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Big Data 

In the business landscape of today, data management can be a major determinant of whether 

you succeed or fail. Most businesses have begun to realize the importance of incorporating 

strategies that can transform them through the application of big data. In this endeavor, 

businesses are realizing that big data is not simply a single technology or technique. Rather, 

big data is a trend that stretches across numerous fields in business and technology. 

Big Data is the term used to refer to initiatives and technologies that comprise of data that is 

too diverse, fast evolving, and vast for ordinary technologies, infra- structure, and skills to 

address exhaustively. That is; the volume, velocity and variety of the data is far too great. 

Despite the complexity of this data, advances in technology are allowing businesses to draw 

value from big data. 

For example, in your businesses can be positioned to track consumer web clicks in order to 

identify consumers’ behavioral trends and modify the business’s campaigns, advertisements, 

and pricing to fit the consumers’ persona. 

An additional example would be where energy service providers assess household 

consumption levels in order to predict impending outages and promote more efficient energy 

consumption. 

Additionally, health provision bodies may be able to monitor the spread as well as the 

emergence of illnesses by analyzing social media data. There are numerous applications of big 

data, the most noteworthy of which will be discussed a little later in the article. 

https://hbr.org/2012/10/big-data-the-management-revolution/ar
http://realtormag.realtor.org/technology/mr-internet/article/2006/12/tracking-visitor-behavior-how-prospects-really-use-your-web-s


 

Big Data involves the creation of large amounts of complex data, its storage, its retrieval, and 

finally its analysis. 

Characteristics of Big Data 

The following are the three Vs of big data. 

 Volume. Two decades ago, typical computers may have had about ten gigabytes of memory. 

Today, however, social media platforms such as Facebook will take in over half a billion 

terabytes of data on a daily basis. Similarly, Boeing airplanes generate hundreds of terabytes 

in flight data in a single flight. The wide spread use of smartphones and tablets results in the 

generation of billions of terabytes of consistently updated data feeds that are of infinitely 

diverse genres. 

 Velocity. Clickstreams capture user behavior at millions of events each second. For example, 

stock trading market changes are reflected within microseconds. Computer processes exchange 

data between billions of gadgets, infrastructure, and sensors in order to generate accurate and 

applicable data in real-time. For example, on-line gaming systems support millions of users 

operating concurrently and with each producing multiple inputs every second. 

 Variety. Big data does not just refer to numbers and dates, big data is all that inclusive of audio, 

video, unstructured text, social media information, and so much more. Database systems of 

about two decades ago had been designed to address a smaller volume of structured data, 

slower, and fewer updates. They were designed to process structured and predictable forms of 

data. These traditional databases were also designed to operate on single servers, which would 

make an increase in capacity an expensive endeavor. Programs and applications have evolved 

to serve large volumes of users and the use of the olden databases has become a liability for 

most businesses as opposed to an asset. Big Data databases, for example MongoDB, solve these 

issues and avail businesses great value. 

 

Map Reduce 

What is MapReduce? 

MapReduce is a framework using which we can write applications to process huge amounts 

of data, in parallel, on large clusters of commodity hardware in a reliable manner. 

MapReduce is a processing technique and a program model for distributed computing based 

on java. The MapReduce algorithm contains two important tasks, namely Map and Reduce. 

Map takes a set of data and converts it into another set of data, where individual elements are 

broken down into tuples (key/value pairs). Secondly, reduce task, which takes the output from 

a map as an input and combines those data tuples into a smaller set of tuples. As the sequence 

of the name MapReduce implies, the reduce task is always performed after the map job. 

The major advantage of MapReduce is that it is easy to scale data processing over multiple 

computing nodes. Under the MapReduce model, the data processing primitives are called 

mappers and reducers. Decomposing a data processing application 

into mappers and reducers is sometimes nontrivial. But, once we write an application in the 

MapReduce form, scaling the application to run over hundreds, thousands, or even tens of 

thousands of machines in a cluster is merely a configuration change. This simple scalability 

is what has attracted many programmers to use the MapReduce model. 

https://www.cleverism.com/what-is-big-data-understanding-large-amount-data/
http://vrworld.com/2015/05/08/big-data-in-planes-new-pw-gtf-engine-telemetry-to-generate-10gbs/
https://www.qubole.com/blog/big-data/clickstream-data-analysis/?nabe=5695374637924352:0&utm_referrer=https%3A%2F%2Fwww.google.com%2F
https://www.forbes.com/sites/adrianbridgwater/2015/06/01/mongodb-how-big-data-explodes-old-databases/


 

The Algorithm 

 Generally MapReduce paradigm is based on sending the computer to where the data 

resides! 

 MapReduce program executes in three stages, namely map stage, shuffle stage, and 

reduce stage. 

o Map stage − The map or mapper’s job is to process the input data. Generally 

the input data is in the form of file or directory and is stored in the Hadoop file 

system (HDFS). The input file is passed to the mapper function line by line. 

The mapper processes the data and creates several small chunks of data. 

o Reduce stage − This stage is the combination of the Shufflestage and 

the Reduce stage. The Reducer’s job is to process the data that comes from the 

mapper. After processing, it produces a new set of output, which will be stored 

in the HDFS. 

 During a MapReduce job, Hadoop sends the Map and Reduce tasks to the appropriate 

servers in the cluster. 

 The framework manages all the details of data-passing such as issuing tasks, verifying 

task completion, and copying data around the cluster between the nodes. 

 Most of the computing takes place on nodes with data on local disks that reduces the 

network traffic. 

 After completion of the given tasks, the cluster collects and reduces the data to form 

an appropriate result, and sends it back to the Hadoop server. 

 

Inputs and Outputs (Java Perspective) 

The MapReduce framework operates on <key, value> pairs, that is, the framework views the 

input to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the 

output of the job, conceivably of different types. 

The key and the value classes should be in serialized manner by the framework and hence, 

need to implement the Writable interface. Additionally, the key classes have to implement the 



 

Writable-Comparable interface to facilitate sorting by the framework. Input and Output types 

of a MapReduce job − (Input) <k1, v1> → map → <k2, v2> → reduce → <k3, v3>(Output). 

 

Input 

Output 

Map <k1, v1> list (<k2, v2>) 

Reduce <k2, list(v2)> list (<k3, v3>) 

Terminology 

 PayLoad − Applications implement the Map and the Reduce functions, and form the 

core of the job. 

 Mapper − Mapper maps the input key/value pairs to a set of intermediate key/value 

pair. 

 NamedNode − Node that manages the Hadoop Distributed File System (HDFS). 

 DataNode − Node where data is presented in advance before any processing takes 

place. 

 MasterNode − Node where JobTracker runs and which accepts job requests from 

clients. 

 SlaveNode − Node where Map and Reduce program runs. 

 JobTracker − Schedules jobs and tracks the assign jobs to Task tracker. 

 Task Tracker − Tracks the task and reports status to JobTracker. 

 Job − A program is an execution of a Mapper and Reducer across a dataset. 

 Task − An execution of a Mapper or a Reducer on a slice of data. 

 Task Attempt − A particular instance of an attempt to execute a task on a SlaveNode. 

 

What is MapReduce in Hadoop? 

MapReduce is a programming model suitable for processing of huge data. Hadoop is capable 

of running MapReduce programs written in various languages: Java, Ruby, Python, and C++. 

MapReduce programs are parallel in nature, thus are very useful for performing large-scale 

data analysis using multiple machines in the cluster. 

MapReduce programs work in two phases: 

1. Map phase 

2. Reduce phase. 



 

An input to each phase is key-value pairs. In addition, every programmer needs to specify 

two functions: map function and reduce function. 

How MapReduce Works? Complete Process 

The whole process goes through four phases of execution namely, splitting, mapping, 

shuffling, and reducing. 

Let's understand this with an example – 

Consider you have following input data for your Map Reduce Program 

Welcome to Hadoop Class 

Hadoop is good 

Hadoop is bad 

 

The final output of the MapReduce task is 

bad  1 

Class  1 

good  1 



 

Hadoop  3 

is  2 

to  1 

Welcome  1 

The data goes through the following phases 

Input Splits: 

An input to a MapReduce job is divided into fixed-size pieces called input splits Input split 

is a chunk of the input that is consumed by a single map 

Mapping 

This is the very first phase in the execution of map-reduce program. In this phase data in each 

split is passed to a mapping function to produce output values. In our example, a job of 

mapping phase is to count a number of occurrences of each word from input splits (more 

details about input-split is given below) and prepare a list in the form of <word, frequency> 

Shuffling 

This phase consumes the output of Mapping phase. Its task is to consolidate the relevant 

records from Mapping phase output. In our example, the same words are clubed together 

along with their respective frequency. 

Reducing 

In this phase, output values from the Shuffling phase are aggregated. This phase combines 

values from Shuffling phase and returns a single output value. In short, this phase 

summarizes the complete dataset. 

In our example, this phase aggregates the values from Shuffling phase i.e., calculates total 

occurrences of each word. 

MapReduce Architecture explained in detail 

 One map task is created for each split which then executes map function for each 

record in the split. 

 It is always beneficial to have multiple splits because the time taken to process a split 

is small as compared to the time taken for processing of the whole input. When the 

splits are smaller, the processing is better to load balanced since we are processing the 

splits in parallel. 



 

 However, it is also not desirable to have splits too small in size. When splits are too 

small, the overload of managing the splits and map task creation begins to dominate 

the total job execution time. 

 For most jobs, it is better to make a split size equal to the size of an HDFS block 

(which is 64 MB, by default). 

 Execution of map tasks results into writing output to a local disk on the respective 

node and not to HDFS. 

 Reason for choosing local disk over HDFS is, to avoid replication which takes place 

in case of HDFS store operation. 

 Map output is intermediate output which is processed by reduce tasks to produce the 

final output. 

 Once the job is complete, the map output can be thrown away. So, storing it in HDFS 

with replication becomes overkill. 

 In the event of node failure, before the map output is consumed by the reduce task, 

Hadoop reruns the map task on another node and re-creates the map output. 

 Reduce task doesn't work on the concept of data locality. An output of every map task 

is fed to the reduce task. Map output is transferred to the machine where reduce task 

is running. 

 On this machine, the output is merged and then passed to the user-defined reduce 

function. 

 Unlike the map output, reduce output is stored in HDFS (the first replica is stored on 

the local node and other replicas are stored on off-rack nodes). So, writing the reduce 

output 

How MapReduce Organizes Work? 

Hadoop divides the job into tasks. There are two types of tasks: 

1. Map tasks (Splits & Mapping) 

2. Reduce tasks (Shuffling, Reducing) 

as mentioned above. 

The complete execution process (execution of Map and Reduce tasks, both) is controlled by 

two types of entities called a 

1. Jobtracker: Acts like a master (responsible for complete execution of submitted job) 

2. Multiple Task Trackers: Acts like slaves, each of them performing the job 

For every job submitted for execution in the system, there is one Jobtracker that resides 

on Namenode and there are multiple tasktrackers which reside on Datanode. 



 

 

 A job is divided into multiple tasks which are then run onto multiple data nodes in a 

cluster. 

 It is the responsibility of job tracker to coordinate the activity by scheduling tasks to 

run on different data nodes. 

 Execution of individual task is then to look after by task tracker, which resides on 

every data node executing part of the job. 

 Task tracker's responsibility is to send the progress report to the job tracker. 

 In addition, task tracker periodically sends 'heartbeat' signal to the Jobtracker so as 

to notify him of the current state of the system.  

 Thus job tracker keeps track of the overall progress of each job. In the event of task 

failure, the job tracker can reschedule it on a different task tracker. 

 

 

MONGO DB 

MongoDB is a document-oriented NoSQL database used for high volume data storage. 

MongoDB is a database which came into light around the mid-2000s. It falls under the category 

of a NoSQL database. 

MongoDB is a general purpose, document-based, distributed database built for modern 

application developers and for the cloud era. No database makes you more productive. 

https://www.guru99.com/images/Big_Data/061114_0930_Introductio2.png


 

MongoDB Features 

1. Each database contains collections which in turn contains documents. Each 

document can be different with a varying number of fields. The size and 

content of each document can be different from each other. 

2. The document structure is more in line with how developers construct their 

classes and objects in their respective programming languages. Developers 

will often say that their classes are not rows and columns but have a clear 

structure with key-value pairs. 

3. As seen in the introduction with NoSQL databases, the rows (or documents as 

called in MongoDB) doesn't need to have a schema defined beforehand. 

Instead, the fields can be created on the fly. 

4. The data model available within MongoDB allows you to represent 

hierarchical relationships, to store arrays, and other more complex structures 

more easily. 

1. Scalability – The MongoDB environments are very scalable. 

Companies across the world have defined clusters with some of them 

running 100+ nodes with around millions of documents within the 

database 

MongoDB Example 

The below example shows how a document can be modeled in MongoDB. 

1. The _id field is added by MongoDB to uniquely identify the document in the 

collection. 

2. What you can note is that the Order Data (OrderID, Product, and Quantity ) which in 

RDBMS will normally be stored in a separate table, while in MongoDB it is actually 

stored as an embedded document in the collection itself. This is one of the key 

differences in how data is modeled in MongoDB. 

 

Key Components of MongoDB Architecture 

Below are a few of the common terms used in MongoDB 

https://www.guru99.com/images/MongoDB/112015_1051_Introductio1.png


 

1. _id – This is a field required in every MongoDB document. The _id field represents a 

unique value in the MongoDB document. The _id field is like the document's primary 

key. If you create a new document without an _id field, MongoDB will automatically 

create the field. So for example, if we see the example of the above customer table, 

Mongo DB will add a 24 digit unique identifier to each document in the collection. 

2. Collection – This is a grouping of MongoDB documents. A collection is the 

equivalent of a table which is created in any other RDMS such as Oracle or MS SQL. 

A collection exists within a single database. As seen from the introduction collections 

don't enforce any sort of structure. 

3. Cursor – This is a pointer to the result set of a query. Clients can iterate through a 

cursor to retrieve results. 

4. Database – This is a container for collections like in RDMS wherein it is a container 

for tables. Each database gets its own set of files on the file system. A MongoDB 

server can store multiple databases. 

5. Document - A record in a MongoDB collection is basically called a document. The 

document, in turn, will consist of field name and values. 

6. Field - A name-value pair in a document. A document has zero or more fields. Fields 

are analogous to columns in relational databases. 

The following diagram shows an example of Fields with Key value pairs. So in the 

example below CustomerID and 11 is one of the key value pair's defined in the 

document. 

 

_Id CustomerID CustomerName OrderID 

563479cc8a8a4246bd27d784 11 Guru99 111 

563479cc7a8a4246bd47d784 22 Trevor Smith 222 

563479cc9a8a4246bd57d784 33 Nicole 333 

https://www.guru99.com/images/MongoDB/112015_1051_Introductio2.png


 

7. JSON – This is known as JavaScript Object Notation. This is a human-readable, plain 

text format for expressing structured data. JSON is currently supported in many 

programming languages. 

Just a quick note on the key difference between the _id field and a normal collection field. 

The _id field is used to uniquely identify the documents in a collection and is automatically 

added by MongoDB when the collection is created. 

Features of MongoDB 

1. Document-oriented – Since MongoDB is a NoSQL type database, instead of having 

data in a relational type format, it stores the data in documents. This makes MongoDB 

very flexible and adaptable to real business world situation and requirements. 

2. Ad hoc queries - MongoDB supports searching by field, range queries, and regular 

expression searches. Queries can be made to return specific fields within documents. 

3. Indexing - Indexes can be created to improve the performance of searches within 

MongoDB. Any field in a MongoDB document can be indexed. 

4. Replication - MongoDB can provide high availability with replica sets. A replica set 

consists of two or more mongo DB instances. Each replica set member may act in the 

role of the primary or secondary replica at any time. The primary replica is the main 

server which interacts with the client and performs all the read/write operations. The 

Secondary replicas maintain a copy of the data of the primary using built-in 

replication. When a primary replica fails, the replica set automatically switches over 

to the secondary and then it becomes the primary server. 

5. Load balancing - MongoDB uses the concept of sharding to scale horizontally by 

splitting data across multiple MongoDB instances. MongoDB can run over multiple 

servers, balancing the load and/or duplicating data to keep the system up and running 

in case of hardware failure. 

Data Modelling in MongoDB 

As we have seen from the Introduction section, the data in MongoDB has a flexible schema. 

Unlike in SQL databases, where you must have a table's schema declared before inserting 

data, MongoDB's collections do not enforce document structure. This sort of flexibility is 

what makes MongoDB so powerful. 

When modeling data in Mongo, keep the following things in mind 

1. What are the needs of the application – Look at the business needs of the application 

and see what data and the type of data needed for the application. Based on this, 

ensure that the structure of the document is decided accordingly. 

2. What are data retrieval patterns – If you foresee a heavy query usage then consider the 

use of indexes in your data model to improve the efficiency of queries. 

3. Are frequent inserts, updates and removals happening in the database? Reconsider the 

use of indexes or incorporate sharding if required in your data modeling design to 

improve the efficiency of your overall MongoDB environment. 

https://www.guru99.com/interactive-javascript-tutorials.html
https://www.guru99.com/sql.html


 

Difference between MongoDB & RDBMS 

Below are some of the key term differences between MongoDB and RDBMS 

Difference b/w Mongo and RDBMS 

1. Relational databases are known for enforcing data integrity. This is not an explicit 

requirement in MongoDB. 

2. RDBMS requires that data be normalized first so that it can prevent orphan records 

and duplicates Normalizing data then has the requirement of more tables, which will 

then result in more table joins, thus requiring more keys and indexes. 

As databases start to grow, performance can start becoming an issue. Again this is not 

an explicit requirement in MongoDB. MongoDB is flexible and does not need the 

data to be normalized first. 

Big Data Serialization 

Serialization is the process of converting structured data into its raw 

form. Deserialization is the reverse process of reconstructing structured forms from the 

data's raw bit stream form. 

In Hadoop, different components talk to each other via Remote Procedure Calls (RPCs). 

A caller process serializes the desired function name and its arguments as a byte stream 

before sending it to the called process. The called process deserializes this byte stream, 

interprets the function type, and executes it using the arguments that were supplied. The 

results are serialized and sent back to the caller. This workflow naturally calls for fast 

RDBMS MongoDB Difference 

Table Collection In RDBMS, the table contains the columns and rows which are used to store the data 

whereas, in MongoDB, this same structure is known as a collection. The collection 

contains documents which in turn contains Fields, which in turn are key-value pairs. 

Row Document In RDBMS, the row represents a single, implicitly structured data item in a table. In 

MongoDB, the data is stored in documents. 

Column Field In RDBMS, the column denotes a set of data values. These in MongoDB are known 

as Fields. 

Joins Embedded 

documents 

In RDBMS, data is sometimes spread across various tables and in order to show a 

complete view of all data, a join is sometimes formed across tables to get the data. In 

MongoDB, the data is normally stored in a single collection, but separated by using 

Embedded documents. So there is no concept of joins in MongoDB. 

https://www.guru99.com/database-normalization.html


 

serialization and deserialization. Network bandwidth is at a premium and requires the 

serialized representation of the function name and its arguments to have the smallest 

possible payload. Different processes might evolve differently, and the entire...  

 

A container is nothing but a data structure, or an object to store data in. When we transfer 

data over a network the container is converted into a byte stream. This process is referred to 

as serialization. The reverse, that is converting a byte stream into a container, is called 

deserialization. 

Serialization Formats in Hadoop 

The information shown in the table below has been collected from various sources, 

notably Hadoop Application Architectures, Hadoop – The Definitive Guide, Apache Hive 

Essentials, and the documentation of the respective contestants: 

 Writables 

 Thrift 

 Protocol buffers 

 Avro 

 RCFile API 

 ORC 

 Parquet 

 

3.3. Big data serialization formats 

Unstructured text works well when you’re working with scalar or tabular data. Semistruct

ured text formats such as XML and JSON can model more sophisticated data structures that i

nclude composite fields or hierarchical data. But when you’re working with big data volumes, 

you’ll need serialization formats with compact serialized forms that natively support partitioni

ng and have schema evolution features. 

In this section we’ll compare the serialization formats that work best with big data in Map

Reduce and follow up with how you can use them with MapReduce. 

3.3.1. Comparing SequenceFile, Protocol Buffers, Thrift, and Avro 

In my experience, the following characteristics are important when selecting a data seriali

zation format: 

·        Code generation —Some serialization formats are accompanied by libraries with co

de-generation abilities that allow you to generate rich objects, making it easier for you to inter

act with your data. The generated code also provides the added benefit of type-safety to make 

sure that your consumers and producers are working with the right data types. 

·        Schema evolution —Data models evolve over time, and it’s important that your dat

a formats support your need to modify your data models. Schema evolution allows you to add

, modify, and in some cases delete attributes, while at the same time providing backward and f

orward compatibility for readers and writers. 

http://shop.oreilly.com/product/0636920033196.do
http://hadoopbook.com/
http://www.packtpub.com/big-data-and-business-intelligence/apache-hive-essentials
http://www.packtpub.com/big-data-and-business-intelligence/apache-hive-essentials
http://hadoop.apache.org/docs/current/api/index.html
http://thrift.apache.org/docs/types
http://developers.google.com/protocol-buffers/docs/proto?hl=en
http://avro.apache.org/docs/current/spec.html
http://hive.apache.org/javadocs/r1.2.1/api/index.html
http://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
http://parquet.apache.org/documentation/latest


 

·        Language support —It’s likely that you’ll need to access your data in more than on

e programming language, and it’s important that the mainstream languages have support for a 

data format. 

·        Transparent compression —Data compression is important given the volumes of da

ta you’ll work with, and a desirable data format has the ability to internally compress and dec

ompress data on writes and reads. It’s a much bigger headache for you as a programmer if the 

data format doesn’t support compression, because it means that you’ll have to manage compr

ession and decompression as part of your data pipeline (as is the case when you’re working w

ith text-based file formats). 

·        Splittability —Newer data formats understand the importance of supporting multiple 

parallel readers that are reading and processing different chunks of a large file. It’s crucial tha

t file formats contain synchronization markers (and thereby support the ability for a reader to 

perform a random seek and scan to the start of the next record). 

·        Support in MapReduce and the Hadoop ecosystem —A data format that you select 

must have support in MapReduce and other critical Hadoop ecosystem projects, such as Hive. 

Without this support, you’ll be responsible for writing the code to make a file format work wi

th these systems. 

Let’s look at each of these formats in more detail. 

SequenceFile 

The SequenceFile format was created to work with MapReduce, Pig, and Hive, and theref

ore integrates well with all of those tools. Its shortcomings are mainly its lack of code generat

ion and versioning support, as well as limited language support. 

Protocol Buffers 

The Protocol Buffers format has been used heavily by Google for interoperability. Its stre

ngths are its versioning support and compact binary format. Downsides include its lack of sup

port in MapReduce (or in any third-party software) for reading files generated by Protocol Bu

ffers serialization. Not all is lost, however; we’ll look at how Elephant Bird uses Protocol Buf

fers serialization within a higher-level container file in section 3.3.3. 

Thrift 

Thrift was developed at Facebook as a data-serialization and RPC framework. It doesn’t h

ave support in MapReduce for its native data-serialization format, but it can support different 

wire-level data representations, including JSON and various binary encodings. Thrift also incl

udes an RPC layer with various types of servers, including a nonblocking implementation. W

e’ll ignore the RPC capabilities for this chapter and focus on the data serialization. 

Avro 

The Avro format is Doug Cutting’s creation to help address the shortcomings of Sequence

File. 

Parquet 



 

Parquet is a columnar file format with rich Hadoop system support, and it works well with 

data models such as Avro, Protocol Buffers, and Thrift. Parquet is covered in depth in section 

3.4. 

Based on certain evaluation criteria, Avro seems to be the best fit as a data serialization fr

amework in Hadoop. SequenceFile is a close second due to its inherent compatibility with Ha

doop (it was designed for use with Hadoop). 

You can review a useful jvm-serializers project at https://github.com/eishay/jvm-serializer

s/wiki/, which runs various benchmarks to compare file formats based on items such as seriali

zation and deserialization times. It contains benchmarks for Avro, Protocol Buffers, and Thrif

t, along with a number of other frameworks. 

After looking at how the various data-serialization frameworks compare, we’ll dedicate th

e next few sections to working with them. We’ll start off with a look at SequenceFile. 

First, let's define what serialization is ? In Java, serialization is linked 

to java.io.Serializable interface and possibility to convert and reconvert object to byte stream. 

But regarding to Big Data systems where data can come from different sources, written in 

different languages, this solution has some drawbacks, as a lack of portability or maintenance 

difficulty. 

In Big Data, serialization also refers to converting data into portable structure as byte streams. 

But it has another goal which is schema control. Thanks to schema describing data structure, 

data can be validated on writing phase. It avoids to have some surprises when data is read 

and, for example, a mandatory field is missing or has bad type (int instead of array). 

Additionally, serialization helps to execute Big Data tasks efficiently. Unlike popular formats 

as JSON or XML, serialized data is splittable easier. And splittability can be used for 

example by MapReduce to process input data divided to input splits. 

Previously mentioned schema control involves another advantage of serialization frameworks 

- versioning. Let's imagine that one day our object has 5 fields and one week later, it has 

already 10 fields. To handle the change we could, for example, map new fields with default 

values or use old schema file for data deserialization. 

Also, in some cases, serialized data takes less place that standard JSON or XML files. 

To resume, we can list following points to characterize serialization in Big Data systems: 

 splittability - easier to achieve splits on byte streams rather than JSON or XML files 

 portability - schema can be consumed by different languages 

 versioning - flexibity to define fields with default values or continue to use old schema 

version 

 data integrity - serialization schemas enforces data corecteness. Thanks to them, errors 

can be detected earlier, when data is written. 

Avro as use case 

There are several main serialization frameworks available, among others: Avro, Thrift and 

Protocol Buffers. After analyzing some of implemented features, I decided to play a little 

with Apache Avro. 

https://avro.apache.org/


 

This choice was dictated by use flexibility (optional code generation), language support, 

splittability and the fact that in the most of Big Data books I studied, only Apache Thrift was 

widely presented. But Apache Avro will be the subject of another post. 

In this article we can learn some points about serialization use in Big Data systems. We can 

see that it helps to keep data consistent, but also improves data processing with splittability 

and compression features. 
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