

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Annai Women’s College
(Affiliated to Bharathidasan University, tiruchirapalli 620 024)

Arts & Science

TNPL Road Punnamchatram, Karur – 639 1356

 By

Asst.Prof. S. Sasikala.,MCA., M.Phil.,B.Ed.,

 Department of Computer Applications

 OPERATING SYSTEM

Unit I
Evolution of operating systems- Functions – Different views of OS – Batch processing,
Multiprocessing, Time sharing OS – I / O programming concepts – Interrupt Structure &
processing

Unit II
Memory Management – Single Contiguous Allocation- Partitioned Allocation – Relocatable
Partitions allocations – Paged and Demand paged Memory Management – Segmented Memory
Management – Segmented and Demand paged Memory Management – overlay Techniques –
Swapping

Unit III
 Processor Management – Job Scheduling – Process Scheduling – Functions and Policies –
Evolution of Round Robin Multiprogramming Performance – Process Synchronisation – Wait
and Signal mechanisms – Semaphores P & V Operations – Deadlock – Banker’s Algorithm.

Unit IV
Device Management – Techniques for Device Management – I/O Traffic Controller, I/O
Scheduler, I/O Device Handlers – Spooling.

Unit V
File Management: Simple File System, General Model of a File System, Physical and Logical File
System. Case Studies: MSDOS, UNIX.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Text Book: Operating Systems – E. Madnick & John J.Donavan, Tata McGraw Hill Publishing Co.,
Limited. Reference Book: System Programming and Operating Systems – D.M. Dhamdhere,
Tata McGraw Hill Publishing Co., Limited. *****

 Operating system

 UNIT-I
An operating system can be defined as:

 An operating system is a program that acts as an interface or intermediary between the

user of a computer and the computer hardware.

 An operating system exploits the hardware resources of one or more processors to

provide a set of services to system users and also manages secondary memory and

Input/Output devices on the behalf of its users.

 An operating system is a set of program modules which provides a friendly interface

between the user and the computer resources such as processors, memory, Input/Output

devices and information.

OBJECTIVES AND FUNCTIONS

 Convenience

The primary goal of an operating system is convenience for the user. If an application

program is a set of machine instructions then it is completely responsible for controlling

the computer hardware. It is a complicated task. To simplify this task, a set of system

programs are provided, called utilities and they implement frequently used functions

which assist in program creation, management of files and control of Input/Output

devices.

 Efficiency

The secondary goal of an operating system is efficient operation of the system. Operating

system is responsible for managing the resources. That is the movement, storage and

processing of data.A portion of operating system is in main memory. This includes the

Kernel or nucleus, which contains the most frequently used functions in the operating

system. The remainder of main memory contains other user programs and data. Operating

system determine how much processor time is to be devoted to the execution of a

program. That is the efficient utilization of the resources.

 Ability to Evolve

Operating system should be constructed in such a way as to permit the effective

development, testing, and introduction of new system functions.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Operating system will evolve over time for a number of reasons:

o Hardware upgrades plus new types of hardware. For example, view several

applications at the same time through windows.

o New services, that is new measurement and control tools may be added.

o Fixes, that is faults will be discovered and fixes.

BASIC ELEMENTS

Processor

Processor controls the operation of computer and performs its data processing functions like

arithmetic, logic and others.

Main Memory

Main memory is also called as volatile memory, primary memory, real memory or

temporary memory, because it stores data and programs temporarily during the processing time

only.

Input/Output Modules

Input/Output modules move data between the computer and its external environment like

secondary memory, communications equipment and terminals etc.

System Inter Connection

System inter connection provide some structure and mechanisms that provide for communication

among processors, main memory and Input/Output modules.

 EVOLUTION OF OPERATING SYSTEMS
Serial Processing

Users access the computer in series. From the late 1940's to mid 1950's, the programmer

interacted directly with computer hardware i.e., no operating system. These machines were run

with a console consisting of display lights, toggle switches, some form of input device and a

printer. Programs in machine code are loaded with the input device like card reader. If an error

occur the program was halted and the error condition was indicated by lights. Programmers

examine the registers and main memory to determine error. If the program is success, then output

will appear on the printer.

Main problem here is the setup time. That is single program needs to load source program into

memory, saving the compiled (object) program and then loading and linking together.

Simple Batch Systems

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

To speed up processing, jobs with similar needs are batched together and run as a group. Thus,

the programmers will leave their programs with the operator. The operator will sort programs

into batches with similar requirements.

The problems with Batch Systems are:

 Lack of interaction between the user and job.

 CPU is often idle, because the speeds of the mechanical I/O devices are slower than CPU.

For overcoming this problem use the Spooling Technique. Spool is a buffer that holds output for a
device, such as printer, that can not accept interleaved data streams. That is when the job requests the
printer to output a line, that line is copied into a system buffer and is written to the disk. When the job is
completed, the output is printed. Spooling technique can keep both the CPU and the I/O devices
working at much higher rates.

Multiprogrammed Batch Systems

Jobs must be run sequentially, on a first-come, first-served basis. However when several jobs are on a
direct-access device like disk, job scheduling is possible. The main aspect of job scheduling is
multiprogramming. Single user cannot keep the CPU or I/O devices busy at all times. Thus
multiprogramming increases CPU utilization.

In when one job needs to wait, the CPU is switched to another job, and so on. Eventually, the first job
finishes waiting and gets the CPU back.

The memory layout for multiprogramming system is shown below:

Time-Sharing Systems

Time-sharing systems are not available in 1960s. Time-sharing or multitasking is a logical extension of
multiprogramming. That is processors time is shared among multiple users simultaneously is called time-
sharing. The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems is in
Multiprogrammed batch systems its objective is maximize processor use, whereas in Time-Sharing
Systems its objective is minimize response time.
Multiple jobs are executed by the CPU by switching between them, but the switches occur so
frequently. Thus, the user can receives an immediate response. For example, in a transaction processing,
processor execute each user program in a short burst or quantum of computation. That is if n users are
present, each user can get time quantum. When the user submits the command, the response time is
seconds at most.
Operating system uses CPU scheduling and multiprogramming to provide each user with a small portion
of a time. Computer systems that were designed primarily as batch systems have been modified to time-
sharing systems.

For example IBM's OS/360.

http://www.go4expert.com/articles/types-of-scheduling-t22307/

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Time-sharing operating systems are even more complex than multiprogrammed operating systems. As
in multiprogramming, several jobs must be kept simultaneously in memory.

Personal-Computer Systems (PCs)

A computer system is dedicated to a single user is called personal computer, appeared in the 1970s.
Micro computers are considerably smaller and less expensive than mainframe computers. The goals of
the operating system have changed with time; instead of maximizing CPU and peripheral utilization, the
systems developed for maximizing user convenience and responsiveness.

For e.g., MS-DOS, Microsoft Windows and Apple Macintosh.

Hardware costs for microcomputers are sufficiently low. Decrease the cost of computer hardware (such
as processors and other devices) will increase our needs to understand the concepts of operating
system. Malicious programs destroy data on systems. These programs may be self-replicating and may
spread rapidly via worm or virus mechanisms to disrupt entire companies or even worldwide networks.

MULTICS operating system was developed from 1965 to 1970 at the Massachusetts Institute of
Technology (MIT) as a computing utility. Many of the ideas in MULTICS were subsequently used at Bell
Laboratories in the design of UNIX OS.

Parallel Systems

Most systems to date are single-processor systems; that is they have only one main CPU. Multiprocessor
systems have more than one processor.

The advantages of parallel system are as follows:

throughput (Number of jobs to finish in a time period)
Save money by sharing peripherals, cabinets and power supplies
Increase reliability
Fault-tolerant (Failure of one processor will not halt the system).
Symmetric multiprocessing model

Each processor runs an identical job (copy) of the operating system, and these copies communicate.
Encore's version of UNIX operating system is a symmetric model.
E.g., If two processors are connected by a bus. One is primary and the other is the backup. At fixed check
points in the execution of the system, the state information of each job is copied from the primary
machine to the backup. If a failure is detected, the backup copy is activated, and is restarted from the
most recent checkpoint. But it is expensive.

Asymmetric multiprocessing model

Each processor is assigned a specific task. A master processor controls the system. Sun's operating
system SunOS version 4 is a asymmetric model. Personal computers contain a microprocessor in the
keyboard to convert the key strokes into codes to be sent to the CPU.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Distributed Systems

Distributed systems distribute computation among several processors. In contrast to tightly coupled
systems (i.e., parallel systems), the processors do not share memory or a clock. Instead, each processor
has its own local memory.

The processors communicate with one another through various communication lines (such as high-
speed buses or telephone lines). These are referred as loosely coupled systems or distributed systems.
Processors in a distributed system may vary in size and function. These processors are referred as sites,
nodes, computers and so on.

The advantages of distributed systems are as follows:

Resource Sharing: With resource sharing facility user at one site may be able to use the resources
available at another.
Communication Speedup: Speedup the exchange of data with one another via electronic mail.
Reliability: If one site fails in a distributed system, the remaining sites can potentially continue operating.
Real-time Systems
Real-time systems are used when there are rigid time requirements on the operation of a processor or
the flow of data and real-time systems can be used as a control device in a dedicated application. Real-
time operating system has well-defined, fixed time constraints otherwise system will fail.

E.g., Scientific experiments, medical imaging systems, industrial control systems, weapon systems,
robots, and home-applicance controllers.

There are two types of real-time systems:

Hard real-time systems

Hard real-time systems gurantees that critical tasks complete on time. In hard real-time systems
secondary storage is limited or missing with data stored in ROM. In these systems virtual memory is
almost never found.
Soft real-time systems

Soft real time systems are less restrictive. Critical real-time task gets priority over other tasks and retains
the priority until it completes. Soft real-time systems have limited utility than hard real-time systems.
E.g., Multimedia, virtual reality, Advanced Scientific Projects like undersea exploration and planetary
rovers.

Different views of operating system:

 User View and System View
Operating System is designed both by taking user view and system view into consideration.
Below is what the users and system thinks about Operating System.
User View
The goal of the Operating System is to maximize the work and minimize the effort of the user.
Most of the systems are designed to be operated by single user, however in some systems multiple
users can share resources, memory. In these cases Operating System is designed to handle available
resources among multiple users and CPU efficiently.
Operating System must be designed by taking both usability and efficient resource utilization into view.

http://fundamentalsofos.blogspot.in/2014/02/operating-system-user-view-and-system.html
http://fundamentalsofos.blogspot.in/2014/02/operating-system-user-view-and-system.html

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

In embedded systems(Automated systems) user view is not present.
Operating System gives an effect to the user as if the processor is dealing only with the current task, but
in background processor is dealing with several processes.
System View
From the system point of view Operating System is a program involved with the hardware.
Operating System is allocator, which allocate memory, resources among various processes.It controls
the sharing of resources among programs.

 Functions of Operating System

There are Many Functions those are Performed by the Operating System But the Main

Goal of Operating System is to Provide the Interface between the user and the hardware

Means Provides the Interface for Working on the System by the user. The various

Functions

Operating System as a Resource Manager

Operating System Also Known as the Resource Manager Means Operating System will

Manages all the Resources those are Attached to the System means all the Resource like

Memory and Processor and all the Input output Devices those are Attached to the System are

Known as the Resources of the Computer System and the Operating system will Manage all the

Resources of the System. The Operating System will identify at which Time the CPU will

perform which Operation and in which Time the Memory is used by which Programs. And

which Input Device will respond to which Request of the user means When the Input and Output

Devices are used by the which Programs. So this will manage all the Resources those are

attached to the Computer System.

Storage Management

Operating System also Controls the all the Storage Operations means how the data or files

will be Stored into the computers and how the Files will be Accessed by the users etc. All the

Operations those are Responsible for Storing and Accessing the Files is determined by the

Operating System Operating System also Allows us Creation of Files, Creation of Directories

and Reading and Writing the data of Files and Directories and also Copy the contents of the Files

and the Directories from One Place to Another Place.

1) Process Management : The Operating System also Treats the Process

Management means all the Processes those are given by the user or the Process those are

System ‘s own Process are Handled by the Operating System . The Operating System will

Create the Priorities foe the user and also Start or Stops the Execution of the Process and Also

Makes the Child Process after dividing the Large Processes into the Small Processes.

2) Memory Management: Operating System also Manages the Memory of the

Computer System means Provide the Memory to the Process and Also Deallocate the Memory

http://ecomputernotes.com/fundamental/disk-operating-system/functions-of-operating-system
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/list-various-input-and-output-devices
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

from the Process. And also defines that if a Process gets completed then this will deallocate the

Memory from the Processes.

3) Extended Machine : Operating System also behaves like an Extended Machine

means Operating system also Provides us Sharing of Files between Multiple Users, also Provides

Some Graphical Environments and also Provides Various Languages for Communications
and also Provides Many Complex Operations like using Many Hardware’s and
Software’s.

4) Mastermind: Operating System also performs Many Functions and for those

Reasons we can say that Operating System is a Mastermind. It provides Booting without an

Operating System and Provides Facility to increase the Logical Memory of the Computer System

by using the Physical Memory of the Computer System and also provides various Types of

Formats Like NTFS and FAT File Systems.

Operating System also controls the Errors those have been Occurred into the Program and Also

Provides Recovery of the System when the System gets Damaged Means When due to Some

Hardware Failure , if System Doesn’t Works properly then this Recover the System and also

Correct the System and also Provides us the Backup Facility. And Operating System also breaks

the large program into the Smaller Programs those are also called as the threads. And execute

those threads one by one.

 Batch Process

Batch processing: The grouping together of several processing jobs to be executed one after another

by a computer, without any user interaction. This is achieved by placing a list of the commands to start
the required jobs into a BATCH FILE that can be executed as if it were a single program: hence batch
processing is most often used in operating systems that have a COMMAND LINE user interface. Indeed,

batch processing was the normal mode of working in the early days of mainframe computers, but

modern personal computer applications typically require frequent user interaction, making them
unsuitable for batch execution.

A batch process performs a list of commands in sequence. It be run by a computer's operating system

using a script or batch file, or may be executed within a program using a macro or internal scripting
tool. For example, an accountant may create a script to open several financial programs at once, saving
him the hassle of opening each program individually. This type of batch process would be executed by

the operating system, such as Windows or the Mac OS. A Photoshop user, on the other hand, might
use a batch process to modify several images at one time. For example, she might record an action
within Photoshop that resizes and crops an image. Once the action has been recorded, she can batch
process a folder of images, which will perform the action on all the images in the folder.

A batch process performs a list of commands in sequence. It be run by a computer's operating system

using a script or batch file, or may be executed within a program using a macro or internal scripting
tool. For example, an accountant may create a script to open several financial programs at once, saving
him the hassle of opening each program individually. This type of batch process would be executed by

the operating system, such as Windows or the Mac OS. A Photoshop user, on the other hand, might
use a batch process to modify several images at one time. For example, she might record an action

http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/personal-computer
https://techterms.com/definition/operating_system
https://techterms.com/definition/script
https://techterms.com/definition/batchfile
https://techterms.com/definition/macro
https://techterms.com/definition/windows
https://techterms.com/definition/macos
https://techterms.com/definition/operating_system
https://techterms.com/definition/script
https://techterms.com/definition/batchfile
https://techterms.com/definition/macro
https://techterms.com/definition/windows
https://techterms.com/definition/macos

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

within Photoshop that resizes and crops an image. Once the action has been recorded, she can batch
process a folder of images, which will perform the action on all the images in the folder.
Batch processing can save time and energy by automating repetitive tasks. While it may take awhile to
write the script or record the repetitive actions, doing it once is certainly better than having to do it
many times.

Batch processing can save time and energy by automating repetitive tasks. While it may take awhile to
write the script or record the repetitive actions, doing it once is certainly better than having to do it
many times.
processing, but there are plenty of others. When you select several documents from the same
application and print them all in one step (if the application allows you to do that), you are "batch
printing," which is a form of batch processing. Or let's say that you want to send a whole group of files
to someone else via your modem-if your communications software permits batch processing, you can
choose all the files you want to send, and have the software send them off in a batch while you go to the
kitchen for a snack. Batch processing is a good feature to have in most applications.

 Multiprocessing

Multiprocessing is the use of two or more central processing units (CPUs) within a single

computer system.[1][2] The term also refers to the ability of a system to support more than one

processor or the ability to allocate tasks between them.[3] There are many variations on this basic

theme, and the definition of multiprocessing can vary with context, mostly as a function of how

CPUs are defined (multiple cores on one die, multiple dies in one package, multiple packages in

one system unit, etc.).

According to some on-line dictionaries, a multiprocessor is a computer system having two or

more processing units (multiple processors) each sharing main memory and peripherals, in order

to simultaneously process programs.[4][5] A 2009 textbook defined multiprocessor system

similarly, but noting that the processors may share "some or all of the system’s memory and I/O

facilities"; it also gave tightly coupled system as a synonymous term.[6]

At the operating system level, multiprocessing is sometimes used to refer to the execution of

multiple concurrent processes in a system, with each process running on a separate CPU or core,

as opposed to a single process at any one instant.[7][8] When used with this definition,

multiprocessing is sometimes contrasted with multitasking, which may use just a single

processor but switch it in time slices between tasks (i.e. a time-sharing system). Multiprocessing

however means true parallel execution of multiple processes using more than one processor.[8]

Multiprocessing doesn't necessarily mean that a single process or task uses more than one

processor simultaneously; the term parallel processing is generally used to denote that

scenario.[7] Other authors prefer to refer to the operating system techniques as multiprogramming

and reserve the term multiprocessing for the hardware aspect of having more than one

processor.[2][9] The remainder of this article discusses multiprocessing only in this hardware

sense.

In Flynn's taxonomy, multiprocessors as defined above are MIMD machines.[10][11] As they are

normally construed to be tightly coupled (share memory), multiprocessors are not the entire class

of MIMD machines, which also contains message passing multicomputer systems.[10]

n a multiprocessing system, all CPUs may be equal, or some may be reserved for special

purposes. A combination of hardware and operating system software design considerations

https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Rajagopal1999-1
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Rajagopal1999-1
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-3
https://en.wikipedia.org/wiki/Multi-core_%28computing%29
https://en.wikipedia.org/wiki/Die_%28integrated_circuit%29
https://en.wikipedia.org/wiki/Chip_carrier
https://en.wikipedia.org/wiki/System_unit
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-4
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-4
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-6
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-MorleyParker2012-7
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-MorleyParker2012-7
https://en.wikipedia.org/wiki/Multitasking
https://en.wikipedia.org/wiki/Time-sharing_system
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Shibu-8
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-MorleyParker2012-7
https://en.wikipedia.org/wiki/Multiprogramming
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-EbbersKettner2012-2
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-EbbersKettner2012-2
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Giladi2008-10
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Giladi2008-10
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Multiprocessing#cite_note-Giladi2008-10
https://en.wikipedia.org/wiki/Operating_system

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

determine the symmetry (or lack thereof) in a given system. For example, hardware or software

considerations may require that only one particular CPU respond to all hardware interrupts,

whereas all other work in the system may be distributed equally among CPUs; or execution of

kernel-mode code may be restricted to only one particular CPU, whereas user-mode code may be

executed in any combination of processors. Multiprocessing systems are often easier to design if

such restrictions are imposed, but they tend to be less efficient than systems in which all CPUs

are utilized.

Systems that treat all CPUs equally are called symmetric multiprocessing (SMP) systems. In

systems where all CPUs are not equal, system resources may be divided in a number of ways,

including asymmetric multiprocessing (ASMP), non-uniform memory access (NUMA)

multiprocessing, and clustered multiprocessing.

Instruction and data streams

In multiprocessing, the processors can be used to execute a single sequence of instructions in

multiple contexts (single-instruction, multiple-data or SIMD, often used in vector processing),

multiple sequences of instructions in a single context (multiple-instruction, single-data or MISD,

used for redundancy in fail-safe systems and sometimes applied to describe pipelined processors

or hyper-threading), or multiple sequences of instructions in multiple contexts (multiple-

instruction, multiple-data or MIMD).

Processor coupling

Tightly coupled multiprocessor system

Tightly coupled multiprocessor systems contain multiple CPUs that are connected at the bus

level. These CPUs may have access to a central shared memory (SMP or UMA), or may

participate in a memory hierarchy with both local and shared memory (SM)(NUMA). The IBM

p690 Regatta is an example of a high end SMP system. Intel Xeon processors dominated the

multiprocessor market for business PCs and were the only major x86 option until the release of

AMD's Opteron range of processors in 2004. Both ranges of processors had their own onboard

cache but provided access to shared memory; the Xeon processors via a common pipe and the

Opteron processors via independent pathways to the system RAM.

Chip multiprocessors, also known as multi-core computing, involves more than one processor

placed on a single chip and can be thought of the most extreme form of tightly coupled

multiprocessing. Mainframe systems with multiple processors are often tightly coupled.

Loosely coupled multiprocessor system

Main article: shared nothing architecture

Loosely coupled multiprocessor systems (often referred to as clusters) are based on multiple

standalone single or dual processor commodity computers interconnected via a high speed

communication system (Gigabit Ethernet is common). A Linux Beowulf cluster is an example of

a loosely coupled system.

Tightly coupled systems perform better and are physically smaller than loosely coupled systems,

but have historically required greater initial investments and may depreciate rapidly; nodes in a

loosely coupled system are usually inexpensive commodity computers and can be recycled as

independent machines upon retirement from the cluster.

Power consumption is also a consideration. Tightly coupled systems tend to be much more

energy efficient than clusters. This is because considerable economy can be realized by

designing components to work together from the beginning in tightly coupled systems, whereas

loosely coupled systems use components that were not necessarily intended specifically for use

in such systems.

https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Asymmetric_multiprocessing
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Vector_processing
https://en.wikipedia.org/wiki/MISD
https://en.wikipedia.org/wiki/Redundancy_%28engineering%29
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/Uniform_Memory_Access
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/IBM_p690
https://en.wikipedia.org/wiki/IBM_p690
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/Opteron
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Multi-core_%28computing%29
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Commodity_computer
https://en.wikipedia.org/wiki/Gigabit_Ethernet
https://en.wikipedia.org/wiki/Beowulf_cluster
https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Depreciation

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Loosely coupled systems have the ability to run different operating systems or OS versions on

different systems.

 Time sharing operating system

A time sharing operating system is that in which each task is given some time to execute and all tasks
are given time so that all processes run seamlessly without any problem. Suppose there are many users
attached to a single system then each user has given time of CPU. No user can feel to have trouble in
using the system.

Usage of time sharing operating system
Advantages of time sharing operating systems:
In time sharing systems all the tasks are given specific time and task switching time is very less so
applications don’t get interrupted by it. Many applications can run at the same time. You can also use
time sharing in batch systems if appropriate which increases performance.
Time sharing systems is better way to run a business having lot of tasks to be done and no task get
interrupted by the system. Each task and each user get its time. The tasks which are near to end get
more attention so that new tasks can get time.
Threads also work on time sharing. Have you heard about multi-threading or multi-tasking? It is

using time sharing to switch jobs/tasks. Suppose you are using MS word or MS excel. Now in

these applications many small threads or tasks are running like spelling checking and

grammatical checking in MS word. So time sharing operating systems have to give time to these

application individual tasks and other applications also, so that all system behave correctly.

Disadvantages of time sharing operating systems:
The big disadvantages of time sharing systems is that it consumes much resources so it need special
operating systems. Switching between tasks becomes sometimes sophisticated as there are lot of users
and applications running which may hang up the system. So the time sharing systems should have high
specifications of hardware.
Examples of time sharing is:
The Multics & Unix operating systems are time sharing Operating Systems
Time-sharing is a technique which enables many people, located at various terminals, to use a particular
computer system at the same time. Time-sharing or multitasking is a logical extension of

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

multiprogramming. Processor's time which is shared among multiple users simultaneously is termed as
time-sharing.
The word ‘Time-sharing’ is not being used as ‘Multi-tasking’ which means doing multiple tasks
simultaneously.

In above figure the user 5 is active but user 1, user 2, user 3, and user 4 are in waiting state whereas
user 6 is in ready status.

 I/O Programming concepts

One of the most important techniques in I/O programming is one that you should avoid: forcing

the operating system to wait for your device. Almost everyone has had the experience of seeing

Microsoft Windows "freeze up". Sometimes the freeze is due to a crash, but other times the

system is simply waiting for a device to respond.

There are two basic programming techniques for dealing with waiting for a

device: synchronousand asynchronous. Synchronous programming waits for the device and

should be avoided. Asynchronous programming uses other techniques (such as waiting for

interrupt requests). For more information about synchronous and asynchronous programming,

see the following topics:

Synchronous I/O Programming

Asynchronous I/O Programming

Microsoft Vista has a new policy for dealing with problems with synchronous programming. For

more information about this new policy, see Restricting Waits in Windows Vista for more

information.

In earlier device driver programming, a driver would need to repeatedly request information

from a driver until the answer was provided. This technique is called polling and should almost

never be used. The best way to handle the problem of polling is to use hardware interrupts. For

more information about hardware interrupts, see Servicing Interrupts. For more information on

polling and why you should not use it, see Avoid Device Polling.

https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/synchronous-i-o-programming
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/asynchronous-i-o-programming
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/restricting-waits-in-vista
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/servicing-interrupts
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/avoid-polling-devices

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Interrupt structure and processing

An interrupt is a signal from a device attached to a computer or from a program within the

computer that requires the operating system to stop and figure out what to do next. Almost all

personal (or larger) computers today are interrupt-driven - that is, they start down the list of

computer instructions in one program (perhaps an application such as a word processor) and

keep running the instructions until either (A) they can't go any further or (B) an interrupt signal is

sensed. After the interrupt signal is sensed, the computer either resumes running the current

program or begins running another program.

Basically, a single computer can perform only one computer instruction at a time. But, because it

can be interrupted, it can take turns in which programs or sets of instructions that it performs.

This is known as multitasking. It allows the user to do a number of different things at the same

time. The computer simply takes turns managing the programs that the user starts. Of course, the

computer operates at speeds that make it seem as though all of the user's tasks are being

performed at the same time. (The computer's operating system is good at using little pauses in

operations and user think time to work on other programs.)

An operating system usually has some code that is called an interrupt handler. The interrupt

handler prioritizes the interrupts and saves them in a queue if more than one is waiting to be

handled. The operating system has another little program, sometimes called a scheduler, that

figures out which program to give control to next.

In general, there are hardware interrupts and software interrupts. A hardware interrupt occurs, for

example, when an I/O operation is completed such as reading some data into the computer from

a tape drive. A software interrupt occurs when an application program terminates or requests

certain services from the operating system. In a personal computer, a hardware interrupt request

(IRQ) has a value that associates it with a particular device.

 UNIT-II
 Memory management
From Wikipedia, the free encyclopedia
In operating systems, memory management is the function responsible for managing the
computer's primary memory.[1]:pp-105–208
The memory management function keeps track of the status of each memory location,
either allocated or free. It determines how memory is allocated among competing processes, deciding
which gets memory, when they receive it, and how much they are allowed. When memory is allocated it
determines which memory locations will be assigned. It tracks when memory is freed or unallocated and
updates the status.

http://searchcio-midmarket.techtarget.com/definition/operating-system
http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchcio-midmarket.techtarget.com/definition/multitasking
http://searchcio-midmarket.techtarget.com/definition/queue
http://searchcio-midmarket.techtarget.com/definition/queue
http://searchcio-midmarket.techtarget.com/definition/IRQ
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Primary_memory
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-Madnick-1

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Single contiguous allocation

Single allocation is the simplest memory management technique. All the computer's memory,
usually with the exception of a small portion reserved for the operating system, is available to
the single application. MS-DOS is an example of a system which allocates memory in this way.
An embedded system running a single application might also use this technique.
A system using single contiguous allocation may still multitask by swapping the contents of
memory to switch among users. Early versions of the Music operating system used this
technique.

 Partitioned allocation

Partitioned allocation divides primary memory into multiple memory partitions, usually contiguous

areas of memory. Each partition might contain all the information for a specific jobor task. Memory
management consists of allocating a partition to a job when it starts and unallocating it when the job
ends.
Partitioned allocation usually requires some hardware support to prevent the jobs from interfering with

one another or with the operating system. The IBM System/360 used a lock-and-key technique.

Other systems used base and bounds registers which contained the limits of the partition and flagged

invalid accesses. The UNIVAC 1108 Storage Limits Register had separate base/bound sets for

instructions and data. The system took advantage of memory interleaving to place what were called

the i bank and d bank in separate memory modules.[2]:3-3

Partitions may be either static, that is defined at Initial Program Load (IPL) or boot time or by

the computer operator, or dynamic, that is automatically created for a specific job. IBM System/360

Operating System Multiprogramming with a Fixed Number of Tasks (MFT) is an example of static

partitioning, and Multiprogramming with a Variable Number of Tasks(MVT) is an example of dynamic.

MVT and successors use the term region to distinguish dynamic partitions from static ones in other

systems.[3]:73

Partitions may be relocatable using hardware typed memory, like the Burroughs Corporation B5500,

or base and bounds registers like the PDP-10 or GE-635. Relocatable partitions are able to

be compacted to provide larger chunks of contiguous physical memory. Compaction moves "in-use"
areas of memory to eliminate "holes" or unused areas of memory caused by process termination in

order to create larger contiguous free areas.[4]:94

Some systems allow partitions to be swapped out to secondary storage to free additional memory.

Early versions of IBM's Time Sharing Option (TSO) swapped users in and out of a single time-

sharing partition.[5]

 Relocatable Partitioned Allocation

Relocatable Partitioned Allocation :

The fragmentation problem is removed by relocated partitioned scheme. The blocks (jobs)

already in the main memory can be relocated to make a hole (region) large enough for

 incoming information the relocation of the blocks already stored in the main memory

 accomplished by a technics called "compaction". The blocks currently in the main memory

 combined into a single block placed at one end of the memory this creates a single available

region of maximum possible size at other end. The blocks can be relocated efficiently with a

 special hard ware facility for this purpose relocation register issued whose contents are

https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Paging#Terminology
https://en.wikipedia.org/wiki/MUSIC/SP
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/IBM_System_360
https://en.wikipedia.org/wiki/Storage_protection#Protection_keys
https://en.wikipedia.org/wiki/Base_and_bounds
https://en.wikipedia.org/wiki/UNIVAC_1100/2200_series
https://en.wikipedia.org/wiki/Interleaved_memory
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-2
https://en.wikipedia.org/wiki/Initial_Program_Load#IBM_Initial_Program_Load
https://en.wikipedia.org/wiki/Booting
https://en.wikipedia.org/wiki/Computer_operator
https://en.wikipedia.org/wiki/OS/360_and_successors
https://en.wikipedia.org/wiki/OS/360_and_successors
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-3
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/GE-635
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-4
https://en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage
https://en.wikipedia.org/wiki/Time_Sharing_Option
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-5

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 automatically added to every address. This register is used to reference memory after each

compaction incoming blocks assigned to the available region of the memory when a new block

is assigned in the available region compaction is again carried out.

Advantages :

1) It removes fragmentation problem.

Dis-advantages :

1) When a job ends the system may have to relocate all other jobs in order to re-compact.

 2) There is still a small amount of memory is wasted.

Paged Memory Allocation : Paging is another solution for the fragmentation problem. In

this each jobs address space divided into equal pieces called Pages. The memory is also

divided into pieces of same size called Page Frames with the help of suitable hard ware

mapping facility, any page can be placed into any Page Frame. The pages remain logically

continuous but the corresponding Page Frames are not necessary continuous.

There is a seperate register for each Job called Page Map Table these registers may be special

hard ware registers or reserved section of the micro memory. If the page size is too large, it

becomes a relocatable partitioned memory. If the page size is too small many page

registers (PMT'S) are required which increases the cost of the computer systems. The paged

memory allocation is shown in figure. In the next example address space of job1 is divided into

 two pages. Job2 is divided into three pages and Job3 consist of only one page we are assuming

each page size is 1000 B there is a page map table for each Job which consists of page. Number

and the location of that page in memory , there is mapping that takes place with each address

i.e.., each address in the Job 's address space can be transferred into an address in the physical

memory.

In the above example a Job may not be a multiple of 1000 B long. Then a portion of last page of that Job
will be wasted. This is called Internal fragmentation.

Advantages :

1. It solves the fragmentation problem without physically moving the pages in memory.
 2. This allows a higher degree of multiprogramming.
3. The compaction in relocatable partitioned allocation is elimated.

Dis-Advantages :

1. Page address mapping hardware increase the cost of the computer system.
2. Extra core or extra registers needed for page map tables.
3. There is a possibility of internal fragmentation (or) page breakage may occur.
4. Some memory will still unused if the number of available page frames are not sufficient for the
Job's page.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Paged memory management
Main article: Virtual memory

Paged allocation divides the computer's primary memory into fixed-size units called page

frames, and the program's virtual address space into pages of the same size. The

hardware memory management unit maps pages to frames. The physical memory can be

allocated on a page basis while the address space appears contiguous.

Usually, with paged memory management, each job runs in its own address space. However,

there are some single address space operating systems that run all processes within a single

address space, such as IBM i, which runs all processes within a large address space, and

IBM OS/VS2 SVS, which ran all jobs in a single 16MiB virtual address space.

Paged memory can be demand-paged when the system can move pages as required between

primary and secondary memory.

 Demand Paged memory management
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method

of virtual memory management. In a system that uses demand paging, the operating system

copies a disk page into physical memory only if an attempt is made to access it and that page is

not already in memory (i.e., if a page fault occurs). It follows that a process begins execution

with none of its pages in physical memory, and many page faults will occur until most of a

process's working set of pages is located in physical memory. This is an example of a lazy

loading technique.

Contents

1Basic concept

2Advantages

3Disadvantages

4See also

5References

Basic concept

Demand paging follows that pages should only be brought into memory if the executing process

demands them. This is often referred to as lazy evaluation as only those pages demanded by the

process are swapped from secondary storage to main memory. Contrast this to pure swapping,

where all memory for a process is swapped from secondary storage to main memory during the

process startup.

Commonly, to achieve this process a page table implementation is used. The page table

maps logical memory to physical memory. The page table uses a bitwise operator to mark if a

page is valid or invalid. A valid page is one that currently resides in main memory. An invalid

page is one that currently resides in secondary memory. When a process tries to access a page,

the following steps are generally followed:

Attempt to access page.

If page is valid (in memory) then continue processing instruction as normal.

If page is invalid then a page-fault trap occurs.

Check if the memory reference is a valid reference to a location on secondary memory. If not,

the process is terminated (illegal memory access). Otherwise, we have topage in the required

page.

Schedule disk operation to read the desired page into main memory.

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Single_address_space_operating_system
https://en.wikipedia.org/wiki/IBM_i
https://en.wikipedia.org/wiki/IBM_Single_Virtual_Storage_(SVS)
https://en.wikipedia.org/wiki/Demand_paging
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Operating_systems
https://en.wikipedia.org/wiki/Paging#Page_replacement_techniques
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Lazy_loading
https://en.wikipedia.org/wiki/Lazy_loading
https://en.wikipedia.org/wiki/Demand_paging#Basic_concept
https://en.wikipedia.org/wiki/Demand_paging#Advantages
https://en.wikipedia.org/wiki/Demand_paging#Disadvantages
https://en.wikipedia.org/wiki/Demand_paging#See_also
https://en.wikipedia.org/wiki/Demand_paging#References
https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Secondary_storage
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Logical_memory
https://en.wikipedia.org/wiki/Physical_memory
https://en.wikipedia.org/wiki/Bitwise_operation

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Restart the instruction that was interrupted by the operating system trap.

Advantages

Demand paging, as opposed to loading all pages immediately:

Only loads pages that are demanded by the executing process.

As there is more space in main memory, more processes can be loaded, reducing the context

switching time, which utilizes large amounts of resources.

Less loading latency occurs at program startup, as less information is accessed from secondary

storage and less information is brought into main memory.

As main memory is expensive compared to secondary memory, this technique helps significantly

reduce the bill of material (BOM) cost in smart phones for example. Symbian OS had this

feature.

Disadvantages

Individual programs face extra latency when they access a page for the first time.

Low-cost, low-power embedded systems may not have a memory management unit that supports

page replacement.

Memory management with page replacement algorithms becomes slightly more complex.

Possible security risks, including vulnerability to timing attacks; see Percival 2005 Cache

Missing for Fun and Profit (specifically the virtual memory attack in section 2).

Thrashing which may occur due to repeated page faults.

 Segmented memory management
Segmented memory is the only memory management technique that does not provide the user's

program with a 'linear and contiguous address space."[1]:p.165 Segments are areas of memory that

usually correspond to a logical grouping of information such as a code procedure or a data array.

Segments require hardware support in the form of a segment table which usually contains the

physical address of the segment in memory, its size, and other data such as access protection bits

and status (swapped in, swapped out, etc.)

Segmentation allows better access protection than other schemes because memory references are

relative to a specific segment and the hardware will not permit the application to reference

memory not defined for that segment.

It is possible to implement segmentation with or without paging. Without paging support the

segment is the physical unit swapped in and out of memory if required. With paging support the

pages are usually the unit of swapping and segmentation only adds an additional level of

security.

Addresses in a segmented system usually consist of the segment id and an offset relative to the

segment base address, defined to be offset zero.

The Intel IA-32 (x86) architecture allows a process to have up to 16,383 segments of up to 4GiB

each. IA-32 segments are subdivisions of the computer's linear address space, the virtual address

space provided by the paging hardware.[6]

The Multics operating system is probably the best known system implementing segmented

memory. Multics segments are subdivisions of the computer's physical memory of up to 256

pages, each page being 1K 36-bit words in size, resulting in a maximum segment size of 1MiB

(with 9-bit bytes, as used in Multics). A process could have up to 4046 segments.[7]

https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Page_replacement_algorithms
https://en.wikipedia.org/wiki/Timing_attack
http://www.daemonology.net/papers/htt.pdf
http://www.daemonology.net/papers/htt.pdf
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-Madnick-1
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-6
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Memory_management_(operating_systems)#cite_note-7

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Segmented and Demand paged memory management

Recall that the logical memory address space of each process is divided into regions according to

the type of data contained. (See The Virtual Memory Address Space) Some of these regions or

sections of memory might be shared between different processes (text or shared libraries) or

threads (global data). It may also be desired for quick reference to include the operating system

in The Virtual Memory Address Space.

Since both the Windows PMT and the Linux PMT, divide the logical address into multiple

tables, it fits to divide the tables per segments. The Page Tables (middle set of tables) can be

shared between processes or threads. This allows a simple mechanism to share memory between

processes and threads.

 Overlay techniques

In a general computing sense, overlaying means "the process of transferring a block of program

code or other data into internal memory, replacing what is already stored".[1]Overlaying is

a programming method that allows programs to be larger than the computer's main

memory.[2] An embedded system would normally use overlays because of the limitation

of physical memory, which is internal memory for a system-on-chip, and the lack of virtual

memory facilities.

Contents

 [hide]

1Usage

2Example

3Applications

http://faculty.salina.k-state.edu/tim/ossg/Memory/virt_mem/virt_address_space.html#virt-address-space
http://faculty.salina.k-state.edu/tim/ossg/Memory/virt_mem/virt_address_space.html#virt-address-space
http://faculty.salina.k-state.edu/tim/ossg/Memory/paged_mem.html#win-pmt
http://faculty.salina.k-state.edu/tim/ossg/Memory/paged_mem.html#linux-pmt
https://en.wikipedia.org/wiki/Block_(data_storage)
https://en.wikipedia.org/wiki/Internal_memory
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-1
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-2
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Physical_memory
https://en.wikipedia.org/wiki/Internal_memory
https://en.wikipedia.org/wiki/System-on-chip
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Overlay_(programming)#Usage
https://en.wikipedia.org/wiki/Overlay_(programming)#Example
https://en.wikipedia.org/wiki/Overlay_(programming)#Applications

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

4Historical use

5References

6External links

7See also

Usage

Constructing an overlay program involves manually dividing a program into self-

contained object code blocks called overlays laid out in a tree structure. Sibling segments, those

at the same depth level, share the same memory, called overlay region or destination region. An

overlay manager, either part of the operating system or part of the overlay program, loads the

required overlay from external memory into its destination region when it is needed.

Often linkers provide support for overlays.[3]

Example

The following example shows the control statements that instruct the OS/360 Linkage Editor to

link an overlay program, indented to show structure (segment names are arbitrary):

 INCLUDE SYSLIB(MOD1)

 INCLUDE SYSLIB(MOD2)

 OVERLAY A

 INCLUDE SYSLIB(MOD3)

 OVERLAY AA

 INCLUDE SYSLIB(MOD4)

 INCLUDE SYSLIB(MOD5)

 OVERLAY AB

 INCLUDE SYSLIB(MOD6)

 OVERLAY B

 INCLUDE SYSLIB(MOD7)

 +--------------+

 | Root Segment |

 | MOD1, MOD2 |

 +--------------+

 |

 +----------+----------+

 | |

 +-------------+ +-------------+

 | Overlay A | | Overlay B |

 | MOD3 | | MOD7 |

 +-------------+ +-------------+

 |

 +--------+--------+

 | |

 +-------------+ +-------------+

 | Overlay AA | | Overlay AB |

 | MOD4, MOD5 | | MOD6 |

 +-------------+ +-------------+

These statements define a tree consisting of the permanently resident segment, called the root,

and two overlays A and B which will be loaded following the end of MOD2. Overlay A itself

consists of two overlay segments, AA, and AB. At execution time overlays A and B will both

https://en.wikipedia.org/wiki/Overlay_(programming)#Historical_use
https://en.wikipedia.org/wiki/Overlay_(programming)#References
https://en.wikipedia.org/wiki/Overlay_(programming)#External_links
https://en.wikipedia.org/wiki/Overlay_(programming)#See_also
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Auxiliary_memory
https://en.wikipedia.org/wiki/Linker_(computing)
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-3

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

utilize the same memory locations; AA and AB will both utilize the same locations following the

end of MOD3.

All the segments between the root and a given overlay segment are called a path.

Applications

As of 2015, most business applications are intended to run on platforms with virtual memory. A

developer on such a platform can design a program as if the memory constraint does not exist

unless the program's working set exceeds the available physical memory. Most importantly, the

architect can focus on the problem being solved without the added design difficulty of forcing

the processing into steps constrained by the overlay size. Thus, the designer can use higher-level

programming languages that do not allow the programmer much control over size

(e.g. Java, C++, Smalltalk).

Still, overlays remain useful in embedded systems.[4] Some low-cost processors used

in embedded systems do not provide a memory management unit (MMU). In addition many

embedded systems are real-time systems and overlays provide more determinate response-time

than paging. For example, the Space Shuttle Primary Avionics System Software (PASS) uses

programmed overlays.[5]

Even on platforms with virtual memory, software components such as codecs may

be decoupled to the point where they can be loaded in and out as needed.

Historical use

In the home computer era overlays were popular because the operating system and many of the

computer systems it ran on lacked virtual memory and had very little RAM by current standards

— the original IBM PC had between 16K and 64K depending on configuration. Overlays were a

popular technique in Commodore BASIC to load graphics screens. In order to detect when an

overlay was already loaded, a flag variable could be used.[6]

"Several DOS linkers in the 1980s supported [overlays] in a form nearly identical to that used 25

years earlier on mainframe computers."[4] Binary files containing memory overlays had a de

facto standard extension, .OVL. This file type was used among others by WordStar, dBase, and

the Enable DOS office automation software package from Enable Software, Inc.. The GFA

BASIC compiler was able to produce .OVL files.

 Swapping
Swapping is a simple memory/process management technique used by the operating system(os)

to increase the utilization of the processor by moving some blocked process from the main

memory to the secondary memory(hard disk);thus forming a queue of temporarily suspended

process and the execution continues with the newly arrived process.After performing the

swapping process,the operating system has two options in selecting a process for execution :

*Operating System can admit newly created process (OR) *operating system can activate

suspended process from the swap memory.

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-Levine-4
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Space_Shuttle
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-5
https://en.wikipedia.org/wiki/Software_componentry
https://en.wikipedia.org/wiki/Codec
https://en.wikipedia.org/wiki/Coupling_(computer_science)#Low_coupling
https://en.wikipedia.org/wiki/Library_(computing)#Dynamic_loading
https://en.wikipedia.org/wiki/Home_computer
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Commodore_BASIC
https://en.wikipedia.org/wiki/Flag_(computing)
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-6
https://en.wikipedia.org/wiki/Overlay_(programming)#cite_note-Levine-4
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/WordStar
https://en.wikipedia.org/wiki/DBase
https://en.wikipedia.org/wiki/Enable_Software,_Inc.
https://en.wikipedia.org/wiki/GFA_BASIC
https://en.wikipedia.org/wiki/GFA_BASIC

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Conclusion : If you have ever used any Linux based operating system then at the time of

installation …Did you see an options/warning for the need of swap memory space?? If you have

enough primary memory(RAM) e.g greater than 2GB then you may need not any swapping

memory space for desktop users(I am using Ubuntu 10.04 LTS and total RAM is 4GB so I am

not feeling any trouble without swap memory space) and some times using swap memory may

slow down your computer performance

 Unit-III

 Process management
Process management is an integral part of any modern-day operating system (OS). The OS must
allocate resources to processes, enable processes to share and exchange information, protect the
resources of each process from other processes and enable synchronization among processes. To
meet these requirements, the OS must maintain a data structure for each process, which describes
the state and resource ownership of that process, and which enables the OS to exert control over
each process.

 Job Scheduling

Definition

Job scheduling is the process of allocating system resources to many different tasks by an

operating system (OS). The system handles prioritized job queues that are awaiting CPU time

and it should determine which job to be taken from which queue and the amount of time to be

allocated for the job. This type of scheduling makes sure that all jobs are carried out fairly and on

time.

Most OSs like Unix, Windows, etc., include standard job-scheduling abilities. A number of

programs including database management systems (DBMS), backup, enterprise resource

planning (ERP) and business process management (BPM) feature specific job-scheduling

capabilities as well.

[LAST CHANCE] Manage Complex ERP Environments Webinar

http://blog.sudobits.com/tag/linux/
http://blog.sudobits.com/2010/08/10/what-is-swapping-in-operating-system/
http://blog.sudobits.com/tag/ubuntu-10-04-tips/
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Data_structure
https://www.techopedia.com/reg/manage-the-performance-of-complex-peoplesoft-environments/32940?utm_source=house&utm_medium=hello&utm_campaign=bloor-090617
https://www.techopedia.com/reg/manage-the-performance-of-complex-peoplesoft-environments/32940?utm_source=house&utm_medium=hello&utm_campaign=bloor-090617

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Techopedia explains Job Scheduling

Job scheduling is performed using job schedulers. Job schedulers are programs that enable

scheduling and, at times, track computer "batch" jobs, or units of work like the operation of a

payroll program. Job schedulers have the ability to start and control jobs automatically by

running prepared job-control-language statements or by means of similar communication with a

human operator. Generally, the present-day job schedulers include a graphical user interface

(GUI) along with a single point of control.

Organizations wishing to automate unrelated IT workload could also use more sophisticated

attributes from a job scheduler, for example:

Real-time scheduling in accordance with external, unforeseen events

Automated restart and recovery in case of failures

Notifying the operations personnel

Generating reports of incidents

Audit trails meant for regulation compliance purposes

In-house developers can write these advanced capabilities; however, these are usually offered by

providers who are experts in systems-management software.

In scheduling, many different schemes are used to determine which specific job to run. Some

parameters that may be considered are as follows:

Job priority

Availability of computing resource

License key if the job is utilizing a licensed software

Execution time assigned to the user

Number of parallel jobs permitted for a user

Projected execution time

Elapsed execution time

Presence of peripheral devices

Number of cases of prescribed events

 Process Scheduling

Definition

The process scheduling is the activity of the process manager that handles the removal of the

running process from the CPU and the selection of another process on the basis of a particular

strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating

systems allow more than one process to be loaded into the executable memory at a time and the

loaded process shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate queue

for each of the process states and PCBs of all processes in the same execution state are placed in

the same queue. When the state of a process is changed, its PCB is unlinked from its current

queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues −

Job queue − This queue keeps all the processes in the system.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Ready queue − This queue keeps a set of all processes residing in main memory, ready and

waiting to execute. A new process is always put in this queue.

Device queues − The processes which are blocked due to unavailability of an I/O device

constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The

OS scheduler determines how to move processes between the ready and run queues which can

only have one entry per processor core on the system; in the above diagram, it has been merged

with the CPU.

Two-State Process Model

Two-state process model refers to running and non-running states which are described below −

S.N. State & Description

1
Running

When a new process is created, it enters into the system as in the running state.

2

Not Running
Processes that are not running are kept in queue, waiting for their turn to execute. Each

entry in the queue is a pointer to a particular process. Queue is implemented by using linked

list. Use of dispatcher is as follows. When a process is interrupted, that process is

transferred in the waiting queue. If the process has completed or aborted, the process is

discarded. In either case, the dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handle process scheduling in various ways. Their

main task is to select the jobs to be submitted into the system and to decide which process to run.

Schedulers are of three types −

Long-Term Scheduler

Short-Term Scheduler

Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which programs are admitted

to the system for processing. It selects processes from the queue and loads them into memory for

execution. Process loads into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O

bound and processor bound. It also controls the degree of multiprogramming. If the degree of

multiprogramming is stable, then the average rate of process creation must be equal to the

average departure rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or minimal. Time-sharing

operating systems have no long term scheduler. When a process changes the state from new to

ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system performance in

accordance with the chosen set of criteria. It is the change of ready state to running state of the

process. CPU scheduler selects a process among the processes that are ready to execute and

allocates CPU to one of them.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Short-term schedulers, also known as dispatchers, make the decision of which process to execute

next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes from the memory. It

reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling

the swapped out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes

cannot make any progress towards completion. In this condition, to remove the process from

memory and make space for other processes, the suspended process is moved to the secondary

storage. This process is called swapping, and the process is said to be swapped out or rolled out.

Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N. Long-Term Scheduler Short-Term Scheduler Medium-Term Scheduler

1 It is a job scheduler It is a CPU scheduler
It is a process swapping

scheduler.

2
Speed is lesser than short term

scheduler

Speed is fastest among

other two

Speed is in between both short

and long term scheduler.

3
It controls the degree of

multiprogramming

It provides lesser control

over degree of

multiprogramming

It reduces the degree of

multiprogramming.

4
It is almost absent or minimal

in time sharing system

It is also minimal in time

sharing system

It is a part of Time sharing

systems.

5

It selects processes from pool

and loads them into memory

for execution

It selects those processes

which are ready to execute

It can re-introduce the process

into memory and execution can

be continued.

Base and limit register value

Currently used register

Changed State

I/O State information

Accounting information

A Process Scheduler schedules different processes to be assigned to the CPU based on particular

scheduling algorithms. There are six popular process scheduling algorithms which we are going

to discuss in this chapter −

First-Come, First-Served (FCFS) Scheduling

Shortest-Job-Next (SJN) Scheduling

Priority Scheduling

Shortest Remaining Time

Round Robin(RR) Scheduling

Multiple-Level Queues Scheduling

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms are

designed so that once a process enters the running state, it cannot be preempted until it completes

its allotted time, whereas the preemptive scheduling is based on priority where a scheduler may

preempt a low priority running process anytime when a high priority process enters into a ready

state.

First Come First Serve (FCFS)

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Jobs are executed on first come, first serve basis.

It is a non-preemptive, pre-emptive scheduling algorithm.

Easy to understand and implement.

Its implementation is based on FIFO queue.

Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.7

 Functions and Policies

The operating system, or OS, of a computer is the first software that gets installed on the hard

disk, and it remains there even when the computer is turned off. The OS is also the first software

that gets loaded into the computer's memory when it is turned on. Once the OS is up and

running, it performs five critical tasks.

System Management

Without an OS, your computer would not even start up. The first task of the OS is to manage the

starting up of your computer, also known as booting up. When this happens, the OS makes sure

all the various elements of your computer are working properly.

Once the OS is up and running, you're ready to start using your computer. Perhaps you're writing

an essay for school, so you open up a word processing application. You do some research online,

so you open up a web browser. And, while you are working, you want to listen to some music, so

you launch your music player.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

So, you're running multiple applications at the same time; this is known as multi-tasking. We

take this for granted on today's computers, but in the early days of computing, a computer system

only carried out a single task at a time.

While the OS is multi-tasking, it is constantly managing system resources. For example,

applications require memory to run, and there's only so much memory installed on a computer

system.

So, let's say you want to include an image into your essay, and you start using photo editing

software to work on a high-quality photograph. This may take a fair bit of memory. You don't

want the photo editing to be terribly slow, but you also don't want your music to stop playing.

So, the OS tries to balance the memory needs of all the applications that are running. System

management also includes routine maintenance tasks, such as file management, defragmenting

disks to optimize hard drive storage, and keeping track of power supply.

Communication Services

The OS establishes an Internet connection so you can surf the Web or send e-mails. We take

being online almost for granted, but there are a lot of protocols at work behind the scenes to

make sure you stay connected. The OS makes sure you don't have to worry about managing

these protocols by yourself.

Every time you visit a website, download a song, or send an e-mail, your computer interacts with

a computer network that stretches across the globe. Your OS manages your connections, such as

Ethernet and Wi-Fi connections, and ensures all communications with the network occur

seamlessly.

Security

There are numerous security threats to your computer, in particular various types of malware,

which is short for malicious software. This includes computer viruses, which can interfere with

the normal operations of your computer. Viruses can be very harmful and result in loss of data or

system crashes.

The OS of a computer has a number of built-in tools to protect against security threats, including

the use of virus scanning utilities and setting up a firewall to block suspicious network activity.

One of the most common ways to get a computer virus is by e-mail. If you have received an e-

mail message from someone you don't know with an unknown file attachment, be careful about

opening up that file since it may just contain a virus or other malicious software.

While the OS has a number of built-in security tools, you may need additional software to set up

the best protection, in particular virus scanning software. These types of utilities expand the

functionality of the OS.

Another basic security feature is to control access to your computer by setting up a password.

Without the password, someone else will not be able to get access to the software applications

and files on your computer.

 Round-robin scheduling
round-robin (RR) is one of the algorithms employed by process and network

schedulers in computing.[1][2] As the term is generally used, time slices (also known as time

quanta)[3] are assigned to each process in equal portions and in circular order, handling all

processes without priority (also known as cyclic executive). Round-robin scheduling is simple,

easy to implement, and starvation-free. Round-robin scheduling can also be applied to other

https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Round-robin_scheduling#cite_note-ostep-1-1
https://en.wikipedia.org/wiki/Round-robin_scheduling#cite_note-ostep-1-1
https://en.wikipedia.org/wiki/Preemption_(computing)#Time_slice
https://en.wikipedia.org/wiki/Round-robin_scheduling#cite_note-3
https://en.wiktionary.org/wiki/priority
https://en.wikipedia.org/wiki/Cyclic_executive
https://en.wikipedia.org/wiki/Resource_starvation

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

scheduling problems, such as data packet scheduling in computer networks. It is an operating

system concept.

The name of the algorithm comes from the round-robin principle known from other fields, where

each person takes an equal share of something in turn.

Contents

 [hide]

1Process scheduling

2Network packet scheduling

3See also

4References

Process scheduling[edit]

Main article: Process scheduler

To schedule processes fairly, a round-robin scheduler generally employs time-sharing, giving

each job a time slot or quantum[4] (its allowance of CPU time), and interrupting the job if it is not

completed by then. The job is resumed next time a time slot is assigned to that process. If the

process terminates or changes its state to waiting during its attributed time quantum, the

scheduler selects the first process in the ready queue to execute. In the absence of time-sharing,

or if the quanta were large relative to the sizes of the jobs, a process that produced large jobs

would be favoured over other processes.

Round-robin algorithm is a pre-emptive algorithm as the scheduler forces the process out of the

CPU once the time quota expires.

For example, if the time slot is 100 milliseconds, and job1 takes a total time of 250 ms to

complete, the round-robin scheduler will suspend the job after 100 ms and give other jobs their

time on the CPU. Once the other jobs have had their equal share (100 ms each), job1 will get

another allocation of CPU time and the cycle will repeat. This process continues until the job

finishes and needs no more time on the CPU.

Job1 = Total time to complete 250 ms (quantum 100 ms).

First allocation = 100 ms.

Second allocation = 100 ms.

Third allocation = 100 ms

Total CPU time of job1 = 250 ms

Consider the following table with the arrival time and execute time of the process with the

quantum time of 100ms to understand the round-robin scheduling:

Process

name

Arrival

time

Execute

time

P0 0 250

P1 50 170

P2 130 75

P3 190 100

P4 210 130

P5 350 50

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Round-robin_(disambiguation)
https://en.wikipedia.org/wiki/Round-robin_scheduling#Process_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling#Network_packet_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling#See_also
https://en.wikipedia.org/wiki/Round-robin_scheduling#References
https://en.wikipedia.org/w/index.php?title=Round-robin_scheduling&action=edit§ion=1
https://en.wikipedia.org/wiki/Process_scheduler
https://en.wikipedia.org/wiki/Time-sharing
https://en.wikipedia.org/wiki/Round-robin_scheduling#cite_note-McConnell2004-4
https://en.wikipedia.org/wiki/CPU

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Another approach is to divide all processes into an equal number of timing quanta such that the

quantum size is proportional to the size of the process. Hence, all processes end at the same time.

Network packet scheduling[edit]

Main article: Network scheduler

In best-effort packet switching and other statistical multiplexing, round-robin scheduling can be

used as an alternative to first-come first-served queuing.

A multiplexer, switch, or router that provides round-robin scheduling has a separate queue for

every data flow, where a data flow may be identified by its source and destination address. The

algorithm lets every active data flow that has data packets in the queue to take turns in

transferring packets on a shared channel in a periodically repeated order. The scheduling

is work-conserving, meaning that if one flow is out of packets, the next data flow will take its

place. Hence, the scheduling tries to prevent link resources from going unused.

https://en.wikipedia.org/w/index.php?title=Round-robin_scheduling&action=edit§ion=2
https://en.wikipedia.org/wiki/Network_scheduler
https://en.wikipedia.org/wiki/Best-effort
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Statistical_multiplexing
https://en.wikipedia.org/wiki/First-come_first-served
https://en.wikipedia.org/w/index.php?title=Work-conserving&action=edit&redlink=1
https://en.wikipedia.org/wiki/File:RoundRobin.jpg

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Round-robin scheduling results in max-min fairness if the data packets are equally sized, since

the data flow that has waited the longest time is given scheduling priority. It may not be desirable

if the size of the data packets varies widely from one job to another. A user that produces large

packets would be favored over other users. In that case fair queuingwould be preferable.

If guaranteed or differentiated quality of service is offered, and not only best-effort

communication, deficit round-robin (DRR) scheduling, weighted round-robin (WRR)

scheduling, or weighted fair queuing (WFQ) may be considered.

In multiple-access networks, where several terminals are connected to a shared physical medium,

round-robin scheduling may be provided by token passing channel accessschemes such as token

ring, or by polling or resource reservation from a central control station.

In a centralized wireless packet radio network, where many stations share one frequency

channel, a scheduling algorithm in a central base station may reserve time slots for the mobile

stations in a round-robin fashion and provide fairness. However, if link adaptation is used, it will

take a much longer time to transmit a certain amount of data to "expensive" users than to others

since the channel conditions differ. It would be more efficient to wait with the transmission until

the channel conditions are improved, or at least to give scheduling priority to less expensive

users. Round-robin scheduling does not utilize this. Higher throughput and system spectrum

efficiency may be achieved by channel-dependent scheduling, for example a proportionally

fair algorithm, or maximum throughput scheduling. Note that the latter is characterized by

undesirable scheduling starvation. This type of scheduling is one of the very basic algorithms for

Operating Systems in computers which can be implemented through circular queue data

structure.

 Process Synchronization
Process Synchronization means sharing system resources by processes in a such a way that,

Concurrent access to shared data is handled thereby minimizing the chance of inconsistent data.

Maintaining data consistency demands mechanisms to ensure synchronized execution of

cooperating processes.

Process Synchronization was introduced to handle problems that arose while multiple process

executions. Some of the problems are discussed below.

Critical Section Problem

A Critical Section is a code segment that accesses shared variables and has to be executed as an

atomic action. It means that in a group of cooperating processes, at a given point of time, only

one process must be executing its critical section. If any other process also wants to execute its

critical section, it must wait until the first one finishes.

https://en.wikipedia.org/wiki/Max-min_fairness
https://en.wikipedia.org/wiki/Fair_queuing
https://en.wikipedia.org/wiki/Deficit_round_robin
https://en.wikipedia.org/wiki/Weighted_round_robin
https://en.wikipedia.org/wiki/Weighted_fair_queuing
https://en.wikipedia.org/wiki/Multiple_access
https://en.wikipedia.org/wiki/Token_passing
https://en.wikipedia.org/wiki/Channel_access
https://en.wikipedia.org/wiki/Token_ring
https://en.wikipedia.org/wiki/Token_ring
https://en.wikipedia.org/wiki/Polling_(computer_science)
https://en.wikipedia.org/wiki/Link_adaptation
https://en.wikipedia.org/wiki/System_spectrum_efficiency
https://en.wikipedia.org/wiki/System_spectrum_efficiency
https://en.wikipedia.org/wiki/Proportionally_fair
https://en.wikipedia.org/wiki/Proportionally_fair
https://en.wikipedia.org/wiki/Maximum_throughput_scheduling
https://en.wikipedia.org/wiki/Scheduling_starvation

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Solution to Critical Section Problem

A solution to the critical section problem must satisfy the following three conditions :

Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section at a given

point of time.

Progress
If no process is in its critical section, and if one or more threads want to execute their critical

section then any one of these threads must be allowed to get into its critical section.

Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit for how many

other processes can get into their critical section, before this process's request is granted. So after

the limit is reached, system must grant the process permission to get into its critical section.

Synchronization Hardware

Many systems provide hardware support for critical section code. The critical section problem

could be solved easily in a single-processor environment if we could disallow interrupts to occur

while a shared variable or resource is being modified.

In this manner, we could be sure that the current sequence of instructions would be allowed to

execute in order without pre-emption. Unfortunately, this solution is not feasible in a

multiprocessor environment.

Disabling interrupt on a multiprocessor environment can be time consuming as the message is

passed to all the processors.

This message transmission lag, delays entry of threads into critical section and the system

efficiency decreases.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Wait and Signal mechanisms

n computer science, a semaphore is a variable or abstract data type used to control access to a

common resource by multiple processes in a concurrent system such as

amultiprogramming operating system.

A trivial semaphore is a plain variable that is changed (for example, incremented or

decremented, or toggled) depending on programmer-defined conditions. The variable is then

used as a condition to control access to some system resource.

A useful way to think of a semaphore as used in the real-world systems is as a record of how

many units of a particular resource are available, coupled with operations to adjust that

record safely (i.e. to avoid race conditions) as units are required or become free, and, if

necessary, wait until a unit of the resource becomes available. Semaphores are a useful tool in

the prevention of race conditions; however, their use is by no means a guarantee that a program

is free from these problems. Semaphores which allow an arbitrary resource count are

called counting semaphores, while semaphores which are restricted to the values 0 and 1 (or

locked/unlocked, unavailable/available) are called binary semaphores and are used to

implement locks.

The semaphore concept was invented by Dutch computer scientist Edsger Dijkstra in 1962 or

1963,[1] and has found widespread use in a variety of operating systems. It has also been used as

the control mechanism for I/O controllers, for example in the Electrologica X8 computer.

Contents

 [hide]

1Library analogy

1.1Important observations

2Semantics and implementation

3Examples

3.1Trivial example

3.2Login queue

3.3Producer–consumer problem

4Operation names

5Semaphores vs. mutexes

6See also

7Notes

8References

9External links

Library analogy[edit]

Suppose a library has 10 identical study rooms, to be used by one student at a time. Students

must request a room from the front desk if they wish to use a study room. If no rooms are free,

students wait at the desk until someone relinquishes a room. When a student has finished using a

room, the student must return to the desk and indicate that one room has become free.

In the simplest implementation, the clerk at the front desk knows only the number of free rooms

available, which they only know correctly if all of the students actually use their room while

they've signed up for them and return them when they're done. When a student requests a room,

the clerk decreases this number. When a student releases a room, the clerk increases this number.

The room can be used for as long as desired, and so it is not possible to book rooms ahead of

time.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Dutch_people
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://en.wikipedia.org/wiki/Semaphore_(programming)#cite_note-ReferenceA-1
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Electrologica_X8
https://en.wikipedia.org/wiki/Semaphore_(programming)#Library_analogy
https://en.wikipedia.org/wiki/Semaphore_(programming)#Important_observations
https://en.wikipedia.org/wiki/Semaphore_(programming)#Semantics_and_implementation
https://en.wikipedia.org/wiki/Semaphore_(programming)#Examples
https://en.wikipedia.org/wiki/Semaphore_(programming)#Trivial_example
https://en.wikipedia.org/wiki/Semaphore_(programming)#Login_queue
https://en.wikipedia.org/wiki/Semaphore_(programming)#Producer.E2.80.93consumer_problem
https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names
https://en.wikipedia.org/wiki/Semaphore_(programming)#Semaphores_vs._mutexes
https://en.wikipedia.org/wiki/Semaphore_(programming)#See_also
https://en.wikipedia.org/wiki/Semaphore_(programming)#Notes
https://en.wikipedia.org/wiki/Semaphore_(programming)#References
https://en.wikipedia.org/wiki/Semaphore_(programming)#External_links
https://en.wikipedia.org/w/index.php?title=Semaphore_(programming)&action=edit§ion=1

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

In this scenario the front desk count-holder represents a counting semaphore, the rooms are the

resource, and the students represent processes/threads. The value of the semaphore in this

scenario is initially 10, with all rooms empty. When a student requests a room, they are granted

access, and the value of the semaphore is changed to 9. After the next student comes, it drops to

8, then 7 and so on. If someone requests a room and the resulting value of the semaphore would

be negative,[2] they are forced to wait until a room is freed (when the count is increased from 0).

If one of the rooms was released, but there are several students waiting, then any method can be

used to select the one who will occupy the room (like FIFO or flipping a coin). And of course, a

student needs to inform the clerk about releasing their room only after really leaving it,

otherwise, there can be an awkward situation when such student is in the process of leaving the

room (they are packing their textbooks, etc.) and another student enters the room before they

leave it.

Important observations[edit]

When used to control access to a pool of resources, a semaphore tracks only how many resources

are free; it does not keep track of which of the resources are free. Some other mechanism

(possibly involving more semaphores) may be required to select a particular free resource.

The paradigm is especially powerful because the semaphore count may serve as a useful trigger

for a number of different actions. The librarian above may turn the lights off in the study hall

when there are no students remaining, or may place a sign that says the rooms are very busy

when most of the rooms are occupied.

The success of the protocol requires applications follow it correctly. Fairness and safety are

likely to be compromised (which practically means a program may behave slowly, act

erratically, hang or crash) if even a single process acts incorrectly. This includes:

requesting a resource and forgetting to release it;

releasing a resource that was never requested;

holding a resource for a long time without needing it;

using a resource without requesting it first (or after releasing it).

Even if all processes follow these rules, multi-resource deadlock may still occur when there are

different resources managed by different semaphores and when processes need to use more than

one resource at a time, as illustrated by the dining philosophers problem.

Semantics and implementation[edit]
Counting semaphores are equipped with two operations, historically denoted as P and V

(see § Operation names for alternative names). Operation V increments the semaphoreS, and

operation P decrements it.

The value of the semaphore S is the number of units of the resource that are currently available.

The P operation wastes time or sleeps until a resource protected by the semaphore becomes

available, at which time the resource is immediately claimed. The V operation is the inverse: it

makes a resource available again after the process has finished using it. One important property

of semaphore S is that its value cannot be changed except by using the V and P operations.

A simple way to understand wait (P) and signal (V) operations is:

wait: If the value of semaphore variable is not negative, decrement it by 1. If the semaphore

variable is now negative, the process executing wait is blocked (i.e., added to the semaphore's

queue) until the value is greater or equal to 1. Otherwise, the process continues execution, having

used a unit of the resource.

https://en.wikipedia.org/wiki/Semaphore_(programming)#cite_note-2
https://en.wikipedia.org/w/index.php?title=Semaphore_(programming)&action=edit§ion=2
https://en.wikipedia.org/wiki/Pool_(computer_science)
https://en.wikipedia.org/wiki/Hang_(computing)
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/w/index.php?title=Semaphore_(programming)&action=edit§ion=3
https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names
https://en.wikipedia.org/wiki/Increment_operator
https://en.wikipedia.org/wiki/Decrement_operator
https://en.wikipedia.org/wiki/Busy_waiting
https://en.wikipedia.org/wiki/Sleep_(operating_system)

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

signal: Increments the value of semaphore variable by 1. After the increment, if the pre-

increment value was negative (meaning there are processes waiting for a resource), it transfers a

blocked process from the semaphore's waiting queue to the ready queue.

Many operating systems provide efficient semaphore primitives that unblock a waiting process

when the semaphore is incremented. This means that processes do not waste time checking the

semaphore value unnecessarily.

The counting semaphore concept can be extended with the ability to claim or return more than

one "unit" from the semaphore, a technique implemented in Unix. The modified V and P

operations are as follows, using square brackets to indicate atomic operations, i.e., operations

which appear indivisible from the perspective of other processes:

function V(semaphore S, integer I):

 [S ← S + I]

function P(semaphore S, integer I):

 repeat:
 [if S ≥ I:

 S ← S − I

 break]

However, the remainder of this section refers to semaphores with unary V and P operations,

unless otherwise specified.

To avoid starvation, a semaphore has an associated queue of processes (usually

with FIFO semantics). If a process performs a P operation on a semaphore that has the value

zero, the process is added to the semaphore's queue and its execution is suspended. When

another process increments the semaphore by performing a V operation, and there are processes

on the queue, one of them is removed from the queue and resumes execution. When processes

have different priorities the queue may be ordered by priority, so that the highest priority process

is taken from the queue first.

If the implementation does not ensure atomicity of the increment, decrement and comparison

operations, then there is a risk of increments or decrements being forgotten, or of the semaphore

value becoming negative. Atomicity may be achieved by using a machine instruction that is able

to read, modify and write the semaphore in a single operation. In the absence of such a hardware

instruction, an atomic operation may be synthesized through the use of a software mutual

exclusion algorithm. On uniprocessor systems, atomic operations can be ensured by temporarily

suspending preemption or disabling hardware interrupts. This approach does not work on

multiprocessor systems where it is possible for two programs sharing a semaphore to run on

different processors at the same time. To solve this problem in a multiprocessor system a locking

variable can be used to control access to the semaphore. The locking variable is manipulated

using a test-and-set-lock command

 Semaphores P & V Operations
• An efficient synchronisation mechanism

• POSIX 1003.1.b, an IEEE standard.

• POSIX─ for portable OS interfaces in Unix.

• P and V semaphores ─ represents the by

integers in place of binary or unsigned

integers 2008

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Atomic_operation
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Queue_(data_structure)
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/Read-modify-write
https://en.wikipedia.org/wiki/Mutual_exclusion#Software_solutions
https://en.wikipedia.org/wiki/Mutual_exclusion#Software_solutions
https://en.wikipedia.org/wiki/Uniprocessor
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Test-and-set

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Chapter-7 L9: "Embedded Systems - Architecture, Programming

and Design" , Raj Kamal, Publs.: McGraw-Hill, Inc.

4

P and V semaphore Variables

• The semaphore, apart from initialization, i accessed only through two standard atomic

operations─ P and V

• P (for wait operation)─ derived from a

Dutch word ‘Proberen’, which means 'to

test'.

• V (for signal passing operation)─ derived

from the word 'Verhogen' which means 'to

increment'. ing

and Design" , Raj Kamal, Publs.: McGraw-Hill, Inc.

5

 P semaphore function signals that the task

requires a resource and if not available

waits for it.

 V semaphore function signals which the

task passes to the OS that the resource is

now free for the other users.

P g

and Design" , Raj Kamal, Publs.: McGraw-Hill, Inc.

6

1. /* Decrease the semaphore variable*/

sem_1 = sem_1 -1;

2. /* If sem_1 is less than 0, send a message to

OS by calling a function waitCallToOS.

Control of the process transfers to OS,

because less than 0 means that some other

process has already executed P function on

sem_1. Whenever there is return for the OS,

it will be to step 1. */

if (sem_1 < 0){waitCallToOS (sem_1);}

P g

and Design" , Raj Kamal, Publs.: McGraw-Hill, Inc.

6

1. /* Decrease the semaphore variable*/

sem_1 = sem_1 -1;

2. /* If sem_1 is less than 0, send a message to

OS by calling a function waitCallToOS.

Control of the process transfers to OS,

because less than 0 means that some other

process has already executed P function on

sem_1. Whenever there is return for the OS,

it will be to step 1. */

if (sem_1 < 0){waitCallToOS (sem_1);}

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

P 7

3. /* Increase the semaphore variable*/

sem_2 = sem_2 + 1;

4. /* If sem_2 is less or equal to 0, send a

message to OS by calling a function

signalCallToOS. Control of the process

transfers to OS, because < or = 0 means that

some other process is already executed P

function on sem_2. Whenever there is

return for the OS, it will be to step 3. */

if (sem_2 < = 0){signalCallToOS (sem_2);}V

 Deadlock

This article is about the computer science concept. For other uses, see Deadlock

(disambiguation).

Both processes need resources to continue execution. P1 requires additional resource R1 and is

in possession of resource R2, P2requires additional resource R2 and is in possession of R1;

neither process can continue.

Four processes (blue lines) compete for one resource (grey circle), following a right-before-left

policy. A deadlock occurs when all processes lock the resource simultaneously (black lines). The

deadlock can be resolved by breaking the symmetry.

In concurrent computing, a deadlock is a state in which each member of a group is waiting for

some other member to take action, such as sending a message or more commonly releasing a

lock.[1] Deadlock is a common problem in multiprocessing systems, parallel computing,

and distributed systems, where software and hardware locks are used to handle shared resources

and implement process synchronization.[2]

https://en.wikipedia.org/wiki/Deadlock_(disambiguation)
https://en.wikipedia.org/wiki/Deadlock_(disambiguation)
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Deadlock#cite_note-coulouris-1
https://en.wikipedia.org/wiki/Multiprocessing
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Deadlock#cite_note-para_enclo-2
https://en.wikipedia.org/wiki/File:Process_deadlock.svg
https://en.wikipedia.org/wiki/File:Deadlock_at_a_four-way-stop.gif

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

In an operating system, a deadlock occurs when a process or thread enters a

waiting state because a requested system resource is held by another waiting process, which in

turn is waiting for another resource held by another waiting process. If a process is unable to

change its state indefinitely because the resources requested by it are being used by another

waiting process, then the system is said to be in a deadlock.[3]

In a communications system, deadlocks occur mainly due to lost or corrupt signals rather than

resource contention.[4]

Two processes competing for two resources in opposite order.

(A) A single process goes through.

(B) The later process has to wait.

(C) A deadlock occurs when the first process locks the first resource at the same time as the

second process locks the second resource.

(D) The deadlock can be resolved by cancelling and restarting the first process.

Contents

 [hide]

1Necessary conditions

2Deadlock handling

2.1Ignoring deadlock

2.2Detection

2.3Prevention

3Livelock

4Distributed deadlock

5See also

6References

7Further reading

8External links

Necessary conditions[edit]

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Process_state
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Deadlock#cite_note-os_galvin-3
https://en.wikipedia.org/wiki/Communications_system
https://en.wikipedia.org/wiki/Deadlock#cite_note-invi_comp-4
https://en.wikipedia.org/wiki/Deadlock#Necessary_conditions
https://en.wikipedia.org/wiki/Deadlock#Deadlock_handling
https://en.wikipedia.org/wiki/Deadlock#Ignoring_deadlock
https://en.wikipedia.org/wiki/Deadlock#Detection
https://en.wikipedia.org/wiki/Deadlock#Prevention
https://en.wikipedia.org/wiki/Deadlock#Livelock
https://en.wikipedia.org/wiki/Deadlock#Distributed_deadlock
https://en.wikipedia.org/wiki/Deadlock#See_also
https://en.wikipedia.org/wiki/Deadlock#References
https://en.wikipedia.org/wiki/Deadlock#Further_reading
https://en.wikipedia.org/wiki/Deadlock#External_links
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=1
https://en.wikipedia.org/wiki/File:Two_processes,_two_resources.gif

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

A deadlock situation on a resource can arise if and only if all of the following conditions hold

simultaneously in a system:[5]

Mutual exclusion: The resources involved must be unshareable; otherwise, the processes would

not be prevented from using the resource when necessary. Only one process can use the resource

at any given instant of time.[6]

Hold and wait or resource holding: a process is currently holding at least one resource and

requesting additional resources which are being held by other processes.

No preemption: a resource can be released only voluntarily by the process holding it.

Circular wait: each process must be waiting for a resource which is being held by another

process, which in turn is waiting for the first process to release the resource. In general, there is

a set of waiting processes, P = {P1, P2, …, PN}, such that P1 is waiting for a resource held

by P2, P2 is waiting for a resource held by P3 and so on until PN is waiting for a resource held

by P1.
[3][7]

These four conditions are known as the Coffman conditions from their first description in a 1971

article by Edward G. Coffman, Jr.[7]

Deadlock handling[edit]

Most current operating systems cannot prevent deadlocks.[8] When a deadlock occurs, different

operating systems respond to them in different non-standard manners. Most approaches work by

preventing one of the four Coffman conditions from occurring, especially the fourth

one.[9] Major approaches are as follows.

Ignoring deadlock[edit]

In this approach, it is assumed that a deadlock will never occur. This is also an application of

the Ostrich algorithm.[9][10] This approach was initially used by MINIX and UNIX.[7] This is used

when the time intervals between occurrences of deadlocks are large and the data loss incurred

each time is tolerable.

Detection[edit]

Under the deadlock detection, deadlocks are allowed to occur. Then the state of the system is

examined to detect that a deadlock has occurred and subsequently it is corrected. An algorithm is

employed that tracks resource allocation and process states, it rolls back and restarts one or more

of the processes in order to remove the detected deadlock. Detecting a deadlock that has already

occurred is easily possible since the resources that each process has locked and/or currently

requested are known to the resource scheduler of the operating system.[10]

After a deadlock is detected, it can be corrected by using one of the following methods:[citation

needed]

Process termination: one or more processes involved in the deadlock may be aborted. One could

choose to abort all competing processes involved in the deadlock. This ensures that deadlock is

resolved with certainty and speed.[citation needed] But the expense is high as partial computations

will be lost. Or, one could choose to abort one process at a time until the deadlock is resolved.

This approach has high overhead because after each abort an algorithm must determine whether

the system is still in deadlock.[citation needed] Several factors must be considered while choosing a

candidate for termination, such as priority and age of the process.[citation needed]

Resource preemption: resources allocated to various processes may be successively preempted

and allocated to other processes until the deadlock is broken.[11]

Prevention[edit]

Main article: Deadlock prevention algorithms

https://en.wikipedia.org/wiki/Deadlock#cite_note-5
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Deadlock#cite_note-6
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Deadlock#cite_note-os_galvin-3
https://en.wikipedia.org/wiki/Deadlock#cite_note-os_galvin-3
https://en.wikipedia.org/wiki/Edward_G._Coffman,_Jr.
https://en.wikipedia.org/wiki/Edward_G._Coffman,_Jr.
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=2
https://en.wikipedia.org/wiki/Deadlock#cite_note-8
https://en.wikipedia.org/wiki/Deadlock#cite_note-pric_os-9
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=3
https://en.wikipedia.org/wiki/Ostrich_algorithm
https://en.wikipedia.org/wiki/Deadlock#cite_note-pric_os-9
https://en.wikipedia.org/wiki/Deadlock#cite_note-pric_os-9
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Deadlock#cite_note-embb-7
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=4
https://en.wikipedia.org/wiki/Deadlock#cite_note-distri_tanen-10
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Deadlock#cite_note-11
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=5
https://en.wikipedia.org/wiki/Deadlock_prevention_algorithms

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

(A) Two processes competing for one resource, following a first-come, first-served policy. (B)

Deadlock occurs when both processes lock the resource simultaneously. (C) The deadlock can

be resolvedby breaking the symmetry of the locks. (D) The deadlock can beprevented by

breaking the symmetry of the locking mechanism.

Deadlock prevention works by preventing one of the four Coffman conditions from occurring.

Removing the mutual exclusion condition means that no process will have exclusive access to a

resource. This proves impossible for resources that cannot be spooled. But even with spooled

resources, deadlock could still occur. Algorithms that avoid mutual exclusion are called non-

blocking synchronization algorithms.

The hold and wait or resource holding conditions may be removed by requiring processes to

request all the resources they will need before starting up (or before embarking upon a particular

set of operations). This advance knowledge is frequently difficult to satisfy and, in any case, is

an inefficient use of resources. Another way is to require processes to request resources only

when it has none. Thus, first they must release all their currently held resources before requesting

all the resources they will need from scratch. This too is often impractical. It is so because

resources may be allocated and remain unused for long periods. Also, a process requiring a

popular resource may have to wait indefinitely, as such a resource may always be allocated to

some process, resulting in resource starvation.[12] (These algorithms, such as serializing tokens,

are known as the all-or-none algorithms.)

The no preemption condition may also be difficult or impossible to avoid as a process has to be

able to have a resource for a certain amount of time, or the processing outcome may be

inconsistent or thrashing may occur. However, inability to enforce preemption may interfere with

a priority algorithm. Preemption of a "locked out" resource generally implies a rollback, and is to

be avoided, since it is very costly in overhead. Algorithms that allow preemption include lock-

free and wait-free algorithms and optimistic concurrency control. If a process holding some

resources and requests for some another resource(s) that cannot be immediately allocated to it,

the condition may be removed by releasing all the currently being held resources of that process.

The final condition is the circular wait condition. Approaches that avoid circular waits include

disabling interrupts during critical sections and using a hierarchy to determine apartial

ordering of resources. If no obvious hierarchy exists, even the memory address of resources has

been used to determine ordering and resources are requested in the increasing order of the

enumeration.[3] Dijkstra's solution can also be used.

https://en.wikipedia.org/wiki/Spooling
https://en.wikipedia.org/wiki/Non-blocking_synchronization
https://en.wikipedia.org/wiki/Non-blocking_synchronization
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Deadlock#cite_note-12
https://en.wikipedia.org/wiki/Serializing_tokens
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Thrashing_(computer_science)
https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Deadlock#cite_note-os_galvin-3
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution
https://en.wikipedia.org/wiki/File:Avoiding_deadlock.gif

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Livelock[edit]
A livelock is similar to a deadlock, except that the states of the processes involved in the livelock

constantly change with regard to one another, none progressing.

The term was defined formally at some time during the 1970s. An early sighting in the published

literature is in Babich's 1979 article on program correctness.[13] Livelock is a special case

of resource starvation; the general definition only states that a specific process is not

progressing.[14]

Livelock is a risk with some algorithms that detect and recover from deadlock. If more than one

process takes action, the deadlock detection algorithm can be repeatedly triggered. This can be

avoided by ensuring that only one process (chosen arbitrarily or by priority) takes action.[15]

Distributed deadlock[edit]
Distributed deadlocks can occur in distributed systems when distributed

transactions or concurrency control is being used. Distributed deadlocks can be detected either

by constructing a global wait-for graph from local wait-for graphs at a deadlock detector or by

a distributed algorithm like edge chasing.

Phantom deadlocks are deadlocks that are falsely detected in a distributed system due to system

internal delays but don't actually exist. For example, if a process releases a resource R1 and

issues a request for R2, and the first message is lost or delayed, a coordinator (detector of

deadlocks) could falsely conclude a deadlock (if the request for R2while having R1 would cause

a deadlock).

 Banker's algorithm

The Banker's algorithm, sometimes referred to as the detection algorithm, is a resource

allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety

by simulating the allocation of predetermined maximum possible amounts of all resources, and

then makes an "s-state" check to test for possible deadlock conditions for all other pending

activities, before deciding whether allocation should be allowed to continue.

The algorithm was developed in the design process for the THE operating system and originally

described (in Dutch) in EWD108.[1] When a new process enters a system, it must declare the

maximum number of instances of each resource type that it may ever claim; clearly, that number

may not exceed the total number of resources in the system. Also, when a process gets all its

requested resources it must return them in a finite amount of time.

Contents

 [hide]

1Resources

1.1Example

1.2Safe and Unsafe States

1.3Requests

1.3.1Example

2Limitations

3References

4Further reading

Resources[edit]

For the Banker's algorithm to work, it needs to know three things:

https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=6
https://en.wikipedia.org/wiki/Deadlock#cite_note-13
https://en.wikipedia.org/wiki/Resource_starvation
https://en.wikipedia.org/wiki/Deadlock#cite_note-14
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/w/index.php?title=Deadlock_detection_algorithm&action=edit&redlink=1
https://en.wikipedia.org/wiki/Deadlock#cite_note-15
https://en.wikipedia.org/w/index.php?title=Deadlock&action=edit§ion=7
https://en.wikipedia.org/wiki/Distributed_systems
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Wait-for_graph
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Edge_chasing
https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Edsger_Dijkstra
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/THE_(operating_system)
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Dutch_language
https://en.wikipedia.org/wiki/Banker%27s_algorithm#cite_note-1
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Resources
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Example
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Safe_and_Unsafe_States
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Requests
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Example_2
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Limitations
https://en.wikipedia.org/wiki/Banker%27s_algorithm#References
https://en.wikipedia.org/wiki/Banker%27s_algorithm#Further_reading
https://en.wikipedia.org/w/index.php?title=Banker%27s_algorithm&action=edit§ion=1

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

How much of each resource each process could possibly request[MAX]

How much of each resource each process is currently holding[ALLOCATED]

How much of each resource the system currently has available[AVAILABLE]

Resources may be allocated to a process only if it satisfies the following conditions:

request ≤ available, else process waits until resources are available.

Some of the resources that are tracked in real systems

are memory, semaphores and interface access.

The Banker's Algorithm derives its name from the fact that this algorithm could be used in a

banking system to ensure that the bank does not run out of resources, because the bank would

never allocate its money in such a way that it can no longer satisfy the needs of all its

customers[citation needed]. By using the Banker's algorithm, the bank ensures that when customers

request money the bank never leaves a safe state. If the customer's request does not cause the

bank to leave a safe state, the cash will be allocated, otherwise the customer must wait until some

other customer deposits enough.

Basic data structures to be maintained to implement the Banker's Algorithm:

Let n be the number of processes in the system and m be the number of resource types. Then we

need the following data structures:

Available: A vector of length m indicates the number of available resources of each type. If

Available[j] = k, there are k instances of resource type Rj available.

Max: An n×m matrix defines the maximum demand of each process. If Max[i,j] = k, then Pi may

request at most k instances of resource type Rj.

Allocation: An n×m matrix defines the number of resources of each type currently allocated to

each process. If Allocation[i,j] = k, then process Pi is currently allocated k instances of resource

type Rj.

Need: An n×m matrix indicates the remaining resource need of each process. If Need[i,j] = k,

then Pi may need k more instances of resource type Rj to complete the task.

Note: Need[i,j] = Max[i,j] - Allocation[i,j].

Example[edit]

Total system resources are:

A B C D

6 5 7 6

Available system resources are:

A B C D

3 1 1 2

Processes (currently allocated resources):

 A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 2 1 0

Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 3 5 0

Need = maximum resources - currently allocated resources

Processes (possibly needed resources):

https://en.wikipedia.org/wiki/Memory_(computers)
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Interface_(computer_science)
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/w/index.php?title=Banker%27s_algorithm&action=edit§ion=2

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 A B C D

P1 2 1 0 1

P2 0 2 0 1

P3 0 1 4 0

Safe and Unsafe States[edit]

A state (as in the above example) is considered safe if it is possible for all processes to finish

executing (terminate). Since the system cannot know when a process will terminate, or how

many resources it will have requested by then, the system assumes that all processes will

eventually attempt to acquire their stated maximum resources and terminate soon afterward. This

is a reasonable assumption in most cases since the system is not particularly concerned with how

long each process runs (at least not from a deadlock avoidance perspective). Also, if a process

terminates without acquiring its maximum resource it only makes it easier on the system. A safe

state is considered to be the decision maker if it's going to process ready queue.

Given that assumption, the algorithm determines if a state is safe by trying to find a hypothetical

set of requests by the processes that would allow each to acquire its maximum resources and then

terminate (returning its resources to the system). Any state where no such set exists is

an unsafe state.

 Unit IV

Device Management

Hardware devices typically provide the ability to input data into the computer

or output data from the computer. To simplify the ability to support a variety of

hardware devices, standardized application programming interfaces (API) are used.

 Application programs use the System Call API to request one of a finite set of

preset I/O requests from the Operating System.

 The Operating System uses algorithms for processing the request that are device

independent.

 The Operating System uses another API to request data from the device driver.

 The device driver is third party software that knows how to interact with the

specific device to perform the I/O.

 Sometimes we have a layering of device drivers where one device driver will call

on another device driver to facilitate the I/O. An example of this is when devices

are connected to a USB port. The driver for the device will make use of the USB

device driver to facilitate passing data to and from the device.

 Techniques for Device Management

All modern operating systems have a subsystem called the device manager. The device manager is

responsible for detecting and managing devices, performing power management, and exposing devices

https://en.wikipedia.org/w/index.php?title=Banker%27s_algorithm&action=edit§ion=3

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

to userspace. Since the device manager is a crucial part of any operating system, it's important to make

sure it's well designed.

Contents

 [hide]

 1 Device Drivers

 2 Device Detection

 3 IPC

 4 Asynchronous I/O

 5 Power Management

 6 Userspace Exposure

 7 Existing Driver Interfaces

o 7.1 Uniform Driver Interface

o 7.2 Extensible Driver Interface

 8 See Also

o 8.1 External Links

Device Drivers

Device drivers allow user applications to communicate with a system's devices. They provide a high-level

abstraction of the hardware to user applications while handling the low-level device-specific I/O and

interrupts. Device drivers can be implemented as loadable kernel modules (for a Monolithic Kernel) or

user-mode servers (for Microkernels).

Device Detection

The main role of the device manager is detecting devices on the system. Usually, devices are organized

in a tree structure, with devices enumerating their children. Device detection should begin with a "root bus

driver". On x86 systems, the root bus driver would use ACPI. The root bus driver sits at the root of the

device tree. It detects the buses present on the system as well as devices directly connected to the

motherboard. Each bus is then recursively enumerated, with its children continuing to enumerate their

children until the bottom of the device tree is reached.

Each device that is detected should contain a list of resources for the device to use. Examples of

resources are I/O, memory, IRQs, DMA channels, and configuration space. Devices are assigned

resources by their parent devices. Devices should just use the resources they're given, which provides

support for having the same device driver work on different machines where the resource assignments

may be different, but the programming interface is otherwise the same.

Drivers are loaded for each device that's found. When a device is detected, the device manager finds the

device's driver. If not loaded already, the device manager loads the driver. It then calls the driver to

initialize that device.

http://wiki.osdev.org/Device_Management
http://wiki.osdev.org/Device_Management#Device_Drivers
http://wiki.osdev.org/Device_Management#Device_Detection
http://wiki.osdev.org/Device_Management#IPC
http://wiki.osdev.org/Device_Management#Asynchronous_I.2FO
http://wiki.osdev.org/Device_Management#Power_Management
http://wiki.osdev.org/Device_Management#Userspace_Exposure
http://wiki.osdev.org/Device_Management#Existing_Driver_Interfaces
http://wiki.osdev.org/Device_Management#Uniform_Driver_Interface
http://wiki.osdev.org/Device_Management#Extensible_Driver_Interface
http://wiki.osdev.org/Device_Management#See_Also
http://wiki.osdev.org/Device_Management#External_Links
http://wiki.osdev.org/Monolithic_Kernel
http://wiki.osdev.org/Microkernel
http://wiki.osdev.org/ACPI

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

How the device manager matches a device to a device driver is an important choice. The way devices are

identified is very bus specific. On PCI, a device is identified through a combination of its vendor and

device IDs. USB has the same scheme as PCI, using a vendor and product ID. ACPI uses PNP IDs to

identify devices in the ACPI namespace. With this information, it's possible to build a database using

matching IDs to drivers. This information is best stored in a separate file.

IPC

The device manager needs to implement some form of IPC between it and device drivers. IPC will be

used by the device manager to send I/O requests to device drivers, and by drivers to respond to these

requests. It is usually implemented with messages that contain data about the request, such as the I/O

function code, buffer pointer, device offset, and buffer length. To respond to these I/O requests, every

device driver needs dispatch functions used to handle each I/O function code. Each device needs a

queue of these IPC messages for it to handle. On Windows NT, this IPC is done with I/O Request

Packets.

Asynchronous I/O

There are two main types of I/O: synchronous I/O and asynchronous I/O. Synchronous I/O sends an I/O

request and then puts the current thread to sleep until the I/O completes. Asynchronous I/O just sends

the I/O request and then returns. I/O completion is reported asynchronously using a callback.

Asynchronous I/O improves the efficiency of the system by allowing allowing for the program execution to

continue while I/O is performed. It also allows for multiple I/O requests to be started and then handled in

the order they complete, not the order they execute. However, this comes at the cost of making

programming more complex than using synchronous I/O.

Internally, an operating system should use asynchronous I/O for all of its I/O requests. I/O requests are

sent to drivers, and then the function that sent them immediately returns. Eventually, the I/O request will

be handled. Once it completes, it returns through the driver stack and finally notifies the application of I/O

completion. It can do this using callbacks, signals, or completion queues.

Synchronous I/O can simply be implemented as a special case of asychronous I/O. Just like with

asynchronous I/O, an I/O request is sent to the driver, but instead of returning, the thread goes to sleep.

Once the I/O completion event is queued, the thread will wake up and execute the callback before

returning.

Power Management

The device manager also performs power management. Power management is a feature of hardware

that allows for the power consumption of the system and devices to be controlled. Each device managed

by the device manager should provide functions to set their power state. For power management support,

all systems require a power management driver that controls the system power. On x86, this is done

through ACPI. Each device also needs to support power management.

The device manager needs to respond to power management events. Power management events can

come from two sources: the user or the system. User-generated power management events are created

by user mode applications. They are system-wide events for shutting down, rebooting, hibernating, or

http://wiki.osdev.org/PCI
http://wiki.osdev.org/USB
http://wiki.osdev.org/ACPI
http://wiki.osdev.org/ACPI

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

putting the system to sleep. When the device manager receives a system-wide power management

event, it sets the power state of the system.

System-generated power management events are events that come from the system hardware.

Examples of system-generated power management events are plugging/unplugging an AC adapter or

closing/opening the lid of a laptop. The device manager takes the appropriate action in response to the

event.

Userspace Exposure

Once the kernel interfaces for device drivers are complete, one also needs to figure out how to expose

devices to userspace. Most Unix-based operating systems expose devices through the filesystem tree.

When devices are placed in the filesystem tree, there is a directory (usually /dev) containing special files

that represent devices. The advantage of placing devices in the filesystem tree is that devices can be

treated as files, meaning they can be read from or written to. Windows NT does not expose devices

through the filesystem tree. Instead, there is an internal namespace of objects, through which devices can

be found and accessed similarly to files.

No matter how devices are exposed, the functions that are provided for devices must be decided on as

well. Both Unix-based operating systems and Windows NT treat devices like files, meaning their functions

are open(), close(), read(), and write(). However, it was soon realized that this API would not be adequate

for device functions that don't fit into these functions, like setting the graphics mode of a video card. For

this purpose, a new syscall called ioctl() was developed, that allows a device to have special functions.

However, this is by no means the only way to call device functions.

Existing Driver Interfaces

An operating system doesn't need to implement its own driver interface. A few driver interfaces have

already been programmed with the intent of being integrated into operating systems. These driver

interfaces can be implemented instead of a native driver interface, on top of a native driver interface, or

along with a native driver interface.

Uniform Driver Interface

Main article: Uniform Driver Interface

Project UDI is a driver interface intended to be binary portable or source portable when running on

different CPU architectures. It is not very widespread (however, neither are EDI or CDI); for

example, due to philosophical concerns, Linux did not embrace UDI. However, several members of

the community are striving to popularize UDI again since it would be of a huge benefit to hobby

operating systems. You are strongly encouraged to participate by implenting a UDI environment and

writing drivers.

 I/O Traffic Controller
WARCO's ITC-2 traffic controller is modular in design and can be configured for all types of intersections. Using

TCP/IP or 3G modem it can be directly connected to many different control and monitoring systems.

http://wiki.osdev.org/Uniform_Driver_Interface

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

ITC-2: POWERFUL – FAST – RELIABLE

The controller can be delivered in three different sizes depending on the number of signal groups required.

For normal intersections the 3U rack with 16 signal groups and 32 detectors will be suitable. For larger intersections,

or for covering more than one intersection, there are versions with 32 and 64 signal groups and 80 detectors.

ITC-2 is designed for any climate and is installed worldwide, from the cold Nordic to the hot Middle East and Africa

regions. The larger cabinet is equipped with a swing frame allowing easy access to the backside of the unit.

The controller has been developed according to European and national standard

 KEY BENEFITS

 Linux operations system with web-interface

 The built-in operator panel allows full control and access to all parameters. The police panel can switch signals on/off

and to amber flash as well as full stage control. The RS232 terminal interface provides further access to the internal

software for control and debugging. The parameters are password protected with two security levels.

 The detection system is based on inductive loop-detectors with 8 loops per card. Alternatively video detection

Autoscope Rackvision or Atlas cards can be installed.

 Lamp group cards with triac outputs for 230 or 42 VAC with full monitoring of voltage and currents on all outputs.

Each card controls two signal groups.

 Optional I/O-cards for control of relay input or output.

 CPU-board with ARM processor for control and supervision of functions. The CPU has a real time clock with battery

backup.

 ITC-2 is available also in a 42V version.

The ITC-2 controller’s standard software provides a large number of parameter-controlled functions.

 There are 16 traffic plans and 16 traffic situations available with standard parameters for programming of local

and central co-ordination. Cable-free linking is possible with a GPS clock.

 One controller can control up to four independent intersections in four separate rings. Each ring can have eight

primary stages and an unlimited number of secondary stages. The logic is signal group controlled with a full

conflict matrix between all groups.

 Traffic counting with internal detectors with seven-day backup.User defined counting interval.

 Fulfils Scandinavian LHOVRA specification.

 Built-in bus priority functions.

 Built-in advanced programmable control logics enabling the user to create new functions.

 For control and supervision ITC-2 has interfaces to Omnia/Utopia/Spot, Omnivue and EC-Trak UTC systems. The

controller can send SMS or e-mails in case of faults.

https://www.swarco.com/swtech/Products/Traffic-Controllers/ITC-2-Traffic-Controller#tab-15858

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Internal web-interface.

 I/O scheduling

Input/output (I/O) scheduling is the method that computer operating systems use to decide in
which order the block I/O operations will be submitted to storage volumes. I/O scheduling is
sometimes called disk scheduling.

Contents

 [hide]

 1I/O scheduling

 2Scheduling disciplines

 3See also

 4References

 5Further reading

I/O scheduling[edit]

I/O scheduling usually has to work with hard disk drives that have long access times for requests
placed far away from the current position of the disk head (this operation is called a seek). To
minimize the effect this has on system performance, most I/O schedulers implement a variant of
the elevator algorithm that reorders the incoming randomly ordered requests so the associated data
would be accessed with minimal arm/head movement.

I/O schedulers can have many purposes depending on the goals; common purposes include the
following:

 To minimize time wasted by hard disk seeks

 To prioritize a certain processes' I/O requests

 To give a share of the disk bandwidth to each running process

 To guarantee that certain requests will be issued before a particular deadline

Scheduling disciplines[edit]

Common scheduling disciplines include the following:

 Random scheduling (RSS)

 First In, First Out (FIFO), also known as First Come First Served (FCFS)

 Last In, First Out (LIFO)

 Shortest seek first, also known as Shortest Seek / Service Time First (SSTF)

 Elevator algorithm, also known as SCAN (including its variants, C-SCAN, LOOK, and C-LOOK)

 N-Step-SCAN SCAN of N records at a time

 FSCAN, N-Step-SCAN where N equals queue size at start of the SCAN cycle

 Completely Fair Queuing (CFQ) on Linux

 Anticipatory scheduling

 Noop scheduler

 Deadline scheduler

 mClock scheduler[2]

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Volume_(computing)
https://en.wikipedia.org/wiki/I/O_scheduling#I.2FO_scheduling
https://en.wikipedia.org/wiki/I/O_scheduling#Scheduling_disciplines
https://en.wikipedia.org/wiki/I/O_scheduling#See_also
https://en.wikipedia.org/wiki/I/O_scheduling#References
https://en.wikipedia.org/wiki/I/O_scheduling#Further_reading
https://en.wikipedia.org/w/index.php?title=I/O_scheduling&action=edit§ion=1
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Access_Time
https://en.wikipedia.org/wiki/Elevator_algorithm
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/w/index.php?title=I/O_scheduling&action=edit§ion=2
https://en.wikipedia.org/w/index.php?title=Random_scheduling&action=edit&redlink=1
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/LIFO_(computing)
https://en.wikipedia.org/wiki/Shortest_seek_first
https://en.wikipedia.org/wiki/Elevator_algorithm
https://en.wikipedia.org/wiki/N-Step-SCAN
https://en.wikipedia.org/wiki/FSCAN
https://en.wikipedia.org/wiki/Completely_Fair_Queuing
https://en.wikipedia.org/wiki/Anticipatory_scheduling
https://en.wikipedia.org/wiki/Noop_scheduler
https://en.wikipedia.org/wiki/Deadline_scheduler
https://en.wikipedia.org/wiki/I/O_scheduling#cite_note-2

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 Budget Fair Queueing (BFQ) scheduler.[3][4]

 Kyber[5][6]

 Device Handler
 This article, the first of a two-part series for experienced BASIC programmers,

explalns how the Atari operating system handles the various devices attached

to your computer and gives you a step-by-step approach to adding a new

device handler or modifying an existing one. The BASIC programs work with

any Atari 8-bit computer, disk or cassette.

 The ability to change your computer's operating system is a very powerful

technique. Atari 8-bit owners are in for a treat, because there are several ways

to customize your system through software. To illustrate, two programs are

included with this article. The first creates a device handler that does nothing.

(Believe it or not, that can be useful.) The second modifies the printer handler

to print non-printing characters.

 The printer handler was written for the Epson RX-80 and the C.Itoh Prowriter,

but it should work with any printer capable of dot-graphics printing. Each

program illustrates a different aspect of creating device handlers.

 What good is adding a device handler to the operating system instead of having

your program perform the same function? To answer this, let's look at how the

operating system interacts with the outside world.

CIO ROUTINE
 Among the Atari operating system's best features is the way it handles input

and output (I/O). All I/O operations are generally performed in the same way,

regardless of which peripheral device is accessed---disk drive, keyboard, screen

editor or printer. We can simplify I/O because it's normally handled through the

Central Input/Output routine (CIO).

 In BASIC, I/O is done so naturally that you hardly notice the complexity of

what is actually happening. One example is the use of CIO to send data to the

printer:

 First, open the device through a CIO control block with the command OPEN

#3,8,O,"P:". This does three things: 1) it tells the operating system to OPEN

CIO control block #3 (IOCB3) for I/O and to prepare for I/O to the printer; 2)

the 8 tells the operating system that data will flow from the computer to the

printer; and 3) the "P:" tells the computer to send data to the printer. Therefore

the OPEN command is for initialization.

 Summing up, a device handler simply tells the computer how to talk to a

device. The computer needs to know the direction of data flow, which path (or

channel) it will use, where to find data, where to put it and how much of it to

grab.

https://en.wikipedia.org/wiki/I/O_scheduling#cite_note-3
https://en.wikipedia.org/wiki/I/O_scheduling#cite_note-3
https://en.wikipedia.org/wiki/I/O_scheduling#cite_note-5
https://en.wikipedia.org/wiki/I/O_scheduling#cite_note-5

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

DEVICE HANDLERS
 If CIO is the computer's I/O interfnce to the user, then the device handlers are

the computer's interface to peripheral devices.

 For example, how does the computer send data to the printer? Since the printer

isn't a disk drive or keyboard, your Atari obviously needs a special routine,

which is part of the device handler.

 Each device handler has six routines: OPEN, CLOSE, GET, PUT, STATUS,

and SPECIAL (See Figure 1). In BASIC these machine language routines are

controlled through I/O commands. For example, when your program issues the

command OPEN #3,8,0,"P:" it is actually using the OPEN part of the printer

handler.

 Every handler contains six machine language routines and a table containing

the address of each routine minus one.

 Why the minus one? CIO accesses a function by pushing its address onto the

stack, then executing an RTS (ReTurn from Subroutine). The RTS instruction

directs the program to the address on the stack plus one. To arrive at the correct

address, we must compensate by subtracting one from our target address.

HATABS
 CIO finds the address of the appropriate handler table in the Handler Address

Table, HATABS. This table is a 38-byte block of memory occupying locations

734--831 ($031A--$033F).

 Each device handler has its own three-byte entry in the Handler Address Table.

The first byte is an ASCII character representing the name of the device (K for

keyboard, D for disk drive, etc.). The next two bytes hold the address of that

device's handler table.

 When you issue an OPEN #3,8,O,"P:" command, for example, CIO looks

through HATABS for a "P:". Then it uses the next two bytes to find the address

of the printer's handler table. Once found, CIO searches the printer's handler

table for the address of the printer handler's OPEN routine. Finally, CIO

executes the printer handler's OPEN routine (See Figure 2).

 Again, CIO finds the handler in two steps:

 - 1) Get the address of the appropriate handler table from HATABS.

- 2) Get the address of the handler routines from the handler table.

WRITING YOUR OWN HANDLER
 Now that we know how CIO locates the handler table, here's how to make your

own handler:

 1) Write the program for the handler. (The handler must have the functions

listed in Figure 1.)

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 2) Set up a Handler Table with the address of each function (minus one) in the

order given in Figure 1. The special function is a jump instruction beginning

with a decimal 76, followed by the two-byte address of the special routine.

 3) Make an entry in the Handler Address Table for the device.

 That's all. Now let's focus on the two examples and how they implement these

steps.

NULL HANDLER
 Type in Listing 1,NULLHAND.BAS, check it with TYPO II and SAVE a copy

before you RUN it. When RUN, NULLHAND.BAS installs the Null Handler,

N:, on Page Six. Once installed, you can test the handler by typing:

 LIST "N:"

 This command LISTs the program to the N: device. If your Atari responds with

a "READY" prompt, the handler is properly installed. If you get an error

message, however, something went wrong. Check NULLHAND.BAS for

typing errors, and try again.

 One use of the null handler is to check a disk for a scrambled file (Error 164).

One way to check is to use DOS to copy the file to the screen. This, however, is

quite time- consuming. Instead, copy the file to the N: device. The Null

Handler will do the job in a jiffy.

 To copy a file to the Null Handler, select choice C from the DOS menu and

type: D:filename, N:

 If the file is read completely without error, then it's intact. All the files on a disk

can be checked by typing "D: *.*,N''

Magnetic recording tape wound onto a spool may have contributed to the origin of the term

In computing, spooling is a specialized form of multi-programming for the purpose of copying data
between different devices. In contemporary systems[a] it is usually used for mediating between a
computer application and a slow peripheral, such as a printer. Spooling allows programs to "hand
off" work to be done by the peripheral and then proceed to other tasks, or do not begin until input
has been transcribed. A dedicated program, the spooler, maintains an orderly sequence of jobs for

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Spooling#cite_note-1
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Printer_(computing)
https://en.wikipedia.org/wiki/File:Largetape.jpg

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

the peripheral and feeds it data at its own rate. Conversely, for slow input peripherals, such as
a card reader, a spooler can maintain a sequence of computational jobs waiting for data, starting
each job when all of the relevant input is available; see batch processing. The spool itself refers to
the sequence of jobs, or the storage area where they are held. In many cases the spooler is able to
drive devices at their full rated speed with minimal impact on other processing.

Spooling is a combination of buffering and queueing.

Contents

 [hide]

 1Print spooling

o 1.1Banner page

 2Other applications

 3History

 4List of spooling systems

 5Notes

 6References

Print spooling[edit]

Nowadays, the most common use of spooling is printing: documents formatted for printing are stored
in a queue at the speed of the computer, then retrieved and printed at the speed of the printer.
Multiple processes can write documents to the spool without waiting, and can then perform other
tasks, while the "spooler" process operates the printer.[1]

For example, when a large organization prepares payroll checks, the computation takes only a few
minutes or even seconds, but the printing process might take hours. If the payroll program printed
checks directly, it would be unable to proceed to other computations until all the checks were
printed. Similarly, before spooling was added to PC operating systems, word processors were
unable to do anything else, including interact with the user, while printing.

Spooler or print management software often includes a variety of related features, such as allowing
priorities to be assigned to print jobs, notifying users when their documents have been printed,
distributing print jobs among several printers, selecting appropriate paper for each document, etc.

A print server applies spooling techniques to allow many computers to share the same printer or
group of printers.

Banner page[edit]

Sample banner page generated by TSS/370

https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Data_buffer
https://en.wikipedia.org/wiki/Queue_(data_structure)
https://en.wikipedia.org/wiki/Spooling#Print_spooling
https://en.wikipedia.org/wiki/Spooling#Banner_page
https://en.wikipedia.org/wiki/Spooling#Other_applications
https://en.wikipedia.org/wiki/Spooling#History
https://en.wikipedia.org/wiki/Spooling#List_of_spooling_systems
https://en.wikipedia.org/wiki/Spooling#Notes
https://en.wikipedia.org/wiki/Spooling#References
https://en.wikipedia.org/w/index.php?title=Spooling&action=edit§ion=1
https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Spooling#cite_note-TheSpooler-2
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Print_server
https://en.wikipedia.org/w/index.php?title=Spooling&action=edit§ion=2
https://en.wikipedia.org/wiki/File:Example_Banner_Page.png

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Print spoolers can often be configured to add a banner page (also called a burst page, job sheet,
or printer separator) to the front of each document. These separate documents from each other,
identify each document (e.g. with its title) and often also state who printed it (e.g.
by username or job name). Banner pages are valuable in office environments where many people
share a small number of printers. Depending on the configuration, banner pages might be generated
on each client computer, or on a centralized print server, or by the printer itself.

On printers using fanfold continuous forms a leading banner page would often be printed twice, so
that one copy would always be face-up when the jobs were separated. The page might include lines
printed over the fold, which would be visible along the edge of a stack of printed output, allowing the
operator to easily separate the jobs. Some systems would also print a banner page at the end of
each job, assuring users that they had collected all of their printout.

Other applications[edit]

Spooling is also used to mediate access to punched card readers and punches, magnetic
tape drives, and other slow, sequential I/O devices. It allows the application to run at the speed of
the CPU while operating peripheral devices at their full rates speed.

A batch processing system uses spooling to maintain a queue of ready-to-run tasks, which can be
started as soon as the system has the resources to process them.

Some store and forward messaging systems, such as uucp, used "spool" to refer to their inbound
and outbound message queues, and this terminology is still found in the documentation
for email and Usenet software, even though messages are often delivered immediately nowadays.

History[edit]

Peripherals device have always been much slower than core processing units. This was an
especially severe problem for early mainframes. For example, a job which read punched cards or
generated printed output directly was forced to run at the speed of the slow mechanical devices. The
first spooling programs, such as IBM's "SPOOL System" (7070-IO-076) copied data from punched
cards to magnetic tape, and from tape back to punched cards and printers. Hard disks, which are
even faster and support random access, started to replace this use of magnetic tape in the middle
1960s, and by the 1970s had eliminated this use of tape.

Because the unit record equipment on IBM mainframes of the early 1960s was so slow, it was
common to use a small offline machine such as a 1401 instead of spooling.

The term "spool" probably originates with the Simultaneous Peripheral Operations On-
Line[2] (SPOOL) software. Its derivation is uncertain. Simultaneous peripheral operations on-line may
be a backronym.[3] Another explanation is that it refers to "spools" or reels of magnetic tape.

List of spooling systems[edit]

 IBM SPOOL System, 7070-IO-076

 Integrated facility of various operating systems, e.g., GCOS, OS/360

 Houston Automatic Spooling Priority (HASP), prominent in the 1960s[4]

 Job Entry Subsystem 2/3, a follower of HASP[5]

 Priority Output Writers, Execution Processors and Input Readers (POWER)[6][7]

 GRASP

 The Spooler, IBM DOS/360, DOS/VS, and DOS/VSE spooler, 1975–1980s

 The Berkeley printing system (lpr/lpd)

https://en.wikipedia.org/wiki/Title_(publishing)
https://en.wikipedia.org/wiki/Username
https://en.wikipedia.org/wiki/Job_(computing)
https://en.wikipedia.org/wiki/Continuous_stationery
https://en.wikipedia.org/w/index.php?title=Spooling&action=edit§ion=3
https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Magnetic_tape
https://en.wikipedia.org/wiki/Magnetic_tape
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Store_and_forward
https://en.wikipedia.org/wiki/Uucp
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/w/index.php?title=Spooling&action=edit§ion=4
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Random_access
https://en.wikipedia.org/wiki/Spooling#cite_note-3
https://en.wikipedia.org/wiki/Backronym
https://en.wikipedia.org/wiki/Spooling#cite_note-Tanenbaum.2C_Andrew_S_2008-4
https://en.wikipedia.org/wiki/Reel
https://en.wikipedia.org/w/index.php?title=Spooling&action=edit§ion=5
https://en.wikipedia.org/wiki/General_Comprehensive_Operating_System
https://en.wikipedia.org/wiki/OS/360_and_successors
https://en.wikipedia.org/wiki/Houston_Automatic_Spooling_Priority
https://en.wikipedia.org/wiki/Spooling#cite_note-5
https://en.wikipedia.org/wiki/Job_Entry_Subsystem_2/3
https://en.wikipedia.org/wiki/Spooling#cite_note-6
https://en.wikipedia.org/wiki/IBM_Power_(software)
https://en.wikipedia.org/wiki/Spooling#cite_note-7
https://en.wikipedia.org/wiki/Spooling#cite_note-7
https://en.wikipedia.org/wiki/Grasp_(software)
https://en.wikipedia.org/wiki/The_Spooler
https://en.wikipedia.org/wiki/DOS/360
https://en.wikipedia.org/wiki/DOS/VS
https://en.wikipedia.org/wiki/DOS/VSE
https://en.wikipedia.org/wiki/Berkeley_printing_system

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

 CUPS

 VM/370 RSCS (Remote Spooling Communications Subsystem)

MS-DOS
Updated: 04/26/2017 by Computer Hope

Short for Microsoft Disk Operating System, MS-DOS is a non-

graphical command line operating system derived from 86-DOS that

was created for IBM compatible computers. MS-DOS originally written

by Tim Paterson and introduced by Microsoft in August 1981 and was

last updated in 1994 when MS-DOS 6.22 was released. MS-DOS allows

the user to navigate, open, and otherwise manipulate files on their

computer from a command line instead of a GUI like Windows.

Today, MS-DOS is no longer used; however, the command shell, more

commonly known as the Windows command lineis still used by many

users. The picture to the right, is an example of what an MS-DOS window

more appropriately referred to as the Windows command line looks like

running under Microsoft Windows.

https://en.wikipedia.org/wiki/CUPS
https://en.wikipedia.org/wiki/RSCS
https://www.computerhope.com/people/tim_paterson.htm
https://www.computerhope.com/comp/msoft.htm
https://www.computerhope.com/history/1981.htm
https://www.computerhope.com/history/1994.htm
https://www.computerhope.com/jargon/g/gui.htm
https://www.computerhope.com/jargon/w/windows.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Most computer users are only familiar with how to navigate Microsoft

Windows using the mouse. Unlike Windows, MS-DOS is a command-line and

is navigated by using MS-DOS commands. For example, if you wanted to see

all the files in a folder in Windows you would double-click the folder to open

the folder in Windows Explorer. In MS-DOS, to view that same folder you

would navigate to the folder using the cd commandand then list the files in

that folder using the dir command.

How to use the Windows command line
(DOS)

Updated: 06/21/2017 by Computer Hope

This document covers the basic in

navigating and using the Microsoft Windows command line. On this

page, you'll learn how to move around in the command line, find files,

manipulate files, and other important commands. Keep in mind that

there are over 100 different commands that have been used in MS-

DOS and the Windows command line. If you are interested in learning

about the command line in more detail, see our DOS and command

prompt overview, which gives a description and example for every

command.

https://www.computerhope.com/jargon/m/mouse.htm
https://www.computerhope.com/cdhlp.htm
https://www.computerhope.com/dirhlp.htm
https://www.computerhope.com/msdos.htm
https://www.computerhope.com/msdos.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Get into the Windows command line

Open a Windows command line window by following the steps below. If you

need additional information or alternative methods for all versions of

Windows, see our how to get into DOS and Windows command line page.
1. Click Start

2. In the Search or Run line, type cmd (short for command), and press Enter.

Understanding the prompt

After following the above steps, the Windows command line should be shown

(similar to the example below). Typically, Windows starts you at your

user directory. In the example below, the user is Mrhope, so our prompt is

C:\Users\Mrhope>. This prompt tells us we are in the C: drive (the default

drive letter of the hard drive) and currently in the Mrhope directory, which is

a subdirectory of the Users directory.

Key tips
 MS-DOS and the Windows command line are not case sensitive.

 The files and directories shown in Windows are also found in the command line.

 When working with a file or directory with a space, surround it in quotes. For example, the
directory My Documents would be "My Documents" when typed.

 File names can have a long file name of 255 characters and a 3 character file extension.

 When a file or directory is deleted in the command line, it is not moved into the Recycle Bin.

 If you need help with any of command type /? after the command. For example, dir /? would give
the options available for the dir command.

https://www.computerhope.com/issues/chdos.htm
https://www.computerhope.com/jargon/s/start.htm
https://www.computerhope.com/jargon/d/director.htm
https://www.computerhope.com/jargon/d/drive.htm
https://www.computerhope.com/jargon/h/harddriv.htm
https://www.computerhope.com/jargon/s/subdirec.htm
https://www.computerhope.com/jargon/c/casesens.htm
https://www.computerhope.com/jargon/l/longfile.htm
https://www.computerhope.com/jargon/f/fileext.htm
https://www.computerhope.com/jargon/r/recycbin.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Listing the files

Let's learn your first command. Type dir at the prompt to list files in the

current directory. You should get an output similar to the example image

below. Without using any dir options this is how dir output appears. As can

be seen, you are given lots of useful information including the creation date

and time, directories (<DIR>), and the name of the directory or file. In the

example below, there are 0 files listed and 14 directories as indicated by the

status at the bottom of the output.

Every command in the command line has options, which are additional

switches and commands that can be added after the command. For

example, with the dir command you can type dir /p to list the files and

directories in the current directory one page at a time. This switch is useful

to see all the files and directories in a directory that has dozens or hundreds

of files. Each of the command options and switches is listed in our DOS

command overview. We offer guides for individual commands, as well. For

example, if you want to see all the options for the dir command, refer to

our dir command overview for a complete option listing.

The dir command can also be used to search for specific files and directories

by using wildcards. For example, if you only wanted to list files or directories

that begin with the letter "A" you could type dir a* to list only the AppData

directory, in this above example. See the wildcard definition for other

examples and help with using wildcards.

https://www.computerhope.com/msdos.htm
https://www.computerhope.com/msdos.htm
https://www.computerhope.com/dirhlp.htm
https://www.computerhope.com/jargon/w/wildcard.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Moving into a directory

Now that we've seen a list of directories (shown below) in the current

directory move into one of those directories. To move into a directory, we

use the cd command, so to move into the Desktop type cd desktop and

press enter. Once you've moved into a new directory the prompt should

change, so in our example, the prompt is now C:\Users\Mrhope\Desktop>.

Now in this desktop directory, see what files are found in this directory by

typing the dir command again.

Understand the files

In the Desktop directory, as shown in the above example, there are 23 files

and 7 directories, representing different file types. In Windows, you are

familiar with files having icons that help represent the file type. In the

command line, the same thing is accomplished by the file extensions. For

example, "forum posts.txt" is a text file because it has a .txt file extension.

Time.mp3 is an MP3 music file and minecraft.exe is an executable file.
 Listing of file extensions and additional help with file extensions.

For most users, you'll only be concerned with executable files, which as

mentioned above, is a file that ends with .exe and are also files that end

with .com and .bat. When the name of these files are typed into the

command line, the program runs, which is the same as double-clicking a file

https://www.computerhope.com/cdhlp.htm
https://www.computerhope.com/jargon/t/textfile.htm
https://www.computerhope.com/jargon/m/mp3.htm
https://www.computerhope.com/jargon/e/execfile.htm
https://www.computerhope.com/dosext.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

in Windows. For example, if we wanted to run minecraft.exe typing

"minecraft" at the prompt runs that program.

If you want to view the contents of a file, most versions of the command line

use the edit command. For example, if we wanted to look at the log file

hijackthis.log we would type edit hijackthis.log at the prompt. For 64-bit

versions of Windows that do not support this command you can use the start

command, for example, type start notepad hijackthis.log to open the file

in Notepad. Further information about opening and editing a file from the

command line can also be found on the link below.
 How to open and view the contents of a file on a computer.

Moving back a directory

You learned earlier the cd command can move into a directory. This

command also allows you to go back a directory by typing cd.. at the

prompt. When this command is typed you'll be moved out of the Desktop

directory and back into the user directory. If you wanted to move back to

the root directory typing cd\ takes you to the C:\> prompt. If you know the

name of the directory you want to move into, you can also type cd\ and the

directory name. For example, to move into C:\Windows>

type cd\windows at the prompt.

Creating a directory

Now with your basic understanding of navigating the command line let's

start creating new directories. To create a directory in the current directory

use the mkdir command. For example, create a directory called "test" by

typing mkdir test at the prompt. If created successfully you should be

returned to the prompt with no error message. After the directory has been

created, move into that directory with the cd command.

Switching drives

In some circumstances, you may want to copy or list files on another drive.

To switch drives in the Windows command line, type the letter of the drive

https://www.computerhope.com/edithlp.htm
https://www.computerhope.com/starthlp.htm
https://www.computerhope.com/starthlp.htm
https://www.computerhope.com/jargon/n/notepad.htm
https://www.computerhope.com/issues/ch000429.htm
https://www.computerhope.com/jargon/r/root.htm
https://www.computerhope.com/mdhlp.htm
https://www.computerhope.com/jargon/d/drive.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

followed by a colon. For example, if your CD-ROM drive was the D drive you

would type d: and press enter. If the drive exists the prompt will change to

that drive letter.
 How do you copy files from one drive to another drive?
 Additional information and examples of drive letters.

Creating a new file

You can create a new file from the command line using the edit command,

copy con command, or using the start command to open a file.
 Complete steps on how to create a file in MS-DOS.

Creating a new batch file

In the new test directory let's create your first file. In most circumstances,

you never need to create any file at the command line, but it is still good to

understand how files are created. In this example, we are creating a batch

file. A batch file is a file that ends with .bat and is a file that can help

automate frequently used commands in the command line. We are calling

this batch file "example", so type edit example.bat at the prompt. As

mentioned in the document on creating a file, if the edit command does not

work with your version of Windows, use the start command to open the

batch file in Notepad. To perform this action, you type start notepad

example.bat into the prompt.

Both of the above commands open a new blank example.bat window. In the

file, type the below three lines, which clear the screen with the cls

command and then run the dir command.

@echo off

cls

dir

After these three lines have been typed into the file save and exit the file. If

you are in the edit command click File (or press Alt+F) and then Save. After

https://www.computerhope.com/issues/ch001592.htm
https://www.computerhope.com/issues/ch000515.htm
https://www.computerhope.com/issues/ch000398.htm
https://www.computerhope.com/jargon/b/batchfil.htm
https://www.computerhope.com/jargon/b/batchfil.htm
https://www.computerhope.com/starthlp.htm
https://www.computerhope.com/clshlp.htm
https://www.computerhope.com/clshlp.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

the file has been saved and you are back into the command prompt, typing

dir should display the example.bat in the test directory.

Now run the batch file to get a better understanding of what a batch file

does. To run the batch file type example at the prompt, which executes the

batch file and clears the screen and then runs the dir command.
 Full information and additional examples on batch files.

Moving and copying a file

Now that we've created a file let's move it into an alternate directory. To

help make things easier, create another directory for the files. So,

type mkdir dir2 to create a new directory in the test directory called dir2.

After the new directory has been created, use the move

command to move the example.bat file into that directory. To do this

type move example.bat dir2 at the prompt, if done successfully you

should get a message indicated the file was moved. You could also

substitute the move command for the copy command to copy the file instead

of moving it.

Rename a file

After the file has been moved into the dir2 directory, move into that

directory with the cd command to rename the file. In the dir2 directory use

the rename command to rename the example file into an alternate name.

Type rename example.bat first.bat at the prompt to rename the file to

first.bat. Now when using the dir command you should see the first.bat as

the only file.

Deleting a file

Now that we've had our fun with our new file, delete the file with the del

command. Type del first.bat to delete the first.bat file. If successful, you

are returned to the prompt with no errors and the dir command shows no

files in the current directory.

https://www.computerhope.com/batch.htm
https://www.computerhope.com/movehlp.htm
https://www.computerhope.com/movehlp.htm
https://www.computerhope.com/jargon/m/move.htm
https://www.computerhope.com/copyhlp.htm
https://www.computerhope.com/jargon/c/copy.htm
https://www.computerhope.com/renamehl.htm
https://www.computerhope.com/delhlp.htm
https://www.computerhope.com/delhlp.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Renaming a directory

Go back one directory to get back into the test directory by using

the cd.. command mentioned earlier. Now rename our dir2 directory to

something else using the same rename command we used earlier. At the

prompt, type rename dir2 hope to rename the directory to hope. After this

command has been completed, type dir and you should now see one

directory called hope.

Removing a directory

While still in the test directory, remove the hope directory by using the rmdir

command. At the prompt, type rmdir hope to remove the hope directory.

How to list available commands

After getting a good understanding of using the command line from the

steps shown above you can move on to other available commands by

typing help at the command line. Typing "help" gives you a listing of

available commands with a brief description of each of the commands.

Closing or exiting the command line window

After you are done with the Windows command line, you can type exit to

close the window.

In conclusion

You should now have a good understanding how to navigate the command

line, create directories and files, rename directories and files, and delete. As

mentioned earlier, there are hundreds of other commands that can be used

at the command line. If you want to expand your knowledge even more, we

recommend looking at the options available for each of the above commands

and go through our commands overview. You can also use our search to find

any command by the name of the command or by the action it performs.

https://www.computerhope.com/rmdirhlp.htm
https://www.computerhope.com/rmdirhlp.htm
https://www.computerhope.com/overview.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

DOS and Windows command line Top 10 commands

Below is a listing of the top 10 MS-

DOS commands most commonly used and that you will most likely be

using during a normal DOS session.
1. cd
2. dir

3. copy
4. del

5. edit

6. move
7. ren (rename)

8. deltree

9. cls
10. format

Top 10 command pages

Below is a listing of the top 10 MS-DOS command pages by the amount of

times they have been accessed on the Computer Hope server.
1. xcopy

2. copy
3. dir

4. net

5. format
6. del

7. attrib

8. cd
9. ping

10. set

https://www.computerhope.com/cdhlp.htm
https://www.computerhope.com/dirhlp.htm
https://www.computerhope.com/copyhlp.htm
https://www.computerhope.com/delhlp.htm
https://www.computerhope.com/edithlp.htm
https://www.computerhope.com/movehlp.htm
https://www.computerhope.com/renamehl.htm
https://www.computerhope.com/deltree.htm
https://www.computerhope.com/clshlp.htm
https://www.computerhope.com/formathl.htm
https://www.computerhope.com/xcopyhlp.htm
https://www.computerhope.com/copyhlp.htm
https://www.computerhope.com/dirhlp.htm
https://www.computerhope.com/nethlp.htm
https://www.computerhope.com/formathl.htm
https://www.computerhope.com/delhlp.htm
https://www.computerhope.com/attribhl.htm
https://www.computerhope.com/cdhlp.htm
https://www.computerhope.com/pinghlp.htm
https://www.computerhope.com/sethlp.htm

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

UNIT-V

UNIX
(Pronounced yoo-niks) UNIX is a popular multi-user, multitaskingoperating system (OS) developed at Bell Labs in the

early 1970s. Created by just a handful of programmers, UNIX was designed to be a small, flexible system used

exclusively by programmers.

Due to its portability, flexibility, and power, UNIX has become a leading operating system for workstations.

Historically, it has been less popular in the personal computer market.

UNIX History

UNIX was one of the first operating systems to be written in a high-level programming language, namely C. This

meant that it could be installed on virtually any computer for which a C compiler existed. This natural portability

combined with its low price made it a popular choice among universities. It was inexpensive because antitrust

regulations prohibited Bell Labs from marketing it as a full-scale product.

The Challenges of Cloud Integration

Bell Labs distributed the operating system in its source language form, so anyone who obtained a copy could modify

and customize it for his own purposes. By the end of the 1970s, dozens of different versions of UNIX were running at

various sites. After its breakup in 1982, AT&T began to market UNIX in earnest. It also began the long and difficult

process of defining a standard version of UNIX.

The UNIX Standard, Trademark

Today, the trademarked "UNIX" and the "Single UNIX Specification" interface are owned by The Open Group. An

operating system that is certified by The Open Group to use the UNIX trademark conforms to the Single UNIX

Specification. The latest version of the certification standard is UNIX V7, aligned with the Single UNIX Specification

Version 4, 2013 Edition.

According to The Open Group's Web site, "As the owner of the UNIX trademark, The Open Group has separated the

UNIX trademark from any actual code stream itself, thus allowing multiple implementations. Since the introduction of

the Single UNIX Specification, there has been a single, open, consensus specification that defines the requirements

for a conformant UNIX system. There is also a mark, or brand, that is used to identify those products that have been

certified as conforming to the Single UNIX Specification, initially UNIX 93, followed subsequently by UNIX 95, UNIX

98 and now UNIX 03. Both the specification and the UNIX trade mark are managed and held in trust for the industry

by The Open Group."

http://www.webopedia.com/TERM/M/multi_user.html
http://www.webopedia.com/TERM/M/multitasking.html
http://www.webopedia.com/TERM/M/multitasking.html
http://www.webopedia.com/TERM/P/programmer.html
http://www.webopedia.com/TERM/W/workstation.html
http://www.webopedia.com/TERM/P/personal_computer.html
http://www.webopedia.com/TERM/C/C.html
http://www.webopedia.com/TERM/C/compiler.html
http://o1.qnsr.com/cgi/r?;n=203;c=1639922;s=9534;x=7936;f=201705191426590;u=j;z=TIMESTAMP;k=http://assetform.webopedia.com/controller?asset=175119710&srvid=95900&vkey=4190310&io=11111&qset=CONTACTFORM_HQB&formHQB=y&domain=www.webopedia.com

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Basic UNIX Commands

Examples of the basic UNIX commands include the following:

 ls (Lists files)

 ls -l (Lists files in long format)

 cd name (Change directory)

 cd .. (Go to directory above current)

 cp filename1 filename2 (Copies a file)

 chmod options filename (Change the read, write, and execute permissions on your files)

 mkdir name (Creates a directory)

What is Unix ?
The Unix operating system is a set of programs that act as a link between

the computer and the user.

The computer programs that allocate the system resources and coordinate

all the details of the computer's internals is called the operating system or

the kernel.

Users communicate with the kernel through a program known as the shell.

The shell is a command line interpreter; it translates commands entered by

the user and converts them into a language that is understood by the

kernel.

 Unix was originally developed in 1969 by a group of AT&T employees Ken

Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna at Bell Labs.

 There are various Unix variants available in the market. Solaris Unix, AIX, HP

Unix and BSD are a few examples. Linux is also a flavor of Unix which is freely

available.

 Several people can use a Unix computer at the same time; hence Unix is called

a multiuser system.

 A user can also run multiple programs at the same time; hence Unix is a

multitasking environment.

 Unix Architecture
Here is a basic block diagram of a Unix system −

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

The main concept that unites all the versions of Unix is the following four basics −
Kernel − The kernel is the heart of the operating system. It interacts with the hardware and most of the
tasks like memory management, task scheduling and file management.
Shell − The shell is the utility that processes your requests. When you type in a command at your
terminal, the shell interprets the command and calls the program that you want. The shell uses standard
syntax for all commands. C Shell, Bourne Shell and Korn Shell are the most famous shells which are
available with most of the Unix variants.
Commands and Utilities − There are various commands and utilities which you can make use of in your
day to day activities. cp, mv, catand grep, etc. are few examples of commands and utilities. There are
over 250 standard commands plus numerous others provided through 3rd party software. All the
commands come along with various options.
Files and Directories − All the data of Unix is organized into files. All files are then organized into
directories. These directories are further organized into a tree-like structure called the filesystem.
System Bootup
If you have a computer which has the Unix operating system installed in it, then you simply need to turn
on the system to make it live.
As soon as you turn on the system, it starts booting up and finally it prompts you to log into the system,
which is an activity to log into the system and use it for your day-to-day activities.
Login Unix
When you first connect to a Unix system, you usually see a prompt such as the following −
login:
To log in
Have your userid (user identification) and password ready. Contact your system administrator if you
don't have these yet.

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

Type your userid at the login prompt, then press ENTER. Your userid is case-sensitive, so be sure you
type it exactly as your system administrator has instructed.
Type your password at the password prompt, then press ENTER. Your password is also case-sensitive.
If you provide the correct userid and password, then you will be allowed to enter into the system. Read
the information and messages that comes up on the screen, which is as follows.
login : amrood
amrood's password:
Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73
$
You will be provided with a command prompt (sometime called the $ prompt) where you type all your
commands. For example, to check calendar, you need to type the cal command as follows −
$ cal
 June 2009
Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

$
Change Password
All Unix systems require passwords to help ensure that your files and data remain your own and that the
system itself is secure from hackers and crackers. Following are the steps to change your password −
Step 1 − To start, type password at the command prompt as shown below.
Step 2 − Enter your old password, the one you're currently using.
Step 3 − Type in your new password. Always keep your password complex enough so that nobody can
guess it. But make sure, you remember it.
Step 4 − You must verify the password by typing it again.
$ passwd
Changing password for amrood
(current) Unix password:******
New UNIX password:*******
Retype new UNIX password:*******
passwd: all authentication tokens updated successfully

$
Note − We have added asterisk (*) here just to show the location where you need to enter the current
and new passwords otherwise at your system. It does not show you any character when you type.
Listing Directories and Files
All data in Unix is organized into files. All files are organized into directories. These directories are
organized into a tree-like structure called the filesystem.
You can use the ls command to list out all the files or directories available in a directory. Following is the
example of using ls command with -l option.
$ ls -l
total 19621
drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml
-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ
drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia
-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar
drwxr-xr-x 8 root root 4096 Nov 25 2007 usr
-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php
-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar
-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid
-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

$
Here entries starting with d..... represent directories. For example, uml, univ and urlspedia are
directories and rest of the entries are files.
Who Are You?
While you're logged into the system, you might be willing to know : Who am I?
The easiest way to find out "who you are" is to enter the whoami command −
$ whoami
 amrood

$
Try it on your system. This command lists the account name associated with the current login. You can
try who am i command as well to get information about yourself.
Who is Logged in?
Sometime you might be interested to know who is logged in to the computer at the same time.
There are three commands available to get you this information, based on how much you wish to know
about the other users: users, who, and w.
$ users
 amrood bablu qadir

$ who
amrood ttyp0 Oct 8 14:10 (limbo)
bablu ttyp2 Oct 4 09:08 (calliope)
qadir ttyp4 Oct 8 12:09 (dent)

$
Try the w command on your system to check the output. This lists down information associated with the
users logged in the system.
Logging Out
When you finish your session, you need to log out of the system. This is to ensure that nobody else
accesses your files.
To log out
Just type the logout command at the command prompt, and the system will clean up everything and
break the connection.
System Shutdown
The most consistent way to shut down a Unix system properly via the command line is to use one of the
following commands −

S.No. Command & Description

Asst Prof. S. Sasikala.,MCA.,MPhil.,B.Ed.,

1 halt
Brings the system down immediately

2 init 0
Powers off the system using predefined scripts to synchronize and clean up the system
prior to shutting down

3 init 6
Reboots the system by shutting it down completely and then restarting it

4 poweroff
Shuts down the system by powering off

5 reboot
Reboots the system

6 shutdown
Shuts down the system

In Unix, there are three basic types of files −
Ordinary Files − An ordinary file is a file on the system that contains data, text, or program instructions.
In this tutorial, you look at working with ordinary files.
Directories − Directories store both special and ordinary files. For users familiar with Windows or Mac
OS, Unix directories are equivalent to folders.
Special Files − Some special files provide access to hardware such as hard drives, CD-ROM drives,
modems, and Ethernet adapters. Other special files are similar to aliases or shortcuts and enable you to
access a single file using different names.
Hidden Files
An invisible file is one, the first character of which is the dot or the period character (.). Unix programs
(including the shell) use most of these files to store configuration information.
Some common examples of the hidden files include the files −
.profile − The Bourne shell (sh) initialization script
.kshrc − The Korn shell (ksh) initialization script
.cshrc − The C shell (csh) initialization script
.rhosts − The remote shell configuration file
Single dot (.) − This represents the current directory.
Double dot (..) − This represents the parent directory.

	OBJECTIVES AND FUNCTIONS
	BASIC ELEMENTS Processor Processor controls the operation of computer and performs its data processing functions like arithmetic, logic and others. Main Memory Main memory is also called as volatile memory, primary memory, real memory or temporary...
	EVOLUTION OF OPERATING SYSTEMS Serial Processing Users access the computer in series. From the late 1940's to mid 1950's, the programmer interacted directly with computer hardware i.e., no operating system. These machines were...
	The problems with Batch Systems are:
	Functions of Operating System
	There are Many Functions those are Performed by the Operating System But the Main Goal of Operating System is to Provide the Interface between the user and the hardware Means Provides the Interface for Working on the System by the user. The various Fu...
	Storage Management

	Batch Process
	Multiprocessing
	I/O Programming concepts
	Interrupt structure and processing
	Memory management
	Single contiguous allocation
	Partitioned allocation
	Relocatable Partitioned Allocation
	Paged memory management
	Demand Paged memory management
	Segmented memory management

	Process management
	Process management is an integral part of any modern-day operating system (OS). The OS must allocate resources to processes, enable processes to share and exchange information, protect the resources of each process from other processes and enable sync...
	Job Scheduling
	Process Scheduling
	Round-robin scheduling
	Process Synchronization

	Deadlock
	Device Management
	Device Drivers
	Device Detection
	IPC
	Asynchronous I/O
	Power Management
	Userspace Exposure
	Existing Driver Interfaces
	Uniform Driver Interface

	ITC-2: POWERFUL – FAST – RELIABLE

	I/O scheduling
	Contents
	I/O scheduling[edit]
	Scheduling disciplines[edit]

	 Device Handler
	Contents
	Print spooling[edit]
	Banner page[edit]

	Other applications[edit]
	History[edit]
	List of spooling systems[edit]

	
	MS-DOS
	How to use the Windows command line (DOS)
	Get into the Windows command line
	Understanding the prompt
	Listing the files
	Moving into a directory
	Understand the files
	Moving back a directory
	Creating a directory
	Switching drives
	Creating a new file
	Creating a new batch file
	Moving and copying a file
	Rename a file
	Deleting a file
	Renaming a directory
	Removing a directory
	How to list available commands
	Closing or exiting the command line window
	In conclusion
	DOS and Windows command line Top 10 commands
	Top 10 command pages

	UNIT-V
	UNIX
	UNIX History
	The UNIX Standard, Trademark
	Basic UNIX Commands
	What is Unix ?
	Unix Architecture

