compiling 

process. 

Code debugging help: Compilers make help the debugging process easier by pointing 

out the error line to the programmer and telling them the type of error that is encountered 

so they would know how to start fixing it. 

Benefits of Using a Compiler: 

Improved performance: Using a compiler increases your program performance, by 

making the program optimized, portable, and easily run on the specific hardware. 

Reduced system load: Compilers make your program run faster than interpreted 

programs because it compiles the program only once, hence reducing system load and 

response time when next you run the program. 

Protection for source code and programs: Compilers protect your program source by 

discouraging other users from making unauthorized changes to your programs, you as the 

author can distribute your programs in object code. 

Portability of compiled programs: Compiled programs are always portable meaning 

that you can transfer it from one machine to another without worrying about 

dependencies as it is all compiled together. 
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Analysis of source program: 

  In Compiling, analysis consists of three phases:  

Linear Analysis: In which the stream of characters making up the source program is 

read from left to right and grouped into tokens that are sequences of characters having a 

collective meaning.   

Hierarchical Analysis: In which characters or tokens are grouped hierarchically in to 

nested collections with collective meaning.   

Semantic Analysis: In which certain checks are performed to ensure that the 

components of a program fit together meaningfully. 

Phases of compiler  

Compiler operates in various phases each phase transforms the source program from one 

representation to another. Every phase takes inputs from its previous stage and feeds its 

output to the next phase of the compiler. 

There are 6 phases in a compiler. Each of this phase help in converting the high-level 

langue the machine code. The phases of a compiler are: 

Lexical analysis 

Syntax analysis 

Semantic analysis 

Intermediate code generator 

Code optimizer 

Code generator 
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Phase 1: Lexical Analysis 

Lexical Analysis is the first phase when compiler scans the source code. This process can 

be left to right, character by character, and group these characters into tokens. 

Here, the character stream from the source program is grouped in meaningful sequences 

by identifying the tokens. It makes the entry of the corresponding tickets into the symbol 

table and passes that token to next phase. 

 

The primary functions of this phase are: 

 Identify the lexical units in a source code 

 Classify lexical units into classes like constants, reserved words, and enter them in 

different tables. It will Ignore comments in the source program 

 Identify token which is not a part of the language 

Example: 

x = y + 10 
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Tokens 

X identifier 

= Assignment operator 

Y identifier 

+ Addition operator 

10 Number 

Phase 2: Syntax Analysis 

Syntax analysis is all about discovering structure in code. It determines whether or not a 

text follows the expected format. The main aim of this phase is to make sure that the 

source code was written by the programmer is correct or not. 

Syntax analysis is based on the rules based on the specific programming language by 

constructing the parse tree with the help of tokens. It also determines the structure of 

source language and grammar or syntax of the language. 

 

List of tasks performed in this phase: 

 Obtain tokens from the lexical analyzer 

 Checks if the expression is syntactically correct or not 

 Report all syntax errors 

 Construct a hierarchical structure which is known as a parse tree 

Example 

Any identifier/number is an expression 

If x is an identifier and y+10 is an expression, then x= y+10 is a statement. 

Consider parse tree for the following example 

(a+b)*c 
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In Parse Tree 

 Interior node: record with an operator filed and two files for children 

 Leaf: records with 2/more fields; one for token and other information about the 

token 

 Ensure that the components of the program fit together meaningfully 

 Gathers type information and checks for type compatibility 

 Checks operands are permitted by the source language 

Phase 3: Semantic Analysis 

Semantic analysis checks the semantic consistency of the code. It uses the syntax tree 

of the previous phase along with the symbol table to verify that the given source code 

is semantically consistent. It also checks whether the code is conveying an appropriate 

meaning. 

Semantic Analyzer will check for Type mismatches, incompatible operands, a 

function called with improper arguments, an undeclared variable, etc. 

 

Functions of Semantic analyses phase are: 

 Helps you to store type information gathered and save it in symbol table or syntax 

tree 

 Allows you to perform type checking 

 In the case of type mismatch, where there are no exact type correction rules which 

satisfy the desired operation a semantic error is shown 

 Collects type information and checks for type compatibility 

 Checks if the source language permits the operands or not 

Example 

float x = 20.2; 

float y = x*30; 
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In the above code, the semantic analyzer will typecast the integer 30 to float 30.0 before 

multiplication. 

Phase 4: Intermediate Code Generation 

Once the semantic analysis phase is over the compiler, generates intermediate code for 

the target machine. It represents a program for some abstract machine. 

Intermediate code is between the high-level and machine level language. This 

intermediate code needs to be generated in such a manner that makes it easy to translate 

it into the target machine code. 

Functions on Intermediate Code generation: 

 It should be generated from the semantic representation of the source program 

 Holds the values computed during the process of translation 

 Helps you to translate the intermediate code into target language 

 Allows you to maintain precedence ordering of the source language 

 It holds the correct number of operands of the instruction 

Example 

For example, 

total = count + rate * 5 

Intermediate code with the help of address code method is: 

 t1 := int (5)  

t2 := rate * t1  

t3 := count + t2 

total := t3 

Phase 5: Code Optimization 

The next phase of is code optimization or Intermediate code. This phase removes 

unnecessary code line and arranges the sequence of statements to speed up the execution 

of the program without wasting resources. The main goal of this phase is to improve on 

the intermediate code to generate a code that runs faster and occupies less space. 

 

The primary functions of this phase are: 

 It helps you to establish a trade-off between execution and compilation speed 

 Improves the running time of the target program 

 Generates streamlined code still in intermediate representation 

 Removing unreachable code and getting rid of unused variables 
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 Removing statements which are not altered from the loop 

 

Example: 

Consider the following code 

a = intofloat(10) 

b = c * a 

d = e + b 

f = d 

Can become 

b =c * 10.0 

f = e+b 

 

Phase 6: Code Generation 

Code generation is the last and final phase of a compiler. It gets inputs from code 

optimization phases and produces the page code or object code as a result. The objective 

of this phase is to allocate storage and generate reloadable machine code. 

It also allocates memory locations for the variable. The instructions in the intermediate 

code are converted into machine instructions. This phase coverts the optimize or 

intermediate code into the target language. 

The target language is the machine code. Therefore, all the memory locations and 

registers are also selected and allotted during this phase. The code generated by this 

phase is executed to take inputs and generate expected outputs. 

Example: 

a = b + 60.0 

Would be possibly translated to registers. 

MOVF a, R1 

MULF #60.0, R2 

ADDF R1, R2 
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Symbol Table Management 

A symbol table contains a record for each identifier with fields for the attributes of the 

identifier. This component makes it easier for the compiler to search the identifier record 

and retrieve it quickly. The symbol table also helps you for the scope management. The 

symbol table and error handler interact with all the phases and symbol table update 

correspondingly. 

Error Handling Routine: 

In the compiler design process error may occur in all the below-given phases: 

 Lexical analyzer: Wrongly spelled tokens 

 Syntax analyzer: Missing parenthesis 

 Intermediate code generator: Mismatched operands for an operator 

 Code Optimizer: When the statement is not reachable 

 Code Generator: When the memory is full or proper registers are not allocated 

 Symbol tables: Error of multiple declared identifiers 

Most common errors are invalid character sequence in scanning, invalid token sequences 

in type, scope error, and parsing in semantic analysis. 

The error may be encountered in any of the above phases. After finding errors, the phase 

needs to deal with the errors to continue with the compilation process. These errors need 

to be reported to the error handler which handles the error to perform the compilation 

process. Generally, the errors are reported in the form of message. 

GROUPING OF PHASES 

The phases of a compiler can be grouped as Front end and Back end. 

Front end comprises of phases which are dependent on the input (source language) and 

independent on the target machine (target language).  It includes lexical and syntactic 

analysis, symbol table management, semantic analysis and the generation of 

intermediate code. Code optimization can also be done by the front end. • It also 

includes error handling at the phases concerned. 

Front end of a compiler consists of the phases 

• Lexical analysis. 

• Syntax analysis. 

• Semantic analysis. 

• Intermediate code generation. 
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Back end  

Back end comprises of those phases of the compiler that are dependent on the target 

machine and independent on the source language.  This includes code optimization, 

code generation.  In addition to this, it also encompasses error handling and symbol 

table management operations. 

Back end of a compiler contains 

• Code optimization. 

• Code generation. 

 

Passes 

• The phases of compiler can be implemented in a single pass by marking the primary 

actions viz. reading of input file and writing to the output file. 

• Several phases of compiler are grouped into one pass in such a way that the operations 

in each and every phase are incorporated during the pass. 

• (eg.) Lexical analysis, syntax analysis, semantic analysis and intermediate code 

generation might be grouped into one pass. If so, the token stream after lexical analysis 

may be translated directly into intermediate code. 

Reducing the Number of Passes 

• Minimizing the number of passes improves the time efficiency as reading from and 

writing to intermediate files can be reduced. 

 

• When grouping phases into one pass, the entire program has to be kept in memory to 

https://ecomputernotes.com/fundamental/input-output-and-memory/memory
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ensure proper information flow to each phase because one phase may 

need information in a different order than the information produced in previous phase. 

The source program or target program differs from its internal representation. So, 

the memory for internal form may be larger than that of input and output. 

COUSINS OF COMPILER 

Cousins of compiler contains  

1. Preprocessor  

2. Compiler 

3.  Assembler  

4.  Linker 

5.  Loader   

6.  Memory 

1) Preprocessor 

 A preprocessor is a program that processes its input data to produce output that is used 

as input to another program. The output is said to be a preprocessed form of the input 

data, which is often used by some subsequent programs like compilers. They may 

perform the following functions. 

1. Macro processing  

2. File Inclusion  

3. Rational Preprocessors  

4. Language extension 

 

1. Macro processing: A macro is a rule or pattern that specifies how a certain input 

sequence should be mapped to an output sequence according to a defined procedure. The 

mapping process that instantiates a macro into a specific output sequence is known as 

macro expansion. 

 2. File Inclusion: Preprocessor includes header files into the program text. When the 

preprocessor finds an #include directive it replaces it by the entire content of the 

specified file. 

3. Rational Preprocessors: These processors change older languages with more modern 

flow-of-control and data-structuring facilities. 

4. Language extension: These processors attempt to add capabilities to the language by 

what amounts to built-in macros. For example, the language Equel is a database query 

language embedded in C. 

2) Compiler 

https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
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It takes pure high level language as a input and convert into assembly code. 

3) Assembler 

It takes assembly code as an input and converts it into assembly code. Assembler creates 

object code by translating assembly instruction mnemonics into machine code. There are 

two types of assemblers. One-pass assemblers go through the source code once and 

assume that all symbols will be defined before any instruction that references them. 

Two-pass assemblers create a table with all symbols and their values in the first pass, 

and then use the table in a second pass to generate code. 

4) Linker 

It has the following functions 

1. Allocation: It means get the memory portions from operating system and storing 

the object data. 

2. Relocation: It maps the relative address to the physical address and relocating the 

object code. 

3. Linker: It combines the entire executable object module to pre single executable 

file. 

5) Loader 

A loader is the part of an operating system that is responsible for loading programs in 

memory, one of the essential stages in the process of starting a program. 

6) Memory 

The output of an assembler is known as an object file which is a combination of 

machine instruction along with the data required to store these instructions in memory. 
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Simple one pass compiler: overview – Syntax definition 

In computer programming, a one-pass compiler is a compiler that passes through the 

parts of each compilation unit only once, immediately translating each part into its final 

machine code. This is in contrast to a multi-pass compiler which converts the program 

into one or more intermediate representations in steps between source code and machine 

code, and which reprocesses the entire compilation unit in each sequential pass. 

Overview Syntax Definition 

 Language Definition  

•Appearance of programming language 

Vocabulary : Regular expression  

Syntax : Backus-Naur Form(BNF) or Context Free Form(CFG) 

 • Semantics : Informal language or some examples 



16 
 

 

Syntax definition   

To specify the syntax of a language :  CFG and BNF 

 Example :if-else statement in C has the form of statement → if ( expression 

)statement else statement 

An alphabet of a language is a set of symbols.  

 Examples: {0,1} for a binary number system(language)={0,1,100,101,...} {a,b,c} 

for language={a,b,c, ac,abcc..} 

 {if,(,),else ...} for a if statements={if(a==1)goto10, if--} 

A string over an alphabet   

 Is a sequence of zero or more symbols from the alphabet. 

 Examples : 0,1,10,00,11,111,0202 ... strings for a alphabet {0,1} 

 Null string is a string which does not have any symbol of alphabet  

Language 

It is a subset of all the strings over a given alphabet.  

 Alphabets Ai    Languages Li for Ai  

A0={0,1}    L0={0,1,100,101,...}  

A1={a,b,c}    L1={a,b,c, ac, abcc..}  

A2={all of C tokens}   L2= {all sentences of C program } 

Example :Grammar for expressions consisting of digits and plus and minus signs.   

 Language of expressions L={9-5+2, 3-1, ...} 

 The productions of grammar for this language L are 

 list → list + digit 

 list → list – digit 

 list → digit  
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digit → 0|1|2|3|4|5|6|7|8|9   

list, digit : Grammar variables, Grammar symbols. 

 0,1,2,3,4,5,6,7,8,9,-,+ : Tokens, Terminal symbols 

Convention specifying grammar   

 Terminal symbols : bold face string if, num, id 

 Nonterminal symbol, grammar symbol : italicized names, list, digit ,A,B 

Grammar G=(N,T,P,S)  

 N : a set of nonterminal symbols  

 T : a set of terminal symbols, tokens  

 P : a set of production rules  

 S : a start symbol, S ∈ N 

Grammar G for a language L = { 9-5+2, 3-1,….}   

 G=(N,T,P,S) 

 N={list,digit} 

 T={0,1,2,3,4,5,6,7,8,9,-,+} 

 P= list → list + digit 

 list → list - digit  

 list → digit  

 digit → 0|1|2|3|4|5|6|7|8|9 

Some definitions for a language L and its grammar G 

Derivation : 

 A sequence of replacements S⇒α1⇒α2⇒…⇒αn is a derivation of αn. Example, 

A derivation 1+9 from the grammar G 

• left most derivation list⇒list + digit ⇒digit + digit ⇒1 + digit ⇒1 + 9  

• right most derivation list⇒list + digit ⇒list + 9 ⇒digit + 9 ⇒1 + 9 

Language of grammar L(G) 

 L(G) is a set of sentences that can be generated from the grammar G. 

 L(G)={x| S ⇒* x} where x ∈a sequence of terminal symbols 

Parse Tree  

A derivation can be conveniently represented by a derivation tree( parse tree).  

 The root is labeled by the start symbol.  

 Each leaf is labeled by a token orε.  
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 Each interior none is labeled by a nonterminal symbol.  

 When a production A→x1… xn is derived, nodes labeled by x1… xn are made 

aschildren nodes of node labeled by A 

 nodes of node labeled by A.   

 • root : the start symbol  

 • internal nodes : nonterminal  

 • leaf nodes : terminal 

 Example : list -> list + digit | list - digit | digit 

 digit -> 0|1|2|3|4|5|6|7|8|9 

 

left most derivation for 9-5+2, 

  list⇒list+digit⇒list-digit+digit⇒digit-digit+digit⇒9-digit+digit ⇒9-

5+digit ⇒9-5+2 

 right most derivation for 9-5+2, 

  list⇒list+digit⇒list+2⇒list-digit+2 ⇒list-5+2⇒digit-5+2 ⇒9-5+2 parse 

tree for 9-5+2 

 

Ambiguity   

A grammar is said to be ambiguous if the grammar has more than one parse tree for a 

given string of tokens. 

  Example . Suppose a grammar G that cannot distinguish between lists and  

digits as in above example    

G : string → string + string | string - string |0|1|2|3|4|5|6|7|8|9 
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 Two Parse tree for 9-5+2 

Associativity of operator 

 A operator is said to be left associative if an operand with operators on both sides of it is 

taken by the operator to its left.  

Example: 9+5+2≡(9+5)+2, a=b=c≡a=(b=c)  

 Left Associative Grammar: 

list → list + digit | list – digit 

 digit →0|1|…|9   

Right Associative Grammar : 

right → letter = right | letter  

letter → a|b|…|z 

 

 

 Parse tree left- and right-associative operators 

Precedence of operators  
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We say that aoperator(*) has higher precedence than other operator(+) if the operator(*) 

takes operands before other operator(+) does. 

  Example: 9+5*2≡9+(5*2), 9*5+2≡(9*5)+2 

  left associative operators : + , - , * , / 

  right associative operators : = , ** 

  Syntax of full expressions 

 

 

expr → expr + term | expr - term | term 

 term → term * factor | term / factor | factor 

 factor → digit | ( expr )  

digit → 0 | 1 | … | 9 

Syntax of statements  

 stmt → id = expr ;  

| if ( expr ) stmt ;  

| if ( expr ) stmt else stmt ; 

 | while ( expr ) stmt ; 

 expr → expr + term | expr - term | term 

 term → term * factor | term / factor | factor  

factor → digit | ( expr ) 

 digit → 0 | 1 | … | 9 

  

LEXICAL ANALYSIS 

Lexical Analysis: 

 reads and converts the input into a stream of tokens to be analyzed by parser. 

 lexeme : a sequence of characters which comprises a single token. 

 Lexical Analyzer →Lexeme / Token → Parser 
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Removal of White Space and Comments 

 Remove white space(blank, tab, new line etc.) and comments 

 

Contsants 

 Constants: For a while, consider only integers 

 Example :x for input 31 + 28, output(token 

representation)? input : 31 + 28 

output: <num, 31><+, 

><num, 28> num + :token 

31 28 : attribute, value(or lexeme) of integer token num 

Recognizing 

 Identifiers 

o Identifiers are names of variables, arrays, functions... 

o A grammar treats an identifier as a token. 

o eg) input : count = count + increment; output : <id,1><=, ><id,1><+, ><id, 

2>; 

 

Symbol table 

 
 

 Keywords are reserved, i.e., they cannot be used as identifiers. Then a character 

string forms an identifier only if it is not a keyword. 

 punctuation symbols  

  operators : + - * / := <> … 

 

Role of a lexical analyzer 

Lexical Analysis is the very first phase in the compiler designing. A Lexer takes the 

modified source code which is written in the form of sentences . In other words, it helps 

you to convert a sequence of characters into a sequence of tokens. The lexical analyzer 

breaks this syntax into a series of tokens. It removes any extra space or comment written 

in the source code. 

Programs that perform Lexical Analysis in compiler design are called lexical analyzers 

or lexers. A lexer contains tokenizer or scanner. If the lexical analyzer detects that the 
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token is invalid, it generates an error. The role of Lexical Analyzer in compiler design is 

to read character streams from the source code, check for legal tokens, and pass the data 

to the syntax analyzer when it demands. 

Example 

How Pleasant Is The Weather? 

See this Lexical Analysis example; Here, we can easily recognize that there are five 

words How Pleasant, The, Weather, Is. This is very natural for us as we can recognize 

the separators, blanks, and the punctuation symbol. 

 HowPl easantIs Th ewe ather? 

Now, check this example, we can also read this. However, it will take some time because 

separators are put in the Odd Places. It is not something which comes to you 

immediately. 

Basic Terminologies 

What’s a lexeme? 

A lexeme is a sequence of characters that are included in the source program according 

to the matching pattern of a token. It is nothing but an instance of a token. 

What’s a token? 

Tokens in compiler design are the sequence of characters which represents a unit of 

information in the source program. 

What is Pattern? 

A pattern is a description which is used by the token. In the case of a keyword which 

uses as a token, the pattern is a sequence of characters. 

Lexical Analyzer Architecture: How tokens are recognized 

The main task of lexical analysis is to read input characters in the code and produce 

tokens. 

Lexical analyzer scans the entire source code of the program. It identifies each token one 

by one. Scanners are usually implemented to produce tokens only when requested by a 

parser. Here is how recognition of tokens in compiler design works- 

1. “Get next token” is a command which is sent from the parser to the lexical 

analyzer. 

2. On receiving this command, the lexical analyzer scans the input until it finds the 

next token. 

3. It returns the token to Parser. 
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Lexical Analyzer skips whitespaces and comments while creating these tokens. If any 

error is present, then Lexical analyzer will correlate that error with the source file and 

line number. 

Roles of the Lexical analyzer 

Lexical analyzer performs below given tasks: 

 Helps to identify token into the symbol table 

 Removes white spaces and comments from the source program 

 Correlates error messages with the source program 

 Helps you to expands the macros if it is found in the source program 

 Read input characters from the source program 

Example of Lexical Analysis, Tokens, Non-Tokens 

Consider the following code that is fed to Lexical Analyzer 

#include <stdio.h> 

    int maximum(int x, int y) { 

        // This will compare 2 numbers 

        if (x > y) 

            return x; 

        else { 

            return y; 

        } 

    } 

Examples of Tokens created 

Lexeme Token 

int Keyword 

maximum Identifier 

( Operator 

int Keyword 

x Identifier 

, Operator 

int Keyword 

Y Identifier 

) Operator 

{ Operator 

If Keyword 

 

Examples of Non tokens 

Type Examples 
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Comment // This will compare 2 numbers 

Pre-processor directive #include <stdio.h> 

Pre-processor directive #define NUMS 8,9 

Macro NUMS 

Whitespace /n /b /t 

Lexical Errors 

A character sequence which is not possible to scan into any valid token is a lexical error. 

Important facts about the lexical error: 

 Lexical errors are not very common, but it should be managed by a scanner 

 Misspelling of identifiers, operators, keyword are considered as lexical errors 

 Generally, a lexical error is caused by the appearance of some illegal character, 

mostly at the beginning of a token. 

Error Recovery in Lexical Analyzer 

Here, are a few most common error recovery techniques: 

 Removes one character from the remaining input 

 In the panic mode, the successive characters are always ignored until we reach a 

well-formed token 

 By inserting the missing character into the remaining input 

 Replace a character with another character 

 Transpose two serial characters 

Lexical Analyzer vs. Parser 

Lexical Analyser Parser 

Scan Input program Perform syntax analysis 

Identify Tokens Create an abstract representation of the code 

Insert tokens into Symbol Table Update symbol table entries 

It generates lexical errors It generates a parse tree of the source code 

Why separate Lexical and Parser? 

 The simplicity of design: It eases the process of lexical analysis and the syntax 

analysis by eliminating unwanted tokens 

 To improve compiler efficiency: Helps you to improve compiler efficiency 
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 Specialization: specialized techniques can be applied to improves the lexical 

analysis process 

 Portability: only the scanner requires to communicate with the outside world 

 Higher portability: input-device-specific peculiarities restricted to the lexer 

Advantages of Lexical analysis 

 Lexical analyzer method is used by programs like compilers which can use the 

parsed data from a programmer’s code to create a compiled binary executable 

code 

 It is used by web browsers to format and display a web page with the help of 

parsed data from JavsScript, HTML, CSS 

 A separate lexical analyzer helps you to construct a specialized and potentially 

more efficient processor for the task 

Disadvantage of Lexical analysis 

 You need to spend significant time reading the source program and partitioning it 

in the form of tokens 

 Some regular expressions are quite difficult to understand compared to PEG or 

EBNF rules 

 More effort is needed to develop and debug the lexer and its token descriptions 

 Additional runtime overhead is required to generate the lexer tables and construct 

the tokens 

REGULAR EXPRESSIONS 

Regular expression is a formula that describes a possible set of string. Component of 

regular expression.. 

X - the character x 

. any character, usually accept a new line [x y z] any of the characters x, y, z,   

R? a R or nothing (=optionally as R) 

R* zero or more occurrences….. 

R+ one or more occurrences …… 

R1R2 an R1 followed by an R2 

R1|R1 either an R1 or an R2. 

A token is either a single string or one of a collection of strings of a certain type. If we 

view the set of strings in each token class as an language, we can use the regular-

expression notation to describe tokens. 

Consider an identifier, which is defined to be a letter followed by zero or more letters 
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or digits. In regular expression notation we would write. 

Identifier = letter (letter | digit)* 

re are the rules that define the regular expression over alphabet . 

 is a regular expression denoting { € }, that is, the language containing only the empty 

string. 

 For each ‘a’ in Σ, is a regular expression denoting { a }, the language with only one 

string 

consisting of the single symbol ‘a’ . 

 If R and S are regular expressions, then 

 

(R) | (S) means L(r) U L(s) 

R.S means L(r).L(s) R* denotes L(r*) 

 

 REGULAR DEFINITIONS 

For notational convenience, we may wish to give names to regular expressions and to 

define regular expressions using these names as if they were symbols. 

Identifiers are the set or string of letters and digits beginning with a letter. The following 

regular definition provides a precise specification for this class of string. 

Example-1, 

Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) Pascal identifier 

Letter - A | B | ……| Z | a | b |……| z| Digits - 0 | 1 | 2 | …. | 9 

Id - letter (letter / digit)* 

 

Recognition of tokens: 

We learn how to express pattern using regular expressions. Now, we must study how to 

take the patterns for all the needed tokens and build a piece of code that examins the 

input string and finds a prefix that is a lexeme matching one of the patterns. 

Stmt →if expr then stmt 

| If expr then else stmt 

| є 

Expr →term relop term 

| term Term →id 

|number 

For relop ,we use the comparison operations of languages like Pascal or SQL where = is 

“equals” and < > is “not equals” because it presents an interesting structure of lexemes. 

The terminal of grammar, which are if, then , else, relop ,id and numbers are the names 

of tokens as far as the lexical analyzer is concerned, the patterns for the tokens are 
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described using regular definitions. 

digit → [0,9] digits →digit+ 

number →digit(.digit)?(e.[+-]?digits)? letter → [A-Z,a-z] 

id →letter(letter/digit)* if → if 

then →then 

else →else 

relop →< | > |<= | >= | = = | < > 

 

In addition, we assign the lexical analyzer the job stripping out white space, by 

recognizing the “token” we defined by: 

WS → (blank/tab/newline)+ 

Here, blank, tab and newline are abstract symbols that we use to express the ASCII 

characters of the same names. Token ws is different from the other tokens in that ,when 

we recognize it, we do not return it to parser ,but rather restart the lexical analysis from 

the character that follows the white space . It is the following token that gets returned to 

the parser. 

 

Lexeme Token Name Attribute Value 

Any WS - - 

if if - 

then then - 

else else - 

Any id Id Pointer to table 

entry 

Any number number Pointer to table 

entry 

< relop LT 

<= relop LE 

== relop EQ 

<> relop NE 

 

 

 

 

 

 

TRANSITION DIAGRAM: 
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Transition Diagram has a collection of nodes or circles, called states. Each state 

represents a condition that could occur during the process of scanning the input looking 

for a lexeme that matches one of several patterns . 

Edges are directed from one state of the transition diagram to another. each edge is 

labeled by a symbol or set of symbols. 

If we are in one state s, and the next input symbol is a, we look for an edge out of state s 

labeled by a. if we find such an edge ,we advance the forward pointer and enter the state 

of the transition diagram to which that edge leads. 

Some important conventions about transition diagrams are 

1. Certain states are said to be accepting or final .These states indicates that a 

lexeme has been found, although the actual lexeme may not consist of all positions b/w 

the lexeme Begin and forward pointers we always indicate an accepting state by a double 

circle. 

2. In addition, if it is necessary to return the forward pointer one position, then we 

shall additionally place a * near that accepting state. 

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled 

“start” entering from nowhere .the transition diagram always begins in the state before 

any input symbols have been used. 

 

 
 

Fig. 3.3: Transition diagram of Relational operators 

 

As an intermediate step in the construction of a LA, we first produce a stylized 

flowchart, called a transition diagram. Position in a transition diagram, are drawn as 

circles and are called as states. 
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Fig. 3.4: Transition diagram of Identifier 

 

The above TD for an identifier, defined to be a letter followed by any no of letters or 

digits.A sequence of transition diagram can be converted into program to look for the 

tokens specified by the diagrams. Each state gets a segment of code. 

FINITE AUTOMATON 

 A recognizer for a language is a program that takes a string x, and answers “yes” 

if x is a sentence of that language, and “no” otherwise. 

 We call the recognizer of the tokens as a finite automaton. 

 A finite automaton can be: deterministic (DFA) or non-deterministic (NFA) 

 This means that we may use a deterministic or non-deterministic automaton as a 

lexical analyzer. 

 Both deterministic and non-deterministic finite automaton recognize regular sets. 

 Which one? 

– deterministic – faster recognizer, but it may take more space 

– non-deterministic – slower, but it may take less space 

– Deterministic automatons are widely used lexical analyzers. 

 First, we define regular expressions for tokens; Then we convert them into a DFA 

to get a lexical analyzer for our tokens. 

 

Non-Deterministic Finite Automaton (NFA) 

 A non-deterministic finite automaton (NFA) is a mathematical model that consists 

of: 

o S - a set of states 

o Σ - a set of input symbols (alphabet) 

o move - a transition function move to map state-symbol pairs to sets of states. 

o s0 - a start (initial) state 

o F- a set of accepting states (final states) 

 ε- transitions are allowed in NFAs. In other words, we can move from one state to 

another one without consuming any symbol. 

 A NFA accepts a string x, if and only if there is a path from the starting state to 
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one of accepting states such that edge labels along this path spell out x. 

Example: 

 

 

 

 Deterministic Finite Automaton (DFA) 

 

 A Deterministic Finite Automaton (DFA) is a special form of a NFA. 

 No state has ε- transition 

 For each symbol a and state s, there is at most one labeled edge a leaving s. i.e. 

transition function is from pair of state-symbol to state (not set of states) 

 

Example: 
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 Converting RE to NFA 

 This is one way to convert a regular expression into a NFA. 

 There can be other ways (much efficient) for the conversion. 

 Thomson’s Construction is simple and systematic method. 

 It guarantees that the resulting NFA will have exactly one final state, and one start 

state. 

 Construction starts from simplest parts (alphabet symbols). 

 To create a NFA for a complex regular expression, NFAs of its sub-expressions 

are combined to create its NFA. 

 To recognize an empty string ε: 

 

 

 

 To recognize a symbol a in the alphabet Σ: 

 

 For regular expression r1 | r2: 
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N(r1) and N(r2) are NFAs for regular expressions r1 and r2. 

 

 For regular expression r1 r2 

 

Here, final state of N(r1) becomes the final state of N(r1r2). 

 For regular expression r* 

Example: 

For a RE (a|b) * a, the NFA construction is shown below. 

 

 

 Converting NFA to DFA (Subset Construction) 

We merge together NFA states by looking at them from the point of view of the input 

characters: 

 

 From the point of view of the input, any two states that are connected by an –

transition may as well be the same, since we can move from one to the other without 

consuming any character. Thus states which are connected by an -transition will be 

represented by the same states in the DFA. 

 If it is possible to have multiple transitions based on the same symbol, then we 

can regard 

a transition on a symbol as moving from a state to a set of states (ie. the union of all 
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those states reachable by a transition on the current symbol). Thus these states will be 

combined into a single DFA state. 

To perform this operation, let us define two functions: 

 The -closure function takes a state and returns the set of states reachable from it 

based on (one or more) -transitions. Note that this will always include the state itself. We 

should be able to get from a state to any state in its -closure without consuming any input. 

 The function move takes a state and a character, and returns the set of states 

reachable by one transition on this character. 

Wecan generalise both these functions to apply to sets of states by taking the union of the 

application to individual states. 

 

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a') move(B,`a') 

move(C,`a'). 

The Subset Construction Algorithm is a follows: 

 

 

put ε-closure({s0}) as an unmarked state into the set of DFA (DS) while (there is one 

unmarked S1 in DS) do 

begin 

mark S1 

for each input symbol a do begin 

end 

end 

 

 

S2 ← ε-closure(move(S1,a)) if (S2 is not in DS) then 

add S2 into DS as an unmarked state transfunc[S1,a] ← S2 

 a state S in DS is an accepting state of DFA if a state in S is an accepting state of 

NFA 

 the start state of DFA is ε-closure({s0}) 

 

 Lexical Analyzer Generator 
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Lex specifications: 

A Lex program (the .l file ) consists of three parts: 

declarations 

%% 

translation rules 

%% 

auxiliary procedures 

 

1. The declarations section includes declarations of variables,manifest constants(A 

manifest constant is an identifier that is declared to represent a constant e.g. # define 

PIE 3.14), and regular definitions. 

2. The translation rules of a Lex program are statements of the form : 

 

p1 {action 1} 

p2 {action 2} 

p3 {action 3} 

… … 

… … 

Where, each p is a regular expression and each action is a program fragment describing 

what action the lexical analyzer should take when a pattern p matches a lexeme. In Lex 

the actions are written in C. 

3. The third section holds whatever auxiliary procedures are
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 needed by the actions.Alternatively these procedures can be compiled 

separately and loaded with the lexical analyzer. 

 

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the 

book: 

Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity. 

Input buffering 

Lexical Analysis has to access secondary memory each time to identify tokens. It is 

time-consuming and costly. So, the input strings are stored into a buffer and then 

scanned by Lexical Analysis. 

Lexical Analysis scans input string from left to right one character at a time to identify 

tokens. It uses two pointers to scan tokens − 

 Begin Pointer (bptr) − It points to the beginning of the string to be read. 

 Look Ahead Pointer (lptr) − It moves ahead to search for the end of the token. 

Example − For statement int a, b; 

1. Both pointers start at the beginning of the string, which is stored in the buffer. 
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 After processing token ("int") both pointers will set to the next token ('a'), & this 

process will be repeated for the whole program. 

 

A buffer can be divided into two halves. If the look Ahead pointer moves towards 

halfway in First Half, the second half is filled with new characters to be read. If the look 

Ahead pointer moves towards the right end of the buffer of the second half, the first half 

will be filled with new characters, and it goes on. 

 

Sentinels − Sentinels are used to making a check, each time when the forward pointer is 

converted, a check is completed to provide that one half of the buffer has not converted 

off. If it is completed, then the other half should be reloaded. 

Buffer Pairs − A specialized buffering technique can decrease the amount of overhead, 

which is needed to process an input character in transferring characters. It includes two 

buffers, each includes N-character size which is reloaded alternatively. 

There are two pointers such as the lexeme Begin and forward are supported. Lexeme 

Begin points to the starting of the current lexeme which is discovered. Forward scans 

ahead before a match for a pattern are discovered. Before a lexeme is initiated, lexeme 

begin is set to the character directly after the lexeme which is only constructed, and 

forward is set to the character at its right end. 

Preliminary Scanning − Certain processes are best performed as characters are moved 

from the source file to the buffer. For example, it can delete comments. Languages like 
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FORTRAN which ignores blank can delete them from the character stream. It can also 

collapse strings of several blanks into one blank. Pre-processing the character stream 

being subjected to lexical analysis saves the trouble of moving the look ahead pointer 

back and forth over a string of blanks. 
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UNIT - II 

UNIT II 

Symbol tables: Symbol table entries – List data structures for symbol table – - Hash 

tables – Representation of scope information – Syntax Analysis: Role of parser – 

Context free grammar – Writing a grammar – Top down parsing – Simple bottom up 

parsing – Shift reducing parsing. 

 

Symbol Table 

Symbol table is an important data structure created and maintained by compilers in order 

to store information about the occurrence of various entities such as variable names, 

function names, objects, classes, interfaces, etc. Symbol table is used by both the 

analysis and the synthesis parts of a compiler. 

A symbol table may serve the following purposes depending upon the language in hand: 

 To store the names of all entities in a structured form at one place. 

 To verify if a variable has been declared. 

 To implement type checking, by verifying assignments and expressions in the 

source code are semantically correct. 

 To determine the scope of a name (scope resolution). 

A symbol table is simply a table which can be either linear or a hash table. It maintains 

an entry for each name in the following format: 

<symbol name,  type,  attribute> 

For example, if a symbol table has to store information about the following variable 

declaration: 

static int interest; 

then it should store the entry such as: 

<interest, int, static> 

The attribute clause contains the entries related to the name. 
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Implementation 

If a compiler is to handle a small amount of data, then the symbol table can be 

implemented as an unordered list, which is easy to code, but it is only suitable for small 

tables only. A symbol table can be implemented in one of the following ways: 

 Linear (sorted or unsorted) list 

 Binary Search Tree 

 Hash table 

Among all, symbol tables are mostly implemented as hash tables, where the source code 

symbol itself is treated as a key for the hash function and the return value is the 

information about the symbol. 

Operations 

A symbol table, either linear or hash, should provide the following operations. 

insert() 

This operation is more frequently used by analysis phase, i.e., the first half of the 

compiler where tokens are identified and names are stored in the table. This operation is 

used to add information in the symbol table about unique names occurring in the source 

code. The format or structure in which the names are stored depends upon the compiler 

in hand. 

An attribute for a symbol in the source code is the information associated with that 

symbol. This information contains the value, state, scope, and type about the symbol. 

The insert() function takes the symbol and its attributes as arguments and stores the 

information in the symbol table. 

For example: 

int a; 

should be processed by the compiler as: 

insert(a, int); 

lookup() 

lookup() operation is used to search a name in the symbol table to determine: 

 if the symbol exists in the table. 

 if it is declared before it is being used. 
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 if the name is used in the scope. 

 if the symbol is initialized. 

 if the symbol declared multiple times. 

The format of lookup() function varies according to the programming language. The 

basic format should match the following: 

lookup(symbol) 

This method returns 0 (zero) if the symbol does not exist in the symbol table. If the 

symbol exists in the symbol table, it returns its attributes stored in the table. 

Scope Management 

A compiler maintains two types of symbol tables: a global symbol table which can be 

accessed by all the procedures and scope symbol tables that are created for each scope 

in the program. 

To determine the scope of a name, symbol tables are arranged in hierarchical structure as 

shown in the example below: 

. . .  

int value=10; 

 

void pro_one() 

   { 

   int one_1; 

   int one_2; 

    

      {              \ 

      int one_3;      |_  inner scope 1  

      int one_4;      |  

      }              / 

       

   int one_5;  

    

      {              \    

      int one_6;      |_  inner scope 2 

      int one_7;      | 

      }              / 

   } 

    

void pro_two() 

   { 

   int two_1; 
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   int two_2; 

    

      {              \ 

      int two_3;      |_  inner scope 3 

      int two_4;      | 

      }              / 

       

   int two_5; 

   } 

. . .  

The above program can be represented in a hierarchical structure of symbol tables: 

  

The global symbol table contains names for one global variable (int value) and two 

procedure names, which should be available to all the child nodes shown above. The 

names mentioned in the pro_one symbol table (and all its child tables) are not available 

for pro_two symbols and its child tables. 

This symbol table data structure hierarchy is stored in the semantic analyzer and 

whenever a name needs to be searched in a symbol table, it is searched using the 

following algorithm: 

 first a symbol will be searched in the current scope, i.e. current symbol table. 
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 if a name is found, then search is completed, else it will be searched in the parent 

symbol table until, 

 either the name is found or global symbol table has been searched for the name. 

Operations of Symbol table – The basic operations defined on a symbol table include:  

 Implementation of Symbol table 

Following are commonly used data structures for implementing symbol table:-   

1. List   

o In this method, an array is used to store names and associated information. 

o A pointer “available” is maintained at end of all stored records and new 

names are added in the order as they arrive 

o To search for a name we start from the beginning of the list till available 

pointer and if not found we get an error “use of the undeclared name” 

o While inserting a new name we must ensure that it is not already present 

otherwise an error occurs i.e. “Multiple defined names” 

o Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

o The advantage is that it takes a minimum amount of space. 

2. Linked List   

o This implementation is using a linked list. A link field is added to each 

record. 

o Searching of names is done in order pointed by the link of the link field. 

o A pointer “First” is maintained to point to the first record of the symbol 

table. 

o Insertion is fast O(1), but lookup is slow for large tables – O(n) on average 

3. Hash Table    

o In hashing scheme, two tables are maintained – a hash table and symbol 

table and are the most commonly used method to implement symbol tables. 

o A hash table is an array with an index range: 0 to table size – 1. These 

entries are pointers pointing to the names of the symbol table. 

o To search for a name we use a hash function that will result in an integer 

between 0 to table size – 1. 

o Insertion and lookup can be made very fast – O(1). 

o The advantage is quick to search is possible and the disadvantage is that 

hashing is complicated to implement. 

4. Binary Search Tree   

o Another approach to implementing a symbol table is to use a binary search 

tree i.e. we add two link fields i.e. left and right child. 

https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/hashing-data-structure/
https://www.geeksforgeeks.org/binary-search-tree-data-structure/
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o All names are created as child of the root node that always follows the 

property of the binary search tree. 

o Insertion and lookup are O(log2 n) on average. 

SYNTAX ANALYSIS 

 

 ROLE OF THE PARSER: 

  
Parser for any grammar is program that takes as input string w (obtain set of 

strings tokens from the lexical analyzer) and produces as output either a 

parse tree for w , if w is a valid sentences of grammar or error message 

indicating that w is not a valid sentences of given grammar. The goal of the 

parser is to determine the syntactic validity of a source string is valid, a tree 

is built for use by the subsequent phases of the computer. The tree reflects 

the sequence of derivations or reduction used during the parser. Hence, it is 

called parse tree. If string is invalid, the parse has to issue diagnostic 

message identifying the nature and cause of the errors in string. Every 

elementary subtree in the parse tree corresponds to a production of the 

grammar. 

There are two ways of identifying an elementry sutree: 
 

1. By deriving a string from a non-terminal or 

2. By reducing a string of symbol to a non-terminal. 

 

The two types of parsers employed are: 

a. Top down parser: which build parse trees from 

top(root) to bottom(leaves) 

b. Bottom up parser: which build parse trees from leaves and 

work up the root. 
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Fig . 4.1: position of parser in compiler 

model. 

      CONTEXT FREE GRAMMARS 

Inherently recursive structures of a programming language are defined by a 

context-free Grammar. In a context-free grammar, we have four triples G( 

V,T,P,S). 

Here , V is finite set of terminals (in our case, this will be the set 

of tokens) T is a finite set of non-terminals (syntactic-

variables) 

P is a finite set of productions rules in the following form 

A → α where A is a non-terminal and α is a string of terminals and 

non-terminals (including the empty string) 

S is a start symbol (one of the non-terminal symbol) 

L(G) is the language of G (the language generated by G) which is a set of 

sentences. 

A sentence of L(G) is a string of terminal symbols of G. If S is the start 

symbol of G then ω is a sentence of L(G) iff S ⇒ω whereω is a string of 

terminals of G. If G is a context- free grammar, L(G) is a context-free 

language. Two grammar G1 and G2 are equivalent, if they produce same 

grammar. 

Consider the production of the form S ⇒α, If α contains non-terminals, it is 

called as a sentential form of G. If α does not contain non-terminals, it is called as 

a sentence of G. 
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 Derivations 

In general a derivation step is 

αAβ α⇒γβ  is  sentential  form  and   if  there  is  a  production  rule  A→γ  in  our  

grammar. where α and β are arbitrary strings of terminal and non-terminal 

symbols α1 ⇒α2 ⇒... ⇒ αn (αn derives from α1 or α1 derives αn ). There are 

two types of derivaion 

1At each derivation step, we can choose any of the non-terminal in the 

sentential form of G for the replacement. 

2If we always choose the left-most non-terminal in each derivation step, this 

derivation is called as left-most derivation. 

Example: 
E → E + E | E – E | E * E | E / 

E | - E E → ( E ) 

E → id 

Leftmost derivation : 

E → E + E 

→E * E+E →id* E+E→id*id+E→id*id+id 

The string is derive from the grammar w= id*id+id, which is consists of all 

terminal symbols 

Rightmost 

derivation E → E 

+ E 

→E+E * E→E+ 

E*id→E+id*id→id+id*id Given grammar 

G : E → E+E | E*E | ( E ) | - E | id Sentence 

to be derived : – (id+id) 

LEFTMOST DERIVATION RIGHTMOST 

DERIVATION E → - E  E → - E 

E → - ( E ) E → - ( E ) 

E → - ( E+E ) E → - (E+E ) 

E → - ( id+E ) E → - ( E+id ) 
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E → - ( id+id ) E → - ( id+id ) 

 String that appear in leftmost derivation are called left sentinel forms. 

 String that appear in rightmost derivation are called right 

sentinel forms. Sentinels: 

 Given a grammar G with start symbol S, if S → α , where α may 

contain non- terminals or terminals, then α is called the sentinel form 

of G. 

Yield or frontier of tree: 

 Each interior node of a parse tree is a non-terminal. The children of 

node can be a terminal or non-terminal of the sentinel forms that are 

read from left to right. The sentinel form in the parse tree is called yield 

or frontier of the tree. 

  

 PARSE TREE 

 Inner nodes of a parse tree are non-terminal symbols. 

 The leaves of a parse tree are terminal symbols. 

 A parse tree can be seen as a graphical representation of a derivation. 

 

 

 

Ambiguity: 

A grammar that produces more than one parse for some sentence is said to e 

ambiguous grammar. 
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Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 

 

The sentence id+id*id has the following two distinct leftmost 

derivations: E → E+ E E → E* E 

E → id + E E → E + E * E 

E → id + E * E E → id + E * E 

E → id + id * E E → id + id * E 

E → id + id * id E → id + id * id 

 

The two corresponding parse trees are : 

 

 

 

Example: 

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use 

precedence of operators as follows: 

^ (right to left) 

/,* (left to right) 

-,+ (left to 

right) We get the following unambiguous 

grammar: 

E → E+T | T 

T → T*F | 

F F → G^F 

| G G → id 

| (E) 
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Consider this example, G: stmt → if expr then stmt |if expr then stmt 

elsestmt | other This grammar is ambiguous since the string if E1 then if 

E2 then S1 else S2 has the following 

Two parse trees for leftmost derivation : 

 

 

 

 

 

To eliminate ambiguity, the following grammar may be used: 

stmt → matched_stmt | unmatched_stmt 

matched_stmt → if expr then matched_stmt else matched_stmt | other 

unmatched_stmt → if expr then stmt| if expr then matched_stmt else 

unmatched_stmt Eliminating Left Recursion: 
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A grammar is said to be left recursive if it has a non-terminal A such that there 

is a derivation A=>Aα for some string α. Top-down parsing methods cannot 

handle left-recursive grammars. Hence, left recursion can be eliminated as 

follows: 

f there is a production A → Aα | β it can be replaced with a sequence of 

two productions 

A → βA’ 

A’ → αA’ | ε 
 
 
 

Without changing the set of strings derivable from A. 

Example : Consider the following grammar for arithmetic 

expressions: E → E+T | T 

T → T*F | 

F F → (E) 

| id 

 

 

First eliminate the left recursion 

for E as E → TE’ 

E’ → +TE’ |ε 

Then eliminate for 

T as 

T → FT’ 

T’→ *FT’ | ε 

Thus the obtained grammar after eliminating left 

recursion is E → TE’ 

E’ → +TE’ 

|ε T → FT’ 

T’ → *FT’ 

| ε F → (E) | 
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id 

Algorithm to eliminate left recursion: 

1. Arrange the non-terminals in some order A1, A2 

. . . An. 2.for i := 1 to n do begin 

for j := 1 to i-1 do begin 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 

where Aj→ δ1 |δ2 | . . . |δk are all the current Aj-productions; 

end 

end 

  Factoring: 

 

Left factoring is a grammar transformation that is useful for producing a 

grammar suitable for predictive parsing. When it is not clear which of two 

alternative productions to use to expand a non-terminal A, we can rewrite the A-

productions to defer the decision until we have seen enough of the input to 

make the right choice. 

If there is any production A → αβ1 | αβ2 , it can be 

rewritten as A → αA’ 

A’ → β1 | β2 

Consider the grammar , G : S→iEtS | iEtSeS | a 

E → b 

Left factored, this grammar 

becomes S → iEtSS’ | a 

S’ → eS | 

ε E → b 

TOP-DOWN PARSING 

It can be viewed as an attempt to find a left-most derivation for an input 

string or an attempt to construct a parse tree for the input starting from 
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the root to the leaves. 

Types of top-down parsing : 

1. Recursive descent parsing 

2. Predictive parsing 

1. RECURSIVE DESCENT PARSING 

 Recursive descent parsing is one of the top-down parsing techniques that 

uses a set of recursive procedures to scan its input. 

 This parsing method may involve backtracking, that is, making repeated 

scans of the input. 

Example for backtracking : 

Consider the grammar G : S→cAd 

A → ab | 

a and the input string w=cad. 

The parse tree can be constructed using the following top-down approach : 

Step1: 

Initially create a tree with single node labeled S. An input pointer points to ‘c’, 

the first symbol of w. Expand the tree with the production of S. 

 

 

Step2: 

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to 

the second symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first 

alternative. 
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Step3: 

The second symbol ‘a’ of w also matches with second leaf of tree. So advance 

the input pointer to third symbol of w ‘d’. But the third leaf of tree is b which 

does not match with the input symbol d. 

Hence discard the chosen production and reset the pointer to second position. This 
is called 

backtracking. 

Step4: 

Now try the second alternative for A. 

 

Now we can halt and announce the successful completion of parsing. 

 

Example for recursive decent parsing: 

A left-recursive grammar can cause a recursive-descent parser to go into an 

infinite loop. Hence, elimination of left-recursion must be done before parsing. 

Consider the grammar for arithmetic 

expressions E → E+T | T 

T → T*F | 

F F → (E) 

| id 
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After eliminating the left-recursion the grammar 

becomes, E → TE’ 

E’ → +TE’ 

|ε T → FT’ 

T’ → *FT’ 

| ε F → (E) | 

id 

Now we can write the procedure for grammar as follows: 

Recursive 

procedure: 

Procedure E() 

begin 

T( ); 

EPRIME( ); 

End 

Procedure EPRIME( ) 

begin 

end 

put_symbol=’+’ then ADVANCE( ); 

T( ); 

 

EPRIME( ); 

 

 

Procedure T( ) 

begin 

 

End 

F( ); 
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TPRIME( ); 

 

Procedure TPRIME( ) 

begin 

 

end input_symbol=’*’ then ADVANCE( ); 

F( ); 

TPRIME( ); 

 

ocedure F( ) 

begin 

 

end 

If input-symbol=’id’ then 

ADVANCE( ); 

else if input-symbol=’(‘ then 

ADVANCE( ); 

E( ); 

else if input-symbol=’)’ then 

ADVANCE( ); 

else ERROR( ); 

 

 

 

 

 

Stack implementation: 

 
PROCEDURE INPUT STRING 

E( ) id+id*id 

T( ) id+id*id 
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F( ) id+id*id 

ADVANCE( ) id id*id 

TPRIME( ) id id*id 

EPRIME( ) id id*id 

ADVANCE( ) id+id*id 

T( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 

ADVANCE( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 

 PREDICTIVE PARSING 

 Predictive parsing is a special case of recursive descent parsing 

where no backtracking is required. 

 The key problem of predictive parsing is to determine the production 

to be applied for a non-terminal in case of alternatives. 

Non-recursive predictive parser 

 

 

The table-driven predictive parser has an input buffer, stack, a parsing table and an 

output stream. 

Input buffer: 

It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
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Stack: 

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of 

the stack. Initially, the stack contains the start symbol on top of $. 

Parsing table: 

It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a 

terminal. 

Predictive parsing program: 

The parser is controlled by a program that considers X, the symbol on top of 

stack, and a, the current input symbol. These two symbols determine the parser 

action. There are three possibilities: 

1. If X = a = $, the parser halts and announces successful completion of 
parsing. 

2. If X = a ≠ $, the parser pops X off the stack and advances the 

input pointer to the next input symbol. 

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing 

table 

4. M. This entry will either be an X-production of the grammar or an error 

entry. 

5. If M[X, a] = {X → UVW},the parser replaces X on top of the stack by 

UVW 

6. If M[X, a] =error, the parser calls an error recovery routine. 

Algorithm for nonrecursive predictive parsing: 

Input : A string w and a parsing table M for grammar G. 

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 

Method : Initially, the parser has $S on the stack with S, the start symbol of G 

on top, and w$ in the input buffer. The program that utilizes the predictive 

parsing table M to produce a parse for the input is as follows: 

set ip to point to the first symbol of w$; 

repeat 

letX be the top stack symbol andathe symbol pointed to by ip; 
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if X is a terminal or 

$then if X = a 

then 

popX from the stack and advance ip 

else error() 

else/* X is a non-terminal */ 

if M[X, a] = X →Y1Y2 … Yk then begin 

pop X from the stack; 

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 

on top; output the production X → Y1 Y2 . . . 

Yk 

end 

elseerror

() 

until X = $ 

Predictive parsing table construction: 

The construction of a predictive parser is aided by two functions associated 

with a grammar G : 

1. FIRST 

2. FOLLOW 

Rules for first( ): 

1. If X is terminal, then FIRST(X) is {X}. 

2. If X → ε is a production, then add ε to FIRST(X). 

3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 

4. If X is non-terminal and X → Y 1 Y2…Yk is a production, then place a in 

FIRST(X) if for some i, a is in FIRST(Yi), and ε is in all of 

FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 
=> ε. If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X). 
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Rules for follow( ): 

1. If S is a start symbol, then FOLLOW(S) contains $. 

2. If there is a production A → αBβ, then everything in FIRST(β) except ε 

is placed in follow(B). 

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) 

contains ε, then everything in FOLLOW(A) is in FOLLOW(B). 

 

Algorithm for construction of predictive parsing table: 

Input : GrammarG 

Output : Parsing 

table M Method : 

1. For each production A → α of the grammar, do steps 2 and 3. 

2. For each terminal a in FIRST(α), add A → α to M[A, a]. 

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in 

FOLLOW(A). If ε is in FIRST(α) and $ is in FOLLOW(A) , add A → α to 

M[A, $]. 

4. Make each undefined entry of M be error. 

Example: 

Consider the following 

grammar : E → E+T | T 

T→T*F | 

F F → (E) 

| id 

After eliminating left-recursion the 

grammar is E → TE’ 

E’ → +TE’ 

|ε T → FT’ 

T’ → *FT’ 

| ε F → (E) | 

id First( ) : 

FIRST(E) = { ( , id} 

FIRST(E’) ={+ ,ε} 

FIRST(T) = { ( , id} 



59 
 

FIRST(T’) = {*, ε } 

FIRST(F) = { ( , id } 

Follow( ): 

FOLLOW(E) = { $, ) } 

FOLLOW(E’) = { $, ) } 
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FOLLOW(T) = { +, $, ) } 

FOLLOW(T’) = { +, $, ) } 

FOLLOW(F) = {+, * , $ , ) } 

 

 

 

LL(1) grammar: 

The parsing table entries are single entries. So each location has not more than 

one entry. This type of grammar is called LL(1) grammar. 

Consider this following  
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grammar: S → iEtS | iEtSeS | 

a 

E → b 

After eliminating left factoring, 

we have S→iEtSS’ | a 

S’→eS 

|ε E→b 

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-

terminals. FIRST(S) = { i, a } 

FIRST(S’) = 

{e,ε} FIRST(E) 

= { b} 

FOLLOW(S) = { $ ,e } 

FOLLOW(S’) = { $ 

,e } FOLLOW(E) = 

{t} 

 

 

Since there are more than one production, the grammar is not LL(1) grammar. 

Actions performed in predictive parsing: 

1. Shift 

2. Reduce 

3. Accept 

4. Error 

Implementation of predictive parser: 

1. Elimination of left recursion, left factoring and ambiguous grammar. 

2. Construct FIRST() and FOLLOW() for all non-terminals. 

3. Construct predictive parsing table. 

4. Parse the given input string using stack and parsing table. 
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BOTTOM-UP PARSING 
Constructing a parse tree for an input string beginning at the leaves and going 

towards the root is called bottom-up parsing. 

A general type of bottom-up parser is a shift-reduce parser. 

SHIFT-REDUCE PARSING 

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a 

parse tree for an input string beginning at the leaves (the bottom) and 

working up towards the root (the top). 
Example: 
Consider the grammar: 
S → aABe 

A → Abc | 

b B → d 

The sentence to be recognized is abbcde. 

 

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION 

 

abbcde (A → b) S→ aABe 

aAbcde   (A → Abc) → aAde 

aAde (B → d) → aAbcde 

aABe(S → aABe) → abbcde 

S 

The reductions trace out the right-most derivation in reverse. 

 

Handles: 

 

A handle of a string is a substring that matches the right side of a 

production, and whose reduction to the non-terminal on the left side of the 

production represents one step along the reverse of a rightmost derivation. 

Example: 

Consider the grammar: 
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E → E+E 

E → 

E*E E 

→ (E) 

E → id 

 

And the input string 

id1+id2*id3 The rightmost 

derivation is : 

E →E+E 
 

→ E+E*E 

→ E+E*id3 

→ E+id2*id3 

→id 1+id2*id3 

 

In the above derivation the underlined substrings are 

called handles. Handle pruning: 

A rightmost derivation in reverse can be obtained by “handle pruning”. 

(i.e.) ifwis a sentence or string of the grammar at hand, thenw= y n, where yn is 

then th right- sentinel form of some rightmost derivation. 

 

 Stack implementation of shift-reduce parsing : 

 

 

Stac

k 

Inpu

t 

Actio

n 
$ id1+id2*id3 $ shift 



64 
 

$ id1 +id2*id3 $ reduce by E→id 

$ E +id2*id3 $ shift 

$ E+ id2*id3 $ shift 

$ E+id2 *id3 $ reduce by E→id 

$ E+E *id3 $ shift 

$ E+E* id3 $ shift 

$ E+E*id3 $ reduce by E→id 

$ E+E*E $ reduce by E→ E *E 

$ E+E $ reduce by E→ E+E 

$ E $ accept 

 

 

Actions in shift-reduce parser: 

• shift – The next input symbol is shifted onto the top of the stack. 

• reduce – The parser replaces the handle within a stack with a non-terminal. 

• accept – The parser announces successful completion of parsing. 

• error – The parser discovers that a syntax error has occurred and calls an 

error recovery routine. 

Conflicts in shift-reduce parsing: 

There are two conflicts that occur in shift shift-reduce parsing: 

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce. 

 

2. Reduce-reduce conflict: The parser cannot decide which of several reductions to 

make. 

 

1. Shift-reduce 

conflict: Example: 

Consider the grammar: 

E→E+E | E*E | id and input id+id*id 

Stack Input Action Stack Input Action 

$ E+E *id $ Reduce 

by 

E→E+E 

$E+E *id $ Shift 
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$ E *id $ Shift $E+E* id $ Shift 

$ E* id $ Shift $E+E*id $ Reduce 

by E→id 

$ E*id $ Reduce 

by E→id 

$E+E*E $ Reduce 

by 

E→E*E 
$ E*E $ Reduce 

by 

E→E*E 

$E+E $ Reduce 

by 

E→E*E 
$ E   $E   

 

2. Reduce-reduce conflict: 

Consider the 

grammar: M → 

R+R | R+c | R 

R → c 

and input c+c 

 

Stack Input Action Stack Input Action 

$ c+c $ Shift $ c+c $ Shift 

$ c +c $ Reduce 

by R→c 

$ c +c $ Reduce 

by R→c 

$ R +c $ Shift $ R +c $ Shift 

$ R+ c $ Shift $ R+ c $ Shift 

$ R+c $ Reduce 

by R→c 

$ R+c $ Reduce 

by 

M→R+c 
$ R+R $ Reduce 

by 

M→R+

R 

$ M $  

$ M $     
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Viable prefixes: 

➢ a is a viable prefix of the grammar if there iswsuch that awis a right sentinel form. 

➢ The set of prefixes of right sentinel forms that can appear on the stack of a 

shift-reduce parser are called viable prefixes. 

➢ The set of viable prefixes is a regular language. 

OPERATOR-PRECEDENCE PARSING 

 

An efficient way of constructing shift-reduce parser is called operator-precedence 

parsing. 

 

Operator precedence parser can be constructed from a grammar called Operator-

grammar. These grammars have the property that no production on right side is ε 

or has two adjacent non- terminals. 

Example: 

Consider the grammar: 

 

E → EAE | (E) | -

E | id A → + | - | * | 

/ | ↑ 

Since the right side EAE has three consecutive non-terminals, the grammar can be 

written as follows: 

E → E+E | E-E | E*E | E/E | E↑E | -E | id 

 

Operator precedence relations: 

There are three disjoint precedence relations namely 

< . - less than 

=- equal to 

. >- greater than 
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The relations give the following 

meaning: a< . b – a yields 

precedence to b 

a = b – a has the same 

precedence as b a . >b – a takes 

precedence over b 

 

Rules for binary operations: 

1. If operator θ1 has higher precedence than operator 

θ2, then make θ1 
. >θ 2 and θ2 < . θ1 

2. If operators θ1 and θ2, are of equal precedence, 

then make θ1 
. >θ 2 and θ2 

. >θ 1 if operators 

are left associative θ1 < . θ2 and θ2 < . θ1 if 

right associative 

3. Make the following for all 

operators θ: θ< . id , id . 

>θ 

θ< . ( , (< . θ 

) . >θ , θ . >) 

θ . >$ , $< . θ 

Also make 

( = ) , (<   . ( , ) . >) , (< . id , id . >) , $< . id , id . >$ , $<

 . ( , ) . >$ 

Example: 

Operator-precedence relations for the grammar 

 

E → E+E | E-E | E*E | E/E | E↑E | (E) | -E | id is given in the following table 

assuming 

 

1. ↑ is of highest precedence and right-associative 

2. * and / are of next higher precedence and left-associative, and 



68 
 

3. + and - are of lowest precedence and left-

associative Note that theblanksin the table 

denote error entries. 

 

TABLE : Operator-precedence relations 

 + - * / ↑ id ( ) $ 

+ .
> .

> <. <. <. <. <. 
.
> .

> 

- 
.
> .

> <. <. <. <. <. 
.
> .

> 

* .
> .

> .> .
> <. <. <. 

.
> .

> 

/ .
> .

> .> .
> <. <. <. 

.
> .

> 

↑ .
> .

> .> .
> <. <. <. 

.
> .

> 
id .

> .
> .> .

> .> 
·   .

> .
> 

( <. <. <. <. <. <. <. =  

) .
> .

> .> .
> .>   .

> .
> 

$ <. <. <. <. <. <. <.   

 

Operator precedence parsing algorithm: 

 

Input :An input stringwand a table of precedence relations. 

Output :Ifwis well formed, askeletalparse tree,with a placeholder non-

terminal E labeling all interior nodes; otherwise, an error indication. 

Method :Initially the stack contains $ and the input buffer the stringw$. To 

parse, we execute the following program : 

 

(1) Setipto point to the first 

symbol ofw$; (2)repeat forever 

(3)if$ is on top of the stack andippoints 

to $then (4)return 

else begin 

(5) letabe the topmost terminal symbol on 

the stack and letbbe the symbol 

pointed to byip; 

(6) ifa< . bora=bthen begin 

(7) pushbonto the stack; 

(8) advanceipto the next input symbol; 
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end; 

(9) else ifa . >bthen /*reduce*/ 

(10)repeat 

(11) pop the stack 

(12)untilthe top stack terminal is related by < . 

to the terminal most recently 

popped (13)elseerror( ) 

end 

 

Stack implementation of operator precedence parsing: 

Operator precedence parsing uses a stack and precedence relation table for 

its implementation of above algorithm. It is a shift-reduce parsing containing all 

four actions shift, reduce, accept and error. 

The initial configuration of an operator precedence parsing is 

STACK INPUT 

$ w $ 

where w is the input string to be parsed. 

 

Example: 

 

Consider the grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string 

isid+id*id.The implementation is as follows: 

 

STAC

K 

INPU

T 

COMMENT 

$ <· id+id*id 
$ 

shift id 

$ id ·> +id*id $ pop the top of the stack id 

$ <· +id*id $ shift + 

$ + <· id*id $ shift id 

$ +id ·> *id $ pop id 

$ + <· *id $ shift * 

$ + * <· id $ shift id 
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$ + * id ·> $ pop id 

$ + * ·> $ pop * 

$ + ·> $ pop + 

$ $ accept 

 

Advantages of operator precedence parsing: 

1. It is easy to implement. 

2. Once an operator precedence relation is made between all pairs of terminals 

of a grammar , the grammar can be ignored. The grammar is not referred 

anymore during implementation. 

 

Disadvantages of operator precedence parsing: 

1. It is hard to handle tokens like the minus sign (-) which has two different 

precedence. 

2. Only a small class of grammar can be parsed using operator-precedence parser. 

 LR   PARSERS 

An efficient bottom-up syntax analysis technique that can be used to parse 

a large class of CFG is called LR(k) parsing. The ‘L’ is for left-to-right scanning 

of the input, the ‘R’ for constructing a rightmost derivation in reverse, and the 

‘k’ for the number of input symbols. When ‘k’ is omitted, it is assumed to be 

1. 

 

 

Advantages of LR parsing: 

✓ It recognizes virtually all programming language constructs for which 

CFG can be written. 

✓ It is an efficient non-backtracking shift-reduce parsing method. 

✓ A grammar that can be parsed using LR method is a proper superset of 

a grammar that can be parsed with predictive parser. 

✓ It detects a syntactic error as soon as possible. 

Drawbacks of LR method: 

It is too much of work to construct a LR parser by hand for a 

programming language grammar. A specialized tool, called a LR parser 

generator, is needed. Example: YACC. 
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Types of LR parsing method: 

1. SLR- Simple LR 

▪ Easiest to implement, least powerful. 

2. CLR- Canonical LR 

▪ Most powerful, most expensive. 

3. LALR- Look-Ahead LR 

▪ Intermediate in size and cost between the other two methods. 

The LR parsing algorithm: 

 

The schematic form of an LR parser is as follows: 

 

 

INPUT 

                                                                                                OUTPUT 

 

 

 

 

 

 

 

 

 

 

STACK 

It consists of : an input, an output, a stack, a driver program, and a parsing 

table that has two parts (actionandgoto). 

➢ The driver program is the same for all LR parser. 

➢ The parsing program reads characters from an input buffer one at a time. 

➢ The program uses a stack to store a string of the form s 0X1s1X2s2…Xmsm, 

where sm is on top. Each Xi is a grammar symbol and each si is a state. 

goto action 

LR parsing program 

a1 
 

… ai 
 

… an $ 

 

Sm 

Xm 

Sm-1 

Xm-1 

… 

S0 
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➢ The parsing table consists of two parts :actionandgotofunctions. 

Action: The parsing program determines s m, the state currently on top of 

stack, and ai, the current input symbol. It then consultsaction[s m,ai] in the action 

table which can have one of four values : 

1. shift s, where s is a state, 

2. reduce by a grammar production A → β, 

3. accept, and 

4. error. 

 

Goto: The function goto takes a state and grammar symbol as arguments and 

produces a state. 

LR Parsing algorithm: 

 

Input: An input stringwand an LR parsing table with functionsactionandgotofor 

grammar G. 

 

Output: Ifwis in L(G), a bottom-up-parse forw; otherwise, an error indication. 

 

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, 

andw$ in the input buffer. The parser then executes the following program : 

setipto point to the first input symbol ofw$; 

repeat forever begin 

letsbe the state on top of the stack and 

athe symbol pointed to byip; 

 

 

ifaction[s,a] = shifts’then 

begin pushathens’ on top of 

the stack; advanceipto the 

next input symbol 

end 

else ifaction[s,a] = reduce A→βthen begin 
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pop 2* | β | symbols off the stack; 

lets’ be the state now on top of the 

stack; push A thengoto[s’, A] on 

top of the stack; output the 

production A→ β 

end 

else ifaction[s,a] = 

acceptthen return 

elseerror( ) 

end 

CONSTRUCTING SLR(1) PARSING TABLE: 

 

To perform SLR parsing, take grammar as input and do the following: 

1. Find LR(0) items. 

2. Completing the closure. 

3. Computegoto(I,X), where, I is set of items and X is grammar symbol. 

 

LR(O) items: 

AnLR(O) itemof a grammar G is a production of G with a dot at some 

position of the right side. For example, production A → XYZ yields the four 

items : 

A 

→.XYZ 

A → 

X.YZ A 

→ XY.Z 

A → 

XYZ. 

Closure operation: 

If I is a set of items for a grammar G, then closure(I) is the set of items 

constructed from I by the two rules: 

1. Initially, every item in I is added to closure(I). 

2. If A → a . Bβ is in closure(I) and B → y is a production, then add the item 
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B → . y to I , if it is not already there. We apply this rule until no more new 

items can be added to closure(I). 

3.  

Goto operation: 

Goto(I, X) is defined to be the closure of the set of all items [A→ aX . 

β] such that [A→ a . Xβ] is in I. 

Steps to construct SLR parsing table for grammar G are: 

 

1. Augment G and produce G’ 

2. Construct the canonical collection of set of items C for G’ 

3. Construct the parsing action functionactionandgotousing the following 

algorithm that requires FOLLOW(A) for each non-terminal of 

grammar. 

 

 

Algorithm for construction of SLR parsing table: 

 

Input: An augmented grammar G’ 

Output: The SLR parsing table functionsactionandgotofor G’ 

Method: 

1. Construct C = {I0, I1, …. In}, the collection of sets of LR(0) items for G’. 

2. Stateiis constructed from I i.. The parsing functions for stateiare determined as 

follows: 

(a) If [A→a·aβ] is in Ii and goto(Ii,a) = Ij, then setaction[i,a] to “shift j”. 

Hereamust be terminal. 

(b) If [A→a·] is in Ii , then setaction[i,a] to “reduce A→a” for allain 

FOLLOW(A). 

(c) If [S’→S.] is in Ii, then setaction[i,$] to “accept”. 

 

If any conflicting actions are generated by the above rules, we say grammar is not 

SLR(1). 

3. Thegototransitions for stateiare constructed for all non-terminals A 

using the rule: Ifgoto(I i,A) = Ij, thengoto[i,A] =j. 
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4. All entries not defined by rules (2) and (3) are made “error” 

5. The initial state of the parser is the one constructed from the set of items 

containing [S’→.S]. 

 

 

Example for SLR parsing: 

Construct SLR parsing for the following 

grammar : G : E → E + T | T 

T → T * F 

| F F → (E) 

| id 

 

The given grammar is : 

G : E → E + 
T 

------ 
(1) 

E →T ------ 

(2) 

T → T * F ------ 

(3) 

T → F ------ 

(4) 

F → (E) ------ 

(5) 
F → id ------ 

(6) 
  

 

Step 1 :Convert given grammar into augmented grammar. 

Augmented grammar : 

E’ → E 

E → E + T 

E → T 

T → T * 

F T → F 

 



76 
 

 

F → (E) 

F → id 

Step 2 :Find LR (0) 

items. I0 : E’ →.E 

E →.E + T 

E →.T 

T →.T * 

F T →.F 

F →.(E) 

F →.id 

 

GOTO ( I0 , E) I1 : E’ → E. 

E → E.+ T 

GOTO ( I4 , id ) 

I5 : F → id. 

GOTO ( I6 , T ) 

GOTO ( I0 , T) I9 : E → E + T. 

I2 : E → T. T → T.* F 

T → T.* F 

 

GOTO ( I0 , 

F) I3 : T → 

F. 

GOTO ( I6 , 

F ) I3 : T → 

F. 

 

GOTO ( I6 , ( ) 

I4 : F → (.E ) 
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GOTO ( I0 , ( 

) 

I4 : F → (.E) 

E →.E + 

T E →.T 

T →.T * 

F T →.F 

F →.(E) 

F →.id 

 

GOTO ( I0 , 

id ) 

I5 : F → id. 

 

GOTO ( I1 , 

+ ) I6 : E → E 

+.T 

T →.T * 

F T →.F 

F →.(E) 

F →.id 

 

GOTO ( I2 , 

* ) I7 : T → 

T *.F 

F →.(E) 

F →.id 

 

GOTO ( I4 , 

E ) I8 : F → ( 

E.) 

E → E.+ T 

GOTO ( I6 , id) 

I5 : F → id. 

 

GOTO ( I7 , F ) I10 : T → T * F. 

 

GOTO ( I7 , ( ) 

I4 :   F → (.E ) 

E →.E + 

T E →.T 

T →.T * 

F T →.F 

F →.(E) 

F →.id 

 

GOTO ( I7 , id ) 

I5 : F → id. 

 

GOTO ( I8 , ) ) 

I11 : F → ( 

E ). 

 

GOTO ( I8 , 

+ ) I6 : E → 

E +.T 

T →.T * 

F T →.F 

F →.( E ) 

F →.id 
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GOTO ( I4 , T) I2 : E →T. 

T → T.* F 

 

GOTO ( I4 , F) I3 : T → F. 

GOTO ( I9 , *) I7 : T → T *.F 

F →.( E ) 

F →.id 
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FOLLOW (E) = { $ , ) , +) 

FOLLOW (T) = { $ , + , ) , * } 

FOOLOW (F) = { * , + , ) , $ } 

 

SLR parsing table: 

 

 ACTIO

N 

GOT

O 

id + * ( ) $ E T F 

IO s
5 

  s
4 

  1 2 3 

I1  s
6 

   AC
C 

   

I2  r2 s7  r2 r2    

I3  r4 r4  r4 r4    

I4 s
5 

  s
4 

  8 2 3 

I5  r6 r6  r6 r6    

I6 s

5 

  s

4 

   9 3 

I7 s
5 

  s
4 

    10 

I8  s
6 

  s11     

I9  r1 s7  r1 r1    

I1O  r3 r3  r3 r3    

I11  r5 r5  r5 r5    

GOTO ( I4 , ( ) 

I4 : F → (.E) 

E →.E + T 

E →.T 

T →.T * F 

T →.F 

F →.(E) 

F → id 
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Blank entries are error entries. 

 

 

 

Stack implementation: 

Check whether the inputid + id * idis valid or not. 

STACK INPUT ACTI
ON 

0 id + id * id 
$ 

GOTO ( I0 , id ) = s5 ;shift 

0 id 5 + id * id $ GOTO ( I5 , + ) = r6 ;reduceby F→id 

0 F 3 + id * id $ GOTO ( I0 , F ) = 3 

GOTO ( I3 , + ) = r4 ;reduceby T → F 

0 T 2 + id * id $ GOTO ( I0 , T ) = 2 

GOTO ( I2 , + ) = r2 ;reduceby E → 

T 
0 E 1 + id * id $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , + ) = s6 ;shift 

0 E 1 + 6 id * id $ GOTO ( I6 , id ) = s5 ;shift 

0 E 1 + 6 id 5 * id $ GOTO ( I5 , * ) = r6 ;reduceby F → 
id 

0 E 1 + 6 F 3 * id $ GOTO ( I6 , F ) = 3 

GOTO ( I3 , * ) = r4 ;reduceby T → F 

0 E 1 + 6 T 9 * id $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , * ) = s7 ;shift 

0 E 1 + 6 T 9 * 7 id $ GOTO ( I7 , id ) = s5 ;shift 

0 E 1 + 6 T 9 * 7 id 5 $ GOTO ( I5 , $ ) = r6 ;reduceby F → 
id 

0 E 1 + 6 T 9 * 7 F 
10 

$ GOTO ( I7 , F ) = 10 

GOTO ( I10 , $ ) = r3 ;reduceby T → 

T * F 
0 E 1 + 6 T 9 $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , $ ) = r1 ;reduceby E → E 

+ T 
0 E 1 $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , $ ) =accept 
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UNIT – III 

Syntax-Directed Translation -Definition 

  The translation techniques in this chapter will be applied   to type checking and 

intermediate-code generation. The techniques are also useful for implementing little 

languages for specialized tasks; this chapter includes an example from typesetting.       

We associate information with a language construct by attaching    attributes 

to the grammar symbol(s)  representing  the  construct. A syntax-directed definition 

specifies the values of attributes by associating semantic rules with the grammar 

productions. For example, an infix-to-postfix translator might have a production       

and          rule 

PRODUCTION    SEMANTIC   RULE 

 

This production has two nonterminals, E and T; the     subscript in E1  distinguishes the 

occurrence of E in the production body from the occurrence of E as the head. Both E 

and T have a string-valued attribute code. The semantic rule specifies that the string 

E.code is formed by concatenating Ei.code, T.code, and the character '+'. While the rule 

makes it explicit that the translation of E is built up from the translations of E1, T, and 

'+', it may be inefficient to implement the translation directly by manipulating strings. 

  a syntax-directed translation scheme embeds program fragments called semantic 

actions within production bodies, as in 

E -» Ei + T  { print '+' }   

By convention, semantic actions are enclosed within curly braces. (If curly braces occur 

as grammar symbols, we enclose them within single quotes, as in ' { ' and '}'.)       The 
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position of a semantic action in a production body determines the order in which the 

action is executed. In production (5.2), the action occurs at the end, after all the 

grammar symbols; in general, semantic actions may occur at any position in a 

production body. 

 Between the two notations, syntax-directed definitions can be more readable, and 

hence more useful for specifications. However, translation schemes can be more 

efficient, and hence more useful for implementations. 

 The most general approach to syntax-directed translation is to construct a parse tree or 

a syntax tree, and then to compute the values of attributes at the nodes of the tree by 

visiting the nodes of the tree. In many cases, translation can be done during parsing, 

without building an explicit tree. We shall therefore study a class of syntax-directed 

translations called "L-attributed translations" (L for left-to-right), which encompass 

virtually all translations that can be performed during parsing. We also study a smaller 

class, called "S-attributed translations" (S for synthesized), which can be performed 

easily in connection with a bottom-up parse. 

Construction of syntax trees 

Syntax Directed Translation has augmented rules to the grammar that facilitate semantic 

analysis. SDT involves passing information bottom-up and/or top-down the parse tree 

in form of attributes attached to the nodes. Syntax-directed translation rules use 1) 

lexical values of nodes, 2) constants & 3) attributes associated with the non-terminals in 

their definitions.  

The general approach to Syntax-Directed Translation is to construct a parse tree or 

syntax tree and compute the values of attributes at the nodes of the tree by visiting them 

in some order. In many cases, translation can be done during parsing without building 

an explicit tree.  
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Example  

E -> E+T | T 

T -> T*F | F 

F -> INTLIT  

This is a grammar to syntactically validate an expression having additions and 

multiplications in it. Now, to carry out semantic analysis we will augment SDT rules to 

this grammar, in order to pass some information up the parse tree and check for 

semantic errors, if any. In this example, we will focus on the evaluation of the given 

expression, as we don’t have any semantic assertions to check in this very basic 

example.  

E -> E+T     { E.val = E.val + T.val }   PR#1 

E -> T       { E.val = T.val }           PR#2 

T -> T*F     { T.val = T.val * F.val }   PR#3 

T -> F       { T.val = F.val }           PR#4 

F -> INTLIT  { F.val = INTLIT.lexval }   PR#5 

For understanding translation rules further, we take the first SDT augmented to [ E -> 

E+T ] production rule. The translation rule in consideration has val as an attribute for 

both the non-terminals – E & T. Right-hand side of the translation rule corresponds to 

attribute values of right-side nodes of the production rule and vice-versa. Generalizing, 

SDT are augmented rules to a CFG that associate 1) set of attributes to every node of 

the grammar and 2) set of translation rules to every production rule using attributes, 

constants, and lexical values.  

Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse tree 

corresponding to S would be  
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To evaluate translation rules, we can employ one depth-first search traversal on the 

parse tree. This is possible only because SDT rules don’t impose any specific order on 

evaluation until children’s attributes are computed before parents for a grammar having 

all synthesized attributes. Otherwise, we would have to figure out the best-suited plan to 

traverse through the parse tree and evaluate all the attributes in one or more traversals. 

For better understanding, we will move bottom-up in the left to right fashion for 

computing the translation rules of our example. 

 

 

 

 

The above diagram shows how semantic analysis could happen. The flow of 

information happens bottom-up and all the children’s attributes are computed before 

parents, as discussed above. Right-hand side nodes are sometimes annotated with 
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subscript 1 to distinguish between children and parents.  

Additional Information  

 Synthesized Attributes are such attributes that depend only on the attribute values of 

children nodes.  

Thus [ E -> E+T { E.val = E.val + T.val } ] has a synthesized attribute val 

corresponding to node E. If all the semantic attributes in an augmented grammar are 

synthesized, one depth-first search traversal in any order is sufficient for the semantic 

analysis phase.  

 

Inherited Attributes are such attributes that depend on parent and/or sibling’s 

attributes.  

Thus [ Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val } ], where E & Ep are same 

production symbols annotated to differentiate between parent and child, has an inherited 

attribute val corresponding to node T.  
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Difference between Synthesized and Inherited Attributes 

 
r. 

No. 

Key Synthesized Attribute Inherited Attribute 

1 Definitio

n 

Synthesized attribute is an attribute 

whose parse tree node value is 

determined by the attribute value at 

child nodes. To illustrate, assume the 

following production S → ABC if S is 

taking values from its child nodes (A, B, 

On other hand an attribute is said to be 

Inherited attribute if its parse tree node 

value is determined by the attribute 

value at parent and/or siblings node. In 

case of S → ABC if A can get values 

from S, B and C. B can take values from 
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C), then it is said to be a synthesized 

attribute, as the values of ABC are 

synthesized to S. 

S, A, and C. Likewise, C can take values 

from S, A, and B then S is said to be 

Inherited Attribute. 

2 Design As mentioned above in case of 

Synthesized attribute the production 

must have non-terminal as its head. 

On other hand in case of Inherited 

attribute the production must have non-

terminal as a symbol in its body. 

3 Evaluati

on 

Synthesized attribute can be evaluated 

during a single bottom-up traversal of 

parse tree. 

While on other hand Inherited attribute 

can be evaluated during a single top-

down and sideways traversal of parse 

tree. 

4 Terminal Both terminal and Non terminals can 

contain the Synthesized attribute. 

On other hand only Non terminals can 

contain the Inherited attribute. 

5 Usage Synthesized attribute is used by both S-

attributed SDT and L-attributed STD. 

On other hand Inherited attribute is used 

by only L-attributed SDT. 

 

 

Bottom-Up Evaluation of S-Attributed Definitions 

 
S-attributed Definition: Syntax-Directed Definition using only synthesized attributes. 

Stack of a LR parser contains states.  

Recall that each state corresponds to some grammar symbol and many different states 

might correspond to the same grammar symbol. 

 Keep attribute values of grammar symbols in tack. 

Evaluate attribute values at each reduction. 

 

In a bottom-up evaluation of a syntax directed definition, inherited attributes can  

1. always be evaluated  

2. be evaluated only if the definition is  L-attributed . 

3.  be evaluated only if the definition has synthesized attributes. 

4. never be evaluated. 
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TYPE CHECKING 

 A compiler must check that the source program follows both syntactic and semantic 

conventions of the source language. This checking, called static checking, detects and 

reports programming errors. 

 Some examples of static checks: 

 1.  Type checks - A compiler should report an error if an operator is applied to an 

incompatible operand. Example: If an array variable and function variable are added 

together.  

 2. Flow-of-control checks - Statements that cause flow of control to leave a construct 

must have some place to which to transfer the flow of control. Example: An enclosing 

statement, such as break, does not exist in switch statement.  

 

 

A type checker verifies that the type of a construct matches that expected by its 

context. For example: arithmetic operator mod in Pascal requires integer operands, so a 

type checker verifies that the operands of mod have type integer. Type information 

gathered by a type checker may be needed when code is generated. 

 Type Systems 

 The design of a type checker for a language is based on information about the syntactic 

constructs in the language, the notion of types, and the rules for assigning types to 
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language constructs. 

For example : “ if both operands of the arithmetic operators of +,- and * are of type 

integer, then the result is of type integer ” 

 Type Expressions 

The type of a language construct will be denoted by a “type expression.” A type 

expression is either a basic type or is formed by applying an operator called a type 

constructor to other type expressions. The sets of basic types and constructors depend 

on the language to be checked. The following are the definitions of type expressions: 

1.     Basic types such as boolean, char, integer, real are type expressions.  

A special basic type, type_error , will signal an error during type checking; void 

denoting “the absence of a value” allows statements to be checked.  

 2.     Since type expressions may be named, a type name is a type expression.  

3.     A type constructor applied to type expressions is a type expression.  

 Constructors include:  

 Arrays : If T is a type expression then array (I,T) is a type expression denoting the type 

of an array with elements of type T and index set I.  

 Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a 

type expression.  

 Records : The difference between a record and a product is that the names. The record 

type constructor will be applied to a tuple formed from field names and field types.  

 For example:  

 type row = record  

address: integer;  
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lexeme: array[1..15] of char  

end;  

var table: array[1...101] of row;  

 declares the type name row representing the type expression record((address X integer) 

X (lexeme X array(1..15,char))) and the variable table to be an array of records of this 

type.  

 Pointers : If T is a type expression, then pointer(T) is a type expression denoting the 

type “pointer to an object of type T”.  

For example, var p: ↑ row declares variable p to have type pointer(row).  

Functions : A function in programming languages maps a domain type D to a range 

type R. The type of such function is denoted by the type expression D → R 

4. Type expressions may contain variables whose values are type expressions.  

  

  Tree representation for char x char → pointer (integer) 

 Type systems 

 A type system is a collection of rules for assigning type expressions to the various parts 

of a program. A type checker implements a type system. It is specified in a syntax-

directed manner. Different type systems may be used by different compilers or 

processors of the same language. 

 Static and Dynamic Checking of Types 

 Checking done by a compiler is said to be static, while checking done when the target 

program runs is termed dynamic. Any check can be done dynamically, if the target code 

carries the type of an element along with the value of that element. 
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 Sound type system 

 A sound type system eliminates the need for dynamic checking fo allows us to 

determine statically that these errors cannot occur when the target program runs. That 

is, if a sound type system assigns a type other than type_error to a program part, then 

type errors cannot occur when the target code for the program part is run. 

 Strongly typed language 

 A language is strongly typed if its compiler can guarantee that the programs it accepts 

will execute without type errors. 

  

Error Recovery 

 Since type checking has the potential for catching errors in program, it is desirable for 

type checker to recover from errors, so it can check the rest of the input. Error handling 

has to be designed into the type system right from the start; the type checking rules must 

be prepared to cope with errors. 

 SPECIFICATION OF A SIMPLE TYPE CHECKER 

 A type checker for a simple language checks the type of each identifier. The type 

checker is a translation scheme that synthesizes the type of each expression from the 

types of its subexpressions. The type checker can handle arrays, pointers, statements 

and functions. 

 A Simple Language 

Consider the following grammar:  

P → D ; E 

D → D ; D | id : T 

T → char | integer | array [ num ] of T | ↑ T 

E → literal | num | id | E mod E | E [ E ] | E ↑ 

 Translation scheme: 

P → D ; E 

D → D ; D 
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D → id : T { addtype (id.entry , T.type) } 

T → char { T.type : = char } 

T → integer { T.type : = integer } 

T → ↑ T1 { T.type : = pointer(T1.type) } 

T → array [ num ] of T1 { T.type : = array ( 1… num.val , T1.type) } 

 In the above language, 

→ There are two basic types : char and integer ; → type_error is used to signal errors;  

→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type 

expression  

 pointer ( integer ). Type checking of expressions 

 In the following rules, the attribute type for E gives the type expression assigned to the 

expression generated by E. 

 1. E → literal { E.type : = char } E→num { E.type : = integer } 

Here, constants represented by the tokens literal and num have type char and integer. 

 2. E → id { E.type : = lookup ( id.entry ) } 

 lookup ( e ) is used to fetch the type saved in the symbol table entry pointed to by e. 

 3. E → E1 mod E2 { E.type : = if E1. type = integer and E2. type = integer then integer 

else type_error } 

The expression formed by applying the mod operator to two subexpressions of type 

integer has type integer; otherwise, its type is type_error. 

 4. E → E1 [ E2 ] { E.type : = if E2.type = integer and E1.type = array(s,t) then t 

else type_error } 

 In an array reference E1 [ E2 ] , the index expression E2 must have type integer. The 

result is the element type t obtained from the type array(s,t) of E1. 

 5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t 

else type_error } 
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The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ 

is the type t of the object pointed to by the pointer E.  

Type checking of statements 

 Statements do not have values; hence the basic type void can be assigned to them. If an 

error is detected within a statement, then type_error is assigned. 

 Translation scheme for checking the type of statements: 

1. Assignment statement: S→id: = E 

2. Conditional statement: S→if E then S1 

3 While statement: 

S → while E do S1 

 4. Sequence of statements: 

 S → S1 ; S2 { S.type : = if S1.type = void and S1.type = void then void else type_error 

} 

Type checking of functions 

The rule for checking the type of a function application is : E → E1 ( E2) { E.type : = if 

E2.type = s and  E1.type = s → t then t else type_error } 

  

 

 

UNIT –IV 

Run-Time Environment 

A program as a source code is merely a collection of text (code, statements etc.) and to 

make it alive, it requires actions to be performed on the target machine. A program 

needs memory resources to execute instructions. A program contains names for 
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procedures, identifiers etc., that require mapping with the actual memory location at 

runtime. 

By runtime, we mean a program in execution. Runtime environment is a state of the 

target machine, which may include software libraries, environment variables, etc., to 

provide services to the processes running in the system. 

Runtime support system is a package, mostly generated with the executable program 

itself and facilitates the process communication between the process and the runtime 

environment. It takes care of memory allocation and de-allocation while the program is 

being executed. 

Activation Trees 

A program is a sequence of instructions combined into a number of procedures. 

Instructions in a procedure are executed sequentially. A procedure has a start and an end 

delimiter and everything inside it is called the body of the procedure. The procedure 

identifier and the sequence of finite instructions inside it make up the body of the 

procedure. 

The execution of a procedure is called its activation. An activation record contains all 

the necessary information required to call a procedure. An activation record may 

contain the following units (depending upon the source language used). 

Temporaries Stores temporary and intermediate values of an expression. 

Local Data Stores local data of the called procedure. 

Machine Status Stores machine status such as Registers, Program Counter etc., 

before the procedure is called. 

Control Link Stores the address of activation record of the caller procedure. 

Access Link Stores the information of data which is outside the local scope. 

Actual Parameters Stores actual parameters, i.e., parameters which are used to send 

input to the called procedure. 

Return Value Stores return values. 

Whenever a procedure is executed, its activation record is stored on the stack, also 

known as control stack. When a procedure calls another procedure, the execution of the 

caller is suspended until the called procedure finishes execution. At this time, the 

activation record of the called procedure is stored on the stack. 
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We assume that the program control flows in a sequential manner and when a procedure 

is called, its control is transferred to the called procedure. When a called procedure is 

executed, it returns the control back to the caller. This type of control flow makes it 

easier to represent a series of activations in the form of a tree, known as the activation 

tree. 

To understand this concept, we take a piece of code as an example: 

. . . 

printf(“Enter Your Name: “); 

scanf(“%s”, username); 

show_data(username); 

printf(“Press any key to continue…”); 

. . . 

int show_data(char *user) 

   { 

   printf(“Your name is %s”, username); 

   return 0; 

   } 

. . .  

Below is the activation tree of the code given. 

Now we understand that procedures are executed in depth-first manner, thus stack 

allocation is the best suitable form of storage for procedure activations. 

Storage Allocation 

Runtime environment manages runtime memory requirements for the following entities: 

 Code : It is known as the text part of a program that does not change at runtime. 

Its memory requirements are known at the compile time. 

 Procedures : Their text part is static but they are called in a random manner. 

That is why, stack storage is used to manage procedure calls and activations. 

 Variables : Variables are known at the runtime only, unless they are global or 

constant. Heap memory allocation scheme is used for managing allocation and 

de-allocation of memory for variables in runtime. 
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Static Allocation 

In this allocation scheme, the compilation data is bound to a fixed location in the 

memory and it does not change when the program executes. As the memory 

requirement and storage locations are known in advance, runtime support package for 

memory allocation and de-allocation is not required. 

Stack Allocation 

Procedure calls and their activations are managed by means of stack memory allocation. 

It works in last-in-first-out (LIFO) method and this allocation strategy is very useful for 

recursive procedure calls. 

Heap Allocation 

Variables local to a procedure are allocated and de-allocated only at runtime. Heap 

allocation is used to dynamically allocate memory to the variables and claim it back 

when the variables are no more required. 

Except statically allocated memory area, both stack and heap memory can grow and 

shrink dynamically and unexpectedly. Therefore, they cannot be provided with a fixed 

amount of memory in the system. 

As shown in the image above, the text part of the code is allocated a fixed amount of 

memory. Stack and heap memory are arranged at the extremes of total memory 

allocated to the program. Both shrink and grow against each other. 

Parameter Passing 

The communication medium among procedures is known as parameter passing. The 

values of the variables from a calling procedure are transferred to the called procedure 

by some mechanism. Before moving ahead, first go through some basic terminologies 

pertaining to the values in a program. 

r-value 

The value of an expression is called its r-value. The value contained in a single variable 

also becomes an r-value if it appears on the right-hand side of the assignment operator. 

r-values can always be assigned to some other variable. 
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l-value 

The location of memory (address) where an expression is stored is known as the l-value 

of that expression. It always appears at the left hand side of an assignment operator. 

For example: 

day = 1; 

week = day * 7; 

month = 1; 

year = month * 12; 

From this example, we understand that constant values like 1, 7, 12, and variables like 

day, week, month and year, all have r-values. Only variables have l-values as they also 

represent the memory location assigned to them. 

For example: 

7 = x + y; 

is an l-value error, as the constant 7 does not represent any memory location. 

Formal Parameters 

Variables that take the information passed by the caller procedure are called formal 

parameters. These variables are declared in the definition of the called function. 

Actual Parameters 

Variables whose values or addresses are being passed to the called procedure are called 

actual parameters. These variables are specified in the function call as arguments. 

Example: 

fun_one() 

{ 

   int actual_parameter = 10; 

   call fun_two(int actual_parameter); 

} 

   fun_two(int formal_parameter) 

{ 
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   print formal_parameter; 

} 

Formal parameters hold the information of the actual parameter, depending upon the 

parameter passing technique used. It may be a value or an address. 

Pass by Value 

In pass by value mechanism, the calling procedure passes the r-value of actual 

parameters and the compiler puts that into the called procedure’s activation record. 

Formal parameters then hold the values passed by the calling procedure. If the values 

held by the formal parameters are changed, it should have no impact on the actual 

parameters. 

Pass by Reference 

In pass by reference mechanism, the l-value of the actual parameter is copied to the 

activation record of the called procedure. This way, the called procedure now has the 

address (memory location) of the actual parameter and the formal parameter refers to 

the same memory location. Therefore, if the value pointed by the formal parameter is 

changed, the impact should be seen on the actual parameter as they should also point to 

the same value. 

Pass by Copy-restore 

This parameter passing mechanism works similar to ‘pass-by-reference’ except that the 

changes to actual parameters are made when the called procedure ends. Upon function 

call, the values of actual parameters are copied in the activation record of the called 

procedure. Formal parameters if manipulated have no real-time effect on actual 

parameters (as l-values are passed), but when the called procedure ends, the l-values of 

formal parameters are copied to the l-values of actual parameters. 

Example: 

int y;  

calling_procedure()  

{ 

   y = 10;      

   copy_restore(y); //l-value of y is passed 

   printf y; //prints 99  
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} 

copy_restore(int x)  

{      

   x = 99; // y still has value 10 (unaffected) 

   y = 0; // y is now 0  

} 

When this function ends, the l-value of formal parameter x is copied to the actual 

parameter y. Even if the value of y is changed before the procedure ends, the l-value of 

x is copied to the l-value of y making it behave like call by reference. 

Pass by Name 

Languages like Algol provide a new kind of parameter passing mechanism that works 

like preprocessor in C language. In pass by name mechanism, the name of the procedure 

being called is replaced by its actual body. Pass-by-name textually substitutes the 

argument expressions in a procedure call for the corresponding parameters in the body 

of the procedure so that it can now work on actual parameters, much like pass-by-

reference. 

  

 SOURCE LANGUAGE ISSUES 

Procedure 

A procedure definition is a declaration that associates an identifier with a 

statement. The identifier is procedure name, and statement is the procedure 

body. 

For example, the following definition of procedure named readarray 

 

 

When a procedure name appears with in an executable statement, the procedure is 



  
 

102  

said to be 

called at that point. 

Activation Tree 

Each execution of procedure is referred to as an activation of the procedure. 

Lifetime of an activation is the sequence of steps present in the execution of 

the procedure. 

If ‘a’ and ‘b’ be two procedures, then their activations will be non-overlapping 

(when one is called after other) or nested (nested procedures). 

A procedure is recursive if a new activation begins before an earlier 

activation of the same procedure has ended. An activation tree shows the way 

control enters and leaves, activations. 

Properties of activation trees are :- 

 Each node represents an activation of a procedure. 

 The root shows the activation of the main function. 

 The node for procedure ‘x’ is the parent of node for procedure 

‘y’ if and only if the control flows from procedure x to 

procedure y. 

 EXAMPLE 

Consider the following program of 

quicksort main() 

{ 

readarray(); 

quicksort(1,10); 

} 

 

quicksort(int m, int n) 

{ 

 

int i= partition(m,n); 

quicksort(m,i-1); 

quicksort(i+1,n); 
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}  

First main function as root then main calls readarray and quicksort. 

Quicksort in turn calls partition and quicksort again. The flow of control in a 

program corresponds to the depth first traversal of activation tree which starts at the 

root. 

 

  

 

Control Stack 

Control stack or runtime stack is used to keep track of the live procedure activations 

i.e the procedures whose execution have not been completed. 

A procedure name is pushed on to the stack when it is called (activation 

begins) and it is popped when it returns (activation ends). 

Information needed by a single execution of a procedure is managed using 
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an activation record. 

When a procedure is called, an activation record is pushed into the stack and 

as soon as the control returns to the caller function the activation record is 

popped. 

Then the contents of the control stack are related to paths to the root of the 

activation tree. When node n is at the top of the control stack, the stack 

contains the nodes along the path from n to the root. 

Consider the above activation tree, when quicksort(4,4) gets executed, the 

contents of control stack were main() quicksort(1,10) quicksort(1,4), 

quicksort(4,4) 

 

 

The Scope of Declaration 

A declaration is a syntactic construct that associates information with a name. 

Declaration may be explicit such as 

var i : integer; 

or may be explicit. The portion of program to which a declaration applies is called 

the 

scope of that declaration. 

Binding Of Names 

Even if each name is declared once in a program, the same name may denote 

different data object at run time. “Data objects” corresponds to a storage 

location that hold values. 

The term environment refers to a function that maps a name to a storage 

location. The term state refers to a function that maps a storage location to the 

value held there. 
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When an environment associates storage location s with a name x, we say 

that x is bounds to s. This association is referred to as a binding of x. 

 

 

 STORAGE ORGANIZATION 

The executing target program runs in its own logical address space in which 

each program value has a location 

The management and organization of this logical address space is shared 

between the compiler, operating system and target machine. The operating 

system maps the logical address into physical addresses, which are usually 

spread through memory. 

Typical subdivision of run time memory. 

 

Code area: used to store the generated executable instructions, memory locations 

for the code are determined at compile time 

Static Data Area: Is the locations of data that can be determined at compile time 

Stack Area: Used to store the data object allocated at runtime. eg. Activation records 

Heap: Used to store other dynamically allocated data objects at runtime ( for ex: 

malloac) 
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This runtime storage can be subdivided to hold the different components 

of an existing system 

1. Generated executable code 

2. Static data objects 

3. Dynamic data objects-heap 

4. Automatic data objects-stack 

Activation Records 

It is LIFO structure used to hold information about each instantiation. 

Procedure calls and returns are usually managed by a run time stack called 

control stack. 

Each live activation has an activation record on control stack, with the root 

of the activation tree at the bottom, the latter activation has its record at the 

top of the stack 

The contents of the activation record vary with the language being 

implemented. The diagram below shows the contents of an activation 

record. 

The purpose of the fields of an activation record is as follows, starting from 

the field for temporaries. 

1. Temporary values, such as those arising in the evaluation of 

expressions, are stored in the field for temporaries. 

2. The field for local data holds data that is local to an execution of a 

procedure. 

3. The field for saved machine status holds information about the 

state of the machine just before the procedure is called. This 

information includes the values of the program counter and 

machine registers that have to be restored when control returns 

from the procedure. 

4. The optional access link is used to refer to nonlocal data held in 

other activation records. 

5. The optional control /ink paints to the activation record of the caller 
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6. The field for actual parameters is used by the calling procedure 

to supply parameters to the called procedure. 

7. The field for the returned value is used by the called procedure 

to return a value to the calling procedure, Again, in practice this 

value is often returned in a register for greater efficiency. 

 
Returned value 

Actual parameters 

Optional control 

link 

Optional access 

link 

Saved machine 

status 

Local data 

temporaries 

General Activation Record 

 

 STORAGE ALLOCATION STRATEGIES 

 

The different storage allocation strategies are: 

Static allocation - lays out storage for all data objects at compile time 

Stack allocation - manages the run-time storage as a stack. 

Heap allocation - allocates and deallocates storage as needed at run time from 

a data area known as heap. 

Static Allocation 

In static allocation, names bound to storage as the program is compiled, so 

there is no need for a run-time support package. 

Since the bindings do not change at runtime, every time a procedure activated, 

its run- time, names bounded to the same storage location. 

Therefore, values of local names retained across activations of a procedure. 

That is when control returns to a procedure the value of the local are the 
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same as they were when control left the last time. 

From the type of a name, the compiler decides amount of storage for the 

name and decides where the activation records go. At compile time, we can 

fill in the address at which the target code can find the data it operates on. 

Stack Allocation 

All compilers for languages that use procedures, functions or methods as units 

of user functions define actions manage at least part of their runtime memory 

as a stack run- time stack. 

Each time a procedure called, space for its local variables is pushed onto a 

stack, and when the procedure terminates, space popped off from the stack 

Calling Sequences 

Procedures called implemented in what is called as calling sequence, which 

consists of code that allocates an activation record on the stack and enters 

information into its fields. 

A return sequence is similar to code to restore the state of a machine so the 

calling procedure can continue its execution after the call. 

The code is calling sequence of often divided between the calling procedure 

(caller) and a procedure is calls (callee)(callee). 

When designing calling sequences and the layout of activation record, the 

following principles are helpful: 

 

1. Value communicated between caller and callee generally placed 

at the caller beginning of the callee’s activation record, so they 

as close as possible to the caller’s activation record. 

2. Fixed length items generally placed in the middle. Such items 

typically include the control link, the access link, and the 

machine status field. 

3. Items whose size may not be known early enough placed at the 

end of the activation record. 

4. We must locate the top of the stack pointer judiciously. A 

common approach is to have it point to the end of fixed length 

fields in the activation is to have it point to fix the end of fixed 
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length fields in the activation record. Fixed length data can then 

be accessed by fixed offsets, known to the intermediate code 

generator, relative to the top of the stack pointer. 

The calling sequence and its division between caller and callee are as follows: 

1. The caller evaluates the actual parameters. 

2. The caller stores a return address and the old value of top_sp 

into the callee’s activation record. The caller then increments 

the top_sp to the respective positions. 

3. The callee-saves the register values and other status information. 

4. The callee initializes its local data and begins execution. 

 

 

A suitable, corresponding return sequence is: 

1. The callee places the return value next to the parameters. 

2. Using the information in the machine status field, the callee 

restores top_sp and other registers, and then branches to the 

return address that the caller placed in the status field. 

3. Although top_sp has been decremented, the caller knows where 

the return value is, relative to the current value of top_sp; the 

caller, therefore, may use that value. 

 

Variable length data on the stack 

The run-time memory-management system must deal frequently with 

the allocation of space for objects the sizesof which are not known at 
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compile time, but which are local to a procedure and thus may be 

allocated on the stack. 

In modern languages, objects whose size cannot be determined at compile time 

are 

allocated space in the heap 

However, it is also possible to allocate objects, arrays, or other structures 

of unknown size on the stack. 

We avoid the expense of garbage collecting their space. Note that the 

stack can be used only for an object if it is local to a procedure and 

becomes inaccessible when the procedure returns. 

A common strategy for allocating variable-length arrays is shown in following 

figure 
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Heap Allocation 

Stack allocation strategy cannot be used if either of the following is possible : 

1. The values of local names must be retained when an activation ends. 

2. A called activation outlives the caller. 

 

Heap allocation parcels out pieces of contiguous storage, as needed for 

activation records or other objects. 

Pieces may be deallocated in any order, so over the time the heap will consist 

of alternate areas that are free and in use. 

 

Records for live activations need not be adjacent in heap 

The record for an activation of procedure r is retained when the activation ends. 

Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically. 

If the retained activation record for r is deallocated, there will be free space in 

the heap between the activation records for s and q. 

 

 INTERMEDIATE CODE GENERATION (ICG) 

In compiler, the front-end translates a source program into an intermediate 

representation from which the back end generates target code. 
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Need For ICG 

1. If a compiler translates the source language to its target machine 

language without generating IC, then for each new machine, a full 

native compiler is required. 

2. IC eliminates the need of a new full compiler for every machine 

by keeping the analysis portion for all the compilers. 

3. Synthesis part of back end depends on the target 

machine. 2 important things: 

 IC Generation process should not be very complex 

 It shouldn’t be difficult to produce the target program from the intermediate 

code. 

 

 

 

 

A source program can be translated directly into the target language, but 

some benefits of using intermediate form are: 

 Retargeting is facilitated: a compiler for a different machine can be 

created by attaching a Back-end (which generate Target Code) for the 

new machine to an existing Front-end (which generate Intermediate 

Code). 

 A machine Independent Code-Optimizer can be applied to the 

Intermediate Representation. 

 

Logical Structure of a Compiler Front End 
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 INTERMEDIATE LANGUAGES 

The most commonly used intermediate representations were:- 

 Syntax Tree 

 DAG (Direct Acyclic Graph) 

 Postfix Notation 

 3 Address Code 

  

  

 GRAPHICAL REPRESENTATION 

Includes both 

 Syntax Tree 

 DAG (Direct Acyclic Graph) 

Syntax Tree Or Abstract Syntax Tree (AST) 

Graphical Intermediate Representation 

Syntax Tree depicts the hierarchical structure of a source program. 

Syntax tree (AST) is a condensed form of parse tree useful for representing language 

constructs. 

EXAMPLE 

Parse tree and syntax tree for 3 * 5 + 4 as follows. 

 
Grammar Parse Tree Syntax Tree 
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E  E + 

T E  E 

- T 

E  T 

T T * 

F T F 

F  

digit 

E 

 

 

E + T 

  
T F 

  
T * F digit 

F digit 4 

digit 5 

 
3 

+ 

  
* 4 

  
3 5 

Parse Tree VS Syntax Tree 

 

Parse Tree Syntax 

Tree 

A parse tree is a graphical 

representation of a replacement 

process in a derivation 

A syntax tree (AST) is a condensed 

form of parse tree 

Each interior node represents a 

grammar rule 

Each interior node represents an 

operator 

Each leaf node represents a terminal Each leaf node represents an operand 

Parse tree represent every detail 

from the real syntax 

Syntax tree does not represent every 

detail from the real syntax 

Eg : No parenthesis 

 

Syntax tree for a * (b + c) /d 
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Constructing Syntax Tree For Expression 

Each node in a syntax tree can be implemented in arecord with several fields. 

In the node of an operator, one field contains operator and remaining field 

contains pointer to the nodes for the operands. 

When used for translation, the nodes in a syntax tree may contain addition of 

fields to hold the values of attributes attached to the node. 

Following functions are used to create syntax tree 

1. mknode(op,left,right): creates an operator node with label 

op and two fields containing pointers to left and right. 

2. mkleaf(id,entry): creates an identifier node with label id 

and a field containing entry, a pointer to the symbol table 

entry for identifier 

3. mkleaf(num,val): creates a number node with label num 

and a field containing val, the value of the number. 

Such functions return a pointer to a newly created node. 

EXAMPLE 

 

a – 4 + c 

The tree is

 constructed bottom 

up 

P1 = 

mkleaf(id,entry a) 

P2  = mkleaf(num, 

4) P3 = mknode(-, 

P1, P2) P4 = 

mkleaf(id,entry c) 

P5 = mknode(+, P3, 

P4) 

 

 

 

 

 

 

 

 

 

Syntax 
Tree 

 

Syntax directed definition 

Syntax trees for assignment statements are produced by the syntax-directed 
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definition. 

Non terminal S generates an assignment statement. 

The two binary operators + and * are examples of the full operator set in a 

typical language. Operator associates and precedences are the usual ones, even 

though they have not been put into the grammar. This definition constructs the 

tree from the input a:=b* -c + b* -c 

 

 

The token id has an attribute place that points to the symbol-table entry for 

the identifier. 

A symbol-table entry can be found from an attribute id.name, representing the 

lexeme associated with that occurrence of id. 

If the lexical analyser holds all lexemes in a single array of characters, then 

attribute name might be the index of the first character of the lexeme. 

Two representations of the syntax tree are as follows. 
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In (a), each node is represented as a record with a field for its operator and 

additional fields for pointers to its children. 

In Fig (b), nodes are allocated from an array of records and the index or 

position of the node serves as the pointer to the node. 

All the nodes in the syntax tree can be visited by following winters, starting 

from the root at position 10. 

Direct Acyclic Graph (DAG) 

Graphical Intermediate Representation 

Dag also gives the hierarchical structure of source program but in a more 

compact way because common sub expressions are identified. 

 

EXAMPLE 

a=b*-c + b*-c 
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Postfix Notation 

Linearized representation of syntax tree 

In postfix notation, each operator appears immediately after its last operand. 

Operators can be evaluated in the order in which they appear in the string 

EXAMPLE 

Source String : a := b * -c + b * -c 

Postfix String: a b c uminus * b c uminus * + assign 

Postfix Rules 

1. If E is a variable or constant, then the postfix notation for E is E itself. 

2. If E is an expression of the form E1 op E2 then postfix notation for E is 

E1’ E2’ op, here E1’ and E2’ are the postfix notations for E1and E2, 

respectively 

3. If E is an expression of the form (E), then the postfix notation for E is 

the same as the postfix notation for E. 

4. For unary operation –E the 

postfix is E- Ex: postfix notation 

for 9- (5+2) is 952+- 

Postfix notation of an infix expression can be obtained using stack 
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 THREE-ADDRESS CODE 

In Three address statement, at most 3 addresses are used to represent any statement. 

The reason for the term “three address code” is that each statement contains 3 

addresses at most. Two for the operands and one for the result. 

General Form Of 3 Address Code 

a = b op c 

where, 

a, b, c are the operands that can be names, 

constants or compiler generated temporaries. 

op represents operator, such as fixed or floating 

point arithmetic operator or a logical operator on 

Boolean valued data. Thus a source language 

expression like x + y * z might be translated into 

a sequence 

t1 := y*z 

t2 := x+t1 where, t1 and t2 are compiler 

generated temporary names. 

Advantages Of Three Address Code 

 The unraveling of complicated arithmetic expressions and of nested 

flow-of-control statements makes three-address code desirable for 

target code generation and optimization. 

 The use of names for the intermediate values computed by a program 

allows three- address code to be easily rearranged - unlike postfix 

notation. 

Three-address code is a linearized representation of a syntax tree or a DAG in 

which explicit names correspond to the interior nodes of the graph. 

Three Address Code corresponding to the syntax tree and DAG given above (page no: 

) 
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Types of Three-Address Statements 

 

1. Assignment statements 

x := y op z, where op is a binary arithmetic or logical operation. 

2. Assignment instructions 

x : = op y, where op is a unary operation . Essential unary operations include 

unary minus, logical negation, shift operators, and conversion operators that 

for example, convert a fixed-point number to a floating-point number. 

3. Copy statements 

x : = y where the value of y is assigned to x. 

4. Unconditional jump 

goto L The three-address statement with label L is the next to be executed 

5. Conditional jump 

if x relop y goto L This instruction applies a relational operator ( <, =, 

=, etc,) to x and y, and executes the statement with label L next if x 

stands in relation relop to y. If not, the three-address statement following 

if x relop y goto L is executed next, as in the usual sequence. 

6. Procedural call and return 

param x and call p, n for procedure calls and return y, where y representing a 

returned value is optional. Their typical use is as the sequence of three-address 

statements 
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param 

x1 

param 

x2 

………. 

param xn 

call p,n 

generated as part of the call procedure p( xl , x2, . . . , xn ) . The integer 
n indicating the number of actual-parameters in ''call p , n" is not 
redundant because calls can be 

nested. 

7. Indexed Assignments 

Indexed assignments of the form x = y[i] or x[i] = y 

8. Address and pointer assignments 

Address and pointer operator of the form x := &y, x := *y and *x := y 

Syntax-Directed Translation Into Three-Address Code 

When three-address code is generated, temporary names are made up for the 

interior nodes of a syntax tree. for example id : = E consists of code to evaluate 

E into some temporary t, followed by the assignment id.place : = t. 

Given input a:= b * - c + b + - c, it produces the three address code in given 

above (page no: ) The synthesized attribute S.code represents the three 

address code for the assignment S. The nonterminal E has two attributes: 

1. E.place the name that will hold the value of E, and 

2. E.code. the sequence of three-address statements evaluating E. 

 

Syntax-directed definition to produce three-address code for assignments. 
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Semantic rule generating code for a while statement 

 

The function newtemp returns a sequence of distinct names t1, t2,……… in 

respose of successive calls. Notation gen(x ‘:= ‘y ‘+’ z is used to represent 

the three address statement x := y + z. 

Expressions appearing instead of variables like x, y and z are evaluated when 

passed to gen, and quoted operators or operand, like ‘+’ are taken literally. 

Flow of control statements can be added to the language of assignments. The 

code for S  while E do S1 is generated using new attributes S.begin and S.after 

to mark the first statement in the code for E and the statement following the 
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code for S, respectively. 

The function newlabel returns a new label every time is called. We assume that a 

nonzero expression represents true; that is when the value of E becomes zero, 

control laves the while statement 

Implementation Of Three-Address Statements 

A three address statement is an abstract form of intermediate code. In a 

compiler, these statements can be implemented as records with fields for the 

operator and the operands. Three such, representations are 

 Quadruples 

 Triples 

 Indirect triples 

 QUADRUPLES 

A quadruple is a record structure with four fields, which are op, ag1, arg2 and 

result 

The op field contains an internal code for the operator. The three address statement 

x:= y op z is represented by placing y in arg1, z in arg2 and x in result. 

The contents of arg1, arg2, and result are normally pointers to the symbol table 

entries for the names represented by these fields. If so temporary names must be 

entered into the symbol table as they are created. 

EXAMPLE 1 

Translate the following expression to quadruple triple and indirect triple 

a + b * c | e ^ f + b * a 

For the first construct the three address code for the expression 

t1 = e ^ f 

t2 = b * 

c t3 = t2 / 

t1 t4 = b 

* a t5 = 

a + t3 t6 

= t5 + t4 
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Locati
on 

O
P 

arg
1 

arg
2 

Resu
lt 

(0) ^ e f t1 
(1) * b c t2 
(2) / t2 t1 t3 
(3) * b a t4 
(4) + a t3 t5 
(5) + t3 t4 t6 

Exceptions 

 The statement x := op y, where op is a unary operator is represented by 

placing op in the operator field, y in the argument field & n in the 

result field. The arg2 is not used 

 A statement like param t1 is represented by placing param in the 

operator field and t1 in the arg1 field. Neither arg2 not result field is 

used 

 Unconditional & Conditional jump statements are represented by 

placing the target in the result field. 

 TRIPLES 

In triples representation, the use of temporary variables is avoided & instead 

reference to instructions are made 

So three address statements can be represented by records with only there 

fields OP, arg1 & arg2. 

Since, there fields are used this intermediated code formal is known as triples 

Advantages 

 No need to use temporary variable which saves memory as well as time 

Disadvantages 

 Triple representation is difficult to use for optimizing compilers 

 Because for optimization statements need to be suffled. 

 for e.g. statement 1 can be come down or statement 2 can go up ect. 

 So the reference we used in their representation will change. 

EXAMPLE 1 

 

a + b * c | e ^ f + b * a 
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t1 = e ^ f t2 

= b * c t3 = 

t2 / t1 t4 = b 

* a t5 = a 

+ t3 t6 = t5 

+ t4 

 

 

Locati

on 

O

P 

arg

1 

arg

2 

(0) ^ e f 

(1) * b c 

(2) / (1) (0) 

(3) * b a 

(4) + a (2) 

(5) + (4) (3) 

 

 

EXAMPLE 2 

A ternary operation like x[i] : = y requires two entries in the triple structure while x 

: = y[i] is naturally represented as two operations. 

 

 
x[i] := y x := y[i] 

 

 

INDIRECT TRIPLES 

This representation is an enhancement over triple representation. 

It uses an additional instruction array to led the pointer to the triples in the 

desired order. 

Since, it uses pointers instead of position to stage reposition the 
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expression to produce an optimized code. 

EXAMPLE 1 

 

Comparison 

When we ultimately produce the target code each temporary and programmer 

defined name will assign runtime memory location 

This location will be entered into symbol table entry of that data. 

Using the quadruple notation, a three address statement containing a temporary can 

immediately access the location for that temporary via symbol table. 

But this is not possible with triples notation. 

With quadruple notation, statements can often move around which makes 

optimization easier. 

This is achieved because using quadruple notation the symbol table 

interposes high degree of indirection between computation of a value and its 

use. 

With quadruple notation, if we move a statement computing x, the statement using x 

requires no change. 

But with triples, moving a statement that defines a temporary value requires 

us to change all references to that statement in arg1 and arg2 arrays. This 

makes triples difficult to use in optimizing compiler 

With indirect triples also, there is no such problem. 

A statement can be moved by reordering the statement list. 

Space Utilization 

Quadruples and indirect triples requires same amount of space for storage 

 Statement 

35 (0) 

36 (1) 

37 (2) 

38 (3) 

39 (4) 

40 (5) 

 

Location op arg1 arg2 

(0) ^ E f 

(1) * B c 

(2) / (1) (0) 

(3) * B a 

(4) + A (2) 

(5) + (4) (3) 
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(normal case). 

But if same temporary value is used more than once indirect triples can save 

some space. This is bcz, 2 or more entries in statement array can point to the 

same line of op-arg1-arg2 structure. 

Triples requires less space for storage compared to above 2. 

Quadruples 

 direct access of the location for temporaries 

 easier for optimization 

Triples 

 space efficiency 

Indirect Triples 

 easier for optimization 

 space efficiency 

 

PROBLEM 1 

Translate the following expression to quadruple tuples & indirect tuples 

a = b * - c + b * - c 

Sol : - Three address code for given expression is 

TAC 

t1 = uniminus c t2 = 

b* t1 

t3 = uniminus 

c t4 = b* t3 

t5 = t2 + t4 Q = t5 

QUADRUPLES 

 
Locatio
n 

OP arg1 arg2 result 

(0) unimin
us 

c  t1 

(1) * b t1 t2 
(3) unimin

us 
c  t3 
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(4) * b t3 t4 
(5) + t2 t4 t5 
(6) = t5  a 

 

TRIPLES 

 

Locati

on 

OP arg

1 

arg

2 
(1) unimin

us 
c  

(2) * b (1) 

(3) unimin

us 

c  

(4) * b (3) 

(5) + (2) (4) 

(6) = a (5) 

 

INDIRECT TRIPLES 

 

 

 

 ASSIGNMENT STATEMENTS 

 

Translation Scheme (SDT) To Produce Three-Address Code

 For Assignments 

 

 
Production Semantic action 

 Statements 

35 (1) 

36 (2) 

37 (3) 

38 (4) 

39 (5) 

40 (6) 

 

Location OP arg1 arg2 

(1) uniminus C  

(2) * B (1) 

(3) uniminus C  

(4) * B (3) 

(5) + (2) (4) 

(6) = A (5) 
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S->id : = E { p : = lookup ( id.name); 

if p ≠ nil then 

emit( p ‘ : =’ E.place) 

else error } 

 

E->E1 + E2 

 

{ E.place : = newtemp; 

emit( E.place ‘: =’ E1.place ‘ + ‘ 

E2.place ) } 

E->E1 * E2 { E.place : = newtemp; 

emit( E.place ‘: =’ E1.place ‘ * ‘ 

E2.place ) } 

E->-E1 { E.place : = newtemp; 

emit ( E.place ‘: =’ ‘uminus’ 

E1.place ) } 

E-> ( E1) { E.place : = E1.place } 

E->id { p : = lookup ( id.name); 

if p ≠ nil then 

E.place : = p 

else error } 
 

 

emite  generate the three address code to the output file. 

newtemp  return a new temporary variable. 

lookup identifier  check if the id is in symbol table 

EXAMPLE : Annotated Parse Tree For Generation Of TAC For 

Assignment Statements 
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tax-directed definition to produce three-address code for assignments. 

 



  

 

131  

 BOOLEAN EXPRESSIONS 

Boolean expressions have two primary purposes. 

 They are used to compute logical values. 

 But more often they are used as conditional expressions in 

statements that alter the flow of control, such as if-then-else, 

or while-do statements. 

Boolean expressions are composed of the Boolean operators (and, or, and 

not) applied to elements that are Boolean variables or relational 

expressions. 

Relational expressions are of the form E1 relop E2, where E1 and E2 are 

arithmetic expressions and relop can be <, <=, =!, =, > or >= 

Here we consider Boolean expressions generated by the following grammar : 

 

E->E or E | E and E | note | ( E ) |id relop id | true 

| false 

 

Methods Of Translating Boolean Expressions 

There are two principal methods of representing the value of a boolean 

expression. They are : 

Numerical Representation - To encode true and false numerically and to 

evaluate a Boolean expression analogously to an arithmetic expression. 

Often, 1 is used to denote true and 0 to denote false. 

Jumping Method (Short-circuit Method) - To implement Boolean 

expressions by flow of control, that is, representing the value of a 

Boolean expression by a position reached in a program. This method is 

particularly convenient in implementing the Boolean expressions in flow-

of-control statements, such as the if-then and while-do statements. 

 

Method 1: Numerical Representation 

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated 

completely from left to right, in a manner similar to arithmetic 

expressions. 

EXAMPLE 
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The translation for a or b and not c will result following three-

address sequence t1 : = not c 

t2 : = b 

and t1 t3 

: = a or 

t2 

Translation Scheme Using A Numerical Representation For Boolean Expression 

 

 

where the function emit( ) output the three address statement into the output 

file and nextstat( ) gives the index of the next three address statement in the 

output sequence and emit increments nextstat after producing each three 

address statement. 

 

 

A relational expression such as a < b is equivalent to the conditional statement 

if a < b then 1 else 0 which can be translated into the three-address code sequence 

(let statement numbers start at 100) 

100 if a < b 

goto 103 101 t : 
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= 0 

102 goto 104 

103 t : = 1 

104 

Method 2: Jumping or Short-Circuit Code 

We can also translate a boolean expression into three-address code without 

generating code for any of the boolean operators and without having the 

code necessarily evaluate the entire expression. This style of evaluation is 

sometimes called “short- circuit” or “jumping” code. 

This is normally used for flow-of-control statements, such as the if-then, 

if-then-else and while-do statements those generated by the following 

grammar: 

S → if E then S1 

| if E then S1 else S2 

| while E do S1 

Code for if-then, if-then-else and while-do is given below: 

 

 

 

Consider the grammar 

S → if E then S1 

| if E then S1 else S2 

| while E do S1 
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In each of these productions, E is the Boolean expression to be translated. 

In the translation, we assume that a three-address statement can be 

symbolically labeled, and that the function newlabel returns a new 

symbolic label each time it is called. 

With each E we associate two labels E.true and E.false. E.true is the label to 

which control flows if E is true, and E.false is the label to which control 

flows if E is false. 

The inherited attribute S.next is a label that is attached to the first three-

address instruction to be executed after the code for S and another inherited 

attribute S.begin is the first instruction of S 

Syntax Directed Definition for flow –of –control statements 

 
S→if E then S1 { E.true := 

newlabel; E.false 

:= S.next; S1.next 

:= S.next; 

S.code := E.code || gen (E.true ‘:’) || 

S1.code } 

S→if E then S1 else 

S2 
{ E.true := 

newlabel; E.false 

:= newlabel; 

S1.next := S.next; 

S2.next := S.next; 

S.code := E.code || gen (E.true ‘:’) ||  

S1.code 

||gen(‘goto’ S.next) || gen(E.false ‘:’)|| 

S2.code } 
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UNIT - V 

CODE GENERATION 

Issues in the design of a code generator 

Code generator converts the intermediate representation of source code into a form 

that can be readily executed by the machine. A code generator is expected to 

generate a correct code. Designing of code generator should be done in such a way 

so that it can be easily implemented, tested and maintained. 

 

The following issue arises during the code generation phase: 

 

Input to code generator  

The input to code generator is the intermediate code generated by the front end, 

along with information in the symbol table that determines the run-time addresses of 

the data-objects denoted by the names in the intermediate representation. 

Intermediate codes may be represented mostly in quadruples, triples, indirect triples, 

Postfix notation, syntax trees, DAG’s etc. Assume that they are free from all of 

syntactic and state semantic errors, the necessary type checking has taken place and 

the type-conversion operators have been inserted wherever necessary. 

 

Target Program  

Target program is the output of the code generator. The output may be absolute 

machine language, relocatable machine language, assembly language. 

1. Absolute machine language as an output has advantages that it can be 

placed in a fixed memory location and can be immediately executed. 

2. Relocatable machine language as an output allows subprograms and 

subroutines to be compiled separately. Relocatable object modules can be 

linked together and loaded by linking loader. 

3. Assembly language as an output makes the code generation easier. We can 

generate symbolic instructions and use macro-facilities of assembler in 

generating code. 

 

Memory Management  
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Mapping the names in the source program to addresses of data objects is done by the 

front end and the code generator. A name in the three addressstatement refers to the 

symbol table entry for name. Then from the symbol table entry, a relative address can 

be determined for the name 

Instruction selection 

Selecting best instructions will improve the efficiency of the program. It includes the 

instructions that should be complete and uniform. Instruction speeds and machine 

idioms also plays a major role when efficiency is considered. But if we do not care 

about the efficiency of the target program then instruction selection is straight-forward. 

For example, the respective three-address statements would be translated into latter 

code sequence as shown below: P:=Q+R 

S:=P+T 

 

MOV Q, R0 

ADD R, R0 

MOV R0, P 

MOV P, R0 

ADD T, R0 

MOV R0, S         

 

Here the fourth statement is redundant as the value of the P is loaded again in that 

statement that just has been stored in the previous statement. It leads to an inefficient 

code sequence. A given intermediate representation can be translated into many 

code sequences, with significant cost differences between the different 

implementations. A prior knowledge of instruction costis needed in order to design 

good sequences, but accurate cost information is difficult to predict. 

 Register allocation issues – 

Use of registers make the computations faster in comparison to that of memory, so 

efficient utilization of registers is important. The use of registers are subdivided into 

two subproblems: 

 

 During Register allocation –  
we select only those set of variables that will reside in the registers at each point in 

the program. 

During a subsequent Register assignment phase, the specific register is picked to 

access the variable. 

As the number of variables increase, the optimal assignment of registers to variables 

becomes difficult. Mathematically, this problem becomes NP-complete. Certain 
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machine requires register pairs consist of an even and next odd-numbered register. 

For example 

 

M a, b 

These types of multiplicative instruction involve register pairs where a, the 

multiplicand is an even register and b, the multiplier is the odd register of the 

even/odd register pair. 

 Evaluation order – 

The code generator decides the order in which the instruction will be executed. The 

order of computations affects the efficiency of the target code. Among many 

computational orders, some will require only fewer registers to hold the intermediate 

results. However, picking the best order in general case is a difficult NP-complete 

program. 

Approaches to code generation issues: Code generator must always generate the 

correct code. It is essential because of the number of special cases that a code 

generator might face. Some of the design goals of code generator are: 

 Correct 

 Easily maintainable 

 Testable 

 Maintainable 

 

 Target Machine 

 

A Target machine is a byte-addressable machine. This machine has n general-

purpose registers, R0, R1,…..Rn-1. A Simple Target Machine Model has three-

address instruction. A full-edged assembly language would have a variety of 

instructions. The component of instruction is an operator, followed by a target, and 

then followed by a list of source operands.  

Some of the instructions are as follows: 

 Load operations: LD dst, addr instruction loads the value in location addr into 

location dst. It means that assignments dst = addr. L, r, x is the general form of this 

instruction. The role of this instruction is to load the value in location x into register 

r. 

 Store operations: ST r, x instruction stores the value in the location x into register r. 

 Computation operations: OP, dst, src1, src2 are the form of computation operations 

where OP are the add or sub operator and dst, src1, and src2 are locations. The 

locations may or may not be distinct. 

 Unconditional Operations: The instruction BR L causes control to branch to the 

machine instruction with label L (BR stands for the branch). 

 Conditional jumps: The general form of this operation is Bcond, r, L. Here R is the 

register, L is a label, and cond stands for any of the common tests on the value in 

register r. 
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The various addressing modes associated with the target machine are discussed 

below: 

 In instruction, a variable name x means there is a location in memory reserved for x. 

 An indexed address in the form a(r), where ‘a’ is a variable and r is a register, can 

also be a form of a location. By taking the l-value of ‘a’ and adding it with the value 

in the register, the value of memory location denoted by a(r) can be computed. 

 An integer indexed by a register can be a memory location. For example, LD R1, 

100(R2) has the effect of setting R1 = contents (100 + contents (R2)). 

 There are two indirect addressing modes: *r and *100(r). *r has the address of 

contents(r), and *100(r) has the address for adding 100 to the contents(r). 

 The immediate constant addressing mode is the last addressing mode, which is 

denoted by prefix #.  

Program and Instruction Costs 

The cost refers to compiling and running a program. There are some aspects of the 

program on which we optimize the program. The program’s cost can be determined 

by the compilation time’s length and the size, execution time, and power 

consumption of the target program. Finding the actual cost of the program is a tough 

task. Therefore, code generation use heuristic techniques to produce a good target 

program. Each target-machine instruction has an associated cost. The instruction 

cost is one plus the cost associated with the addressing modes of the operands.  

Example 

LD R0, R1: This instruction copies the contents of register R1 into register R0. The 

cost of this instruction is one because no additional memory is required. 

LD R0, M: This instruction’s role is to load the contents of memory location M into 

R0. So the cost will be two due to the address of memory location M is found in the 

word following the instruction. 

LD R1, *100(R2): The role of this instruction is to load the value given by contents 

(contents (100 + contents (R2))) into register R1. This instruction’s cost will be two 

due to the constant 100 is stored in the word following the instruction. 

 

Target code generation is the final Phase of Compiler. 

1. Input : Optimized Intermediate Representation. 

2. Output : Target Code. 

3. Task Performed : Register allocation methods and optimization, assembly level 

code. 

4. Method : Three popular strategies for register allocation and optimization.  
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Computations are generally assumed to be performed on high speed memory 

locations, known as registers. Performing various operations on registers is efficient 

as registers are faster than cache memory. This feature is effectively used by 

compilers, However registers are not available in large amount and they are costly. 

Therefore we should try to use minimum number of registers to incur overall low 

cost. 

Optimized code : 

Example 1 : 

L1: a = b + c * d 

optimization : 

t0 = c * d 

a  = b + t0 

Example 2 : 

L2: e = f - g / d 

optimization : 

t0 = g / d 

e  = f - t0 

Register Allocation : 

Register allocation is the process of assigning program variables to registers and 

reducing the number of swaps in and out of the registers. Movement of variables 
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across memory is time consuming and this is the main reason why registers are used 

as they available within the memory and they are the fastest accessible storage 

location. 

 

Example 1: 

R1<--- a 

R2<--- b 

R3<--- c 

R4<--- d 

 

MOV R3, c 

MOV R4, d 

MUL R3, R4 

MOV R2, b 

ADD R2, R3 

MOV R1, R2 

MOV a, R1 

Example 2: 

R1<--- e 

R2<--- f 

R3<--- g 

R4<--- h 

 

MOV R3, g 

MOV R4, h 
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DIV R3, R4 

MOV R2, f 

SUB R2, R3 

MOV R1, R2 

MOV e, R1  

Advantages : 

 Fast accessible storage 

 Allows computations to be performed on them 

 Deterministic as it incurs no miss 

 Reduce memory traffic 

 Reduces overall computation time 

 

Disadvantages : 

 Registers are generally available in small amount ( up to few hundred Kb ) 

 Register sizes are fixed and it varies from one processor to another 

 Registers are complicated 

 Need to save and restore changes during context switch and procedure calls. 

RUNTIME STORAGE MANAGEMENT: 

During the execution of a program, the same name in the source can denote different 

data objects in the computer. The allocation and deallocation of data objects is 

managed by the run-time support package . Terminologies:  

• Name → storage space: the mapping of a name to a storage space is called 

environment .  

• Storage space → value: the current value of a storage space is called its state.  

• The association of a name to a storage location is called a binding. Each execution 

of a procedure is called an activation .  

• If it is a recursive procedure, then several of its activations may exist at the same 

time. 

 • Life time: the time between the first and last steps in a procedure. 

 • A recursive procedure needs not to call itself directly.  
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General run time storage layout code static data stack heap dynamic space storage 

space that won’t change: global data, constant, ... lower memory address higher 

memory address For activation records: local data, parameters, control info, ... For 

dynamic memory allocated by the program 

Activation record 

 returned value 

 actual parameters 

 optional control link 

 optional access link 

 saved machine status 

 local data 

 temporaries 

Activation record: 

 Data about an execution of a procedure. 

• Parameters: 

. Formal parameters: the declaration of parameters. 

. Actual parameters: the values of parameters for this activation. 

• Links: 

. Access (or static) link: a pointer to places of non-local data, 

. Control (or dynamic) link: a pointer to the activation record of the caller. 

Static storage allocation (1/3) There are two different approaches for run time 

storage allocation. 

 • Static allocation. 

 • Dynamic allocation.  

• A.R. in static data area, one per procedure. 

 • Names bounds to locations at compiler time. 

 • Every time a procedure is called, its names refer to the same preassigned location.  

• Disadvantages:  

 No recursion.  

 Waste lots of space when inactive.  

 No dynamic allocation.  
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• Advantage:  

 No stack manipulation or indirect access to names, i.e., faster in accessing 

variables.  

 Values are retained from one procedure call to the next. For example: static 

variables in C. 

On procedure calls: 

 • The calling procedure:  

 First evaluate arguments. Copies arguments into parameter space in the A.R. of 

called procedure. Convention: call that which is passed to a procedure arguments 

from the calling side, and parameters from the called side. May save some registers 

in its own A.R.Jump and link: jump to the first instruction of called procedure and 

put address of next instruction (return address) into register RA (the return address 

register).  

• The called procedure: 

 Copies return address from RA into its A.R.’s return address field. May save some 

registers. May initialize local data. 

 

On procedure returns,  

• The called procedure:  

Restores values of saved registers. Jump to address in the return address field.  

• The calling procedure: May restore some registers. If the called procedure was 

actually a function, put return value in an appropriate place. 

Basic Blocks and Flow Graphs 

In this section, we are going to learn how to work with basic block and flow graphs 

in compiler design. 

Basic Block 

The basic block is a set of statements. The basic blocks do not have any in and out 

branches except entry and exit. It means the flow of control enters at the beginning 

and will leave at the end without any halt. The set of instructions of basic block 

executes in sequence. 

Here, the first task is to partition a set of three-address code into the basic block. The 

new basic block always starts from the first instruction and keep adding instructions 

until a jump or a label is met. If no jumps or labels are found, the control will flow 

in sequence from one instruction to another. 

The algorithm for the construction of basic blocks is given below: 
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Algorithm: Partitioning three-address code into basic blocks. 

 

Input: The input for the basic blocks will be a sequence of three-address code. 

 

Output: The output is a list of basic blocks with each three address statements in 

exactly one block. 

 

METHOD: First, we will identify the leaders in the intermediate code. There are 

some rules for finding leaders, which are given below: 

1. The first instruction in the intermediate code will always be a leader. 

2. The instructions that target a conditional or unconditional jump statement are 

termed as a leader. 

3. Any instructions that are just after a conditional or unconditional jump 

statement will be a leader. 

Each leader’s basic block will have all the instructions from the leader itself until the 

instruction, which is just before the starting of the next leader. 

Example: 

Consider the following source code for a 10 x 10 matrix to an identity matrix 

 Instruction 2 is also a leader because this instruction is the target for 

instruction 11. 

 Instruction 3 is also a leader because this instruction is the target for 

instruction 9. 

 Instruction 10 is also a leader because it immediately follows the conditional 

goto statement. 

 Similar to step 4, instruction 12 is also a leader. 

 Instruction 13 is also a leader because this instruction is the target for 

instruction 17. 

So there are six basic blocks for the above code, which are given below: 

B1 for statement 1 

B2 for statement 2 

B3 for statement 3-9 

B4 for statement 10-11 
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B5 for statement 12 

B6 for statement 13-17. 

 

Flow Graph 

It is a directed graph. After partitioning an intermediate code into basic blocks, the 

flow of control among basic blocks is represented by a flow graph. An edge can 

flow from one block X to another block Y in such a case when the Y block’s first 

instruction immediately follows the X block’s last instruction. The following ways 

will describe the edge: 

 There is a conditional or unconditional jump from the end of X to the starting 

of Y. 

 Y immediately follows X in the original order of the three-address code, and 

X does not end in an unconditional jump. 

 

 Flow graph for the 10 x 10 matrix to an identity matrix. 

 Block B1 is the entry point for the flow graph because B1 contains starting 

instruction. 

 B2 is the only successor of B1 because B1 doesn’t end with unconditional 

jumps, and the B2 block’s leader immediately follows the B1 block’s leader. 
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 B3 block has two successors. One is a block B3 itself because the first 

instruction of the B3 block is the target for the conditional jump in the last 

instruction of block B3. Another successor is block B4 due to conditional 

jump at the end of B3 block. 

 B6 block is the exit point of the flow graph. 

 

 

Code Optimization in Compiler Design 

The code optimization in the synthesis phase is a program transformation 

technique, which tries to improve the intermediate code by making it consume 

fewer resources (i.e. CPU, Memory) so that faster-running machine code will 

result. Compiler optimizing process should meet the following objectives : 

 The optimization must be correct, it must not, in any way, change the 

meaning of the program. 

 Optimization should increase the speed and performance of the program. 

 The compilation time must be kept reasonable. 

 The optimization process should not delay the overall compiling process. 

When to Optimize? 

Optimization of the code is often performed at the end of the development 

stage since it reduces readability and adds code that is used to increase the 

performance. 

Why Optimize? 

Optimizing an algorithm is beyond the scope of the code optimization phase. 

So the program is optimized. And it may involve reducing the size of the 

code. So optimization helps to: 

 Reduce the space consumed and increases the speed of compilation. 

 Manually analyzing datasets involves a lot of time. Hence we make use of 

software like Tableau for data analysis. Similarly manually performing the 

optimization is also tedious and is better done using a code optimizer. 

 An optimized code often promotes re-usability. 
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Types of Code Optimization –The optimization process can be broadly 

classified into two types : 

1. Machine Independent Optimization – This code optimization phase 

attempts to improve the intermediate code to get a better target code as the 

output. The part of the intermediate code which is transformed here does not 

involve any CPU registers or absolute memory locations. 

2. Machine Dependent Optimization – Machine-dependent optimization is 

done after the target code has been generated and when the code is 

transformed according to the target machine architecture. It involves CPU 

registers and may have absolute memory references rather than relative 

references. Machine-dependent optimizers put efforts to take 

maximum advantage of the memory hierarchy. 

Code Optimization is done in the following different ways : 

Compile Time Evaluation : 

(i)  A = 2*(22.0/7.0)*r  

     Perform 2*(22.0/7.0)*r at compile time. 

(ii)  x = 12.4 

      y = x/2.3  

      Evaluate x/2.3 as 12.4/2.3 at compile time. 

Variable Propagation : 

//Before Optimization  

c = a * b                                                

x = a                                                   

till                                                            

d = x * b + 4  

   

//After Optimization  

c = a * b   

x = a 

till 
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d = a * b + 4 

Hence, after variable propagation, a*b and x*b will be identified as common 

sub-expression. 

 

Dead code elimination : Variable propagation often leads to making 

assignment statement into dead code 

c = a * b                                                 

x = a                                                 

till                                                           

d = a * b + 4    

 //After elimination : 

c = a * b 

till 

d = a * b + 4 

Code Motion : 

• Reduce the evaluation frequency of expression. 

• Bring loop invariant statements out of the loop. 

a = 200; 

 while(a>0) 

 { 

     b = x + y; 

     if (a % b == 0} 

     printf(“%d”, a); 

   } 

  

 //This code can be further optimized as 

a = 200; 
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b = x + y; 

while(a>0) 

 { 

     if (a % b == 0} 

     printf(“%d”, a); 

   } 

Induction Variable and Strength Reduction : 

• An induction variable is used in loop for the following kind of assignment i 

= i + constant. 

• Strength reduction means replacing the high strength operator by the low 

strength. 

i = 1;                                                                       

while (i<10)                                                           

{                                                                              

    y = i * 4;  

} 

   

  //After Reduction 

i = 1 

t = 4 

{  

   while( t<40)  

   y = t;  

   t = t + 4; 

} 

Where to apply Optimization? 
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Now that we learned the need for optimization and its two types,now let’s see 

where to apply these optimization. 

Source program 

Optimizing the source program involves making changes to the algorithm or 

changing the loop structures.User is the actor here. 

Intermediate Code 

Optimizing the intermediate code involves changing the address calculations 

and transforming the procedure calls involved. Here compiler is the actor. 

Target Code 

Optimizing the target code is done by the compiler. Usage of registers,select 

and move instructions is part of optimization involved in the target code. 

Phases of Optimization 

There are generally two phases of optimization: 

Global Optimization: 

Transformations are applied to large program segments that includes 

functions,procedures and loops. 

Local Optimization: 

Transformations are applied to small blocks of statements.The local 

optimization is done prior to global optimization. 

 

PRINCIPAL SOURCES OF OPTIMISATION 

 A transformation of a program is called local if it can be performed by 

looking only at the statements in a basic block; otherwise, it is called global. 

Many transformations can be performed at both the local and global levels. 

Local transformations are usually performed first. 

Function-Preserving Transformations 

 There are a number of ways in which a compiler can improve a program 

without changing the function it computes. 

Function preserving transformations examples: 

Common sub expression elimination 
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Copy propagation, 

Dead-code elimination 

Constant folding 

 The other transformations come up primarily when global optimizations are 

performed. 

 Frequently, a program will include several calculations of the offset in an 

array. Some of the duplicate calculations cannot be avoided by the 

programmer because they lie below the level of detail accessible within the 

source language. 

 Common Sub expressions elimination: 

An occurrence of an expression E is called a common sub-expression if E was 

previously computed, and the values of variables in E have not changed since 

the previous computation. We can avoid recomputing the expression if we can 

use the previously computed value. 

   For example 

 t1: = 4*i 

t2: = a [t1] 

t3: = 4*j 

t4: = 4*i 

t5: = n 

t6: = b [t4] +t5 

 The above code can be optimized using the common sub-expression 

elimination as 

t1: = 4*i 

         t2: = a [t1] 

t3: = 4*j 

t5: = n 

t6: = b [t1] +t5 

 The common sub expression t4: =4*i is eliminated as its computation is 

already in t1 and the value of i is not been changed from definition to use. 
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 Copy Propagation: 

 Assignments of the form f : = g called copy statements, or copies for short. 

The idea behind the copy-propagation transformation is to use g for f, 

whenever possible after the copy statement f: = g. Copy propagation means 

use of one variable instead of another. This may not appear to be an 

improvement, but as we shall see it gives us an opportunity to eliminate x. 

  

• For example: 

x=Pi; 

A=x*r*r; 

The optimization using copy propagation can be done as follows: A=Pi*r*r; 

Here the variable x is eliminated 

 Dead-Code Eliminations: 

 A variable is live at a point in a program if its value can be used 

subsequently; otherwise, it is dead at that point. A related idea is dead or 

useless code, statements that compute values that never get used. While the 

programmer is unlikely to introduce any dead code intentionally, it may 

appear as the result of previous transformations. 

 Example: 

 i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 Here, ‘if’ statement is dead code because this condition will never get 

satisfied. 

 Constant folding: 

 Deducing at compile time that the value of an expression is a constant and 

using the constant instead is known as constant folding. One advantage of 

copy propagation is that it often turns the copy statement into dead code. 
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 For example, 

a=3.14157/2 can be replaced by 

a=1.570 there by eliminating a division operation. 

 Loop Optimizations: 

 In loops, especially in the inner loops, programs tend to spend the bulk of 

their time. The running time of a program may be improved if the number of 

instructions in an inner loop is decreased, even if we increase the amount of 

code outside that loop. 

 Three techniques are important for loop optimization: 

Ø     Code motion, which moves code outside a loop; 

Ø     Induction-variable elimination, which we apply to replace variables from 

inner loop. 

 Ø     Reduction in strength, which replaces and expensive operation by a 

cheaper one, such as a multiplication by an addition. 
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Code Motion: 

An important modification that decreases the amount of code in a loop is code 

motion. This transformation takes an expression that yields the same result 

independent of the number of times a loop is executed (a loop-invariant 

computation) and places the expression before the loop. Note that the notion 

“before the loop” assumes the existence of an entry for the loop. For example, 

evaluation of limit-2 is a loop-invariant computation in the following while-

statement: 

 while (i <= limit-2) /* statement does not change limit*/ 

 Code motion will result in the equivalent of 

 t= limit-2; 

while (i<=t) /* statement does not change limit or t */ 

 Induction Variables : 

 Loops are usually processed inside out. For example consider the loop 

around B3. Note that the values of j and t4 remain in lock-step; every time the 

value of j decreases by 1, that of t4 decreases by 4 because 4*j is assigned to 

t4. Such identifiers are called induction variables. 

 When there are two or more induction variables in a loop, it may be possible 

to get rid of all but one, by the process of induction-variable elimination. For 

the inner loop around B3 in Fig.5.3 we cannot get rid of either j or t4 

completely; t4 is used in B3 and j in B4. 

 However, we can illustrate reduction in strength and illustrate a part of the 

process of induction-variable elimination. Eventually j will be eliminated 

when the outer loop of B2- B5 is considered. 

 Example: 

 As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. 

and t4 is not changed elsewhere in the inner loop around B3, it follows that 

just after the statement j:=j-1 the relationship t4:= 4*j-4 must hold. We may 

therefore replace the assignment t4:= 4*j by t4:= t4-4. The only problem is 

that t4 does not have a value when we enter block B3 for the first time. Since 

we must maintain the relationship t4=4*j on entry to the block B3, we place 

an initializations of t4 at the end of the block where j itself is initialized, 

shown by the dashed addition to block B1 in Fig.5.3. 
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 The replacement of a multiplication by a subtraction will speed up the object 

code if multiplication takes more time than addition or subtraction, as is the 

case on many machines. 

 Reduction In Strength: 

 Reduction in strength replaces expensive operations by equivalent cheaper 

ones on the target machine. Certain machine instructions are considerably 

cheaper than others and can often be used as special cases of more expensive 

operators. For example, x² is invariably cheaper to implement as x*x than as a 

call to an exponentiation routine. Fixed-point multiplication or division by a 

power of two is cheaper to implement as a shift. Floating-point division by a 

constant can be implemented as multiplication by a constant, which may be 

cheaper. 

  

 

 

 

Optimization of Basic Blocks: 

Optimization process can be applied on a basic block. While optimization, we 

don't need to change the set of expressions computed by the block. 

There are two type of basic block optimization. These are as follows: 

1. Structure-Preserving Transformations 

2. Algebraic Transformations 
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1. Structure preserving transformations: 

The primary Structure-Preserving Transformation on basic blocks is as 

follows: 

o Common sub-expression elimination 

o Dead code elimination 

o Renaming of temporary variables 

o Interchange of two independent adjacent statements 

(a) Common sub-expression elimination: 

In the common sub-expression, you don't need to be computed it over and 

over again. Instead of this you can compute it once and kept in store from 

where it's referenced when encountered again. 

1. a : = b + c   

2. b : = a - d    

3. c : = b + c                           

4. d : = a - d   

In the above expression, the second and forth expression computed the same 

expression. So the block can be transformed as follows: 

1. a : = b + c    

2. b : = a - d                                                          

3. c : = b + c   

4. d : = b   

(b) Dead-code elimination 

o It is possible that a program contains a large amount of dead code. 

o This can be caused when once declared and defined once and forget to 

remove them in this case they serve no purpose. 

o Suppose the statement x:= y + z appears in a block and x is dead symbol that 

means it will never subsequently used. Then without changing the value of 

the basic block you can safely remove this statement. 

(c) Renaming temporary variables 
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A statement t:= b + c can be changed to u:= b + c where t is a temporary 

variable and u is a new temporary variable. All the instance of t can be 

replaced with the u without changing the basic block value. 

(d) Interchange of statement 

Suppose a block has the following two adjacent statements: 

1. t1 : = b + c    

2. t2 : = x + y   

These two statements can be interchanged without affecting the value of 

block when value of t1 does not affect the value of t2. 

2. Algebraic transformations: 

o In the algebraic transformation, we can change the set of expression into an 

algebraically equivalent set. Thus the expression x:= x + 0 or x:= x *1 can be 

eliminated from a basic block without changing the set of expression. 

o Constant folding is a class of related optimization. Here at compile time, we 

evaluate constant expressions and replace the constant expression by their 

values. Thus the expression 5*2.7 would be replaced by13.5. 

o Sometimes the unexpected common sub expression is generated by the 

relational operators like <=, >=, <, >, +, = etc. 

o Sometimes associative expression is applied to expose common sub 

expression without changing the basic block value. if the source code has the 

assignments 

1. a:= b + c   

2.                 e:= c +d +b   

The following intermediate code may be generated: 

1. a:= b + c   

2.  t:= c +d   

3.  e:= t + b   
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