
K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

1

ANNAI WOMEN’S COLLEGE
(Arts & Science)

(Affiliated to Bharathidasan University, Tiruchirappalli - 620 024)

TNPL Road, Punnam Chatram, Karur - 639 136.

DEPARTMENT OF COMPUTER SCIENCE, BCA & IT

Faculty Name : Ms.K.ANITHA, M.CA., M.Phil.,
Major : B.CA Semester : IV

Subject Code : 16SCCCA4 Subject : Database Systems

--

Unit I

DATABASE SYSTEMS

Introduction: Database-System Applications- Purpose of Database Systems - View of Data --

Database Languages - Relational Databases - Database Design -Data Storage and Querying Transaction

Management -Data Mining and Analysis - Database Architecture - Database Users and Administrators -

History of Database Systems.

Unit II

Relational Model: Structure of Relational Databases -Database Schema - Keys - Schema Diagrams
- Relational Query Languages - Relational Operations Fundamental Relational- Algebra Operations

Additional Relational-Algebra Operations- Extended Relational-Algebra Operations - Null Values -

Modification of the Database.

Unit III

SQL:Overview of the SQL Query - Language - SQL Data Definition - Basic Structure of SQL

Queries - Additional Basic Operations - Set Operations - Null Values Aggregate Functions - Nested

Subqueries - Modification of the Database -Join Expressions - Views - Transactions - Integrity Constraints

- SQL Data Types and Schemas - Authorization .

Unit IV

Relational Languages: The Tuple Relational Calculus - The Domain Relational Calculus

Database Design and the E-R Model: Overview of the Design Process - The Entity-Relationship Model -

Reduction to Relational Schemas - Entity-Relationship Design Issues - Extended E-R Features -

Alternative Notations for Modeling Data - Other Aspects of Database Design .

Unit V

Relational Database Design: Features of Good Relational Designs - Atomic Domains and First

Normal Form - Decomposition Using Functional Dependencies - Functional-Dependency Theory -

Decomposition Using Functional Dependencies - Decomposition Using Multivalued

Dependencies-More Normal Forms - Database-Design Process

Text Book:

1. Database System Concepts, Sixth edition, Abraham Silberschatz, Henry F. Korth,

S.Sudarshan, McGraw-Hill-2010.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

2

INDEX

S.NO TOPICS PAGE NO.

1

UNIT : 1

Introduction to Database Systems

1 - 15

2

UNIT : 2

Relational Model

16 - 29

3

UNIT : 3

SQL

30 - 51

4

UNIT : 4
Relational Languages

52 – 66

5
UNIT : 5

Relational Database Designs

67 - 79

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

3

1. What is DBMS? (Part-A)

What is Database? (Part-A)

UNIT-I

INTRODUCTION

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

4

 A Database Management System (DBMS) consists of a collection of interrelated data and a set of

programs to access those data. The collection of data is called as database, contains information

about one particular enterprise.

 The primary goal of a DBMS is to provide an environment that is both convenient and efficient for

people to use in retrieving and storing database information.

2. Why Database Systems are designed? (Part-A)

What is the Use of Database Systems? (Part-A)

 The Database Systems are designed to store large amount of information. The management of data

involves both the definition of structures for the storage of information and the provision of

mechanisms for the manipulation of information.

 It must provide for the safety of information stored, despite system crashes or attempts at

unauthorized access. The data are shared among several users the system must avoid possible

anomalous results.

DATABASE SYSTEM APPLICATIONS

1. List out the Database System Applications. (Part-B)

 The widely used database applications are:

Banking:

 For customer information, accounts, loans and banking transactions.

Airlines:

 For reservations and schedule information. Airlines were the first to use databases in

a geographically distributed manner.

Universities:

 For student information, course registrations, and grades.

Credit and Transactions:

 For purchase on credit cards and generation of monthly statements.

Telecommunication:

 For keeping records of calls made, generating monthly bills, maintaining balances on

prepaid calling cards, and storing information about the communication networks.

Sales:

 For customer, product, and purchase information.

Manufacturing:

 For management of supply chain and for tracking production of items in factories,

inventories of items in warehouses, and orders for items.

Finance:

 For storing information about holdings, Sales, and purchases of financial instruments

such as stocks and bonds.

Human Resources:

 For information about employees, salaries, payroll taxes and benefits and for

generation of paychecks.

PURPOSE OF DATABASE SYSTEMS

1. Explain about Database Systems. (Part-C)

Discuss about File-Processing Systems. (Part-C)

List out and explain about the Disadvantages of File-Processing System. (Part-C)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

5

To keep the information on a computer is to store it in permanent system files. The user to

manipulate the information, the system has a number of application programs that manipulate the

files, including

 A program to debit or credit an account

 A program to add a new account

 A program to find the balance of an account

 A program to generate monthly statements

The new application programs are added to the system as the need arises. The file-processing

system is supported by a conventional operating system.

To keep the organizational information in a file processing system has a number of major

disadvantages. They are:

 Data Redundancy and Inconsistency

 Difficulty in Accessing Data

 Data Isolation

 Integrity Problems

 Atomicity Problems

 Concurrent-Access Anomalies

 Security Problems

Data Redundancy and Inconsistency:

The same information duplicated in several places (files) is called as Redundancy. This

redundancy leads to higher storage and access cost.

The redundancy may lead to data inconsistency; that is, the various copies of the same data may no

longer agree.

Example:

A changed student address may be reflected in one record but not elsewhere in the system.

Difficulty in Accessing Data:

The file-processing environments do not allow needed data to be retrieved in a convenient and

efficient manner.

Example:

The bank officer needs to find out the names of all customers who live within the particular city.

The officers extract the information manually, or ask data-processing department to a have system

programmer write the necessary application program.

 Both alternatives are unsatisfactory because if the officer needs some other information it is very

difficult to extract the information with the existing application program.

Data Isolation:

 The data are scattered in various files, and files may be in different formats, it is difficult to write

new application programs to retrieve the appropriate data.

Integrity Problems:

 The data values stored in the database must satisfy certain types of consistency constraints.

Example:

 The balance of bank account may never fall below a prescribed amount ($250). The developers

enforce these constraints in the system by adding appropriate code in the various application

programs. When new constraints are added, it is difficult to change the programs to enforce them.

Atomicity Problems:

In computer system any mechanical or electrical device, is subject to failure. Once the failure has

occurred and has been detected, the data are restored to the consistent state that existed prior to the

failure.

The transaction must be atomic- it must happen in it’s entirely or not at all. It is difficult to ensure

this property in a file-processing system.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

6

Concurrent-Access Anomalies:

The overall performance of the system is improved and a faster response time is possible, many

systems allow multiple users to update the data simultaneously.

The interaction of concurrent updates may result in inconsistent data.

Security Problems:

Not every user of the database system should be able to access all the data. The application

programs are added to the system in an ad hoc manner, it is difficult to enforce such security

constraints.

VIEW OF DATA

1. What is the Major Purpose of Database System? (Part-A)

What is Data Abstraction? (Part-A)

Explain about the Various Levels of Data Abstraction. (Part-B)

a) Data Abstraction:

 A major purpose of a database system is to provide users with an abstract view of the data. The

system hides certain detail of how data are stored and maintained is called as data abstraction.

 To hide the information through several levels of abstraction, to simply users interactions with the

system:

Physical Level:

 Physical Level

 Logical Level

 View Level

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

7

View 1 View 2 View 3

Physical Level

 The lowest level of abstraction describes how the data are actually stored. The complex low-level

data structures are records are described as a block of consecutive storage locations (words, bytes).

Figure: The three

levels of Data

Abstraction

Logical Level:

 This level describes what data are stored in the database, and what relationships exist among those

data. It is used by database administrators, who must decide what information is to kept in the

database.

View Level:

 The highest level of abstraction describes only part of the entire database. It is defined for simplify

the interaction with the system. The system may provide many views for the same database.

 To hide the details of the logical level of the database, the views also provide a security mechanism

to prevent users from accessing parts of the database.

b) Instances and Schema:

2. What is the Instance of the Database? (Part-A)

What is Schema? (Part-A)

3. What is Data Independence? (Part-A)

Explain about the Types of Data Independence. (Part-B)

 The collection of information stored in the database at a particular moment is called an instance of

the database.

 The overall design of the database is called the database schema. A database schema corresponds

to the programming language type-definition.

 A value of a variable in programming languages corresponds to an instance of a database schema.

 The database systems have several schemas, partitioned according to the levels of abstraction. At

the lowest level is the physical schema; at the intermediate level is the logical schema; and at the

highest level is a subschema.

 The database systems support one physical schema, one logical schema, and several subschema’s.

 The ability to modify a schema definition in one level without affecting a schema definition in the

next higher level is called data independence. There are two levels of data independence:

 Physical Data Independence

 Logical Data

Independence Physical Data Independence:

 It is the ability to modify the physical schema without causing application programs to be rewritten.

 The modifications at the physical level are necessary to improve performance.

Logical Data Independence:

 It is the ability to modify the logical schema without causing application programs to be rewritten.

 The modifications at the logical level are necessary whenever the logical structure of the database is

altered. It is more difficult to achieve than in physical data independence, since application

Logical Level

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

8

programs are heavily dependent on the logical structure of the data.

c) Data Models

1. What is Data Model? (Part-A)

 The structure of a database is called data model. It consists of collection tool for describing data,

data relationships, data semantics, and consistency constraints.

 The data models can be classified into four different categories:

 Relational model

 Entity-Relationship Model

 Object-Based Data Model

 Semantic Data Model

Relational Model:

 It consists of collection of tables to represent both data and the relationships among those data.

Each table has multiple columns, and each column has a unique name.

 Tables are also known as relations.

 The relational model is an example of a record-based model. Record-based models are so named

because the database is structured in fixed-format records of several types.

 Each table contains records of a particular type. Each record type defines a fixed number of fields,

or attributes. The columns of the table correspond to the attributes of the record type.

Entity-Relationship Model:

 It consists of collection of basic objects, called entities, and relationships among those object is

called Entity-Relationship model.

 An entity is a “thing” or “object” in the real world that is distinguishable from other objects.

 The overall logical structure of a database can be expressed graphically by an E-R diagram.

C-name C-city C-street Account-no Balance

Customer

Depositor
Account

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

9

E-R Diagram

Components of E-R Diagram:

Rectangles represent entity sets, Ellipses represent attributes, Diamonds represent

relationships among entity sets, Lines link attributes to entity sets and entity sets to relationships.

Object-Based Data Model

 Object-oriented programming (especially in Java, C++, or C#) has become the dominant software-

development methodology.

 This led to the development of an object-oriented data model that can be seen as extending the E-R

model with notions of encapsulation, methods (functions), and object identity.

 The object-relational data model combines features of the object-oriented data model and relational

data model.

Semistructured Data Model:

 The semistructured data model permits the specification of data where individual data items of the

same type may have different sets of attributes.

 This is in contrast to the data models mentioned earlier, where every data item of a particular type

must have the same set of attributes.

 The Extensible Markup Language (XML) is widely used to represent semistructured data.

DATABASE LANGUAGES

1. Explain about the Database Languages. (Part-B)

Expand DDL and DML. (Part-A)

What is Query? (Part-A)

What is Data Dictionary? (Part-A)

 A database system provides two different types of languages. They are:

 Data-Definition Language (DDL)

 Data-Manipulation Language (DML)

Data-Definition Language:

 A database schema is specified by a set of definitions expressed by a special language called a

DDL.

 The result of compilation of DDL statements is a set of tables that is stored in a special file

called data dictionary or data directory.

 A data dictionary is a file that contains metadata (data about data). The storage structure and

access methods used by the database system are specified by a set of definitions in a special type

of DDL called a data storage and definition language.

 Thus, database systems implement integrity constraints that can be tested with minimal

overhead:

• Domain Constraints:

 A domain of possible values must be associated with every attribute (for example, integer

types, character types, date/time types).

 Domain constraints are the most elementary form of integrity constraint.

• Referential Integrity:

 There are cases where we wish to ensure that a value that appears in one relation for a

given set of attributes also appears in a certain set of attributes in another relation

(referential integrity).

• Assertions:

 An assertion is any condition that the database must always satisfy.
 Domain constraints and referential-integrity constraints are special forms of assertions.

• Authorization.

 We may want to differentiate among the users as far as the type of access they are

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

10

permitted on various data values in the database. These differentiations are expressed in

terms of authorization, the most common being:

o read authorization, which allows reading, but not modification, of data;
o insert authorization, which allows insertion of new data, but not modify existing

data;

o update authorization, which allows modification, but not deletion, of data; and

o delete authorization, which allows deletion of data.
 The result of compilation of DDL statements is a set of tables that is stored in a special file

called data dictionary or data directory.

 A data dictionary is a file that contains metadata (data about data). The storage structure and

access methods used by the database system are specified by a set of definitions in a special type

of DDL called a data storage and definition language.

Data-Manipulation Language:

 It is a language that enables user to access or manipulate data as organized by the appropriate

data model. Using this language perform the following operations:

 Retrieval of information from database

 Insertion of information in to database

 Deletion of information from database

 Modification of information stored in the database

 A query is a statement requesting the retrieval of information. The portion of a DML that

involves information retrieval is called a query language.

 The DML consists of the following types:

 Procedural DML

 Nonprocedural DML

Procedural DML:

 It requires a user to specify what data are needed and how to get those data.

Nonprocedural DML:

 It requires a user to specify what data are needed without specifying how to get those data. It is

usually easier to learn and use than are procedural DMLs.

RELATIONAL DATABASES

1. Define Data-Manipulation Language. (Part-A)

Define DDL (Part-A)

 A primary goal of a database system is to retrieve information from and store new information in

the database. It also includes a DML and DDL.

a) Tables:

 Each table has multiple columns and each column has a unique name. Figure 1.0 presents a sample

relational database comprising two tables: one shows details of university instructors and the other

shows details of the various university departments.

 The first table, the instructor table, shows, for example, that an instructor named Einstein with ID

22222 is a member of the Physics department and has an annual salary of $95,000.

 The second table, department table, shows, for example, that the Biology department is located in

the Watson building and has a budget of $90,000. Of course, a real-world university would have

many more departments and instructors.

 The relational model is an example of a record-based model. Record-based models are so named

because the database is structured in fixed-format records of several types.

 Each table contains records of a particular type. Each record type defines a fixed number of fields,

or attributes. The columns of the table correspond to the attributes of the record type.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

11

ID name dept_name salary

22222 Einstein Physics 95000

12121 Wu Finance 90000

32343 El said History 60000

45565 Katz Comp. Sci 75000

98345 Kim Elec. Eng 8000

76766 Cruck Biology 72000

10101 Srinivasan Comp.Sci 65000

58583 Califieri History 62000

83821 Brandt Comp. Sci 92000

15151 Mozart Music 40000

33456 Gold Physics 87000

76543 Singh finance 80000

(a) The instructor table

dept_name building budget

Comp. Sci Taylor 100000

Biology Watson 90000

Elec. Eng Taylor 85000

Music Packard 80000

Finance Painter 120000

History Painter 50000

Physics Watson 70000

b) Data-Manipulation Language

(b) The department table

Figure-1.0 A sample relational database

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

12

 The SQL query language is nonprocedural. A query takes as input several tables (possibly only one)

and always returns a single table.

 Example : SQL query that finds the names of all instructors in the History department:

select instructor.name

from instructor

where instructor.dept name = ’History’;

 The query specifies that those rows from the table instructor where the dept _name is History

must be retrieved, and the name attribute of these rows must be displayed.

c) Data-Definition Language

 SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions, etc.

 For instance, the following SQL DDL statement defines the department table:

create table department

(dept name char (20),

building char (15),

budget numeric (12,2));

 Execution of the above DDL statement creates the department table with three columns: dept name,

building, and budget, each of which has a specific data type associated with it.

d) Database Access from Application Programs

 SQL is not as powerful as a universal Turing machine; that is, there are some computations that are

possible using a general-purpose programming language but are not possible using SQL.

 Such computations and actions must be written in a host language, such as C, C++, or Java with

embedded SQL queries that access the data in the database.

 Application programs are programs that are used to interact with the database in this fashion.

 To access the database, DML statements need to be executed from the host language.

 There are two ways to do this:

• By providing an application program interface (set of procedures) that can be used to send DML

and DDL statements to the database and retrieve the results. The Open Database Connectivity

(ODBC) standard for use with the language is a commonly used application program interface

standard. The Java Database Connectivity (JDBC) standard provides corresponding features to the

Java language.

• By extending the host language syntax to embed DML calls within the host language program.

Usually, a special character prefaces DML calls, and a preprocessor, called the DML precompiler,

converts the DML statements to normal procedure calls in the host language.

DATABASE DESIGN

 Database systems are designed to manage large bodies of information. These large bodies of

information do not exist in isolation.

 They are part of the operation of some enterprise whose end product may be information from the

database or may be some device or service for which the database plays only a supporting role.

a) Design Process

 A high-level data model provides the database designer with a conceptual framework in which to

specify the data requirements of the database users, and how the database will be structured to

fulfill these requirements.

 The initial phase of database design, then, is to characterize fully the data needs of the prospective

database users.

 The designer chooses a data model, and by applying the concepts of the chosen data model,

translates these requirements into a conceptual schema of the database. The schema developed at

this conceptual-design phase provides a detailed overview of the enterprise.

 A fully developed conceptual schema indicates the functional requirement of the enterprise. In a

specification of functional requirements, users describe the kinds of operations (or transactions)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

13

that will be performed on the data.

 The process of moving from an abstract data model to the implementation of the database proceeds

in two final design phases.

 Logical-design phase

 Physical- design phase

Logical-Design Phase:
 The designer maps the high-level conceptual schema onto the implementation data model of the

database system that will be used.

Physical Design Phase:

 The designer uses the resulting system-specific database schema in the subsequent physical-design

phase, in which the physical features of the database are specified.

b) Database Design for a University Organization

 The design process, let us examine how a database for a university could be designed.

 The initial specification of user requirements may be based on interviews with the database users,

and on the designer’s own analysis of the organization.

 Here are the major characteristics of the university.

• The university is organized into departments. Each department is identified by a unique name

(dept_ name), is located in a particular building, and has a budget.

• Each department has a list of courses it offers. Each course has associated with it a course_id,

title, dept_ name, and credits, and may also have associated prerequisites.

• Instructors are identified by their unique ID. Each instructor has name, associated department

(dept_ name), and salary.

• Students are identified by their unique ID. Each student has a name, an associated major

department (dept name), and tot_cred (total credit hours the student earned thus far).

• The university maintains a list of classrooms, specifying the name of the building, room number,

and room capacity.

• The university maintains a list of all classes (sections) taught. Each section is identified by a

course_id, sec_id, year, and semester, and has associated with it a semester, year, building,

room_number, and time_slot_id (the time slot when the class meets).

• The department has a list of teaching assignments specifying, for each instructor, the sections the

instructor is teaching.

• The university has a list of all student course registrations, specifying, for each student, the

courses and the associated sections that the student has taken (registered for).

c) The Entity-Relationship Model

 The entity-relationship (E-R) data model uses a collection of basic objects, called entities, and

relationships among these objects. An entity is a “thing” or “object” in the real world that is

distinguishable from other objects.

 Entities are described in a database by a set of attributes.

Example:

 The attributes dept_name, building, and budget may describe one particular department in

a university, and they form attributes of the department entity set. Similarly, attributes ID,

name, and salary may describe an instructor entity.

 A relationship is an association among several entities.

Example:

 A member relationship associates an instructor with her department. The set of all entities

of the same type and the set of all relationships of the same type are termed an entity set and relationship

set, respectively.

 The overall logical structure (schema) of a database can be expressed graphically by an entity-

relationship (E-R) diagram. There are several ways in which to draw these diagrams. One of the

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

14

most popular is to use the Unified Modeling Language (UML).

 In the notation we use, which is based on UML, an E-R diagram is represented as follows:

Instructor

ID

name

salary

member

 department

dept_name

building

budget

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

15

A sample E-R diagram.

• Entity sets are represented by a rectangular box with the entity set name in the header and the

attributes listed below it.

• Relationship sets are represented by a diamond connecting a pair of related entity sets. The name

of the relationship is placed inside the diamond.

 The E-R diagram indicates that there are two entity sets, instructor and department, with

attributes as outlined earlier.

 The diagram also shows a relationship member between instructor and department.

 In addition to entities and relationships, the E-R model represents certain constraints to which the

contents of a database must conform. One important constraint is mapping cardinalities, which

express the number of entities to which another entity can be associated via a relationship set.

d) Normalization

 Another method for designing a relational database is to use a process commonly known as

normalization.

 The goal is to generate a set of relation schemas that allows us to store information without

unnecessary redundancy, yet also allows us to retrieve information easily. The approach is to design

schemas that are in an appropriate normal form.

 To understand the need for normalization, let us look at what can go wrong in a bad database

design. Among the undesirable properties that a bad design may have are:

• Repetition of information

• Inability to represent certain information

ID name salary dept_name building budget

22222 Einstein 95000 Physics Watson 70000

12121 Wu 90000 Finance Painter 120000

32343 El said 60000 History Painter 50000

45565 Katz 75000 Comp. Sci Taylor 100000

98345 Kim 8000 Elec. Eng Taylor 85000

76766 Cruck 72000 Biology Watson 90000

10101 Srinivasan 65000 Comp.Sci Taylor 100000

58583 Califieri 62000 History Painter 50000

83821 Brandt 92000 Comp. Sci Taylor 100000

15151 Mozart 40000 Music Packard 80000

33456 Gold 87000 Physics Watson 70000

76543 Singh 80000 finance Painter 120000

The Faculty table

 The two separate tables instructor and department, we have a single table, faculty, that combines

the information from the two tables.

 Notice that there are two rows in faculty that contain repeated information about the History

department, specifically, that department’s building and budget.

 The repetition of information in our alternative design is undesirable.

 Repeating information wastes space.

 One solution to this problem is to introduce null values.

 The null value indicates that the value does not exist (or is not known).

 An unknown value may be either missing (the value does exist, but we do not have that

information) or not known (we do not know whether or not the value actually exists).

DATABASE SYSTEM STRUCTURE

1. Explain about the Database System Structure. (Part-C)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

16

DDL Interpreter

Query Tools

Explain about the Components of Database System. (Part-C)

 A database system is partitioned into modules that deal the responsibilities of the overall system.

The functions of database system may be provided by the computer’s operating system. The design

of a database system must include consideration of the interface between the database system and

the operating system.

 The functional components of a database system can be broadly divided into the following

components:

 Storage Manager

 Query Processor

a) Storage Manager:

 It is a program module that provides the interface between the low-level data stored in the database

and the application programs and queries submitted to the system.

 It is also responsible for the interaction with the file manager. It also translates the various DML

statements into low-level file-system commands.

 It also responsible for the interaction, storing, retrieving, and updating of data in the database. The

following are components in this manager:

 Authorization and Integrity Manager

 Transaction Manager

 File Manager

 Buffer Manager

Users
Naive Users Application Programmers Sophisticated Users Database Administrator

Administrator Tools

DBMS

Query Processor

Compiler and

Linker

Storage Manager

Authorization and

Integrity Manager

Query Evaluation Engine

Application Program

Object Code

DML Compiler and

Organizer

Buffer Manager File Manager

DML Queries

Transaction Manager

Application Programs Application Interfaces

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

17

Data Statistical Data

Disk Storage

Figure: System Structure

 Authorization and Integrity Manager:

 It tests the satisfaction of integrity constraints and checks the authority of users to access data.

 Transaction Manager:

 The manager ensures that the database remains in a consistent (correct) state despite system

failures, and that concurrent transaction executions proceed without conflicting.

 File Manager:

 This type of manager manages the allocation of space on disk storage and the data structures

used to represent information stored on disk.

 Buffer Manager:

 This type of manager is responsible for fetching data from disk storage into main memory, and

deciding what data to cache in memory.

 The storage manager implements several data structures as part of the physical system

implementation:

Data Files:

Data Dictionary:

Indices:

b) The Query Processor:

 It stores the database itself.

 It stores metadata about the structure of the database.

 It provides fast access to data items that hold particular values.

Data Dictionary Indices

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

18

 The query processor consists of the following components:

 DML Compiler

 DDL Interpreter

 Query Evaluation Engine

DML Compiler:

 It translates DML statements in a query language into the low-level instructions that the

query evaluation engine understands. It also translates a user’s request into an equivalent

more efficient form.

DDL Interpreter:

 It interprets DDL statements and records them in a set of tables containing metadata.

Query Evaluation Engine:

 It executes low-level instructions generated by the DML compiler.

TRANSACTION MANAGEMENT

1. Explain about the Transaction Management. (Part-B)

What is Transaction? (Part-A)

Explain about the ACID Properties. (Part-B)

What is the Role of Transaction Manager? (Part-A)

 A transaction is a collection of operations that performs a single logical function in a database

application. The transaction manager is responsible for ensuring that the database remains in a

consistent (correct) state despite system failures.

 Each transaction is a unit of both atomicity and consistency. Each and every transaction does not

violate any database consistency constraints.

ACID Properties:

 To ensure the integrity of the data the database system maintains the ACID properties of the

transaction.

Atomicity:

 Either all operations of the transaction are reflected properly in the database, or none are.

Consistency:

 Execution of a transaction in isolation (that is, no other transaction executing concurrently)

preserves the consistency of the database.

Isolation:

 Even though multiple transactions may execute concurrently, the system guarantees that, for

every pair of transactions Ti and Tj, the Tj finished execution before Ti started or Tj started

execution after Tj finished.

Durability:

 After a transaction completes successfully, the changes it has made to the database persist, even

if there are system failures.

DATA MINNING & ANALYSIS

1. Define data minning. (Part-A)

 The term data mining refers loosely to the process of semiautomatically analyzing large

databases to find useful patterns.

 Like knowledge discovery in artificial intelligence (also called machine learning) or statistical

analysis, data mining attempts to discover rules and patterns from data.

 However, data mining differs from machine learning and statistics in that it deals with large

volumes of data, stored primarily on disk. That is, data mining deals with “knowledge discovery

in databases.”

 Some types of knowledge discovered from a database can be represented by a set of rules.

Example : “Young women with annual incomes greater than $50,000 are the most likely people

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

19

to buy small sports cars.” Of course such rules are not universally true, but rather have degrees of

“support” and “confidence.”

 There are a variety of possible types of patterns that may be useful, and different techniques are

used to find different types of patterns.

 Data warehouses:

 To execute queries efficiently on such diverse data, companies have built data warehouses.

 Data warehouses gather data from multiple sources under a unified schema, at a single site.

 Textual data:

 It has grown explosively. Textual data is unstructured, unlike the rigidly structured data in

relational databases.

 Information Retrival:

 Querying of unstructured textual data is referred to as information retrieval.

 Information retrieval systems have much in common with database systems—in particular,

the storage and retrieval of data on secondary storage.

DATABASE ARCHITECTURE

 The architecture of a database system is greatly influenced by the underlying computer system on

which the database system runs.

 Database systems can be centralized, or client-server, where one server machine executes work

on behalf of multiple client machines.

 Database systems can also be designed to exploit parallel computer architectures.

 Most users of a database system today are not present at the site of the database system, but

connect to it through a network.

 We can therefore differentiate between client machines, on which remote database users work,

and server machines, on which the database system runs.

 Database applications are usually partitioned into two or three parts:

 Two-tier architecture

 Three- tier architecture

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

20

Two-tier architecture:

 The application resides at the client machine, where it invokes database system

functionality at the server machine through query language statements. Application program

interface standards like ODBC and JDBC are used for interaction between the client and the

server.

 Example: Client programs using ODBC/JDBC to communicate with a database

Three-tier architecture:

 The client machine acts as merely a front end and does not contain any direct

database calls. Instead, the client end communicates with an application server, usually through

a forms interface.

 Example: Web-based applications, and applications built using “middleware”

 The application server in turn communicates with a database system to access data.

 The business logic of the application, which says what actions to carry out under what conditions,

is embedded in the application server, instead of being distributed across multiple clients.

 Three-tier applications are more appropriate for large applications, and for applications that run on

the WorldWideWeb.

Fig. Two-Tier and Three-Tier architectures.

DATABASE USERS AND ADMINISTRATORS

1. What is the Primary Goal of Database System? (Part-A)

List out the Different Types of Database Users? (Part-A)

Explain about the Types of Database Users. (Part-B)

Explain about the Database Administrator. (Part-B)

What is DBA? (Part-A)

Discuss abut the Functions of DBA. (Part-A)

 A primary goal of a database system is to retrieve information from and store new information in

the database.

a) Database Users and User Interface:

 There are four different types of database-system users, differentiated by the way that they expect

to interact with the system.

 Application Programmers

 Sophisticated Users

 Specialized Users

 Naive Users

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

21

 Application Programmers:

 The application programmers are computer professionals who interact with the system through

DML, which are embedded in a program written in a host language. These programs are

commonly referred to as application programs.

 The DML precompiler is a special preprocessor converts the DML statements to normal

procedure calls in the host language. The resulting program is then run through the host-language

compiler, which generates appropriate object code.

 Sophisticated Users:

 The sophisticated users interact with the system without writing programs. They form their

requests by database query language. Each such query is submitted to a query processor whose

function is to break down DML statement into instructions that the storage manager understands.

 Specialized Users:

 These users are sophisticated users who write specialized database applications that do not fit

into the traditional data-processing framework.

 These applications are computer-aided design systems, knowledge-base and expert systems,

systems that store data with complex data types and environment-modeling systems.

 Naive Users:

 These users are unsophisticated users who interact with the system by invoking one of the

permanent application programs that have been written previously.

b) Database Administrator:

 The person who has such central control over the system is called the Database Administrator

(DBA). The functions of the DBA include the following:

 Schema Definition

 Storage Structure and Access-Method Definition

 Schema and Physical-Organization Modification

 Granting of Authorization for Data Access

 Integrity-Constraint Specification

 Schema Definition:

 The DBA creates the original database schema by writing a set of definitions that is translated

by the DDL compiler to a set of tables that is stored permanently in the data dictionary.

 Storage Structure and Access-Method Definition:

 The DBA creates appropriate storage structures and access methods by writing a set of

definitions, which is translated by the data-storage and data-definition-language compiler.

 Schema and Physical-Organization Modification:

 Programmers accomplish the modifications either to the database schema or to the description

of the physical storage organization by writing a set of definitions that is used by either the

DDL compiler or the data-storage and data-definition-language compiler to generate

modifications to the appropriate internal system tables.

 Granting of Authorization for Data Access:

 The granting of different types of authorization allows the database administrator to regulate

which parts of the database various users can access.

 Integrity-Constraint Specification:

 The data values stored in the database must satisfy certain consistency constraints. The

constraints specified explicitly by the database administrator.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

22

UNIT-II

RELATIONAL MODEL

STRUCTURE OF RELATIONAL DATABASES

1. Explain about the Structure of Relational Databases. (Part-C)

What is Query Language? (Part-A)

What is Domain? (Part-A)

 A relational database consists of collection of tables, each of which is assigned a unique name. A

row in a table represents a relationship among a set of values.

a) Basic Structure:

 Consider the account table, contains three column headers: branch-name, account-number, and

balance. For each attribute, there is a set of permitted values, called the domain of that attribute. The

attribute branch-name, the domain is the set of all branch names.

 Let D1 denote the branch names, D2 denote the set of all account numbers and D3 is the set of all

balances. Any row of account must consist of a 3-tuple (V1, V2, V3), where V1 is a branch-name, V2

is an account-number, and V3 is a balance. The account will contain only a subset of the set of all

possible rows. The account is a subset of

 D1 x D2 x D3

 In general, a table of n attributes must be a subset of

 D1 x D2 x……xDn-1x D3

Example:

 The account relation consists of the following tuples. The tuple variable t refers to the first tuple of

the relation.

 The notation t[branch-name] to denote the value of t on the branch-name attribute.

 t[branch-name]=”Downtown”

 t[balance]=500

 The t[1] to denote the value of tuple t on the first attribute (branch-name), t[2] to denote the value of

tuple t on the second attribute (account-number) and so on.

 A relation is a set of tuples, the notation tr to denote that tuple t is in relation r. The domains of all

attributes of r must be atomic. The domain also contains the null value, which signifies that the

value is unknown or does not exist.

b) Database Schema:

 The logical design of the database is called as database schema.

 The database instance, which is a snapshot of the data in the database at a given instant in the

time.

 The concept of a relation corresponds to the programming-language notion of a variable. The

concept of a relation schema corresponds to the programming language notion of type definition.

 The user provides the name for relation and relation schema. The lowercase names for relations,

and names beginning with an uppercase letter for relation schemas. The user use Account-schema

to denote the relation schema for relation account. Thus,

 Account-Schema=(branch-name, account-number, balance)

 The account is a relation on Account-Schema by
 Account(Account-Schema)

the relation schema comprises a list of attributes and their corresponding domains.

Branch-Name Account-Number Balance

Downtown A-101 500

Mianus A-215 700

Perryridge A-102 400

Round Hill A-305 350

Brighton A-201 900

Redwood A-222 700

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

23

Keys:

 For the clarity in DBMS, the keys are preferred and they are important part of the arrangement of a

table. The keys make sure to uniquely identify a table’s each part or record of a field or combination

of fields. A database is made up of tables, which (tables) are made up of records, which (records)

further made up of fields. Let us take an example to illustrate what are keys in database

management system. This article is about different keys in database management system (DBMS).

Example:

Keys In Database Management

 In the above data item, each column is a field and each row is a record.

Types of Keys in Database Management System: Each key which has the parameter of uniqueness is as

follows:

1. Super key

2. Candidate key

3. Primary key

4. Composite key

5. Secondary or Alternative key

6. Non- key attribute

7. Non- prime attribute

8. Foreign key

9. Simple key

10. Compound key

11. Artificial key

1.Super key:

 Super Key is a set of properties within a table; it specially identifies each record in a table.

Candidate key is a unique case of super key.

 Example: Roll No. of a student is unique in relation. The set of properties like roll no., name, class,

age, sex, is a super key for the relation student.

2. Candidate key:

 It is a set of fields; primary key can be selected from these fields.
 A set of properties or attributes acts as a primary key for a table.

Every table must have at least one candidate key or several candidate keys. It is a super key’s subset.

 Example:

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

24

 The above fields of a candidate key uniquely identify a student.

 It has the properties like – Being unique and Parameter of irreducibility.

3. Primary key:

 The candidate key which is very suitable to be the main key of table is a primary key.

 The primary keys are compulsory in every table.

 The properties of a primary key are:

o Model stability

o Occurrence of minimum fields

o Defining value for every record i.e. being definitive

o Feature of accessibility

 Example

4. Composite key:

 It has two or more properties which specially identifies the occurrence of an entity.

 Example:

5. Secondary or Alternative key:

 The rejected candidate keys as primary keys are called as secondary or alternative keys.

 Example:

 In the above example the customer identity and order identity has to combine to uniquely identify

the customer details.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

25

6. Non- key Attribute:

 The attributes excluding the candidate keys are called as non-key attributes.

 Example:

7. Non-prime Attribute:

 Excluding primary attributes in a table are non-prime attributes.

 Example:

Non prime attributes

8. Foreign key:

 Generally foreign key is a primary key from one table, which has a relationship with another table.

 Example:

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

26

customer-name

loan-number

customer-name

account-number
customer-street

customer-city

customer-name

branch-name

amount

loan-number

9. Simple key:

 Simple keys have a single field to specially recognize a record. The single field cannot be divided

into more fields. Primary keys is also a simple key.

 Example: In the below example student id is a single field because no other student will have same

Id. Therefore, it is a simple key.

10. Compound key:

 Compound key has many fields to uniquely recognize a record.

11. Artificial key:

 Artificial keys do not have meaning to the firms. They are allowed when

 No property has the parameter of primary key

 The primary key is huge and complex

Example: Table which has the details of the student has primary key but it is large and complex. The

addition of row id column to it is the DBA’s decision, where the primary key is row id.

Schema Diagrams :

 A database schema, along with primary key and foreign key dependencies, can be depicted

pictorially by schema diagram.

customer

branch account depositor

loan borrower

Query Languages:

 A query language is a language in which a user requests information from the database. These

languages higher than a standard programming language. It can be categorized into two languages.

They are:

 Procedural Language

 Nonprocedural Language

 In procedural language, the user instructs the system to perform a sequence of operations on the

database to compute the desired result.

 In a nonprocedural language, the user describes the information desired, without giving a specific

procedure for obtaining that information.

 A compute data-manipulation language includes not only a query language, but also a language for

database modification. Such languages include commands to insert and delete tuples as well as

commands to modify parts of existing tuples.

branch-name

balance

account-number

branch-city

assets

branch-name

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

27

(
(customer))

=”Harrison”

BASIC RELATIONAL ALGEBRA OPERATIONS

1. What is Relational Algebra? (Part-A)

List out the Fundamental Operations used in Relational Algebra. (Part-A)

List out the Unary and Binary Operations (Part-A)

A set of operations that take one or two relations as input and produce a new relation as their result

is called as relational algebra. It is a procedural query language.

 The fundamentals operations in the relational algebra are:

 Select

 Project

 Union

 set Difference

 Cartesian Product

 Rename

 The operations use single relation is called as unary operations. The operations use pairs of relation

is called as binary operations.

 The unary operations are:

 Select

 Project

 Rename

 The binary operations are:

 Union

 Set Difference

 Cartesian Product

Unary Operations:

Select Operation:

 The select operation selects tuples that satisfy a given predicate. The Greek letter sigma () to

denote selection. The predicate appears as a subscript to . The relation is given in parentheses

following the .

Example:

 To find the tuples of loan relation where the branch is “Perry ridge”

branch-name=”Perryridge”
(loan)

 To find the tuples of loan relation where the amount is more than $2000.

amount>2000
(loan)

 To find the tuples of loan relation where the branch name is “Perryridge” and amount is more than

$ 2000.

branch-name=”Perryridge”^amount>2000
(loan)

Project Operation:

 This operation is used to list the values of particular attribute. It is denoted by Greek letter pi (∏).

Example:

 To list all loan numbers and the amount of the loan can be written as
∏

loan-number, amount
(loan)

 To find those customer who live in “Harrison”
∏

customer-name customer-city

Rename Operation:

 The results of relational-algebra expressions do not have a name to refer to them. It is useful to be

able to give them names.

 It is denoted by lower-case Greek letter rho (ρ). The relational-algebra expression E, returns the

result of expression E under the name x.

ρ
x

(E)

 The relational algebra expression E has arity n. The expression denoted as the following:

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

28

Person Department

Ram Accounts

Sham Sales

Person Department

Radha Accounts

Geetha Sales

ρ
x(A1,A2,…..An)

(E)

 The above expression returns the result of expression E under the name x, and the attributes

renamed to A1, A2,…, An

Binary Operations:

Union Operation:

 This operation returns all rows that appear in either or both of two tables. It is a binary operation

denoted by U.

Example:

 To find the names of all bank customers who have either an account or a loan or both.
∏

customer-name
(borrower) U ∏

customer-name
(depositor)

 The borrower relation consists of two attributes. They are:

 customer-name

 loan-number

 The depositor relation consists of two attributes. They are:

 customer-name

 account-number

 The union operation rUs to be valid, the following condition hold:

 The relation r and s must be of the same arity.

 The domains of the ith attribute of r and the ith attribute of s must be the same for all

i.

Set Difference Operation:

 This operation allows us to find tuples that are in one relation but are not in another. It is denoted by

minus symbol (-). The expression r-s results in a relation containing those tuples in r but not in s.

Example:

 To find all customers of the bank who have an account but not a loan.
∏

customer-name
(depositor) - ∏

customer-name
(borrower)

Cartesian Product:

 This operation denoted by a cross (x) allows us to combine information from any two relations. The

Cartesian product of relations r1 and r2 as r1 x r2.
Example:

 Consider the r1 relation consists of two attributes Person and Department. The r2 relation consists of

two attributes Person and Department.

r1 relation r2 relation

r1_Person r1_Department r2_Person r2_Department

Ram Accounts Radha Accounts

Ram Accounts Geetha Sales

Sham Sales Radha Accounts

Sham Sales Geetha Sales

r1 x r2 relation

Formal Definition of the Relational Algebra:
 The above operations allow us to give a complete definition of an expression in the relational

algebra. A basic expression in the relational algebra consists of either one of the following:

 A relation in the database

 A constant relation

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

29

Cname City

Rupa Pune

Subha Mumbai

Cname City

Ravi Delhi

Rupa Pune

Cname City

Rupa Pune

Sid Sname Age

22 xxx 45

31 yyy 55

58 zzz 35

Sid bid

22 101

58 103

 Let E1 and E2 be relational-algebra expressions. Then, the following are all relational-algebra

expressions:

 E1 U E2

 E1 – E2

 E1 * E2

 p(E1), where p is a predicate on attributes in E1

 s(E1), where s is a list consisting of some of the attributes in E1.

 x(E1), where x is the new name for the result of E1.

ADDITIONAL RELATIONAL ALGEBRA OPERATIONS

1. Discuss about the Additional Operations Used in Relational Algebra. (Part-C)

 The fundamental operations of the relational algebra are sufficient to express any relational-algebra

query. The additional operations that do not add any power to the algebra, but that simplify

common queries.

i. Set-Intersection Operation:

 This operation returns all rows that appear in both of two tables. It is denoted by ∩.

Example:

 To find all customers who have both a loan and an account.
∏

customer-name
(borrower) ∩ ∏

customer-name
(depositor)

 Consider the two tables A and B contains the same attribute Cname and City.

Relation A Relation B A intersect B

ii. Natural-Join Operation:

 It is a binary operation that allows to combine certain selections and a Cartesian product into one

operation. It is denoted by “Join” symbol .

 It forms a Cartesian product of its two arguments, performs a selection forcing equality on those

attributes that appear in both relation schemas, and finally removes duplicate attributes.

Example:

 Consider the following S1 and R1 relation. The S1 relation consists of Sid, Sname and Age

attributes. The R1 relation consists of Sid and bid attributes. The equijoin expression S1

R1.Sid=S1.Sid
R1 is actually a natural join and can simply denoted by S1 R1.

S1 Relation R1 Relation

 The Cartesian product of above two relations are:

Sid Sname Age Sid bid

22 xxx 45 22 101

22 xxx 45 58 103

31 yyy 55 22 101

31 yyy 55 58 103

58 zzz 35 22 101

58 zzz 35 58 103

S1XR1 (Cartesian Product)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

30

y

S1

S2

S3

S4

 Y

S4

 The Natural join S1 R1denoted by the following:

Sid Sname Age bid

22 xxx 45 101

58 zzz 35 103

S1
R1.Sid=S1.Sid

R1

iii. Divison Operation:

 The division operator is useful for express some kinds of queries. The two relation A and B in

which A has two fields x and y and B has just one field y, with the same domain as in A. The

division operation A/B as the set of all x values such that for every y value in B, there is a tuple

<X, Y> in A.

Example:

Relation A

Relation B1

Relation B2

A/B1 A/B2

iv. Assignment Operation:

 It is used to express complex queries. It must always be made to a temporary relation variable. It

does not provide any additional power to the algebra. It is denoted by similar to assignment in a

programming language. The result of expression to the right of the is assigned to the relation

variable on left of the . This relation variable may be used in subsequent expressions.

EXTENDED RELATIONAL ALGEBRA OPERATIONS

 The basic relational-algebra operations have been extended in several ways.

 A simple extension is to allow arithmetic operations as part of projection.

 An important extension is to allow aggregate operations such as computing the sum of the elements of

a set, or their average.

 Another important extension is the outer-join operation, which allows relational-algebra expressions to

deal with null values, which model missing information.

Generalized Projection

X y

S1 P1

S1 P2

S2 P2

S3 P2

S4 P2

S1 P3

S4 P4

 y

P2

y

P2

P4

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

31

 The generalized-projection operation extends the projection operation by allowing arithmetic

functions to be used in the projection list.

 The generalized projection operation has the form

where E is any relational-algebra expression, and each of F1, F2,... , Fn is an arithmetic expression

involving constants and attributes in the schema of E. As a special case, the arithmetic expression may be

simply an attribute or a constant.

Example:

 Suppose we have a relation credit-info, as in Figure 3.25, which lists the credit limit and expenses

so far (thecredit-balance on the account).

 If we want to find how much more each person can spend, we can write the following expression:

 The attribute resulting from the expression limit − credit –balance does not have a name.

 We can apply the rename operation to the result of generalized projection in order to give it a name.

 As a notational convenience, renaming of attributes can be combined with generalized projection as

illustrated below:

 The second attribute of this generalized projection has been given the name credit- available.

 Figure 3.26 shows the result of applying this expression to the relation in Figure 3.25.

Aggregate Functions

 It take a collection of values and return a single value as a result.

Example:

 The aggregate function sum takes a collection of values and returns the sum of the values.

 Thus, the function sum applied on the collection

{1, 1, 3, 4, 4, 11}

returns the value 24.

 The aggregate function avg returns the average of the values. When applied to the preceding

collection, it returns the value 4.

 The aggregate function count returns the number of the elements in the collection, and returns 6

on the preceding collection.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

32

 Other common aggregate functions include min and max, which return the minimum and

maximum values in a collection; they return 1 and 11, respectively, on the preceding collection.

 To illustrate the concept of aggregation, we shall use the pt-works relation in Figure 3.27, for part-

time employees. Suppose that we want to find out the total sum of salaries of all the part-time

employees in the bank. The relational-algebra expression for this query is:

 The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The relational-algebra

operation G signifies that aggregation is to be applied, and its subscript specifies the aggregate

operation to be applied.

 Suppose we want to find the total salary sum of all part-time employees at each branch of the bank

separately, rather than the sum for the entire bank.

 To do so, we need to partition the relation pt-works into groups based on the branch, and to apply

the aggregate function on each group.

 The following expression using the aggregation operator G achieves the desired result:

 In the expression, the attribute branch-name in the left-hand subscript of G indicates that the input

relation pt-works must be divided into groups based on the value of branch-name. Figure 3.28

shows the resulting groups.

 The expression sum(salary) in the right-hand subscript of G indicates that for each group of tuples

(that is, each branch), the aggregation function sum must be applied on the collection of values of

the salary attribute.

 The output relation consists of tuples with the branch name, and the sum of the salaries for the

branch, as shown in Figure 3.29.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

33

The result of this expression appears in Figure 3.32.

 The general form of the aggregation operation G is as follows:

where E is any relational-algebra expression; G1, G2,... , Gn constitute a list of at- tributes on

which to group; each Fi is an aggregate function; and each Ai is an attribute name. The meaning of the

operation is as follows. The tuples in the result of expression E are partitioned into groups in such a

way that

1. All tuples in a group have the same values for G1, G2,... , Gn.

2. Tuples in different groups have different values for G1, G2,... , Gn.

Outer Join

 The outer-join operation is an extension of the join operation to deal with missing information.

 Suppose that we have the relations with the following schemas, which contain data on full-time

employees:

 Consider the employee and ft-works relations in Figure 3.31.

 Suppose that we want to generate a single relation with all the information (street, city, branch

name, and salary) about full-time employees.

 A possible approach would be to use the natural- join operation as follows:

 Notice that we have lost the street and city information about Smith, since the tuple describing
Smith is absent from the ft-works relation; similarly, we have lost the branch name and salary

information about Gates, since the tuple describing Gates is absent from the employee relation.

 We can use the outer-join operation to avoid this loss of information.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

34

 There are actually three forms of the operation:

 Left Outer Join

 Right Outer Join And

 Full Outer Join

 All three forms of outer join compute the join, and add extra tuples to the result of the join. The

results of the expressions

employee ft –works,, employee ft –works, and employee ft –works

appear in Figures 3.33, 3.34, and 3.35, respectively.

1. Left Outer Join:

 The left outer join () takes all tuples in the left relation that did not match with any tuple in the

right relation, pads the tuples with null values for all other attributes from the right relation, and

adds them to the result of the natural join.

 In Figure 3.33, tuple (Smith, Revolver, Death Valley, null, null) is such a tuple.

 All information from the left relation is present in the result of the left outer join.

2. Right Outer Join:

 The right outer join () is symmetric with the left outer join: It pads tuples from the right relation

that did not match any from the left relation with nulls and adds them to the result of the natural

join. In Figure 3.34, tuple (Gates, null, null, Redmond, 5300) is such a tuple.

 Thus, all information from the right relation is present in the result of the right outer join.

3. Full Outer Join:

 The full outer join() does both of those operations, padding tuples from the left relation that did

not match any from the right relation, as well as tuples from the right relation that did not match

any from the left relation, and adding them to the result of the join. Figure 3.35 shows the result

 Since outer join operations may generate results containing null values.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

35

NULL VALUES
 A value of NULL indicates that the value is unknown.

 A value of NULL is different from an empty or zero value.

 No two null values are equal. Comparisons between two null values, or between a NULL and any

other value, return unknown because the value of each NULL is unknown.

 Null values generally indicate data that is unknown, not applicable, or that the data will be added

later.

Example: A customer's middle initial may not be known at the time the customer places an order.

 Following is information about nulls:

 To test for null values in a query, use IS NULL or IS NOT NULL in the WHERE clause.

 When query results are viewed in SQL Server Management Studio Code editor, null values are

shown as NULL in the result set.

 Null values can be inserted into a column by explicitly stating NULL in an INSERT or UPDATE

statement, by leaving a column out of an INSERT statement, or when adding a new column to an

existing table by using the ALTER TABLE statement.

 Null values cannot be used for information that is required to distinguish one row in a table from

another row in a table, such as primary keys.

MODIFICATION OF THE DATABASE

1. Explain about the Modification of the Database. (Part-B)

 To express database modifications by using the assignment operation.

Deletion:
 The users express a delete request in much the same way as a query. However, instead of displaying

tuples to the user, we remove the selected tuples from the database.

 The user deletes only particular attributes. In relational algebra a deletion is expressed by

 rr-E

Where r is a relation and E is relational-algebra query.

Example:

 Delete all of smith’s account records.

 depositordepositor - customer-name=”Smith”
(depositor)

 Delete all loans with amount in the range 0 to 50.

 loanloan - amount>=0 and amount<=50
(loan)

Insertion:
 To insert data into a relation, we either specify a tuple to be inserted or write a query whose result is

a set of tuples to be inserted. The relational algebra expresses an insertion by

 rr U E

Where r is a relational and E is relational-algebra expression.

Example:

 To insert the value into the account relation by the following values: (A-973,”perryridge”,1200)

 accountaccount U {(A-973,”perryridge”,1200)}

Updating:
 To change a value in a tuple without changing all values in the tuple. We can use the generalized-

projection operator to do this task:

 rF1,F2….Fn
(r)

Example:

 All balances of the account relation to be increased by 5 percent.

 accountaccount-number,branch-name,balance *.05
(account)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

36

UNIT-III

SQL
BACKGROUND

1. Discuss about the Background of SQL. (Part-B)

List out and explain the Various Parts of SQL. (Part-B)

 The SQL established itself as the standard relational-database language. It consists of various

versions. The original version was developed at IBM’s San Jose Research Laboratory.

 This language, originally called sequel in 1970s after that the name changed to SQL Structured

Query Language.

 The American National Standards Institute (ANSI) and the International Standards Organization

(ISO) published an SQL standard, called SQL86. The current version of the ANSI/ISO SQL

standard is the SQL-92.

Parts of SQL Language:

 The Structured Query Language consists of the following parts:

 Data-Definition Language (DDL)

 Interactive Data-Manipulation Language (DML)

 Embedded SQL

 View Definition

 Authorization

 Integrity

 Transaction Control

Data-Definition Language (DDL):

 The SQL DDL provides commands for defining relation schemas, deleting relations, creating

indices, and modifying relation schemas.

Interactive Data-Manipulation Language (DML):

 It includes a query language based on the relational algebra. It also includes commands to insert

tuples, delete tuples and modify tuples in the database.

Embedded SQL:

 The embedded form of SQL is designed for use within general-purpose programming languages

such as COBOL, Pascal, FORTRAN and C.

View Definition:

 The SQL DDL includes commands for defining views.

Authorization:

 The SQL DDL includes commands for specifying access rights to relations and views.

Integrity:

 The SQL DDL includes commands for specifying integrity constraints that the data stored in the

database must satisfy.

Transaction Control:

 The SQL includes commands for specifying the beginning and ending of transactions. Several

implementations also allow explicit locking of data for concurrency control.

DATA-DEFINITION LANGUAGE

1. Explain about Data-Definition Language. (Part-C)

List out the Built-in Domain Types Used in SQL-92 Standard (Part-B)

Discuss about the Schema Definition in SQL. (Part-B)

 The set of relations in a database must be specified to the system by using a Data Definition

Language (DDL). It allows the specification of set of relations and information about each

relation includes the following:

 The schema for each relation

 The domain of values associated with each attribute

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

37

 The integrity constraints

 The set of indices to be maintained for each relation

 The security and authorization information for each relation

 The physical storage structure of each relation on disk

Basic Domain Types in SQL:

 The SQL-92 standard supports a variety of built-in domain types, includes the following:

 Char(n) is a fixed-length character string, with user-specified length n. The full

form is character.

 Varchar(n) is a variable-length character string, with user-specified maximum

length n. The full form is character varying.

 Int is an integer.

 Smallint is a small integer.

 Numeric (p,d) is a fixed-point number, with user-specified precision. The number

consists of p digits and d of the p digits are to the right of the decimal point.

 Real, double Precision are floating-point and double-precision numbers, with

machine-dependent precision.

 Float (n) is a floating-point number, with user-specified precision of at least n

digits.

 Date is a calendar date, containing year, month and day of the month.

 Time is the time of day, in hours, minutes, and seconds.

 The comparison by casting small integer x as an integer. This transformation is called as type

coercion. It is used routinely in common programming languages and database systems.

 The SQL allows the domain declaration of an attribute to include the specification not null, and

thus prohibits the insertion of a null value for this attribute.

Example:

 The SQL-92 allows us to define domains using a create domain clause.

 create domain person-name char(15)

Basic Schema Definition in SQL:

 To define the SQL relation using the create table command:

 create table r (A1D1,A2D2,….,AnDn,

<Integrity-constraint1>,

….,
<Integrity-constraintk>)

 Where r is the name of the relation, each Ai is the name of an attribute in the schema of relation r,

and Di is the domain type of values in the domain of attribute Ai. The allowed integrity constraints

include the following:

 Primary key (Aj1,Aj2,…,Ajm)

and

Check(P)

 The primary key specification says that attributes Aj1,Aj2,…,Ajm form the primary key for the

relation. It is optional. The attributes of a relation that are declared to be a primary key are

requested to be not null and unique.

 The check clause specifies a predicate P that must be satisfied by every tuple in the relation. It is

also ensure that attribute values satisfy specified conditions.

Example 1:

 Create table Customer

(Customer-Name char(15) not null,

Customer-Street char(30),

Customer-City char(15),

Primary key(Customer-Name))

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

38

 Create table account

(Account-number char(15) not null,

Branch-name char(10),

Balance integer,

Primary key(Account-number),

Check(balance>=0))

 To remove a relation from the database, use the drop table command. It deletes all information

about the dropped relation from the database.

 Drop table r

 The alter table command in SQL-92 to add attributes to an existing relation.

 Alter table r add A D

 In the above format r is the name of an existing relation, A is the name of the attribute to be added,

and D is the domain of the added attribute. To drop attributes from a relation using a command.

 Alter table r drop A

Where r is the name of the existing relation and A is the name of an attribute of the relation.

BASIC STRUCTURE OF SQL QUERIES

1. Explain about the Basic Structure of SQL. (Part-C)

Write down the Syntax for SQL Query. (Part-A)

🞛 A relational database consists of a collection of relations, each of which is assigned a unique name.

The basic structure of an SQL consists of three clauses:

 Select

 From

 Where

Format:

Select A1,A2,…..,An

From r1,r2,…….,rm

Where P

🞛 In the above format each Ai represents an attribute, and each ri is a relation and P is a predicate.

i) The Select Clause:

🞛 The Select clause corresponds to the projection operation of the relational algebra. It is used to list

the attributes desired in the result of a query. The result of SQL query is also a relation.

Example:

🞛 To find the names of all branches in the loan relation

 Select branch-name from loan

In the above query the relation consisting of a single attribute with the heading branch-name

🞛 To eliminate the duplicate values insert the keyword distinct after select. The above query written

as

 Select distinct branch-name from loan

🞛 The select clause also contains arithmetic expressions involving the operators +, - , *, and /.

 Select branch-name, loan-number, amount*10 from loan

🞛 The asterisk symbol “ * ” used to denote “all attributes”. The form select * indicates that all

attributes of all relations appearing in the from clause must be selected.

 Select * from loan;

ii) The Where Clause:

🞛 The where clause corresponds to the selection predicate of the relational algebra. It consists of

predicate involving attributes of the relations that appear in the from clause.

🞛 The SQL uses the logical connectives and, or, and not. It also allows us to use the comparison

operators to compare strings and arithmetic expression.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

39

Example 1:

🞛 To find all loan numbers for loans made at the perryridge branch with loan amounts greater than

$1200.

Example 2:

 Select loan-number from loan

Where branch-name=”perryridge” and amount>1200

🞛 The SQL includes between comparison operator to simplify where clauses. It also contain not

between operator.

🞛 To find the loan numbers of those loans with amount between $90,000 and 1,00,000.

 Select loan-number from loan

Where amount between 90000 and 100000

(OR)

 Select loan-number from loan

Where amount<=100000 and amount>=90000

iii) The From Clause:

🞛 The from clause corresponds to the Cartesian-product operation of the relational algebra. It lists

the relation to be scanned in the evaluation of the expression. The users also use more than one

relation in this clause.

Example:

 Select Sname, S1.Sid from S1,R1 where S1.Sid=R1.Sid

iv) Rename Operation:

🞛 The SQL provide a mechanism for renaming the relations. It uses the as clause, taking the

following format:

 Rename old-name as new-name

Example 1:

 Rename S1 as S2

🞛 In the above query the relation name S1 is renamed in to S2.

Example 2:

 Select Sname, S1.Sid as Sid-no from S1,R1 where S1.Sid=R1.Sid

v) Tuple Variable:

🞛 The as clause is particularly useful in defining the tuple variable. It is associated with a particular

relation. It also defined in the from clause via the use of the as clause.

🞛 It is defined in the from clause by placing it after the name of the relation with which it is

associated, with the keyword as in between. The keyword as is optional.

Example:

 Select Sname,T.Sid from S1 as T,R1 as S where T.Sid=S.Sid

vi) String Operations:

🞛 The commonly used operation on strings is Pattern matching. Using the operator like. The patterns

using the following two special characters:

 Percent(%): The % character matches any substring.

 Underscore(_): The _character matches any character.

🞛 The patterns are case sensitive; that is, uppercase characters do not match lowercase characters, or

vice versa.

Example 1:

Example 2:

 ‘Perry%’ matches any string beginning with ‘Perry’.

 ‘%idge%’ matches any string containing ‘idge’ as a substring.

 ‘_ _ _‘matches any string of exactly three characters.

 ‘_ _ _%’ matches any string of at least three characters.

 Select * from account where branch-name like ‘Perry%’

 Select * from account where branch-name like ‘%idge%’

 Select * from account where branch-name like ‘ _ _ _ ‘

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

40

 Select * from account where branch-name like ‘ _ _ _ %‘

 Select * from account where branch-name like ‘% e’

vii) Ordering the Display of Tuples:

🞛 The order by clause causes the tuples in the result of a query to appear in sorted order. To specify

the sort order, specify desc for descending order or asc for ascending order.

🞛 The ordering can be performed on multiple attributes. The sorting of large number of tuples may

be costly, it is desirable to sort only when necessary.

Example 1:

 Select * from loan order by amount desc

 Select * from loan order by loan-number asc

 Select * from loan order by amount desc, loan-number asc

viii) Duplicates:

🞛 The use of relations with duplicates has proved useful in several situations. The SQL defines not

only what tuples are in the result of a query, and also define how many copies of each of those

tuple appear in the result.

🞛 To define the duplicate semantics of an SQL query using multiset versions of the relational

operators. The multiset relations r1 and r2,

 If there are c1 copies of tuple t1 in r1 and c2 copies of tuple t2 in r2, there are c1* c2

copies of the tuple t1.t2 in r1 x r2.
🞛 The SQL query of the form is following:

Select A1,A2,…..,An

From r1,r2,…….,rm

Where P

is equivalent to the relational-algebra expression
∏ A1,A2,…,An(p(r1xr2x….xrm))

Using the multiset versions of the relational operators , ∏ and x.

ADDITIONAL BASIC OPERATIONS

 There are number of additional basic operations that are supported in SQL.

The Rename Operation

 Consider again the query that we used earlier:

select name, course id

from instructor, teaches

where instructor.ID= teaches.ID;

 The result of this query is a relation with the following attributes:

name, course id

 The names of the attributes in the result are derived from the names of the attributes in the relations

in the from clause.

 We cannot, however, always derive names in this way, for several reasons:

 First, two relations in the from clause may have attributes with the same name, in which case an

attribute name is duplicated in the result.

 Second, if we used an arithmetic expression in the select clause, the resultant attribute does not

have a name.

 Third, even if an attribute name can be derived from the base relations as in the preceding

example, we may want to change the attribute name in the result.

 Hence, SQL provides a way of renaming the attributes of a result relation.
 It uses the as clause, taking the form:

old-name as new-name

 The as clause can appear in both the select and from clauses.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

41

Example: If we want the attribute name name to be replaced with the name instructor name, we

can rewrite the preceding query as:

select name as instructor name, course id

from instructor, teaches

where instructor.ID= teaches.ID;

 The as clause is particularly useful in renaming relations.

String Operation

 SQL specifies strings by enclosing them in single quotes.

Example: ’Computer’

 A single quote character that is part of a string can be specified by using two single quote

characters; Example: the string “It’s right” can be specified by “It”s right”.

 SQL also permits a variety of functions on character strings, such as

 Concatenating (using “_”)

 Extracting substrings,

 Finding the length of strings,

 Converting strings to Uppercase (using the function upper(s) where s is a string)

 Converting strings to Lowercase (using the function lower(s)),

 Removing spaces at the end of the string (using trim(s)) and so on.

 Pattern matching can be performed on strings, using the operator like. We describe patterns by

using two special characters:

• Percent (%): The % character matches any substring.

• Underscore (): The character matches any character.

 Patterns are case sensitive; (i.e) uppercase characters do not match lowercase characters, or vice

versa.

Example:

• ’Intro%’ matches any string beginning with “Intro”.

• ’%Comp%’ matches any string containing “Comp” as a substring, for example,

’Intro. to Computer Science’, and ’Computational Biology’.

• ’ ’ matches any string of exactly three characters.

• ’ %’ matches any string of at least three characters.

Attribute Specification in Select Clause

 The asterisk symbol “ * ” can be usedin the select clause to denote “all attributes.”

 Thus, the use of instructor.* in the select clause of the query:

select instructor.*

from instructor, teaches

where instructor.ID= teaches.ID;

 Indicates that all attributes of instructor are to be selected. A select clause of the form select *

indicates that all attributes of the result relation of the from clause are selected.

Ordering the Display of Tuples

 SQL offers the user some control over the order in which tuples in a relation are displayed.

 The order by clause causes the tuples in the result of a query to appear in sorted order.

 To list in alphabetic order all instructors in the Physics

department, we write:

select name

from instructor

where dept name = ’Physics’

order by name;

 By default, the order by clause lists items in ascending order.

 To specify the sort order, we may specify desc for descending order or asc for ascending order.

Example:

select *

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

42

from instructor

order by salary desc, name asc;

Where Clause Predicates

 SQL includes a between comparison operator to simplify where clauses that specify that a value be

less than or equal to some value and greater than or equal to some other value.

 If we wish to find the names of instructors with salary amounts between $90,000 and $100,000, we

can use the between comparison to write:

instead of:

select name

from instructor

where salary between 90000 and 100000;

select name

from instructor

where salary <= 100000 and salary >= 90000;

SET OPERATIONS

1. Explain about Set Operations. (Part-B)

 The following set operations used in Structured Query Language (SQL):

 Union

 Intersect

 Except

Union:

 This operation returns all rows that appear in either or both of two tables. It automatically

eliminates duplicates, unlike the select clause.

Example 1:

 (select customer-name from depositor) union

(select customer-name from borrower)

Example 2:

Intersect:

o If we want to retain all duplicates use union all in place of union:

 (select customer-name from depositor) union all

(select customer-name from borrower)

 This operation returns all rows that appear in both of two tables. It automatically eliminates

duplicates. To retain the duplicates use intersect all in place of intersect.

Example 1:

Example 2:

 (select customer-name from depositor) intersect

(select customer-name from borrower)

 If we want to retail all duplicates, we must write intersect all in place of intersect.

 (select customer-name from depositor) intersect all

(select customer-name from borrower)

Except:

 This operation returns all rows appear in one table not in other table. It automatically eliminates

duplicates. To retain the duplicates use except all in place of except.

Example 1:

Example 2:

 (select customer-name from depositor) except

(select customer-name from borrower)

 (select customer-name from depositor) except all

(select customer-name from borrower)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

43

AGGREGATE FUNCTIONS

1. List out and explain the Aggregate Functions Used in SQL. (Part-B)

Discuss about Group by Function. (Part-B)

🞛 The aggregate functions are functions that take a collection of values as input and return a single

value as output. It consists of the following built-in aggregate functions:

 Average: avg

 Minimum: min

 Maximum: max

 Total: sum

 Count: count

i. Average (avg):

🞛 This function takes collection of numbers as input and returns average value of particular attribute

as output.

Example 1:

 select avg(balance) from account

Example 2

 select avg(balance) from account where branch-name=’Perryridge’

ii. Minimum (min):

🞛 It returns the minimum value of particular attribute.

Example:

 select min(balance) from account

iii. Maximum (max):

🞛 It returns the maximum value of particular attribute.

Example:

 select max(balance) from account

iv. Total (sum):

🞛 It returns the total value of particular attribute.

Example:

 select sum(balance) from account

v. Count:

🞛 It returns or count the number of records in the particular relation.

Example:

 select count(*) from customer

vi. Group by Clause:

🞛 The grouping is an additional feature of relational algebra. It combines the values based on a

common reference. It is used to group set of tuples. The tuples with the same value on all attributes

in the group by clause are placed in one group.

🞛 The user also specifies the predicate in this clause after apply the formation of groups. The

keyword having used to represent the condition.

Example 1:

 select branch-name,avg(balance) from account

group by branch-name

Example 2:

 select branch-name,avg(balance) from account

group by branch-name having avg(balance)>200

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

44

NULL VALUES

1. Discuss about Null Values With Example. (Part-B)

🞛 The null value indicates the absence of information about the value of an attribute. The special

keyword null in a predicate to test for a null value. The predicate not null tests for the absence of

null values.

🞛 All aggregate function except count(*) ignore null values in their input collection.

Example 1:

Example 2:

 select loan-number from loan where amount is null

 select loan-number from loan where amount is not null

NESTED SUBQUERIES

1. Discuss about the Nested Subqueries With Example. (Part-C)

What is Subquery & Nested Query? (Part-A)

 A subquery is a select-from-where expression that is nested within another query. The one

SELECT statement inside another is called as nested query.

 A common use of subqueries is to perform tests for set membership, set comparisons and

set cardinality.

Set Membership:

 The in connective tests for set membership, where the set is a collection of values produced by select

clause. The not in connective tests for the absence of set membership.

Example 1:

Example 2:

Set Comparison:

 select customer-name from borrower

where customer-name in(select customer-name from depositor)

 select customer-name from borrower

where customer-name not in(select customer-name from depositor)

 It is used to compare the inner and outer query. The inner query executed first and then executed

the outer query.

Example 1:

Example 2:

 select name, total from student

where total> (select avg(total) from student)

 The greater than at least one is represented in SQL by >some.

 select branch-name from branch

where assets>some (select assets from branch where branch-city=’Brooklyn’)

 In the above example the > some comparison in the where clause of the other select is true if the

assets value of the tuple is greater than at least one member of the set of all asset values for

branches in Brooklyn.

Example 3:

 The construct >all corresponds to the phrase “greater than all”. The SQL allows <all, <=all, >=all,

=all, and <> all comparisons. The <> all is identical to not in.

 select branch-name from branch

where assets>all(select assets from branch where branch-city=’Brooklyn’)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

45

Testing for Empty Relations:

 To test the existence and nonexistence of tuples in a subquery by using exists and not exists

construct. The SQL includes a feature for testing whether a subquery has any tuples in its result.

The exists construct returns the value true if the argument subquery is nonempty.

Example:

 select customer-name from borrower

where exists(select * from depositor

where depositor.customer-name=borrower.customer-name)

Test for the Absence of Duplicate Tuples:

 The SQL includes a feature for testing whether a subquery has any duplicate tuples in its result.

The unique construct returns the value true if the argument subquery contains no duplicate tuple.

Example:

 select customer-name from borrower

where unique(select * from depositor

where depositor.customer-name=borrower.customer-name)

 In the above example the user also specify the not unique construct for test the existence of

duplicate tuples in a subquery.

MODIFICATION OF THE DATABASE

1. How can we modify the Information in the Database? (Part-C)

Explain about the Modification of Database. (Part-C)

🞛 The users extract the information from the database and add, remove, or change information using

Structured Query Language.

Deletion:

🞛 A delete request is expressed in much the same way as a query. Using this delete the whole tuples

and cannot delete value on only particular attributes.

🞛 This command operates on only one relation. To delete tuples from several relations, use one

delete command for each relation. It is expressed by the following format:

 delete from r

where P

🞛 In the above format the P represents a predicate and r represents a relation. This statement first

finds all tuples t in r for which P(T) is true, and then deletes from r. The where clause can be

omitted, all tuples in P are deleted.

Example 1:

 delete from account where branch-name=’Perryridge’

Example 2:

 delete from loan where amount between 1300 and 1500

Example 3:

🞛 The delete request can contain a nested select that references the relation from which tuples are to

be deleted.

 delete from account where balance>(select balance from account)

Insertion:

🞛 To insert data into a relation, specify a tuple to be inserted or write a query whose result is a set of

tuples to be inserted. The insert statement is a request to insert one tuple.

 insert into account values (‘Perryridge’,’A-123’,1200)

🞛 The attributes to be specified as part of the insert statement. The above example also written by

 insert into account(branch-name,account-number,balance)

values(‘Perryridge’,’A-123’,1200) (OR)

 insert into account(account-number, branch-name,balance)

values(’A-123’, ‘Perryridge’,1200)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

46

🞛 The set of tuples also inserted into account relation using the select statement.

 insert into account select * from account

🞛 To insert tuples to be only on some attributes of the schema. The remaining attribute are assigned a

null value denoted by null.

 insert into account values(null,’A-124’,1200)

Updates:

🞛 This statement is used to change a value in a tuple without changing all values in the tuple.

Example 1:

 update account set balance=balance*1.05

Example 2:

 update account set balance=balance*1.5 where balance>1000

Example 3:

 update account set balance=balance*0.5

where balance> select avg(balance) from account

Update of a View:

🞛 The view-update anomaly becomes more difficult to handle when a view is defined in terms of

several relations.

Example:

 create view v3 as select branch-name, loan-number from loan

🞛 The SQL allows a view name to appear wherever a relation name is allowed. The insertion is

represented by an

 insert into v3 values(‘Perryridge’, L-103)

insertion into the relation loan, since loan is the actual relation from which the view v3 is

constructed.

Transactions:

🞛 A transaction consists of a sequence of query and / or update statements. The SQL standard

specifies that a transaction begins implicitly when as SQL statement is executed. One of the

following SQL statements must end the transaction:

 Commit work commits the current transaction; it makes the updates performed by

the transaction become permanent in the database.

 Rollback work causes the current transaction to be rolled back; that is, it undoes all

updates performed by the SQL statements in the transaction.

JOINED RELATIONS

1. Explain about Joined Relations. (Part-C)

Discuss about the Join Types and Conditions. (Part-C)

 The SQL-92 provides various other mechanisms for joining relations, including condition joins,

and natural joins and various forms of outer joins.

 The join operations take two relations and return as a result another relation. The join operations in

SQL-92 consist of a join type and a join condition.

 The join condition defines which tuples in the two relations match, and what attributes are present

in the result of the join. The join type defines how tuples in each relation that do not match any

tuple in the other relation.

Join Types:

 It consists of the following types:

 Inner Join

 Natural Inner Join

 Left Outer Join

 Right Outer Join

 Full Outer Join

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

47

branch-name loan-number amoun

t

Downtown L-171 3000

Redwood L-231 4000

Perryridge L-261 1700

customer-name loan-

number

Jones L-171

Smith L-231

Hayes L-156

Inner Join:

 The attributes of the result consist of the attributes of the left-hand-side relation followed by the

attributes of the right-hand-side relation. The common attributes appears twice in the result.

Example:

loan borrower

branch-name loan-number amoun

t

customer-name loan-

number

Downtown L-171 3000 Jones L-171

Redwood L-231 4000 Smith L-231

loan inner join borrower on loan.loan-number=borrower.loan-number

Natural Inner Join:

 In this join the common attributes appears only once in the result of the natural join.

branch-name loan-number amoun

t

customer-name

Downtown L-171 3000 Jones

Redwood L-231 4000 Smith

loan natural inner join borrower

Left Outer Join:

 The attribute of tuples r that are derived from the left-hand-side relation are filled in with the

values from tuple t, and the remaining attributes of r are filled with null values.

branch-name loan-number amount customer-

name

loan-

number

Downtown L-171 3000 Jones L-171

Redwood L-231 4000 Smith L-231

Perryridge L-261 1700 Null Null

loan left outer join borrower on loan.loan-number=borrower.loan-number

Right Outer Join:

 This type is symmetric to the left outer join. Tuples from the right-hand-side relation that do not

match any tuple in the left-hand-side relation are padded with nulls and are added to the result of

the right-outer-join.

 The attributes A1,A2,….,An must consists of only attributes that are common to both relations, and

they appear only once in the result of the join.

branch-name loan-number amoun

t

customer-name

Downtown L-171 3000 Jones

Redwood L-231 4000 Smith

Null L-156 Null Hayes

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

48

Full Outer Join:

 It is a combination of the left and right outer-join types. After the result of the inner join is

computed, tuples from left-hand-side relation that did not match with any from the right-hand-side

are extended with nulls are added to the result.

 The tuples from right-hand-side relation that did not match with any tuples from the left-hand-side

relation are also extended with nulls, and are added to the result.

branch-name loan-number amoun

t

customer-name

Downtown L-171 3000 Jones

Redwood L-231 4000 Smith

Perryridge L-261 1700 Null

Null L-156 Null Hayes

loan full outer join borrower using(loan-number)

AUTHORIZATION IN SQL

1. Explain about the Mechanism for Defining Authorizations. (Part-C)

Explain about the Authorization in SQL. (Part-C)

Authorization:

 To assign users for several forms of authorization on parts of the database.

 Read Authorization allows reading, not modification of data.

 Insert Authorization allows insertion of new data not modification of existing

data.

 Update Authorization allows modification, not allow deletion of data.

 Delete Authorization allows deletion of data.

 The SQL language provides powerful mechanisms for defining authorizations.

Privileges in SQL:

 The SQL standard includes the privileges delete, insert, select and update. The select privilege

corresponds to the read privilege. A references privilege that permits a user/role to declare foreign

keys when creating relations.

 The SQL data-definition language includes commands to grant and revoke privileges. The grant

statement is used to confer authorization. The basic form of this statement is:

 Grant <privilege list> on <relation name or view name> to <user/role list>

 The privilege list allows the granting of several privileges in one command. The below grant

statement grants users U1,U2 and U3 select authorization on account relation:

 Grant select on account to U1,U2,U3

 The update authorization may be given either on all attributes of the relation or only some. The

below grant statement gives users U1,U2 and U3 update authorization on the amount attribute of

the loan relation:

 Grant update (amount) on loan to U1,U2,U3

 The SQL references privilege is granted on specific attributes like update privilege. The following

grant statement allows user U1 to create relations that reference the key branch-name of the branch

relation as a foreign key:

 Grant references (branch-name) on branch to U1.

Roles:

 The privileges of a user or a role consist of

 All privileges directly granted to the user/roles.

 All privileges granted to roles that have been granted to the user/role.

 The roles can be created in SQL: 1999 as follows:

 Create role teller

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

49

 The roles can then be granted privileges like users, the statement are:

 Grant select on account to teller

 Roles can be assigned to the users, to some other roles:

 Grant teller to john

 Create role manager

 Grant teller to manager

 Grant manager to mary

The Privilege to Grant Privileges:

 If we wish to grant a privilege and to allow the recipient to pass the privilege on to other users, we

append the with grant option clause to the appropriate grant command.

 Grant select on branch to U1 with grant option

 To revoke an authorization, use the revoke statement. It takes the form almost identical to that of

grant.

 Revoke <privilege list> on <relation name or view name> from <user/role list>

[restrict|cascade]

 To revoke the privileges that we granted previously, by

 Revoke select on branch from U1,U2,U3.

 Revoke update (amount) on loan from U1, U2, U3.

 Revoke references (branch-name) on branch U1.

 To revoke statement may alternatively specify restrict:

 Revoke select on branch from U1,U2,U3 restrict

the system returns an error if there are any revokes, and does not carry out the revoke action.

Other Features:

 The creator of an object gets all privileges on the object, including the privilege to grant privileges

to others.

 The SQL standard specifies the authorization mechanism for the database schema: only one owner

of the schema can carry out any modification to the schema.

Limitations of SQL Authorization:

 The task of authorization falls on the application server; the entire authorization scheme of SQL is

by passed. The problems are these:

 The code for checking authorization becomes intermixed with the rest of the

application code.

 Implementing authorization through application code, rather than specifying it

declaratively in SQL, makes it hard to ensure the absence of loopholes.

VIEWS

1. Explain about Views. (Part-B)

What is View? (Part-A)

 A view is a logical table that derives its data from other tables. It does not contain any data of its

own. Its content are taken from other tables through the execution of a query. The other table that

provides data to a view are called base tables. The base tables usually contain data.

 It is temporarily populated. When the lifetime of the query is over, the data in the view is

discarded.

 To define a view using the create view statement. The format of create view statement is

 create view v as <query expression>

Where <query expression> is any legal relational-algebra expression. The view name represented

by v.

Example 1:

create view v1 as (select * from account);

select * from v1;

 In the above query display all the records in the base table account.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

50

Example 2:
create view v2 as select Sid, Sname from S1;

select * from v2;

 In the above query display all the records in the particular attributes (Sid, Sname).

Example 3:

create view v3 as select bid from R1 where bid=103;

select * from v3;

 In the above query display the record where the bid value is 103.

Updating Data through Views:

 Whenever the user updates view, it updates data in the base table.

Example:

create view v4 as select city from A;

select * from A;

update v4 set city=’kanpur’ where city=’pune’;

 In the above update query will be executed successfully the modification will be affected in the

base table.

Views Defined Using Other Views:

 The one view may be used in the expression defining another view. A view relation v1 is said to

depend directly on a view relation v2 if v2 is used in the expression defining v1. A view relation v1

is said to depend on view relation v2 if and only if there is a path in the depending graph from v2 to

v1.

 The view v1 depends on view v2 if either v1 depends directly on v2, or there is a sequence of view

relations r1,r2,….,rn-1,rn such that v1 depends directly on r1, r1 depends directly on r2, and so on,

until rn-1 depends directly on rn, and rn depends directly on v2.
 A view relation v is said to be recursive if it depends on itself. The depending graph would have a

cycle involving v if and only if v is recursive. The dependency graph would have a cycle involving

v if and only if v is recursive.

 Consider the below graph the view all-customer depends directly on the relation borrower and

loan, the all-customer uses the other two views. The view xcustomer depends on the view all-

customer.

xcustomer

Figure: Dependency Graph

all-customer

borrower loan

 The above graph has a node for each view, and a directly edge from view v2 to view v1 if v1

depends directly on v2.

INTEGRITY CONSTRAINTS

 Integrity constraints ensure that changes made to the database by authorized users do not result in a

loss of data consistency. Thus, integrity constraints guard against accidental damage to the

database.

Examples

• An instructor name cannot be null.

• No two instructors can have the same instructor ID.

• Every department name in the course relation must have a matching department name in

the department relation.

• The budget of a department must be greater than $0.00.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

51

 Integrity constraints are usually identified as part of the database schema design process, and

declared as part of the create table command used to create relations.

Constraints on a Single Relation

 We described in Section 3.2 how to define tables using the create table command.

 The create table command may also include integrity-constraint statements.

 In addition to the primary-key constraint, there are a number of other ones that can be included in

the create table command.

 The allowed integrity constraints include

• not null

• unique

• check(<predicate>)

a) Not Null Constraint

 The null value is a member of all domains, and as a result is a legal value for every attribute in

SQL by default.

 Consider a tuple in thestudent relation where name is null. Such a tuple gives student

information for

an unknown student; thus, it does not contain useful information. Similarly, we would not want

the department budget to be null.

name varchar(20) not null

budget numeric(12,2) not null

 The not null specification prohibits the insertion of a null value for the attribute.

b) Unique Constraint

 SQL also supports an integrity constraint:

unique (Aj1 , Aj2, . . . , Ajm)

 The unique specification says that attributes Aj1 , Aj2, . . . , Ajm form a candidate key; that is,

no two tuples in the relation can be equal on all the listed attributes.

c) The check Clause

 When applied to a relation declaration, the clause check(P) specifies a predicate P that must be

satisfied by every tuple in a relation.

 A common use of the check clause is to ensure that attribute values satisfy specified

conditions, in effect creating a powerful type system.

 For instance, a clause check (budget > 0) in the create table command for relation department

would ensure that the value of budget is nonnegative.

As another example, consider the following:

create table section

(course id varchar (8),

sec id varchar (8),

semester varchar (6),

year numeric (4,0),

building varchar (15),

room number varchar (7),

time slot id varchar (4),

primary key (course id, sec id, semester, year),

check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’)));

d) Referential Integrity

 Often, we wish to ensure that a value that appears in one relation for a given set of attributes

also appears for a certain set of attributes in another relation.

 This condition is called referential integrity.

 Foreign keys can be specified as part of the SQL create table statement by using the foreign

key clause. We illustrate foreign-key declarations by using the SQL DDL definition of part of

our university database, shown in Figure 4.8.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

52

create table classroom

(building varchar (15),

room number varchar (7),

capacity numeric (4,0),

primary key (building, room number))

create table department

(dept name varchar (20),

building varchar (15),

budget numeric (12,2) check (budget > 0),

primary key (dept name))

create table course

(course id varchar (8),

title varchar (50),

dept name varchar (20),

credits numeric (2,0) check (credits > 0),

primary key (course id),

foreign key (dept name) references department)

create table instructor

(ID varchar (5),

name varchar (20), not null

dept name varchar (20),

salary numeric (8,2), check (salary > 29000),

primary key (ID),

foreign key (dept name) references department)

create table section

(course id varchar (8),

sec id varchar (8),

semester varchar (6), check (semester in

(’Fall’, ’Winter’, ’Spring’, ’Summer’),

year numeric (4,0), check (year > 1759 and year < 2100)

building varchar (15),

room number varchar (7),

time slot id varchar (4),

primary key (course id, sec id, semester, year),

foreign key (course id) references course,

foreign key (building, room number) references classroom)

Figure 4.8 SQL data definition for part of the university database.

 The definition of the course table has a declaration “foreign key (dept name) references

department”.

 Requirements of this form are called referential-integrity constraints, or subset

dependencies.

 We can use the following short form as part of an attribute definition to declare that the

attribute forms a foreign key:

dept name varchar(20) references department

 When a referential-integrity constraint is violated, the normal procedure is to reject the action

that caused the violation (that is, the transaction performing the update action is rolled back).

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

53

 However, a foreign key clause can specify that if a delete or update action on the referenced

relation violates the constraint, then, instead of rejecting the action, the system must take steps

to change the tuple in the referencing relation to restore the constraint. Consider this definition

of an integrity constraint on the relation course:

create table course

(. . .

foreign key (dept name) references department

on delete cascade

on update cascade,

. . .);

Integrity Constraint Violation During a Transaction

 Transactions may consist of several steps, and integrity constraints may be violated temporarily

after one step, but a later step may remove the violation.

 For instance, suppose we have a relation person with primary key name, and an attribute spouse,

and suppose that spouse is a foreign key on person.

Assertion

 An assertion is a predicate expressing a condition that we wish the database always to satisfy.

 Domain constraints and referential-integrity constraints are special forms of assertions.

 Two examples of such constraints are:

• For each tuple in the student relation, the value of the attribute tot cred must equal the

sum of credits of courses that the student has completed successfully.

• An instructor cannot teach in two different classrooms in a semester in the same time slot.

 An assertion in SQL takes the form:

create assertion <assertion-name> check <predicate>;

 In Figure 4.9, we show how the first example of constraints can be written in SQL. Since SQL

does not provide a “for all X, P(X)” construct (where P is a predicate), we are forced to implement

the constraint by an equivalent construct, “not exists X such that not P(X)”, that can be expressed

in SQL.

create assertion credits earned constraint check

(not exists (select ID

from student

where tot cred <> (select sum(credits)

from takes natural join course

where student.ID= takes.ID

and grade is not null and grade<> ’F’)

Figure 4.9 An assertion example.

SQL DATA TYPES AND SCHEMAS

 A number of built-in data types supported in SQL such as integer types, real types, and character

types.

 There are additional built-in datatypes supported by SQL, which we describe below.

a) Date and Time Types in SQL

 The SQL standard supports several data types relating to dates and times:

• date: A calendar date containing a (four-digit) year, month, and day of the month.

• time: The time of day, in hours, minutes, and seconds. A variant, time(p), can be used to

specify the number of fractional digits for seconds (the default being 0). It is also possible to

store time-zone information along with the time by specifying time with timezone.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

54

• timestamp: A combination of date and time. A variant, timestamp(p), can be used to

specify the number of fractional digits for seconds (the default here being 6). Time-zone

information is also stored if with timezone is specified.

 Date and time values can be specified like this:

date ’2001-04-25’

time ’09:30:00’

timestamp ’2001-04-25 10:29:01.45’

 Dates must be specified in the format year followed by month followed by day, as shown.

 The seconds field of time or timestamp can have a fractional part, as in the timestamp above.

b) Default Values

 SQL allows a default value to be specified for an attribute as illustrated by the following create

table statement:

create table student

(ID varchar (5),

name varchar (20) not null,

dept name varchar (20),

tot cred numeric (3,0) default 0,

primary key (ID));

 The default value of the tot cred attribute is declared to be 0. As a result, when a tuple is

inserted into the student relation, if no value is provided for the tot cred attribute, its value is

set to 0.

 The following insert statement illustrates how an insertion can omit the value for the tot_cred

attribute.

c) Index Creation

insert into student(ID, name, dept_name)

values (’12789’, ’Newman’, ’Comp. Sci.’);

 An index on an attribute of a relation is a data structure that allows the database system to find

those tuples in the relation that have a specified value for that attribute efficiently, without

scanning through all the tuples of the relation.

For example, if we create in index on attribute ID of relation student, the database system can

find the record with any specified ID value, such as 22201, or 44553, directly, without reading

all the tuples of the student relation.

 An index can also be created on a list of attributes

For example, on attributes name, and dept_name of student.

 Although the SQL language does not formally define any syntax for creating indices, many

databases support index creation using the syntax illustrated below.

create index studentID_index on student(ID);

 The above statement creates an index named studentID index on the attribute ID of the relation

student.

d) Large-Object Types

 Many current-generation database applications need to store attributes that can be large (of the

order of many kilobytes), such as a photograph, or very large (of the order of many megabytes

or even gigabytes), such as a high-resolution medical image or video clip.

 SQL therefore provides large-object data types for character data (clob) and binary data (blob).

 The letters “lob” in these data types stand for “Large OBject.”

 For example, we may declare attributes

book review clob(10KB)

image blob(10MB)

movie blob(2GB)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

55

e) User-Defined Types

 SQL supports two forms of user-defined data types.

i) The first form, which we cover here, is called distinct types.

ii) The other form, called structured data types, allows the creation of complex data types with

nested record structures, arrays, and multisets.

 It is possible for several attributes to have the same data type.

 For example, the name attributes for student name and instructor name might have the same

domain: the set of all person names.

 The create type clause can be used to define new types.

 For example, the statements:

create type Dollars as numeric(12,2) final;

create type Pounds as numeric(12,2) final;

define the user-defined types Dollars and Pounds to be decimal numbers with a total of 12

digits, two of which are placed after the decimal point.

 The newly created types can then be used, as types of attributes of relations.

 For example, we can declare the department table as:

create table department

(dept name varchar (20),

building varchar (15),

f) Create Table Extensions

 Applications often require creation of tables that have the same schema as an existing table.

 SQL provides a create table like extension to support this task:

create table temp instructor like instructor;

 The above statement creates a new table temp instructor that has the same schema as instructor.

 For example, the following statement creates a table t1 containing the results of a query.

create table t1 as

(select *

from instructor

where dept name= ’Music’)

with data;

UNIT-III COMPLETED

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

56

UNIT-IV

RELATIONAL LANGUAGES

TUPLE RELATIONAL CALCULUS

1. Explain about Tuple Relational Calculus. (Part-C)

 It is a non-procedural query language. It describes the desired information, without giving a

specific procedure for obtaining that information.

 A query in the tuple relational calculus is expressed as

 {T|P (T)}

that is, it is the set of all tuples t such that predicate P is true for t.

i) Example Queries:

 To find the branch-name, loan-number and amount for loans of over $1200.

 {t| t loan t[amount]>1200}

 Suppose we need those tuples on (loan-number) such that there is a tuple in loan with the amount

attribute >1200. To express this request, we need the construct “there exists” from mathematical

logic. The notation

 t r (Q(t))

means “there exists a tuple t in relation r such that predicate Q(t) is true.

 To find the loan-number for loan of an amount greater than $1200.

 {t| s loan (t[loan-number]=s[loan-number] s[amount]>1200)}

ii) Formal Definition:
 A tuple relational calculus expression is of the form

 {T|P(T)}

where P is a formula. Several tuple variables may appear in a formula. A tuple variable is said to

be a free variable unless it is quantified by or . Thus, in

t loan s customer (t[branch-name]=s[branch-name])

t is a free variable. Tuple variable s is said to be a bound variable.

 We build up formula from atoms by using the following rules:
 An atom is a formula.
 If p1 is a formula, then so are p1 and (p1).

 If p1 and p2 are formula, then so are p1 v p2, p1p2, and
p1=>p2.

 If p1(s) is a formula containing a free tuple variable s, and r
is a relation, then

 s r(p1(s)) and s r (p1(s))

are also formula. In the tuple relational calculus, these equivalence include the

following three rules:

 p1 p2 is equivalent to ((p1)v (p2))

 tr (p1(t)) is equivalent to t r(p1(t))

 p1=>p2 is equivalent to (p1) v p2.

iii) Safety of Expressions:
 A tuple-relational-calculus expression may generate an infinite relation. Suppose that we write the

expression {t/ (tloan)}

 To define a restriction of the tuple relational calculus, we introduce the concept of the domain of a

tuple relational formula, P.

 The domain of P, denoted dom(P), is the set of all values referenced by p.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

57

iv) Expressive Power of Languages:
 The tuple relational calculus restricted to safe expressions is equivalent in expressive power to the

basic relational algebra.

 Thus, for every relational-algebra expression using only the basic operations, there is an

equivalent expressions in the tuple relational calculus, and for every tuple- relational calculus, and

for every tuple-relational-calculus expression, there is an equivalent relational-algebra expression.

DOMAIN RELATIONAL CALCULUS

1. Explain about Domain Relational Calculus. (Part-C)

Write down the Format of Domain Relational Calculus. (Part-A)

 It uses domain variables that take on values from an attributes domain, rather then values for an

entire tuple. This calculus is closely related to the tuple relational calculus.

Formal Definition:

 An expression in the domain relational calculus is of the form

{<x1,x2,--------xn>|p(x1,x2, ----- xn)}

where x1,x2,----xn represent domain variables. P represents a formula composed of atoms. An

atom in the domain relational calculus has one of the following forms:

 <x1,x2,... xn> Rel, where Rel is a relation with n attributes; each xi, 1≤i≤n is either

a variable or a constant.
 x op y
 x op constant, or constant op x

 A formula is recursively defined to be one of the following, where p and q are themselves

formulas, and P(X) denotes a formula in which the variable X appears:
 Any atomic formula

 p, p^q, pVq, or p=>q
 X(P(X)), Where X is the domain variable
 X(P(X)), where X is a domain variable

Example Queries:

 To find the loan no, branch-name, and amount for loan of over $1200.

{<l,b,a>|<l,b,a> loana>1200}

 To find all loan numbers for loans with an amount greater than $1200.

{<l>|b,a(<l,b,a>loana >1200}

Safety of Expressions:

 A domain relational calculus expression may generate an infinite relation. An expression such as

{<l,b,a>| (<l,b,a) loan)}

is unsafe, because it allows values in the result that are not in the domain of the expression.

Expressive Power of Languages:

 When the domain relational calculus is restricted to safe expressions, it is equivalent in expressive

power to the tuple relational calculus to safe expressions. The restricted tuple relational calculus is

equivalent to the relational algebra; all three of the following are equivalent:

 The basic relational algebra
 The tuple relational calculus restricted to safe expressions.
 The domain relational calculus restricted to safe expressions.

OVERVIEW OF THE DESIGN PROCESS

What is Database Design?

 Database Design is a collection of processes that facilitate the designing, development,

implementation and maintenance of enterprise data management systems.

 It helps produce database systems

1. That meet the requirements of the users

2. Have high performance.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

58

 The main objectives of database designing are to produce logical and physical designs models of

the proposed database system.

 Logical Design Model:

 The logical model concentrates on the data requirements and the data to be stored

independent of physical considerations.

 It does not concern itself with how the data will be stored or where it will be stored

physically.

 Physical Design Model:

 The physical data design model involves translating the logical design of the database

onto physical media using hardware resources and software systems such as database

management systems (DBMS).

Why Database Design is Important ?

 Database designing is crucial to high performance database system.

 Apart from improving the performance, properly designed database are easy to maintain, improve

data consistency and are cost effective in terms of disk storage space.

Database development life cycle

Requirements analysis

 Planning - This stages concerns with planning of entire Database Development Life Cycle. It

takes into consideration the Information Systems strategy of the organization.

 System definition - This stage defines the scope and boundaries of the proposed database system.

Database designing

 Logical model - This stage is concerned with developing a database model based on

requirements. The entire design is on paper without any physical implementations or specific

DBMS considerations.

 Physical model - This stage implements the logical model of the database taking into account the

DBMS and physical implementation factors.

Implementation

 Data conversion and loading - this stage is concerned with importing and converting data from

the old system into the new database.

 Testing - this stage is concerned with the identification of errors in the newly implemented

system .It checks the database against requirement specifications.

Two Types of Database Techniques

1. Normalization

2. ER Modeling

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

59

ENTITY- RELATIONSHIP MODEL

1. Explain about the Basic Concepts of E-R Model. (Part-C)

List out and explain about the Different Types of Attributes. (Part-B)

Introduction:

 The Entity-Relationship (E-R) data model is based on perception of a real world that consists of a

set of basic objects called entities, and of relationships among these objects.

 There are three basic notation used in E-R data model. They are:

 Entity Sets

 Attributes

 Relationship Sets

Entity Sets:

 An entity is collection of object. The set of entities of the same type that share the same properties

or attributes is called as entity sets.

 The entity has a set of properties, and the values for some set of properties may uniquely identify

an entity.

 It is represented by a set of attributes. The attributes are descriptive properties possessed by each

member of an entity set.

 An attribute of an entity set is a function that maps from the entity set into a domain.

 Each entity set have several attributes, each entity can be described by a set of (attribute, data

value) pairs, one pair for each attribute of the entity set.

 A database includes a collection of entity sets each of which contains any number of entities of

the same type.

Example:
 A bank database which consists of two entity sets: customer and loan

 The customer entity may be described by the set {(name, smith), (Customer-street,

Main Road)}. The set of all persons who are customers at a given bank can be

defined as the entity set customer. The set of loans awarded by a particular bank can

be defined as the entity set loan.

Fig: Entity Sets Customer and Loans

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

60

Attributes:

 An attribute used in E-R model, can be characterized by the following types:

 Simple and Composite Attributes

 Single-valued and Multivalued Attributes

 Null Attribute

 Derived Attribute

i. Simple and Composite Attributes:

 The attributes not divided into subparts is called as simple attributes. The attributes divided into

subparts is called as composite attributes. It may appear as a hierarchy.

Example:

Entity Set: Customer

Composite Attributes: Customer-name Customer-address

Component Attributes: First-Name Middle-Name Last-Name Street City State

Street-number Street-name Apt-
number

Figure: Composite attributes Customer-name and Customer-address

ii. Single-valued and Multi-valued Attributes:

 The attribute have single value for a particular entity is called as single-valued attributes.

 Example: Rollno attribute for a specific student entity refers to only one value.

 The attributes have different numbers of values for a particular entity is called as multi-valued

attributes.

 Example: Phone no attribute for a specific employee entity refers more than one

value.

iii. Null Attributes:

 An entity does not have a value for an attribute is called as Null attributes. It designate that an

attribute value is unknown. An unknown value may be either missing or not known.

 Example: Apt-number attribute for a specific customer entity refers unknown value.

iv. Derived Attributes:

 The value of attribute can be derived from the values of other related attributes or entities are

called as derived attribute.

 Example: The value of employment-length can be derived from the value of start-date

and the current date.

Relationship Sets:

 A relationship is an association among several entities. A set of relationships of the same type is

called as Relationship Set.

 If E1, E2, ….En are entity sets, then a relationship set R is a subset of

{(e1, e2, …, en) | e1E1, e2E2, …, enEn}

Where (e1, e2,…., en) is a relationship

 The association between entity sets is referred to as participation; that is the entity sets E1,

E2,…,En participate in relationship set R.
 The entity sets participating in a relationship set are generally distinct roles are implicit and are

not usually specified. When the entity sets of a relationship set are not distinct; that is the same

entity set participates in a relationship set more than once, in different roles. This type of

relationship set called as recursive relationship set.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

61

 A relationship may also have descriptive attributes. Consider a relationship set depositor with

entity sets customer and account.

 The attribute access-date associate with relation to specify the most recent date the customer

accessed an account.

 The number of entity sets that participate in a relationship set is also called as degree of the

relationship set. A binary relationship set is of degree 2; a ternary relationship set is of degree 3.

Figure: Relationship Set Borrower

REDUCTION TO RELATIONAL SCHEMAS

Reduction of an E-R Schema to Tables

 A database that conforms to an E-R database schema can be represented by a collection of tables.

 For each entity set and for each relationship set, there is a unique table.

 A table is a chart with rows and columns.

 The set of all possible rows is the Cartesian product of all columns.

 A row is also known as a tuple or a record.

 A table has an unlimited number of rows. Each column is also known as a field.

Strong Entity Sets

 It is common practice for the table to have the same name as the entity set. There is one column

for each attribute.

Weak Entity Sets

 There is one column for each attribute, plus the attribute(s) the form the primary key of the strong

entity set that the weak entity set depends upon.

Relationship Sets

 We represent a relationship with a table that includes the attributes of each of the primary keys

plus any descriptive attributes (if any).

 There is a problem that if one of the entities in the relationship is a weak entity set, there would be

no unique information in the relationship table, and therefore may be omitted.

 Another problem can occur if there is an existance dependency. In that case, you can combine the

two tables.

Multivalued Attributes

 When an attribute is multivalued, remove the attribute from the table and create a new table with

the primary key and the attribute, but each value will be a separate row.

Generalization

 Create a table for the higher-level entity set.

 For each lower-level entity set, create a table with the attributes for that specialization and include

the primary key from the higher-level entity set.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

62

ENTITY- RELATIONSHIP DESIGN ISSUES

1. Explain about the Basic Issues in the Design of an E-R Database Schema. (Part-B)

 The basic issues in the design of an E-R database schema:

 Use of Entity Sets versus Attributes

 Use of Entity Sets versus Relationship Sets

 Binary Versus n-ary Relationship Sets

 Placement of Relationship Attributes

Use of Entity Sets versus Attributes:

 Consider the entity set employee with attributes employee-name and telephone-number. It can be

easily argued that a telephone is an entity in its own right with attributes telephone-number and

location. The employee entity set must be redefined as follows:

 The employee entity set with attribute employee-name.

 The telephone entity set with attributes telephone-number and location.

 The relationship set emp-telephone, which denotes the association between

employees and the telephones.

 In the first definition implies that every employee has precisely one telephone number associated

with him. In the second definition implies that the employees may have several telephone

numbers associated with him. It the second one is more general than the first one, and may more

accurately reflect the real-world situation. The distinctions mainly depend on the structure of the

real-world enterprise being modeled, and on the semantics associated with the attribute.

Use of Entity Sets versus Relationship Sets:

 It is not always clear whether an object is best expressed by an entity set or a relationship set. The

problems arise as a result of the replication

 The data are stored multiple times, wasting storage space.

 Updates potentially leave the data in an inconsistent state, where the values differ

in two relationships for attributes that are supposed to have the same value.

 To avoid the replication by using normalization. One possible guideline in determining whether to

use an entity set or a relationship set is to designate a relationship set to describe an action that

occurs between entities. This approach is useful in deciding whether certain attributes may be

more appropriately expressed as relationships.

Binary Versus n-ary Relationship Sets:

 It is always possible to replace a non-binary (n-ary, for n>2) relationship set by a number of

distinct binary relationship sets. Consider the abstract ternary (n=3) relationship set R, relating

entity sets A, B, and C. We replace the relationship set R by an entity set E, and create three

relationship sets:

 RA, relating E and A

 RB, relating E and B

 RC, relating E and C
 If the relationship set R had any attributes, these are assigned to entity set E; a special identifying

attribute is created for E. For each relationship (ai, bi, ci) in the relationship set R, create a new

entity ei in the entity set E. In each of the three new relationship sets, we insert a relationship as

follows:

 (ei,ai) in RA

 (ei,bi) in RB

 (ei,ci) in RC

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

63

Placement of Relationship Attributes:

 The cardinality ratio of a relationship can affect the placement of relationship attributes. Thus,

attributes of one-to-one, one-to-many relationship sets can be associated with one of the

participating entity sets, rather than with the relationship set.

EXTENDED E-R FEATURES

1. Explain about the Extended Features of E-R Model. (Part-B)

Write Short Note on Specialization and Generalization. (Part-B)

 The Entity-Relationship model consists of the following features:

 Specialization

 Generalization

Specialization:

 An entity set include sub groupings of entities that are distinct in some way from other entities in

the set. A subset of entities within an entity set may have attributes that are not shared by all the

entities in the entity set. It is depicted by a triangle component labeled ISA. The label ISA stands

for “is a”.

 It is the result of taking a subset of a higher-level entity set to form a lower-level entity set.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

64

Example:

 The entity set account with attributes account-number and balance. An account is further

classified into the following accounts:

 Savings-account

 Checking-account

 The below diagram the savings-account entities are described further by the attribute interest-rate

and checking-account entities are described further by the attribute overdraft-amount. The process

of designating sub groupings within an entity set is called specialization.

 The specialization of checking-account by account type yields the following entity sets:

 An Standard account, the bank keeps track of the number of checks written from

an account each month. (Attribute:num-checks)

 An Gold account the bank monitors the minimum balance and the interest paid for

each month. (Attribute: min-balance and interest-payment)

 An Senior account a record of the customer’s date of birth is associated with this

type of account. (Attribute: date-of-birth)

 The ISA relationship may also be referred to as a superclass-subclass relationship.

Figure: Specialization and Generalization

Generalization:

 The refinement from an initial entity set into successive levels of entity sub groupings represents a

top-down design process in which distinctions are made explicit.

 The design process may also proceed in a bottom-up manner, in which multiple entity sets are

synthesized into a higher-level entity set based on common features.

 The database designer may have first identified a checking-account entity set with the attributes

account-number, balance, and overdraft-amount.

 It is the result of taking the union of two or more disjoint (lower-level) entity sets to produce a

higher-level entity set.

 The attributes of higher-level entity sets are inherited by lower-level entity sets.

 It is a simple inversion of specialization. The higher-level entity set designated by the term

superclass and lower-level entity set referred as subclass.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

65

Attribute Inheritance:

 A crucial property of the higher-and lower-level entities created by specialization and

generalization is attribute inheritance. The attributes of the higher-level entity sets are said to be

inherited by lower-level entity set. For example, Customer and Employee inherit the attributes of

person.

 A lower-level entity set (or subclass) also inherits participation in the relationship sets in which its

higher-level entity (or superclass) participates.

 Whether a given portion of an E-R model was arrived at by specialization or generalization the

outcome is basically the same:

 A higher-level entity set with attributes and relationships that apply to all of its

lower-level entity sets.

 Lower-level entity sets with distinctive features that apply only within a particular

lower-level entity set.

 In a hierarchy, a given entity set may be involved as a lower-level entity set in only one ISA

relationship; that is, entity sets in this above diagram have only single inheritance.

 If an entity set is lower-level entity in more than one ISA relationship, then the entity set has

multiple inheritance, and the resulting structure is said to be a Lattice.

Constraints on Generalization:

 To model an enterprise more accurately, the database designer may choose to place certain

constraints on a particular generalization.

 One type of constraint involves determining which entities can be members of a given lower-level

entity set. Such membership may be one of the following.

 Condition-defined:

 In condition-defined lower-level entity sets, membership is evaluated on

the basis of whether or not an entity satisfies an explicit condition or

predicate.

Example:

 The higher-level entity set account has the attribute account-type. All

account entities are evaluated on the defining account-type attribute. All the

lower-level entities are evaluated on the basis of the same attribute, this

type of generalization is said to be attribute-defined.

 User-defined:

 User-defined lower-level entity sets are not constrained by a membership

condition; rather, the database user assigns entities to a given entity set.

 A second type of constraints relates to whether or not entities may belong to more than one lower-

level entity set within a single generalization. The lower-level entity sets may be one of the

following:

 Disjoint:

 This constraint requires that an entity an entity belongs to no more than one

lower-level entity set.

 Overlapping:

 In overlapping generalizations, the same entity may belong to more than

one lower-level entity set within a single generalization.

 The completeness constraint on generalization or specialization specifies whether or not an entity

in the higher-level entity set must belong to at least one of the lower-level entity sets within the

generalization/specialization.

 This constraint may be one of the following:

 Total Generalization or Specialization: Each higher-level entity must belong to a

lower-level entity set.

 Partial Generalization or Specialization: Some higher-level entities may not

belong to any lower-level entity set.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

66

R

R

R

Aggregation:

 It is an abstraction in which relationship sets (along with their associated entity sets) are treated as

higher-level entity sets, and can participate in relationships.

 It appears that the relationship sets works-on and manages can be combined into one single

relationship set. Nevertheless, we should not combine them into a single relationship, since

some employee, branch, job combinations many not have a manager.

Figure: E-R diagram with redundant relationships

Alternatives E-R Notations:
 Many-to-Many Relationship

E
 Entity Set

E Weak Entity Set One-to-One Relationship

R Relationship set Many-to-One Relationship

 Identifying Relationship

Set for Weak Entity Set

ISA

 ISA (Specialization or

Generalization)

R

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

67

A Attribute

A Multivalued Attribute

A
 Derived Attribute

A Primary Key

ISA

 Total Generalization

 Total Participation of Entity Set

in Relationship

 The following alternative notations that are widely used. The primary key attributes are indicated

by listing them at the top, with a line separating them from the other attributes.

 Cardinality constraints are indicated by different ways. The labels * and 1 on the edges out of the

relationship are sometimes used for depicting many-to-one, many-to-many, one-to-one

relationships.

E

Entity set E with Attributes A1, A2, A3 and primary key A1

Many-to-Many One-to-One Many-to-One

Relationship Relationship Relationship

ALTERNATIVE NOTATION FOR MODELING DATA

 A diagrammatic representation of the data model of an application is a very important part of

designing a database schema.

 Creation of a database schema requires not only data modeling experts, but also domain experts

who know the requirements of the application but may not be familiar with data modeling.

 A number of alternative notations for modeling data have been proposed, of which E-R diagrams

and UML class diagrams are the most widely used.

 Thereis no universal standard for E-R diagram notation, and different books and E-R diagram

software use different notations.

 Figure 7.24 summarizes the set of symbols we have used in our E-R diagram notation.

R E

*
R

* 1
R

1 *
R

1

A2

A3

A1

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

68

Figure 7.24 Symbols used in the E-R notation.

a) Alternative E-R Notations

 The below diagram figure 7.25 indicates some of the alternative E-R notations that are widely

used.

 One alternative representation of attributes of entities is to show them in ovals connected to the

box representing the entity; primary key attributes are indicated by underlining them.

 The above notation is shown at the top of the figure. Relationship attributes can be similarly

represented, by connecting the ovals to the diamond representing the relationship.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

69

Figure 7.25 Alternative E-R notations.

b) The Unified Modeling Language UML

 Entity-relationship diagrams help model the data representation component of a software system.

 Data representation, however, forms only one part of an overall system design.

 Other components include models of user interactions with the system, specification of functional

modules of the system and their interaction, etc.

 The Unified Modeling Language (UML) is a standard developed under the auspices of the

Object Management Group (OMG) for creating specifications of various components of a

software system.

 Some of the parts of UML are:

• Class diagram. A class diagram is similar to an E-R diagram. Later in this section we

illustrate a few features of class diagrams and how they relate to E-R diagrams.

• Use case diagram. Use case diagrams show the interaction between users and the

system, in particular the steps of tasks that users perform (such as withdrawing money or

registering for a course).

• Activity diagram.Activity diagrams depict the flow of tasks between various

components of a system.

• Implementation diagram. Implementation diagrams show the system components and

their interconnections, both at the software component level and the hardware component

level.

OTHER ASPECTS OF DATABASE DESIGN

Data Constraints and Relational Database Design

 A variety of data constraints that can be expressed using SQL, including primary-key constraints,

foreign-key constraints, check constraints, assertions, and triggers.

 Constraints serve several purposes.

 The most obvious one is the automation of consistency preservation.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

70

 A further advantage of stating constraints explicitly is that certain constraints are particularly

useful in designing relational database schemas.

 For example: That a social-security number uniquely identifies a person, then we can use a

person’s social-security number to link data related to that person even if these data appear in

multiple relations.

 Contrast that with, for example, eye color, which is not a unique identifier. Eye color could not be

used to link data pertaining to a specific person across relations because that person’s data could

not be distinguished from data pertaining to other people with the same eye color.

Usage Requirements: Queries, Performance

 Database system performance is a critical aspect of most enterprise information systems.

 Performance pertains not only to the efficient use of the computing and storage hardware being

used, but also to the efficiency of people who interact with the system and of processes that

depend upon database data.

 There are two main metrics for performance:

• Throughput—the number of queries or updates (often referred to as transactions) that

can be processed on average per unit of time.

• Response time—the amount of time a single transaction takes from start to finish in

either the average case or the worst case.

Authorization Requirements

 Authorization constraints affect design of the database as well because SQL allows access to be

granted to users on the basis of components of the logical design of the database.

 A relation schema may need to be decomposed into two or more schemas to facilitate the

granting of access rights in SQL.

 For example, an employee record may include data relating to payroll, job functions, and medical

benefits.

Data Flow, Workflow

 Database applications are often part of a larger enterprise application that interacts not only with

the database system but also with various specialized applications.

 For example, in a manufacturing company, a computer-aided design (CAD) system may assist in

the design of new products.

 The term workflow refers to the combination of data and tasks involved in processes like those of

the preceding examples.

 Workflows interact with the database system as they move among users and users perform their

tasks on the workflow.

UNIT-IV COMPLETED

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

71

UNIT-V

RELATIONAL DATABASE DESIGN

1. What is the Goal of Relational-Database Design? (Part-A)
 The goal of a relational-database design is to generate a set of relational schemas that allow us to

store information without unnecessary redundancy and allows us to retrieve information easily. One

approach is to design schemas that are in an appropriate normal form.

FEATURES OF GOOD RELATIONAL DESIGNS

 To study precise ways of assessing the desirability of a collection of relation schemas.

 However, we can go a long way toward a good design using concepts we have already studied.

 For ease of reference, we repeat the schemas for the university database in Figure 8.1.

classroom(building, room_number, capacity)

department(dept_name, building, budget)

course(course_id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec id, semester, year, building, room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id, semester, year, grade)

advisor(s_ID, i_ID)

time slot(time_slot_id, day, start_time, end_time)

prereq(course_id, prereq_id)

Figure 8.1 Schema for the university database.

Design Alternative: Larger Schemas

 Now, let us explore features of this relational database design as well as some alternatives. Suppose

that instead of having the schemas instructor and department, we have the schema:

inst_dept (ID, name, salary, dept name, building, budget)

 This represents the result of a natural join on the relations corresponding to instructor and

department.

 This seems like a good idea because some queries can be expressed using fewer joins, until we

think carefully about the facts about the university that led to our E-R design.

 Let us consider the instance of the inst _dept relation shown in Figure 8.2.

 Notice that we have to repeat the department information (“building” and “budget”) once for each

instructor in the department.

 For example, the information about the Comp. Sci. department (Taylor, 100000) is included in the

tuples of instructors Katz, Srinivasan, and Brandt.

ID name salary dept_name building budget

22222 Einstein 95000 Physics Watson 70000

12121 Wu 90000 Finance Painter 120000

32343 El said 60000 History Painter 50000

45565 Katz 75000 Comp. Sci Taylor 100000

98345 Kim 8000 Elec. Eng Taylor 85000

76766 Cruck 72000 Biology Watson 90000

10101 Srinivasan 65000 Comp.Sci Taylor 100000

58583 Califieri 62000 History Painter 50000

83821 Brandt 92000 Comp. Sci Taylor 100000

15151 Mozart 40000 Music Packard 80000

33456 Gold 87000 Physics Watson 70000

76543 Singh 80000 Finance Painter 120000

Figure 8.2 The inst_dept table.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

72

Design Alternative: Smaller Schemas

 A real-world database has a large number of schemas and an even larger number of attributes.

 The number of tuples can be in the millions or higher.

 Discovering repetition would be costly.

 In the case of inst dept, our process of creating an E-R design successfully avoided the creation of

this schema. However, this fortuitous situation does not always occur.

 Therefore, we need to allow the database designer to specify rules such as “each specific value for

dept_name corresponds to atmost one budget” even in cases where dept_name is not the primary

key for the schema in question.

 In other words, we need to write a rule that says “if there were a schema (dept_name, budget), then

dept_name is able to serve as the primary key.” This rule is specified as a functional dependency.

dept_name→budget

ATOMIC DOMAINS AND FIRST NORMAL FORM

 In the relational model, we formalize this idea that attributes do not have any substructure.

 A domain is atomic if elements of the domain are considered to be indivisible units.

 We say that a relation schema R is in first normal form (1NF) if the domains of all attributes of R

are atomic. A set of names is an example of a non-atomic value.

 For example:

 If the schema of a relation employee included an attribute children whose domain elements

are sets of names, the schema would not be in first normal form.

 Composite attributes, such as an attribute address with component attributes street, city, state, and
zip also have non-atomic domains.

 It consider an organization that assigns employees identification numbers of the following form:

 The first two letters specify the department and the remaining four digits are a unique

number within the department for the employee.

 Examples of such numbers would be “CS001” and “EE1127”. Such identification numbers

can be divided into smaller units, and are therefore non-atomic.

 If a relation schema had an attribute whose domain consists of identification numbers

encoded as above, the schema would not be in first normal form.

DECOMPOSITION USING FUNCTIONAL DEPENDENCIES

 We noted that there is a formal methodology for evaluating whether a relational schema should be

decomposed.

 This methodology is based upon the concepts of keys and functional dependencies.

a) Keys and Functional Dependencies

 A database models a set of entities and relationships in the real world.

 There are usually a variety of constraints (rules) on the data in the real world.

 For example, some of the constraints that are expected to hold in a university database are:

1. Students and instructors are uniquely identified by their ID.

2. Each student and instructor has only one name.

3. Each instructor and student is (primarily) associated with only one department.

4. Each department has only one value for its budget, and only one associated building.

 An instance of a relation that satisfies all such real-world constraints is called a legal instance of

the relation; a legal instance of a database is one where all the relation instances are legal instances.

 Consider a relation schema r (R), and let α ⊆ R and β⊆ R.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

73

• Given an instance of r (R), we say that the instance satisfies the functional dependency α

→ β if for all pairs of tuples t1 and t2 in the instance such that t1[α] = t2[α], it is also the case that

t1[β] = t2[β].

• We say that the functional dependency α → β holds on schema r (R) if, inevery legal

instance of r (R) it satisfies the functional dependency.

 Functional dependencies allow us to express constraints that we cannot express with superkeys.
 In Section 8.1.2, we considered the schema:

inst_dept (ID, name, salary, dept_name, building, budget)

in which the functional dependency dept_name → budget holds because for each department

(identified by dept name) there is a unique budget amount.

 We denote the fact that the pair of attributes (ID, dept name) forms a superkey for inst dept by

writing:

ID, dept_name→name, salary, building, budget

b) Boyce-Codd Normal Form (BCNF)

 A table is in Boyce-Codd Normal Form (BCNF) if only determinants in the table are the candidate

keys.

 A table is in Boyce-Codd Normal Form (BCNF) if every column, on which some other column is

fully functionally dependent, is also a candidate for the primary key of the table.

 One of the more desirable forms is Boyce-Codd Normal Form (BCNF). A relation schema R is in

BCNF with respect to a set of F of functional dependencies if for all functional dependencies in F+

of the form β, where R, and β R, at least one of the following holds:

 β is a trivial functional dependencies (β)

 is a superkey for schema R.

Example:

 Consider the school table consisting of three columns: Student, Subject and Teacher. One Student

can study zero or more Subjects. For a given Student-Subject pair, there is always exactly one

Teacher. The many teachers teaching the same Subject (to different students). The one Teacher can

teach only one subject.

Student Subject Teacher

aaa English Meena

zzz Hindi Kalpana

xxx English Meena

 The Student and Subject, find out the Teacher who is teaching that subjects

 {Student, Subject} Teacher

 The Student and a Teacher, find out the Subject that is being taught by the Teacher to the Student

 {Student, Teacher} Subject

 The Teacher, find out the subject that the Teacher teaches

 Teacher Subject

Functional Dependency Candidate Key

{Student, Subject} Teacher {Student, Subject}

{Student, Teacher} Subject {Student, Teacher}

Teacher Subject None

c) BCNF and Dependency Preservation

 We have seen several ways in which to express database consistency constraints:

primary-key constraints, functional dependencies, check constraints, assertions, and triggers.

 Testing these constraints each time the database is updated can be costly and, therefore, it is useful

to design the database in a way that constraints can be tested efficiently.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

74

 One way to implement this change using the E-R design is by replacing the advisor relationship set

with a ternary relationship set, dept_advisor, involving entity sets instructor, student, and

department that is many-to-one from the pair {student, instructor} to departmentas shown

inFigure8.6.

 The E-R diagram specifies the constraint that “a student may have more than one advisor, but at

most one corresponding to a given department”.

department

dept_name

building

budget

instructor

ID

name
salary

dept_advisor

student

ID

name
tot_cred

Figure 8.6 The dept advisor relationship set.

d) Third Normal Forms

 A table is in the Third Normal Form (3NF) if it is in the second normal form and if all non-key

columns in the table depend non-transitively on the entire primary key.

 A relation schema R is in 3NF with respect to a set F of functional dependencies if, for all

functional dependencies in F+ of the form β, where R, and β R, at least one of the

following holds:

 β is a trivial functional dependency.

 is a superkey for R.

 Each attribute A in β- is contained in a candidate key for R.

Example:

 Consider the following relation

 Banker-info-schema = (branch-name, customer-name, banker-name, office-number)

 The functional dependency for this relation schema are

 banker-name branch-name office-number

 customer-name branch-name banker-name

 Decompose the Banker-info-schema by using the above functional dependencies.
 Banker-office-schema = (banker-name, branch-name, office-number)

 Banker-schema = (customer-name, branch-name, banker-name)

e) Higher Normal Forms

 Using functional dependencies to decompose schemas may not be sufficient to avoid unnecessary

repetition of information in certain cases.

 Consider a slight variation in the instructor entity-set definition in which we record with each

instructor a set of children’s names and a set of phone numbers.

 The phone numbers may be shared by multiple people.

 Thus, phone number and child name would be multivalued attributes and, following our rules for

generating schemas from an E-R design, we would have two schemas, one for each of the

multivalued attributes, phone_ number and child_name:

(ID, child_name)

(ID, phone_number)

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

75

 If we were to combine these schemas to get

(ID, child_name, phone_number)

 We would find the result to be in BCNF because only nontrivial functional dependencies hold.

 As a result we might think that such a combination is a good idea.

 For example, let the instructor with ID 99999 have two children named “David”

and “William” and two phone numbers, 512-555-1234 and 512-555-4321.

 In the combined schema, we must repeat the phone numbers once for each dependent:

(99999, David, 512-555-1234)

(99999, David, 512-555-4321)

(99999, William, 512-555-1234)

(99999, William, 512-555-4321)

FUNCTIONAL DEPENDENCY THEORY

1. Explain about Functional Dependencies. (Part-B)

Discuss about Canonical Cover. (Part-B)

🞛 The functional dependencies are a generalization of key dependencies. They require that the value

for a certain set of attributes determines uniquely the value for another set of attributes. Using this

determine the set of functional dependencies logically implied by a set of F of functional

dependencies.

🞛 It represents the constraints on the set of legal relations. The super key represents as follows:

 Let R be a relation schema. A subset of k of R is a superkey of R if, in any legal

relation r(R), for all pairs t1 and t2 of tuples in r such that t1≠t2, then t1[k]≠t2[k].

That is no two tuples in any legal relation r(R) may have the same value on attribute

set k.

🞛 The notion of functional dependency generalizes the notion of super key. Let R and R. The

functional dependency

holds on R if, in any legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1 []≠t2[[].

🞛 Using this notation k is a super key of R if K R. That is, k is super key if, whenever t1[k]=t2[[k];

it is also the case that t1[R]=t2[[R] (t1=t2)

 On Branch-Schema

branch-name branch-city

branch-name assets

 On Customer-Schema

customer-name customer-city

customer-name customer-street

🞛 To use the functional dependencies in two ways:

 To specify constraints on the set of legal relations. Consider the relation schema R

that satisfies a set F of functional dependencies, say that F holds on R.

 If a relation r is legal under a set F of functional dependencies, say that r satisfies F.

🞛 The functional dependencies are said to be trivial because they are satisfied by all relations. For

example, AA is satisfied by all relations involving attribute A. The functional dependency of the

form is trivial if .

Closure of a Set of Functional Dependencies:

🞛 To determine the set of functional dependencies logically implied by a set of F or functional

dependencies. This set is called the closure of F.

🞛 The given relation schema R=(A,B,C,G,H,I) and the set of functional dependencies are:

 AB

 AC

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

76

 CGH

 CGI

 BI

🞛 The following functional dependency is logically implied.

 AH

🞛 Let F be a set of functional dependencies. The closure of F is the set of all functional dependencies

logically implied by F. The closure of F is denoted by F+. Given F, compute F+ directly from the

formal definition of functional dependency. If F were large, this process would be lengthy and
difficult.

🞛 It consists of various techniques. The first technique is based on three axioms or rules of inference

for functional dependencies. By applying these rules repeatedly find all F+ in given F.

🞛 The Greek letters (,,,…) for set of attributes, and uppercase Roman letters from the beginning

of the alphabet for individual attributes. Use to denote U.

 Reflexivity Rule. If is a set of attributes and , then holds.

 Augmentation Rule. If holds and is a set of attributes, then holds.

 Transitivity Rule. If holds holds, then holds.

🞛 The above rules are sound and complete because they do not generate any incorrect functional

dependencies and for a given set of F of functional dependencies, they allow us to generate all F+.
This collection of rules is called Armstrong’s axioms. To simplify further use the following

additional rules:

 Union Rule. If and holds, then holds.

 Decomposition Rule. If holds, then holds and holds.

 Pseudotransitivity Rule. If holds and holds, then holds.

Example:

🞛 Consider the schema R=(A,B,C,G,H,I) and the set F of functional dependencies {AB, AC,

CGH, CGI, BH}. The list of F+ are:

 AH (Since AB and BH holds)

(Apply Transitivity Rule)

 CGHI (Since CGH and CGI)

(Apply Union Rule)

 AGI (Since AC and CGI)

(Apply Pseudotransitivity Rule)

Closure of Attribute Sets:

🞛 Let be a set of attributes. The set of all attributes functionally determined by under a set F of

functional dependencies the closure of under F, denoted by +. The input is a set F of functional

dependencies and the set of attributes. The output is stored in the variable result.

result:=

while(changes to result) do

for each functional dependency in F do

begin

if result then result:=result U ;

end

Algorithm to compute + the closure of under F

Canonical Cover:

🞛 To reduce the size of a set F of functional dependency without changing the closure. This set is

called a canonical cover Fc for F. Any database satisfies the simplified set of functional

dependencies will also satisfy the original set, and vice versa, since the two sets have the same

closure. The simplified set is easier to test.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

77

🞛 An attribute of a functional dependency is extraneous if we can remove it without changing the

closure of the set of functional dependencies. The extraneous attributes defined as follows.

Consider the set F of functional dependencies and the functional dependency in F.

 Attribute A is extraneous in if A, and F logically implies (F-{})U {-A)

}.

 Attribute A is extraneous in if A, and set of functional dependencies

(F-{}) U {-(-A)} logically implies F.

🞛 A canonical cover Fc for F is a set of of dependencies such that F logically implies all dependencies

in Fc, and Fc logically implies all dependencies in F. The Fc has the following properties:
 No functional dependency in Fc contains an extraneous attribute.

 Each left side of a functional dependency in Fc is unique.
🞛 A canonical cover for a set of functional dependencies F can be computed as follows:

repeat

use the union rule to replace any dependencies in F of the form

11 and 1 2 with, then 112

find a functional dependency with an extraneous attribute either in or in

if an extraneous attribute is found, delete it from

until F does not change

Figure 8.9 Computing canonical cover.

Example:

🞛 Consider the set F of functional dependencies on schema (A,B,C)

 ABC

 BC

 AB

 ABC

🞛 There are two functional dependencies with the same set of attributes on the left side of the arrow:

 ABC

 AB

Combine these functional dependencies into ABC.

🞛 A is extraneous in ABC because F logically implies (F-{ABC})U{BC}.

🞛 C is extraneous in ABC, since ABC is logically implied by AB and BC

 The canonical cover is

AB

BC

Decomposition

 The decomposition refers to the breaking down of one table into multiple tables. Any database

design process involves decomposition.

 Using this decomposition to minimize the data redundancy. The data redundancy not only leads to

duplication of data it also has other side effects such as loss of data integrity and data consistency.

 It consists of the following types:

 Lossy Decomposition

 Lossless Decomposition or Non-Lossy Decomposition

Lossy Decomposition: The loss of information due to decomposition is called lossy

decomposition.

Lossless Decomposition: When all information found in the original database is preserved

after decomposition, call it lossless decomposition or non-lossy decomposition.

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

78

Lossless-Join Decomposition:

 Let R be a relation schema, and F be a set of functional dependencies on R. Let R1 and R2 form a

decomposition of R. This decomposition is a lossless-join decomposition of R if at least one of the

following functional dependencies are in F+:

 R1 R2 R1

 R1 R2 R2

 The decomposition of Lending-schema is a lossless-join decomposition by showing a sequence of

steps that generate the decomposition.

Dependency Preservations:

 It is another goal of relational-database design. When an update is made to the database, the system

should be able to check that the update will not create an illegal relation that is one that does not

satisfy all the given functional dependencies.

 If the user checks the updates efficiently, we should design relational-database schemas that allow

update validation without the computation of joins.
 Let F be a set of functional dependencies on a schema R, and let R1,R2,…,Rn be a decomposition of

R. The restriction of F to Ri is the set Fi of all functional dependencies in F+ that include only
attributes of Ri. All functional dependencies in a restriction involve attributes of only one relation
schemas it is possible to test satisfaction of such a dependency by checking only one relation.

 The decomposition of Lending-Schema is dependency preserving. Each member of the set F of

functional dependencies that hold on Lending-Schema, and show that each one can be tested in at

least one relation in the decomposition.
 Test the functional dependency:

branch-name branch-city assets

using Branch-Schema=(branch-name, branch-city,assets)

ALGORITHMS FOR DECOMPOSITION

BCNF Decomposition:

 The definition of BCNF can be used directly to test if a relation is in BCNF.

 However, computation of F+ can be a tedious task.

 We first describe below simplified tests for verifying if a relation is in BCNF.

a) Testing for BCNF

 Testing of a relation schema R to see if it satisfies BCNF can be simplified in some cases:

• To check if a nontrivial dependency causes a violation of BCNF, compute + (the

attribute closure of), and verify that it includes all attributes of R; that is, it is a super key

of R.

• To check if a relation schema R is in BCNF, it suffices to check only the dependencies in

the given set F for violation of BCNF, rather than check all dependencies in F+.

 We can show that if none of the dependencies in F causes a violation of BCNF, then none of

the dependencies in F+ will cause a violation of BCNF, either.

 An alternative BCNF test is sometimes easier than computing every dependency in F+.

 To check if a relation Ri in a decomposition of R is in BCNF, we apply this test:

• For every subset of attributes in Ri, check that + (the attribute closure of under F)

either includes no attribute of Ri − , or includes all attributes of Ri .

result := {R};

done := false;

compute F+;

while (not done) do

if (there is a schema Ri in result that is not in BCNF)

then begin

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

79

let be a nontrivial functional dependency that holds

on Ri such that Ri is not in F+, and ∩ = 0;

result := (result − Ri) 𝖴 (Ri −) 𝖴 (,);

end

else done := true;

Figure 8.11 BCNF decomposition algorithm.

 If the condition is violated by some set of attributes in Ri , consider the following

functional dependency, which can be shown to be present in F+:

 → (+ −) ∩ Ri .

 The above dependency shows that Ri violates BCNF.

b) BCNF Decomposition Algorithm

 We are now able to state a general method to decompose a relation schema so as to satisfy

BCNF. Figure 8.11 shows an algorithm for this task.

 If R is not in BCNF, we can decompose R into a collection of BCNF schemas R1, R2, . . . ,

Rn by
the algorithm.

 The algorithm uses dependencies that demonstrate violation of BCNF to perform the

decomposition.

 The decomposition that the algorithm generates is not only in BCNF, but is also a lossless

decomposition. To see why our algorithm generates only lossless decompositions, we note

that, when we replace a schema Ri with (Ri −) and (,), the dependency holds, and

(Ri −) ∩ (,)=.

 As a longer example of the use of the BCNF decomposition algorithm, suppose we have a

database design using the class schema below:

class (course id, title, dept name, credits, sec id, semester, year, building,

room number, capacity, time slot id)

 The set of functional dependencies that we require to hold on class are:

course id→ title, dept name, credits

building, room number→capacity

course id, sec id, semester, year→building, room number, time slot id

3NF Decomposition

 The set of dependencies Fc used in the algorithm is a canonical cover for F.

 Note that the algorithm considers the set of schemas Rj , j = 1, 2, . . . , i; initially i = 0, and in this

case the set is empty.

 Let us apply this algorithm to our example of Section 8.3.4, where we showed that:

dept advisor (s_ID, i ID, dept _name)

is in 3NF even though it is not in BCNF. The algorithm uses the following functional dependencies

in F:

f1: i_ID→dept _name

f2: s _ID, dept_ name→i_ID

Correctness of the 3NF Algorithm

 The 3NF algorithm ensures the preservation of dependencies by explicitly building a schema for

each dependency in a canonical cover.

 It ensures that the decomposition is a lossless decomposition by guaranteeing that at least one

schema contains a candidate key for the schema being decomposed.

 This algorithm is also called the 3NF synthesis algorithm, since it takes a set of dependencies and

adds one schema at a time, instead of decomposing the initial schema repeatedly

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

80

Comparison of BCNF and 3NF:

🞛 The 3NF and BCNF are the two normal forms for relational-database schemas. There is an

advantage to 3NF: it is always possible to obtain a 3NF design without sacrificing a lossless join or

dependency preservation. The disadvantage to 3NF is that there is a possibility to use null values to

represent some of the possible meaningful relationships among data items, and there is a problem of

repetition of information. The three design goals for a relational-database design are:

 BCNF

 Lossless join

 Dependency Preservation

🞛 If all the above three cannot be achieved, then accept

 3NF

 Lossless join

 Dependency Preservation

DECOMPOSITION USING MULTIVALUED DEPENDENCIES

 Some relation schemas, even though they are in BCNF, do not seem to be sufficiently normalized,

in the sense that they still suffer from the problem of repetition of information.

 Consider a variation of the university organization where an instructor may be associated with

multiple departments.

inst (ID, dept_name, name, street, city)

 The astute reader will recognize this schema as a non-BCNF schema because of the functional

dependency

ID→ name, street, city

and because ID is not a key for inst.

 Following the BCNF decomposition algorithm, we obtain two schemas:

r1 (ID, name)

r2 (ID, dept_name, street, city)

Multivalued Dependencies:

 The new form of constraint is multivalued dependency. It is used to define a normal form for

relation schemas. This normal form called Fourth Normal Form (4NF) is more restrictive than

BCNF.

 It do not rule out the existence of certain tuples. They require that other tuples of a certain form be

present in the relation. The functional dependencies sometimes are referred to as equality-

generating dependencies and multivalued dependencies are referred to as tuple-generating

dependencies.

 Let R be a relation schema and let R, and β R. The multivalued dependency

 >>β

holds on R if , in any legal relation r(R) , for all pairs of tuples t1 and t2 in r such that t1[]=t2[],

there exists tuples t3 and t4 in r such that

t1[]=t2[]=t3[]=t4[]

t3[β]=t1β]
t3[R- β]=t2[R- β]

t4[β]=t2[β]

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

81

Fourth Normal Form

 A table is in the Fourth Normal Form (4NF) if it is in BCNF and does not have any independent

multi-valued parts of the primary key.

 This normal form is related to the concept of a Multivalued Dependency (MVD). A relation schema

R is in 4NF with respect to a set of D of functional and multivalued dependencies if, for all

multivalued dependencies in D+ of the form >> β, where R, and β R, at least one of the

following holds:

 >> β is a trivial functional dependency.

 is a superkey for schema R.

 Let R be a relation schema, and let D be a set of functional and multivalued dependencies on R. Let

R1 and R2 form a decomposition of R. This decomposition is a lossless-join decomposition of R if

and only if at least one of the following multivalued dependencies is in D+.

 R1 ∩ R2 >> R1

 R1 ∩ R2 >> R2

4NF Decomposition

 The analogy between 4NF and BCNF applies to the algorithm for decomposing a schema into 4NF.

Figure 8.16 shows the 4NF decomposition algorithm.

result := {R};

done := false;
compute D+; Given schema Ri, let Di denote the restriction of D+ to Ri

while (not done) do
if (there is a schema Ri in result that is not in 4NF w.r.t. Di)

then begin

let →→ β be a nontrivial multivalued dependency that holds

on Ri such that → Ri is not in Di, and ∩ β = 0;

result := (result − Ri) 𝖴 (Ri − β) 𝖴 (,β);

end

else done := true;

Figure 8.16 4NF decomposition algorithm.

 It is identical to the BCNF decomposition algorithm of Figure 8.11, except that it uses multivalued

dependencies and uses the restriction of D+ to Ri .

 If we apply the algorithm of Figure 8.16 to (ID, dept_ name, street, city), we find that

ID→→dept_name is a nontrivial multivalued dependency, and ID is not a superkey for the schema.

 Following the algorithm, we replace it by two schemas:

r21 (ID, dept_name)

r22 (ID, street, city)

MORE NORMAL FORMS

 The fourth normal form is by no means the “ultimate” normal form.

 As we saw earlier, multivalued dependencies help us understand and eliminate some forms of

repetition of information that cannot be understood in terms of functional dependencies.

 There are types of constraints called join dependencies that generalize multivalued dependencies,

and lead to another normal form called project-join normal form (PJNF) (PJNF is called fifth

normal form in some books).

 There is a class of even more general constraints that leads to a normal form called domain-key

normal form (DKNF).

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

82

DATABASE-DESIGN PROCESS

 So far we have looked at detailed issues about normal forms and normalization.

 In this section, we study how normalization fits into the overall database-design process.

 There are several ways in which we could have come up with the schema r (R):

1. r (R) could have been generated in converting an E-R diagram to a set of

relation schemas.

2. r (R) could have been a single relation schema containing all attributes that

are of interest. The normalization process then breaks up r (R) into smaller

schemas.

3. r (R) could have been the result of an ad-hoc design of relations that we then

test to verify that it satisfies a desired normal form.

E-R Model and Normalization

 When we define an E-R diagram carefully, identifying all entities correctly, the relation schemas

generated from the E-R diagram should not need much further normalization

 For instance, suppose an instructor entity set had attributes dept_name and dept_ address, and there

is a functional dependency dept_name → dept_ address.

 We would then need to normalize the relation generated from instructor.

 Functional dependencies can help us detect poor E-R design.

 If the generated relation schemas are not in desired normal form, the problem can be fixed in the

ERdiagram.

 That is, normalization can be done formally as part of data modeling.

 Alternatively, normalization can be left to the designer’s intuition during E-R modeling, and can be

done formally on the relation schemas generated from the E-R model.

 If a multivalued dependency holds and is not implied by the corresponding functional dependency,

it usually arises from one of the following sources:

• A many-to-many relationship set.

• A multivalued attribute of an entity set.

Naming of Attributes and Relationships

 A desirable feature of a database design is the unique-role assumption, which means that each

attribute name has a unique meaning in the database.

 This prevents us from using the same attribute to mean different things in different schemas.

 For example, we might otherwise consider using the attribute number for phone number in the

instructor schema and for room number in the classroom schema.

 Although technically, the order of attribute names in a schema does not matter, it is convention to

list primary-key attributes first.

 This makes reading default output (as from select *) easier.

Denormalization for Performance

 Occasionally database designers choose a schema that has redundant information; that is, it is not

normalized. They use the redundancy to improve performance for specific applications.

 The penalty paid for not using a normalized schema is the extra work (in terms of coding time and

execution time) to keep redundant data consistent.

 For instance, suppose all course prerequisites have to be displayed along with a course information,

every time a course is accessed.

 In our normalized schema, this requires a join of course with prereq.

 One alternative to computing the join on the fly is to store a relation containing all the attributes of

course and prereq.

 This makes displaying the “full” course information faster.

 The process of taking a normalized schema and making it nonnormalized is called

denormalization,

K.ANITHA, M.CA., M.Phil., Asst. Professor DATABASE SYSTEMS

83

Other Design Issues

 There are some aspects of database design that are not addressed by normalization, and can thus

lead to bad database design. Data pertaining to time or to ranges of time have several such issues.

 We give examples here; obviously, such designs should be avoided.

 Consider a university database, where we want to store the total number of instructors in each

department in different years.

 A relation total_ inst(dept_ name, year, size) could be used to store the desired information.

 The only functional dependency on this relation is dept name, year→size, and the relation is in

BCNF.

 An alternative design is to use multiple relations, each storing the size information for a different

year.

 Let us say the years of interest are 2007, 2008, and 2009; we would then have relations of the form

total _inst 2007, total_inst 2008, total_inst 2009, all of which are on the schema (dept _name, size).

The only functional dependency here on each relation would be dept_name → size, so these

relations are also in BCNF.

UNIT-V COMPLETED

	(Arts & Science)
	TNPL Road, Punnam Chatram, Karur - 639 136.
	Faculty Name : Ms.K.ANITHA, M.CA., M.Phil.,
	Major : B.CA Semester : IV
	--
	DATABASE SYSTEMS
	Unit II
	Unit III
	Unit IV
	Unit V
	Text Book:
	INTRODUCTION
	2. Why Database Systems are designed? (Part-A) What is the Use of Database Systems? (Part-A)
	DATABASE SYSTEM APPLICATIONS
	Banking:
	Airlines:
	Universities:
	Credit and Transactions:
	Telecommunication:
	Sales:
	Manufacturing:
	Finance:
	Human Resources:
	PURPOSE OF DATABASE SYSTEMS
	List out and explain about the Disadvantages of File-Processing System. (Part-C)
	 Data Redundancy and Inconsistency
	 Data Isolation
	 Atomicity Problems
	 Security Problems Data Redundancy and Inconsistency:
	Example:
	Difficulty in Accessing Data:
	Example: (1)
	Data Isolation:
	Integrity Problems:
	Example: (2)
	Atomicity Problems:
	Concurrent-Access Anomalies:
	Security Problems:
	VIEW OF DATA
	Explain about the Various Levels of Data Abstraction. (Part-B)
	Physical Level:
	 Logical Level
	Figure: The three levels of Data Abstraction
	View Level:
	b) Instances and Schema:
	3. What is Data Independence? (Part-A)
	 Physical Data Independence
	Logical Data Independence:
	c) Data Models
	 Relational model
	 Object-Based Data Model
	Relational Model:
	Entity-Relationship Model:
	Customer
	Account
	Components of E-R Diagram:
	Object-Based Data Model
	Semistructured Data Model:
	DATABASE LANGUAGES
	What is Query? (Part-A)
	 Data-Definition Language (DDL)
	• Domain Constraints:
	• Referential Integrity:
	• Assertions:
	• Authorization.
	Data-Manipulation Language:
	 Retrieval of information from database
	 Deletion of information from database
	 Procedural DML
	Procedural DML:
	Nonprocedural DML:
	RELATIONAL DATABASES
	a) Tables:
	b) Data-Manipulation Language
	Figure-1.0 A sample relational database
	select instructor.name from instructor
	c) Data-Definition Language
	d) Database Access from Application Programs
	DATABASE DESIGN
	a) Design Process
	Logical-Design Phase:
	Physical Design Phase:
	b) Database Design for a University Organization
	c) The Entity-Relationship Model
	Example: (3)
	A sample E-R diagram.
	d) Normalization
	The Faculty table
	DATABASE SYSTEM STRUCTURE
	 Storage Manager
	a) Storage Manager:
	 Authorization and Integrity Manager
	 File Manager
	Users
	DBMS
	Compiler and Linker
	Authorization and Integrity Manager
	Figure: System Structure
	 Transaction Manager:
	 File Manager:
	 Buffer Manager:
	Data Files:
	b) The Query Processor:
	 DML Compiler
	 Query Evaluation Engine DML Compiler:
	DDL Interpreter:
	Query Evaluation Engine:
	TRANSACTION MANAGEMENT
	Explain about the ACID Properties. (Part-B)
	ACID Properties:
	Atomicity:
	Consistency:
	Isolation:
	Durability:
	DATA MINNING & ANALYSIS
	 Data warehouses:
	 Textual data:
	 Information Retrival:
	DATABASE ARCHITECTURE
	 Two-tier architecture
	Two-tier architecture:
	Three-tier architecture:
	DATABASE USERS AND ADMINISTRATORS
	Discuss abut the Functions of DBA. (Part-A)
	a) Database Users and User Interface:
	 Application Programmers
	 Specialized Users
	 Application Programmers:
	 Sophisticated Users:
	 Specialized Users:
	 Naive Users:
	b) Database Administrator:
	 Schema Definition
	 Schema and Physical-Organization Modification
	 Integrity-Constraint Specification
	 Storage Structure and Access-Method Definition:
	 Schema and Physical-Organization Modification:
	 Granting of Authorization for Data Access:
	 Integrity-Constraint Specification:
	UNIT-II RELATIONAL MODEL
	1. Explain about the Structure of Relational Databases. (Part-C) What is Query Language? (Part-A)
	a) Basic Structure:
	Example: (4)
	 t[branch-name]=”Downtown”
	b) Database Schema:
	 Account-Schema=(branch-name, account-number, balance)
	 Account(Account-Schema)
	Keys:
	2. Candidate key:
	3. Primary key:
	 Example
	 Example:
	6. Non- key Attribute:
	 Example: (1)
	 Example: (2)
	8. Foreign key:
	 Example: (3)
	10. Compound key:
	11. Artificial key:
	Schema Diagrams :
	customer
	depositor
	Query Languages:
	 Procedural Language
	BASIC RELATIONAL ALGEBRA OPERATIONS
	List out the Fundamental Operations used in Relational Algebra. (Part-A) List out the Unary and Binary Operations (Part-A)
	 Select
	 Union
	 Cartesian Product
	 Select (1)
	 Rename
	 Union (1)
	 Cartesian Product (1)
	Select Operation:
	Example: (5)
	Project Operation:
	Example: (6)
	Rename Operation:
	Binary Operations:
	Example: (7)
	Set Difference Operation:
	Example: (8)
	Cartesian Product:
	Example: (9)
	r1 relation r2 relation

	Formal Definition of the Relational Algebra:
	ADDITIONAL RELATIONAL ALGEBRA OPERATIONS
	i. Set-Intersection Operation:
	Example:
	Relation A Relation B A intersect B
	Example: (1)
	S1 Relation R1 Relation
	S1XR1 (Cartesian Product)
	iii. Divison Operation:
	Example: (2)
	Relation B2
	iv. Assignment Operation:
	EXTENDED RELATIONAL ALGEBRA OPERATIONS
	Generalized Projection
	Example: (3)
	Aggregate Functions
	Example: (4)
	Outer Join
	 Left Outer Join
	 Full Outer Join
	1. Left Outer Join:
	2. Right Outer Join:
	3. Full Outer Join:

	NULL VALUES
	MODIFICATION OF THE DATABASE

	Deletion:
	 rr-E
	Example:

	Insertion:
	Example:

	Updating:
	Example:
	BACKGROUND
	List out and explain the Various Parts of SQL. (Part-B)
	Parts of SQL Language:
	 Data-Definition Language (DDL)
	 Embedded SQL
	 Authorization
	 Transaction Control Data-Definition Language (DDL):
	Interactive Data-Manipulation Language (DML):
	Embedded SQL:
	View Definition:
	Authorization:
	Integrity:
	Transaction Control:
	DATA-DEFINITION LANGUAGE
	List out the Built-in Domain Types Used in SQL-92 Standard (Part-B) Discuss about the Schema Definition in SQL. (Part-B)
	 The schema for each relation
	 The integrity constraints
	 The security and authorization information for each relation
	Basic Domain Types in SQL:
	Example: (1)
	 create domain person-name char(15)
	 create table r (A1D1,A2D2,….,AnDn,
	….,
	 Primary key (Aj1,Aj2,…,Ajm) and
	Example 1:
	(Customer-Name char(15) not null, Customer-Street char(30), Customer-City char(15),
	 Create table account
	Balance integer,
	 Drop table r
	 Alter table r add A D
	 Alter table r drop A
	BASIC STRUCTURE OF SQL QUERIES
	 Select
	 Where
	Select A1,A2,…..,An From r1,r2,…….,rm Where P
	i) The Select Clause:
	Example: (2)
	 Select branch-name from loan
	 Select distinct branch-name from loan
	 Select branch-name, loan-number, amount*10 from loan
	 Select * from loan;
	Example 1: (1)
	Example 2:
	Where branch-name=”perryridge” and amount>1200
	 Select loan-number from loan
	 Select loan-number from loan (1)
	iii) The From Clause:
	Example: (3)
	iv) Rename Operation:
	 Rename old-name as new-name
	 Rename S1 as S2
	Example 2: (1)
	v) Tuple Variable:
	Example: (4)
	vi) String Operations:
	Example 1: (2)
	 Select * from account where branch-name like ‘Perry%’
	 Select * from account where branch-name like ‘ _ _ _ ‘
	 Select * from account where branch-name like ‘% e’
	Example 1: (3)
	 Select * from loan order by loan-number asc
	viii) Duplicates:
	Select A1,A2,…..,An From r1,r2,…….,rm Where P (1)
	ADDITIONAL BASIC OPERATIONS
	The Rename Operation
	name, course id

	old-name as new-name
	String Operation
	Example: (5)
	Attribute Specification in Select Clause
	Ordering the Display of Tuples
	department, we write:
	Example: (6)
	select name from instructor
	select name from instructor (1)
	SET OPERATIONS
	 Union
	 Except
	Example 1: (4)
	Example 2: (2)
	 (select customer-name from depositor) union all (select customer-name from borrower)
	Example 1: (5)
	 (select customer-name from depositor) intersect (select customer-name from borrower)
	 (select customer-name from depositor) intersect all (select customer-name from borrower)
	Example 1: (6)
	 (select customer-name from depositor) except (select customer-name from borrower)
	AGGREGATE FUNCTIONS
	 Average: avg
	 Maximum: max
	 Count: count
	Example 1: (7)
	 select avg(balance) from account where branch-name=’Perryridge’ ii. Minimum (min):
	Example: (7)
	iii. Maximum (max):
	Example: (8)
	iv. Total (sum):
	Example: (9)
	v. Count:
	Example: (10)
	vi. Group by Clause:
	Example 1: (8)
	Example 2: (3)
	NULL VALUES
	Example 1: (9)
	 select loan-number from loan where amount is null
	NESTED SUBQUERIES
	set cardinality.
	Example 1: (10)
	 select customer-name from borrower
	 select customer-name from borrower
	Example 1: (11)
	 select name, total from student
	 select branch-name from branch
	Example 3:
	 select branch-name from branch (1)
	Testing for Empty Relations:
	Example: (11)
	where depositor.customer-name=borrower.customer-name) Test for the Absence of Duplicate Tuples:
	Example: (12)
	where depositor.customer-name=borrower.customer-name)
	MODIFICATION OF THE DATABASE
	Deletion:
	 delete from r where P
	Example 1: (12)
	 delete from loan where amount between 1300 and 1500 Example 3:
	 delete from account where balance>(select balance from account)
	 insert into account values (‘Perryridge’,’A-123’,1200)
	 insert into account(branch-name,account-number,balance) values(‘Perryridge’,’A-123’,1200) (OR)
	 insert into account select * from account
	 insert into account values(null,’A-124’,1200)
	Example 1: (13)
	 update account set balance=balance*1.5 where balance>1000 Example 3:
	where balance> select avg(balance) from account
	Example: (13)
	 insert into v3 values(‘Perryridge’, L-103)
	Transactions:
	JOINED RELATIONS
	Discuss about the Join Types and Conditions. (Part-C)
	Join Types:
	 Inner Join
	 Left Outer Join
	 Full Outer Join
	Example: (14)
	loan inner join borrower on loan.loan-number=borrower.loan-number
	loan natural inner join borrower
	loan left outer join borrower on loan.loan-number=borrower.loan-number
	Full Outer Join:
	loan full outer join borrower using(loan-number)
	1. Explain about the Mechanism for Defining Authorizations. (Part-C) Explain about the Authorization in SQL. (Part-C)
	Privileges in SQL:
	 Grant <privilege list> on <relation name or view name> to <user/role list>
	 Grant select on account to U1,U2,U3
	 Grant update (amount) on loan to U1,U2,U3
	 Grant references (branch-name) on branch to U1.
	The Privilege to Grant Privileges:
	 Grant select on branch to U1 with grant option
	 Revoke <privilege list> on <relation name or view name> from <user/role list> [restrict|cascade]
	Other Features:
	Limitations of SQL Authorization:
	VIEWS
	 create view v as <query expression>
	Example 1: (14)
	Example 2: (4)
	create view v3 as select bid from R1 where bid=103; select * from v3;
	Updating Data through Views:
	Example: (15)
	update v4 set city=’kanpur’ where city=’pune’;
	Views Defined Using Other Views:
	xcustomer
	all-customer
	INTEGRITY CONSTRAINTS
	Examples
	Constraints on a Single Relation
	• not null
	a) Not Null Constraint
	name varchar(20) not null budget numeric(12,2) not null
	b) Unique Constraint
	c) The check Clause
	As another example, consider the following:
	d) Referential Integrity
	on delete cascade on update cascade,
	Integrity Constraint Violation During a Transaction
	Assertion
	(not exists (select ID
	SQL DATA TYPES AND SCHEMAS
	a) Date and Time Types in SQL
	b) Default Values
	create table student (ID varchar (5),
	tot cred numeric (3,0) default 0, primary key (ID));
	c) Index Creation
	create index studentID_index on student(ID);
	d) Large-Object Types
	book review clob(10KB) image blob(10MB) movie blob(2GB)
	create type Dollars as numeric(12,2) final; create type Pounds as numeric(12,2) final;
	create table department (dept name varchar (20), building varchar (15),
	create table temp instructor like instructor;
	create table t1 as (select *

	UNIT-III COMPLETED
	UNIT-IV RELATIONAL LANGUAGES
	1. Explain about Tuple Relational Calculus. (Part-C)
	 {T|P (T)}
	i) Example Queries:
	 {t| t loan t[amount]>1200}
	 {T|P(T)}
	t loan s customer (t[branch-name]=s[branch-name])
	 If p1 is a formula, then so are p1 and (p1).
	 If p1(s) is a formula containing a free tuple variable s, and r is a relation, then
	iii) Safety of Expressions:
	iv) Expressive Power of Languages:
	DOMAIN RELATIONAL CALCULUS
	Write down the Format of Domain Relational Calculus. (Part-A)
	Formal Definition:
	{<x1,x2,--------xn>|p(x1,x2, xn)}
	Example Queries:
	{<l,b,a>|<l,b,a> loana>1200}
	{<l>|b,a(<l,b,a>loana >1200} Safety of Expressions:
	{<l,b,a>| (<l,b,a) loan)}
	Expressive Power of Languages:
	OVERVIEW OF THE DESIGN PROCESS
	What is Database Design?

	 Logical Design Model:
	 Physical Design Model:
	Why Database Design is Important ?

	Requirements analysis
	Database designing
	Implementation

	1. Normalization
	ENTITY- RELATIONSHIP MODEL
	List out and explain about the Different Types of Attributes. (Part-B)
	 Entity Sets
	 Relationship Sets
	Example:
	Fig: Entity Sets Customer and Loans
	 Simple and Composite Attributes
	 Null Attribute
	i. Simple and Composite Attributes:
	Example: (1)
	Composite Attributes: Customer-name Customer-address Component Attributes: First-Name Middle-Name Last-Name Street City State
	Figure: Composite attributes Customer-name and Customer-address
	iii. Null Attributes:
	iv. Derived Attributes:
	Relationship Sets:
	Figure: Relationship Set Borrower
	Reduction of an E-R Schema to Tables
	Strong Entity Sets
	Weak Entity Sets
	Relationship Sets
	Multivalued Attributes
	Generalization
	ENTITY- RELATIONSHIP DESIGN ISSUES
	 Use of Entity Sets versus Attributes
	 Binary Versus n-ary Relationship Sets
	Use of Entity Sets versus Attributes:
	 The employee entity set with attribute employee-name.
	 The relationship set emp-telephone, which denotes the association between employees and the telephones.
	Use of Entity Sets versus Relationship Sets:
	Binary Versus n-ary Relationship Sets:
	Placement of Relationship Attributes:
	EXTENDED E-R FEATURES
	 Specialization
	Specialization:
	Example: (2)
	 Savings-account
	Generalization:
	Attribute Inheritance:
	Constraints on Generalization:
	 Condition-defined:
	Example: (3)
	 User-defined:
	 Disjoint:
	 Overlapping:
	Aggregation:
	Alternatives E-R Notations:
	E
	ALTERNATIVE NOTATION FOR MODELING DATA
	Figure 7.24 Symbols used in the E-R notation.
	b) The Unified Modeling Language UML
	OTHER ASPECTS OF DATABASE DESIGN
	Usage Requirements: Queries, Performance
	Authorization Requirements
	Data Flow, Workflow

	UNIT-IV COMPLETED
	UNIT-V RELATIONAL DATABASE DESIGN
	FEATURES OF GOOD RELATIONAL DESIGNS
	course(course_id, title, dept_name, credits) instructor(ID, name, dept_name, salary)
	student(ID, name, dept_name, tot_cred)
	time slot(time_slot_id, day, start_time, end_time) prereq(course_id, prereq_id)
	Design Alternative: Larger Schemas
	inst_dept (ID, name, salary, dept name, building, budget)
	Figure 8.2 The inst_dept table.
	ATOMIC DOMAINS AND FIRST NORMAL FORM
	 For example:
	DECOMPOSITION USING FUNCTIONAL DEPENDENCIES
	a) Keys and Functional Dependencies
	inst_dept (ID, name, salary, dept_name, building, budget)
	ID, dept_name→name, salary, building, budget
	Example:
	c) BCNF and Dependency Preservation
	Figure 8.6 The dept advisor relationship set.
	Example: (1)
	e) Higher Normal Forms
	(ID, child_name) (ID, phone_number)
	(ID, child_name, phone_number)
	FUNCTIONAL DEPENDENCY THEORY
	Closure of a Set of Functional Dependencies:
	Example: (2)
	(Apply Transitivity Rule)
	(Apply Union Rule)
	(Apply Pseudotransitivity Rule) Closure of Attribute Sets:
	Algorithm to compute + the closure of under F
	Example: (3)
	Decomposition
	 Lossy Decomposition
	Lossless-Join Decomposition:
	Dependency Preservations:
	ALGORITHMS FOR DECOMPOSITION
	a) Testing for BCNF
	result := {R}; done := false; compute F+;
	if (there is a schema Ri in result that is not in BCNF) then begin
	result := (result − Ri) 𝖴 (Ri −) 𝖴 (,); end
	b) BCNF Decomposition Algorithm
	class (course id, title, dept name, credits, sec id, semester, year, building, room number, capacity, time slot id)
	course id→ title, dept name, credits building, room number→capacity

	3NF Decomposition
	dept advisor (s_ID, i ID, dept _name)
	f1: i_ID→dept _name
	Correctness of the 3NF Algorithm
	Comparison of BCNF and 3NF:
	DECOMPOSITION USING MULTIVALUED DEPENDENCIES
	Multivalued Dependencies:
	t3[R- β]=t2[R- β]
	Fourth Normal Form
	4NF Decomposition
	then begin
	end
	MORE NORMAL FORMS
	DATABASE-DESIGN PROCESS
	E-R Model and Normalization
	Naming of Attributes and Relationships
	Denormalization for Performance
	denormalization,

	UNIT-V COMPLETED

