Annal Women's College, kARUR

Mrs. P. Sureka
head, department of physics
SUBJECT: OPTICS

2.7. Wedge-shaped Film

Consider a wedge-shaped film of refractive index n enclosed by two plane surfaces $O P$ and $O Q$ inclined at an angle θ (Fig.2.9). The thickness of the film increases from O to P. When the film is illuminated by a parallel beam of monochromatic light, interference occurs between the rays reflected at the upper and lower surfaces of the film. So equidistant alternate dark and bright fringes are observed. The fringes are parallel to the line of intersection of the two surfaces. The interfering rays are $A B$ and $D E$, both originating from the sa, iee incident ray $S A$.

Expression for the fringe width : The condition for a dark fringe is $2 n t \cos r=m \lambda$. Here for air $n=1$. For normal incidence \cos $r=\cos 0=1$.

Suppose the m th dark fringe is formed where the thickness of the air film is t_{m} (Fig. 2.10). Then,

Fig. 2.9.
or

$$
\begin{gather*}
2 \times 1 \times t_{m} \times 1=m \lambda \\
2 t_{\mathrm{m}}=m \lambda \tag{1}
\end{gather*}
$$

Suppose the $(m+1)$ th dark fringe is formed where the thickness of the air film is t_{m+1}. Then,

$$
\begin{equation*}
2 t_{m+1}=(m+1) \lambda \tag{2}
\end{equation*}
$$

Subtracting (1) from (2), $2\left(t_{m+1}-t_{m}\right)=\lambda$
Let x_{m+1} and x_{m} be the distances of the $(m+1)$ th and m th dark fringes from O.

Fig. 2.10.

Interference

$d=$ diameter of the wire; $L=$ distance between O and the wire. Then,

$$
\begin{aligned}
& \frac{t_{m+1}}{x_{m+1}}=\frac{t_{m}}{x_{m}}=\frac{d}{L}=\theta \\
& \therefore \quad t_{m+1}=\frac{d}{L} x_{m+1} ; t_{m}=\frac{d}{L} x_{m}
\end{aligned}
$$

Substituting these values in Eq. (3), we get

$$
2 \frac{d}{L}\left(x_{m+1}-x_{m}\right)=\lambda
$$

But $x_{m+1}-x_{m}=\beta=$ fringe width.

$$
\begin{array}{lr}
\text { or } & 2 \frac{d}{L} \beta=\lambda \\
\therefore & \beta=\frac{\lambda L}{2 d}=\frac{\lambda}{2 \theta}
\end{array}
$$

d, λ and L are constants. Therefore, fringe width β is constant. Similarly, if we consider two consecutive bright fringes, the fringe width β will be the same.

Experiment to measure the diameter of a thin wire : An air wedge is formed by inserting the wire between two glass plates. Monochromatic light is reflected vertically downwards on to the wedge by the inclined glass plate G (Fig. 2.11). A travelling microscope M with its axis vertical is placed above G. The microscope is focused to get clear dark and bright fringes. The fringe width (β) is measured. The length (L) of the wedge also is measured. Knowing λ, the diameter (d) of the wire is calculated using the formula,

$$
d=\frac{\lambda L}{2 \beta} .
$$

Testing a surface for planeness : A wedge shaped air film is formed between an optically plane glass plate $(O P)$ and the surface

Fig. 2.11. under test $(O Q)$. The fringes will be straight if the surface under test is perfectly plane. If the surface $O Q$ is not perfectly plane, the fringes will be irregular in shape. In practice, perfectly plane surfaces are produced by polishing the surfaces and testing them from time to time, until the fringes are straight. In testing for planeness, an extended source of light should be used.

2.9. Determination of Wavelength of Sodium Light by Newton's Rings

Experimental arrangement : Fig. 2.14 shows an experimental arrangement for producing Newton's rings by reflected light. S is an extended source of monochromatic light. The light from S is rendered parallel by a convex lens L_{1}. These horizontal parallel rays fall on a glass plate G at 45°, and are partly reflected from it. This reflected beam falls normally on the lens L placed on the glass plate $P Q$. Interference occurs between the rays reflected from the upper and lower surfaces of the film. The interference rings are viewed with a microscope M focused on the air film.

Procedure: With the help of the travelling microscope the diameters of a number of dark rings are measured. The position of the microscope is adjusted to get the centre of Newton's rings at the point of intersection of the cross-wires. The microscope is moved until one cross wire is tangential to the 16 th dark ring. The microscope reading is taken. Then the microscope is moved such that the cross-wire is successively tangential to 12 th, 8 th and 4th dark rings respectively. The readings are noted in each case. Readings corresponding to the same rings are taken on the other side of the centre. The readings are tabulated as follows :

Fig. 2.14.

No. of ring	Reading of travelling microscope		Diameter of ring $D=a \sim b$	D^{2}	$D_{m}{ }^{2}-D_{p}{ }^{2}$
	Left (a)	Right (b)			
16					
12					
8					
4					

$$
\text { Average }\left(D_{m}{ }^{2}-D_{p}{ }^{2}\right)=
$$

The average value of $\left(D_{m}{ }^{2}-D_{p}{ }^{2}\right)$ is found.
For an air film $n=1$.
The diameters of p th and m th dark rings are given by

$$
\begin{array}{cc}
D_{p}^{2}=4 p R \lambda \text { and } D_{m}^{2}=4 m R \lambda . \\
D_{m}^{2}-D_{p}^{2}=4(m-p) R \lambda \\
\therefore & \lambda=\frac{D_{m}^{2}-D_{p}^{2}}{4(m-p) R}
\end{array}
$$

The radius of curvature R of the lower surface of the lens is found by Boys' method. Substituting this value of R and the average value of $\left(D_{m}{ }^{2}-D_{p}{ }^{2}\right)$ with $(m-p)=8$ in the above equation, λ is calculated.

2.11. Michelson's Interferometer

 of the light beam from an extended source is divided into two parts of equal intensity by ard

 vertically on two arms at right angles to each
 tilted with the fine screws at their backs. The mirror M_{2} ispratetyhie Mirrad M, are tront sij parallel to itself by means of a very sensitive micrometer screw. G_{1} and G_{2} are two plane parallel glass plates of equal thickness. The plate G_{1} is semi-silvered on the back side. G_{1} is a beam splitter; i.e., a beam incident on G_{1} is partially reflected and partially transmitted. G_{1} is inclined at an angle of 45° to the incident beam. G_{2} is called the compensating plate. S is a light source.

Fig. 2.16.
vertically on two arms at right angles to each $\mathbf{M} 2$ other. The planes of the mirrors can be slightly LLLLLLLLLL
tilted with the fine screws at their backs. The M_{C} mirror M , is fixed. The mirror M , can be moved parallel to itself by means of a very sensitive micrometer screw. G, and G, are two plane S parallel glass plates of equal thickness. The plate G, is semi-silvered on the back side. $G B$ is ${ }^{\text {a }}$ beam splitter; i.e., ${ }^{\text {a }}$ beam incident ${ }^{\text {on }} \mathrm{G},{ }^{\mathrm{G} 1} \mathrm{G} 2$ is partially reflected and partially transmitted. M2

G , is inclined at an angle of 45° to the incident AT beam. G, is called the compensating plate. S is a light source. Fig. 2.16.

Working : Light from the source S is rendered parallel by a lens L and falls on the glangsplate
 along $A R_{\mathrm{B}}$ The reflected beam moyestowards mirror M_{1} and falls normally on it. It is reflected back aong the same path and emerges out along $A T$. The back surfacterf
 The two emergent beams have been deriyed from a single incident beam and are, therefore, coherent.
 Thê two beams produce interference under sutable conditions.

Function of the compensating plate \mathbf{G}_{2} : The reflected ray $A C$ passes through G_{1} thrice. But the

 Theths traversed by both the beams.
The two beams produce interference under suitable conditions.
Typesinfifringees mpensating plate G,: The reflected ray AC passes through G thrice. But the transmitted

 perpendicular. The image of M_{2} is at M_{2}^{\prime} parallel to M_{1} (Fig. pathy. treserse, M_{2} by ahet $M_{1}^{\text {the }}$ fohnthe equivalent of a parallel air film. The effective thickness of the air film is varied by moving Fiyper off Frialelsto itself. Let the eye or the telescope be set along a direction making an angle r with the normal to M_{1}.
 is $2 t \cos r$. The condition for a bright ring is $2 t \cos r=m \lambda$ ubtansext iwhemtegter. the mirrors M , and M , are mutually perpentic danditibe

Fig. 2.17. film The effective thickness of the air film is varied by In either case, r will be constant for given values of t, n and χ. Hence the loci of maxima of intensity
 thescone be set along a direction making an angle r with the The cincula fringes will be situated at infinity. Therefore they can be observed by a telescope focused for infinity. Thus twe get circular fringes of equal inclination or Haidinger's fringes.

 midhle. As Ahtion moved an additional distance $\lambda / 4$, a dark circle will appear once arain. Thus, we see that successive, dark and bright pircles are forme. $2 t$ each time M_{1} is moved a distance of $\lambda / 4$.
(ii) Straight fringes : If M_{1} and M_{2} are not exactly perpendicular, a wedge

 are of equal thickness. The fringes are localized in the airfilm itself. Hence the telesctpesop las to be focused on the film to observe these fringes.

 when the path difference is small. These fringes are important because they are used to locate the position of zero path difference.

2.12. Uses of Michelson's Interferometer

Fig. 2.18.

1. Determination of wavelength of monochromatic light :

If a dark cirecle appears at the centre of the pattern, the two rays interfere destructively. If the miror M is thén moved by a distance of W 4 , the path difference changes by $/ 2$ (twice the separation between, and M^{\wedge}). The two rays will now interfere constructively, giving a bright circle in the middle. As M , is moved an additional distance $/ 4$, a dark circle will appear once arain. Thus, we see that successive dark and bright circles are formed each time \mathbf{M}, is moved ${ }_{\text {a }}$ distance of $/ 4$.
(i) Straight fringes :If M, and M, are not exactly perpendicular, a wedge shaped air film is formed between M , and M . The fringes become practically M
straight (Fig. 2.18) when M , actually intersects M^{\wedge} in the middle. The fringes are of equal thickness. The fringes are localized in the airfilm itself. Hence the M telescope has to be focused on the film to observe these fringes.
(ii) White light fringes : If white light is used, the central fringe will be dark and others will be coloured. With white light, fringes are observed only when the path difference is small. These firinges are important because they are used to locate the position of zero path difference.

2.12. Uses of Michelson's Interferometer

Fig. 2.18.

1. Determinationof wavelength of monochromatic light:
() Using monochromatic radiation of unknown wavelength A, the interferometer is adjusted for circular fringes.
(ii) With any ring at the centre, the reading of micrometer is noted. Let it be x_{1}.
(iii) Now the mirror M_{1} is moved with the help of micrometer screw. The fringes appear to
 te the change pt ath difference thet fringes move avd x he the inew shidiftgelfetheegicrometer. When the mirror moves through a distance $/ 2$, one fringe shifts. Hence,

$$
\begin{align*}
& x_{2}-x_{1}=\mathrm{X}==\Lambda \frac{\lambda}{2} \tag{i}\\
& \lambda= \frac{2\left(x_{2}-x_{1}\right)}{N}=\frac{2 x}{N} \tag{i}
\end{align*}
$$

Example 1: When the movable mirror of a Michelson interferometer is moved by 0.0589 mm ,

Here, $x=0.0589 \mathrm{~mm}=5.89 \times 10-\mathrm{Sm}, \mathrm{N}=200 ; \mathrm{A} \overline{\overline{5}}$?

$$
\begin{aligned}
& \lambda=\frac{2 x}{N}=\frac{2 \times\left(\overline{5} .89 \times 10^{-5}\right)}{200}=5.89 \times 10^{-7} \mathrm{~m}=589 \mathrm{~nm} .
\end{aligned}
$$

Example 2 : The initial and final readings of $\overline{\text { Michels }} 5$ and 10.6903 mm as 150 fringes pass. Ceddulate the wavelength of light used.

Solution: Here, $x=10.7347-106903=0.0444 \mathrm{~mm}=4.44 \times 10^{-5} \mathrm{~m} ; N=150$;
Example 2_{2} : Here initial and final readings of Michelson interferometer screw are 10.7347 mm and 10.6903

2. Determination of difference in wavelength between two neighbouring lines: Let the source
 to form circular rings. Each spectral line produces its own system of rings. We have to consider the superposed fringe-systems. If the bright rings due to λ_{1} exactly coincide with bright rings due to λ_{2},

 the superposed fringe-systems If the bright rings dhe to exactly coincide with bright rings due to

 indistinctness.

 continuedin the same direction and suce distance x between two successive dissonance 2_{2} is deterinined ${ }_{2}$ When x is the distance moved by

or

$$
2 x \frac{\left(\lambda_{1}-\lambda_{2}\right)}{\lambda_{1} \lambda_{2}}=1 . \quad \text { or } \quad \lambda_{1}-\lambda_{2}=\frac{\lambda_{1} \lambda_{2}}{2 x}
$$

Put $\lambda_{1}-\lambda_{2}=d \lambda$ and $\lambda_{1} \lambda_{2}=\lambda^{2}$ where $\lambda=$ mean wavelength.

During this movement if Nis the change in order of the longer wavelength, at the centre of the field, then $(\mathrm{N}+1)$ will be the change in order of wavelength A at the centre. Therefore, fordis sonance

$$
2 x_{M}(N+1) 2
$$

2x

or $\mathrm{N}=$ and $(\mathrm{N}+1)=$ or 2 A$)-1$. x Or - ,
$="$

Put $\mathrm{A}-\mathrm{A},=$ dh. and $\mathrm{A}, \mathrm{a},=*$ where $=$ mean wavelength. be Calculätd Can

The inner surfaces of A and B are thinly silvered so as to reflect $80-90 \%$ of the incident light.

Fig. 2.26

- The plate B facing the observer is fixed. It is provided with screws with which the reflecting surface of B can be made parallel to that of A.
- The plate A is mounted on a carriage. The carriage can be moved in a direction perpendicular to the reflecting surfaces by means of an accurate screw so that the thickness of air film between the coated surfaces of the plates A and B can be varied.
- Light from monochromatic extended source S is rendered parallel by collimating lens.

Working: Monochromatic light from a broad source S_{1} is made parallel by the collimating lens L_{1}. Each parallel ray suffers multiple reflections successively at the two silvered surfaces. At each reflection, a small fraction of light is also transmitted so that each incident ray produces a group of coherent, parallel transmitted rays. There is a constant path difference between any two successive transmitted ray's. A telescopic lens L_{2} brings these rays to focus at P in its focal plane where they interfere. Thus, the rays from all points of the source produce an interference pattern on a screen S_{2} at the focal plane of L_{2}. This is known as multiple beam interference.

2.19. Formation of Circular Fringes

- t is the separation between the plates.
- θ is the inclination of a particular ray with the normal to the silvered surface of A.

For an air film, the optical path difference between two successive transmitted rays corresponding to the incident one is given by

$$
\begin{equation*}
\Delta=2 t \cos \theta \tag{1}
\end{equation*}
$$

For the maxima, $\quad 2 t \cos \theta=m \lambda(m=0,1,2, \ldots$, $)$
Here, m is the order of interference and λ is the wavelength of light used.

The locus of points in the source giving rays of constant inclination θ is a circle. Thus, with an extended source, the interference

Fig. 2.27. pattern will be a series of bright concentric rings (Fig. 2.27) on a dark background. Each of the rings will correspond to a particular θ-value.

Linear separation of successive order:

f is the focal length of the lens L_{2}.

$$
m=\frac{2 t}{\lambda} \cos \theta=\frac{2 t}{\lambda}\left(1-\frac{\theta^{2}}{2}\right)
$$

\therefore Radius of the m th order bright ring is $r_{m}=f \theta$.

$$
\therefore \quad m=\frac{2 t}{\lambda}\left(1-\frac{\theta^{2}}{2}\right)=\frac{2 t}{\lambda}\left(1-\frac{r_{m}^{2}}{2 f^{2}}\right)
$$

\Rightarrow

$$
d m=-\frac{2 t}{\lambda} \cdot \frac{r_{m}}{f^{2}} d r
$$

Taking $d m=-1$, the change in the radii $d r$ between two successive maxima is

$$
\begin{equation*}
d r=\frac{\lambda f^{2}}{2 r_{m} t} \tag{3}
\end{equation*}
$$

Eq. (3) indicates that for larger radii, consecutive circles are closer together. Near to the centre, the rings are widely separated but in the outer field rings are closer together.

The closer the two plates, the broader and more widely separated will be the fringes.
The Fabry Perot fringes arising due to interference of infinite number of light waves of constant inclination to the axis are called Haidinger fringes. Path difference of several centimetres may be used without loss of visibility of fringes. Hence very high order of rings may be examined.

Example 1 : In a Fabry-Perot interferometer, the separation between the plates is $4 \times 10^{-4} \mathrm{~cm}$. Light of wavelength 5000 A falls normally on the plates. Find the order of the maximum at the centre.

Solution : In a Fabry Perot interferometer, $2 t=m \lambda$.
The order of the maximum at the centre of the interference pattern, is given by

$$
m_{0}=\frac{2 t}{\lambda}=\frac{2 \times\left(4 \times 10^{-6}\right)}{5000 \times 10^{-10}}=16
$$

Example 2 : White light is incident normally on a Fabry-Perot interferometer with plate separation of $4 \times 10^{-6} \mathrm{~m}$. Calculate the wavelengths for which there are interference maxima in the transmitted beam in the range $4000 \AA$ to $5000 \AA$.
(Nagpur University, 2010)

Solution : For a Fabry-Perot interferometer, the condition of maxima in the transmitted beam is

$$
2 t \cos \theta=m \lambda,
$$

where t is plate separation. For normal incidence $\theta=0^{\circ}$, so that

$$
2 t=m \lambda .
$$

$$
\therefore \quad \lambda=\frac{2 t}{m}=\frac{2 \times\left(4 \times 10^{-6}\right)}{m} \mathrm{~m}
$$

For $4000 \AA\left(4 \times 10^{-7} \mathrm{~m}\right)$ wavelength, the order at the centre is

$$
m=\frac{2 \times\left(4 \times 10^{-6}\right)}{4 \times 10^{-7}}=20
$$

For $5000 \AA, m=\frac{2 \times\left(4 \times 10^{-6}\right)}{5 \times 10^{-7}}=16$.
For intermediate wavelengths, the orders shall be 19,18 and 17 .
The relevant wavelengths that correspond to $m=16$ to $20(16,17,18,19,20)$ are:

$$
\begin{aligned}
& \lambda_{1}=\frac{2 \times\left(4 \times 10^{-6}\right)}{16}=5 \times 10^{-7} \mathrm{~m}=5000 \AA \\
& \lambda_{2}=\frac{2 \times\left(4 \times 10^{-6}\right)}{17}=4.706 \times 10^{-7} \mathrm{~m}=4706 \AA \\
& \lambda_{3}=\frac{2 \times\left(4 \times 10^{-6}\right)}{18}=4.444 \times 10^{-7} \mathrm{~m}=4444 \AA \\
& \lambda_{4}=\frac{2 \times\left(4 \times 10^{-6}\right)}{19}=4.211 \times 10^{-7} \mathrm{~m}=4211 \AA
\end{aligned}
$$

$$
\lambda_{5}=\frac{2 \times\left(4 \times 10^{-6}\right)}{20}=4 \times 10^{-7} \mathrm{~m}=4000 \AA
$$

\therefore The required wavelengths are $4000 \AA, 4211 \AA, 4444 \AA, 4706 \AA$ and $5000 \AA$.

2.20. Determination of Wavelength

- The Fabry-Perot interferometer is adjusted to produce concentric circular fringes of the monochromatic light of wavelength λ, which we have to determine. For this, the reflecting surfaces of A and B must be parallel.
- Let m be the order of bright fringe at the centre of the fringe system. As at the centre $\theta=0$, we have $2 t=m \lambda$.
If the movable plate is moved a distance $\lambda / 2,2 t$ changes by λ. Hence a bright fringe of next order appears at the centre.
- The movable mirror is moved from one position corresponding to micrometer reading, say, x_{1}, when there is a bright fringe in the centre to another position corresponding to screw reading, say x_{2}, when there is again a bright fringe in the centre. The number N of bright fringes which cross the centre of field in this process is counted.

$$
\begin{array}{ll}
\therefore & N \cdot \frac{\lambda}{2}=x_{2}-x_{1} \\
\text { or } & \lambda=\frac{2\left(x_{2}-x_{1}\right)}{N}
\end{array}
$$

From this relation, we can determine the value of λ.
Example 1 : A shift of 100 fringes is observed when movable mirror of Fabry-Perot interferometer is shifted through 0.0295 mm . Calculate the wave length of light used.
(P.U. 2005)

Solution : Here, $x_{2}-x_{1}=0.0295 \mathrm{~mm}=0.0295 \times 10^{-3} \mathrm{~m} ; N=100$;

$$
\therefore \quad \bar{\lambda}=\frac{2\left(x_{2}-x_{1}\right)}{N}=\frac{2 \times\left(0.0295 \times 10^{-3}\right)}{100}=5900 \times 10^{-10} \mathrm{~m}=5900 \AA
$$

2.21. Etalon and Interferometer

The F.P. instruments are made of two types.
(i) In one type, the separation between two plates is kept fixed. It is called F. P. etalon. Etalons with definite spacing are available in market. Etalons are supplied with a variety of spacers of lengths ranging from 1 to 200 mm for use in the investigation of hyperfine structure of spectral lines. The etalon is now invariably used for research.

Construction: In the etalon, two semi-silvered plates are mounted in a framework (Fig. 2.28).

Spacer

Fig. 2.28.

Ootigiss anel shzectursee

0.4
 The spacer is commonlv a hoollow cylinder of invar or silica with three profecting stuats at each end The plates are kept in place sliyhtly dressed against the spacers by the pressure of adjustable springs

Working: Fig. 2.28 shows formation of multiple reflection fringes by Fabry Perot etalon.
 broad source of monochromatic light is incident on the plates at all angles. Consider a plane wave travelling along $A B$ and incident on $E F$ at an angle θ to the normal. The series of parallel transmitted waves $C_{1} T_{1}, C_{2} T_{2}, C_{3} T_{3} \ldots$ arise from the same incident wave by its internal multiple partial reflections and refractions between $E F$ and $G H$. These waves being coherent interfere when brought to a focus at P in the focal plane of an achromatic lens L. The interference pattern will appear in the form of concentric circles (or rings) where each ring will correspond to one particular value of θ.
attached in a proper way to the etilon housing.
e is the separation between the F. P. plates.
formation silvered of multiple reflectionjringes Perot bY Fabry etalon. Perot
Light etale frOm alon. ma working: Fig. 2.28 shows Fabry
EF and GH are two plane parallel lightlv incident on surfaces the plates of the at all angles. consider a plane Wav ave broad source of monochromatic light is the or parallel transmited
travelling along AB and incident arise from on EF the at same an angle incident e to wave normal. by its internal The series multiple partial reflections ons
waves $\mathrm{Cl1}, \mathrm{C} 2 \mathrm{~T} 2$. CT .. coherent interfere when brought to a focus and refractions between EF and GH , These waves being at P in the focal plane of an achromatic lens L . The interference pattern will appear in the form of
concentric $^{\text {circles }}$ (or rings) where each ring will correspond ${ }^{\text {to one }}$ particular value of 0 .
(ii) In 2nd, a screw is provided with either plate by which separation between ${ }^{\text {plates }{ }^{\text {can }} \text { be changed. It is then }}$ called F. P. interferometer.

13.3. Inteffereencetridters

 of whitg light is incident normally Pn ig pair of plane parallel plates silyered on the inner surfaces
 monochromatic components of incident light. Maxima of different orders are formed in the transmitted
 beam corresponding to wavelengths given by

$$
2 n t=m \lambda
$$

where n is the refractive index of the medium, t ? ${ }^{\text {nt }} \hbar \mathrm{H} \mathrm{p}$ plate separation and $m=1,2,3, \ldots$
 reduced considerably, only one or two maxima are observed in the visisibled region. For example, if $t=500 \times 10$

 frodernividertiffellep dstition techniques. The interference filter

 quefitefimMMgfis) isvepapmorded on the top of reflecting metal Glass
 film of reflecting material. Finally, a glass plate is placed over

Fig. 13.3.

 a narrow spectrum sharply peaked about one wavelength. The sharpness of the transmitted spectrum

 as absorption will reduce the intensity of the transmitted light. To overcome this difficulty, metallic films are replaced by all dielectric structures.

In an all-dielectric structure, a $\lambda / 4$ thick film of titanium oxide $(n=2.8)$ is deposited on a glass substrate Then a thin laver of dielectric material with lower refractive index (such as cryolite or
a finite width, that is, it will have a narrow spectrum sharply peaked about one wavelength. The sharpness of the transmitted spectrum is determined by the reflectivity of the metallic surfaces. The larger the reflectivity, the narrower is the transmitted spectrum. But it is not possible to increase the thickness of metallic films indefinitely as absorption will reduce the intensity of the transmitted light. To overcome this difficulty, metallic films are replaced by all dielectric structures.

In an all-dielectric structure, a/4 thick film of titanium oxide $(\mathrm{n}=2.8)$ is deposited on a glass
Substrate. Then a thin layer of dielectric material with lower refractive index (such as cryolite or
trouble of overheating.
refractive itndex. To increase the reflectivity, multilayer structures of alternate higher and lower refractive index materials are used. In this way, it is possible to achieve ${ }^{\text {a }}$ reflectivity of move than ${ }^{90 \%}$ for any particular wavelength. Such filters are capable of transmitting over abandwidth as small as 1.1 mor even less with peak at any wavelength within the visible region.

Interference filters are used in spectroscopic work for studying the spectra in a narrow range of wavelengths. Furthermore, such filters absorb practically no energy and so they are free from the trouble of overheating.

