
Annai Women’s College
(Arts and Science)

Affiliated to Bharathidasan University – Tiruchirapalli.

TNPL Road ,Punnam Chattram, Karur-639 136

Department of Computer Science,
Computer Applications & IT

Faculty Name : Mrs.M.Priya,MCA.,M.Phil.,

Major : I - M.Sc(Computer Science)

Paper Code : P16CSE2B

Title of the Paper : Artificial Intelligence

INDEX

S.No

Topics

P.No

1

UNIT I: Introduction: AI Problems - Al techniques - Criteria

for success. Problems, Problem Spaces, Search: State space

search- Production Systems

3 to 24

2

UNIT II: Heuristic Search techniques: Generate and Test -

Hill Climbing- Best-First - Means-end analysis. Knowledge

representation issues: Representations and mappings -

Approaches to Knowledge representations -Issues in

Knowledge representations - Frame Problem.

25 to 35

3

UNIT III: Using Predicate logic: Representing simple facts

in logic

- Representing Instance and is a relationships - Computable

functions and predicates - Resolution.

36 to 43

4

UNIT III: Using Predicate logic: Representing simple facts

in logic

- Representing Instance and is a relationships - Computable

functions and predicates - Resolution.

44 to 53

5

UNIT V: Game playing – The mini max search procedure –

Expert System - Perception and Action

54 to 82

Artificial Intelligence

.

Annai Women’s College,Karur.

(Arts and Science)

Department of Computer Science.

Class: I M.Sc (Computer Science) Staff Incharge: M. Priya, MCA.,M.Phil.,

AP in CS, BCA & IT Department.

Artificial Intelligence

UNIT I: Introduction: AI Problems - Al techniques - Criteria for success. Problems,

Problem Spaces, Search: State space search - Production Systems

UNIT II: Heuristic Search techniques: Generate and Test - Hill Climbing- Best-First -

Means-end analysis. Knowledge representation issues: Representations and mappings -

Approaches to Knowledge representations -Issues in Knowledge representations - Frame

Problem.

UNIT III: Using Predicate logic: Representing simple facts in logic - Representing

Instance and is a relationships - Computable functions and predicates - Resolution.

UNIT III: Using Predicate logic: Representing simple facts in logic - Representing

Instance and is a relationships - Computable functions and predicates - Resolution.

UNIT V: Game playing – The mini max search procedure – Expert System - Perception

and Action

TEXT BOOK: Elaine Rich and Kevin Knight," Artificial Intelligence", Tata McGraw

Hill Publishers company Pvt Ltd, Second Edition, 1991.

Unit1: Chapter 1(1.1, 1.3.1.5), Chapter 2(2.1, 2.2)

Unit2: Chapter 3(3.1, 3.2, 3.P, 3.6), Chapter 4(4.1, 4.2, 4.3, 4.4).

Unit3: Chapter 5(5.1, 5.2, 5.3, 5.4).

Unit4: Chapter 6.

Unit5: Chapter 12(12.1, 12.2), Chapter 20 and Chapter 21.

Unit 1

Introduction:

A branch of Computer Science named Artificial Intelligence pursues creating the

computers or machines as intelligent as human beings.

What is Artificial Intelligence?

According to the father of Artificial Intelligence,

John McCarthy, it is “The science and engineering of

making intelligent machines, especially intelligent

computer programs”.

Artificial Intelligence is a way of making a

computer, a computer-controlled robot, or a software

think intelligently, in the similar manner the intelligent

humans think.

AI is accomplished by studying how human brain

thinks, and how humans learn, decide, and work while

trying to solve a problem, and then using the outcomes of

this study as a basis of developing intelligent software and systems.

History of AI

Here is the history of AI during 20th century −

Year Milestone / Innovation

1923
Karel Čapek play named “Rossum's Universal Robots” (RUR) opens in London,

first use of the word "robot" in English.

1943 Foundations for neural networks laid.

1945 Isaac Asimov, a Columbia University alumni, coined the term Robotics.

1950

Alan Turing introduced Turing Test for evaluation of intelligence and published

Computing Machinery and Intelligence. Claude Shannon published Detailed Analysis of

Chess Playing as a search.

1956
John McCarthy coined the term Artificial Intelligence. Demonstration of the first

running AI program at Carnegie Mellon University.

1958 John McCarthy invents LISP programming language for AI.

Artificial Intelligence

.

1964
Danny Bobrow's dissertation at MIT showed that computers can understand

natural language well enough to solve algebra word problems correctly.

1965
Joseph Weizenbaum at MIT built ELIZA, an interactive problem that carries on a

dialogue in English.

1969
Scientists at Stanford Research Institute Developed Shakey, a robot, equipped

with locomotion, perception, and problem solving.

1973
The Assembly Robotics group at Edinburgh University built Freddy, the Famous

Scottish Robot, capable of using vision to locate and assemble models.

1979 The first computer-controlled autonomous vehicle, Stanford Cart, was built.

1985 Harold Cohen created and demonstrated the drawing program, Aaron.

1990

Major advances in all areas of AI −

 Significant demonstrations in machine learning

 Case-based reasoning

 Multi-agent planning

 Scheduling

 Data mining, Web Crawler

 natural language understanding and translation

 Vision, Virtual Reality

 Games

1997
The Deep Blue Chess Program beats the then world chess champion, Garry

Kasparov.

2000

Interactive robot pets become commercially available. MIT displays Kismet, a

robot with a face that expresses emotions. The robot Nomad explores remote regions of

Antarctica and locates meteorites.

Philosophy of AI

While exploiting the power of the computer systems, the curiosity of human, lead him to

wonder, “Can a machine think and behave like humans do?”

Thus, the development of AI started with the intention of creating similar intelligence in

machines that we find and regard high in humans.

Goals of AI

 To Create Expert Systems − The systems which exhibit intelligent behavior,

learn, demonstrate, explain, and advice its users.

 To Implement Human Intelligence in Machines − Creating systems that

understand, think, learn, and behave like humans.

What Contributes to AI?

Artificial intelligence is a science and technology based on disciplines such as Computer

Science, Biology, Psychology, Linguistics, Mathematics, and Engineering. A major thrust of AI

is in the development of computer functions associated with human intelligence, such as

reasoning, learning, and problem solving.

Out of the following areas, one or multiple areas can contribute to build an intelligent

system.

Programming Without and With AI

The programming without and with AI is different in following ways −

Programming Without AI Programming With AI

A computer program without AI can

answer the specific questions it is meant to solve.

A computer program with AI can answer

the generic questions it is meant to solve.

Modification in the program leads to

change in its structure.

AI programs can absorb new modifications

by putting highly independent pieces of information

together. Hence you can modify even a minute

piece of information of program without affecting

its structure.

Modification is not quick and easy. It may

lead to affecting the program adversely.
Quick and Easy program modification.

What is AI Technique?

In the real world, the knowledge has some unwelcomed properties −

 Its volume is huge, next to unimaginable.

 It is not well-organized or well-formatted.

 It keeps changing constantly.

AI Technique is a manner to organize and use the knowledge efficiently.

Artificial Intelligence

.

It should be perceivable by the people who provide it.

 It should be easily modifiable to correct errors.

 It should be useful in many situations though it is incomplete or inaccurate.

AI techniques elevate the speed of execution of the complex program it is equipped with.

Applications of AI

AI has been dominant in various fields such as,

 Gaming − AI plays crucial role in strategic games such as chess, poker, tic-tac-

toe, etc., where machine can think of large number of possible positions based on heuristic

knowledge.

 Natural Language Processing − It is possible to interact with the computer that

understands natural language spoken by humans.

 Expert Systems − There are some applications which integrate machine,

software, and special information to impart reasoning and advising. They provide explanation

and advice to the users.

 Vision Systems − These systems understand, interpret, and comprehend visual

input on the computer. For example,

o A spying aeroplane takes photographs, which are used to figure out spatial

information or map of the areas.

o Doctors use clinical expert system to diagnose the patient.

o Police use computer software that can recognize the face of criminal with the

stored portrait made by forensic artist.

 Speech Recognition − Some intelligent systems are capable of hearing and

comprehending the language in terms of sentences and their meanings while a human talks to it.

It can handle different accents, slang words, noise in the background, change in human’s noise

due to cold, etc.

 Handwriting Recognition − The handwriting recognition software reads the text

written on paper by a pen or on screen by a stylus. It can recognize the shapes of the letters and

convert it into editable text.

 Intelligent Robots − Robots are able to perform the tasks given by a human.

They have sensors to detect physical data from the real world such as light, heat, temperature,

movement, sound, bump, and pressure. They have efficient processors, multiple sensors and

huge memory, to exhibit intelligence. In addition, they are capable of learning from their

mistakes and they can adapt to the new environment.

Research Areas: The domain of artificial

intelligence is huge in breadth and width. While

proceeding, we consider the broadly common and

prospering research areas in the domain of AI

Speech and Voice Recognition

These both terms are common in robotics, expert

systems and natural language processing. Though these

terms are used interchangeably, their objectives are

different.

Speech Recognition Voice Recognition

The speech recognition aims at

understanding and comprehending WHAT was

spoken.

The objective of voice recognition is to

recognize WHO is speaking.

It is used in hand-free computing, map, or

menu navigation.

It is used to identify a person by

analysing its tone, voice pitch, and accent, etc.

Machine does not need training for

Speech Recognition as it is not speaker

dependent.

This recognition system needs training

as it is person oriented.

Speaker independent Speech Recognition

systems are difficult to develop.

Speaker dependent Speech

Recognition systems are comparatively easy to

develop.

Working of Speech and Voice Recognition Systems

The user input spoken at a microphone goes to sound card of the system. The converter

turns the analog signal into equivalent digital signal for the speech processing. The database is

used to compare the sound patterns to recognize the words. Finally, a reverse feedback is given

to the database. This source-language text becomes input to the Translation Engine, which

converts it to the target language text. They are supported with interactive GUI, large database of

vocabulary, etc.

Real Life Applications of AI Research Areas

There is a large array of applications where AI is serving common people in their day-to-

day lives:

Artificial Intelligence

.

.No.

Research Areas Example

Expert Systems

Examples − Flight-tracking systems, Clinical systems.

Natural Language Processing

Examples: Google Now feature, speech recognition, Automatic

voice output.

 Neural Networks

Examples − Pattern recognition systems such as face

recognition, character recognition, handwriting recognition.

 Robotics

Examples − Industrial robots for moving, spraying, painting,

precision checking, drilling, cleaning, coating, carving, etc.

 Fuzzy Logic Systems

Examples − Consumer electronics, automobiles, etc.

Task Classification of AI

The domain of AI is classified into

Formal tasks, Mundane tasks, and Expert

tasks. Humans learn mundane (ordinary) tasks

since their birth. They learn by perception,

speaking, using language, and locomotives. They

learn Formal Tasks and Expert Tasks later, in

that order.For humans, the mundane tasks are

easiest to learn. The same was considered true

before trying to implement mundane tasks in

machines. Earlier, all work of AI was

concentrated in the mundane task domain.

Later, it turned out that the machine requires more knowledge, complex knowledge

representation, and complicated algorithms for handling mundane tasks. This is the reason why

AI work is more prospering in the Expert Tasks domain now, as the expert task domain

needs expert knowledge without common sense, which can be easier to represent and handle.

AI Techniques:

Artificial Intelligence problems span a verybroad spectrum.Theyapperar to have very little in common

expected that they are hard. One of the few hard and fast results to come out of the first three decades of AI

researchis that intelligencerequiresknowledge.

 It isvoluminous.

 It is hardto characterizeaccurately.

 It is constantlychanging.

 It is differsfromdata bybeingorganizedin acorrespondstothe ways it willbe used.

Tic-Tac-Toe:

Consider a board with the nine positions numbered as follows:

1

2

3

4

5

6

7

8

9

When X plays 1 as their opening move, then O should take 5. Then X takes 9 (in this

situation, O should not take 3 or 7, O should take 2, 4, 6 or 8):

draw.

 X1 → O5 → X9 → O2 → X8 → O7 → X3 → O6 → X4, this game will be a

or 6 (in this situation, O should not take 4 or 7, O should take 2, 3, 8 or 9. In fact, taking 9

is the best move, since a non-perfect player X may take 4, then O can take 7 to win).

 X1 → O5 → X6 → O2 → X8, then O should not take 3, or X can take 7 to win,

and O should not take 4, or X can take 9 to win, O should take 7 or 9.

 X1 → O5 → X6 → O2 → X8 → O7 → X3 → O9 → X4, this game will be a

draw.

 X1 → O5 → X6 → O2 → X8 → O9 → X4 (7) → O7 (4) → X3, this game will

be a draw.

 X1 → O5 → X6 → O3 → X7 → O4 → X8 (9) → O9 (8) → X2, this game will

be a draw.

 X1 → O5 → X6 → O9, then X should not take 4, or O can take 7 to win, X

should take 2, 3, 7 or 8.

Artificial Intelligence

.

draw.

 X1 → O5 → X6 → O9 → X2 → O3 → X7 → O4 → X8, this game will be a

 X1 → O5 → X6 → O9 → X3 → O2 → X8 → O4 (7) → X7 (4), this game will

be a draw.

 X1 → O5 → X6 → O9 → X7 → O4 → X2 (3) → O3 (2) → X8, this game will

be a draw.

 X1 → O5 → X6 → O9 → X8 → O2 (3, 4, 7) → X4/7 (4/7, 2/3, 2/3) → O7/4

(7/4, 3/2, 3/2) → X3 (2, 7, 4), this game will be a draw.

In both of these situations (X takes 9 or 6 as second move), X has a property to win.

If X is not a perfect player, X may take 2 or 3 as second move. Then this game will be a

draw, X cannot win.

 X1 → O5 → X2 → O3 → X7 → O4 → X6 → O8 (9) → X9 (8), this game will

be a draw.

 X1 → O5 → X3 → O2 → X8 → O4 (6) → X6 (4) → O9 (7) → X7 (9), this

game will be a draw.

If X plays 1 opening move, and O is not a perfect player, the following may happen:

Although O takes the only good position (5) as first move, but O takes a bad position as

second move:

 X1 → O5 → X9 → O3 → X7, then X can take 4 or 8 to win.

 X1 → O5 → X6 → O4 → X3, then X can take 2 or 9 to win.

 X1 → O5 → X6 → O7 → X3, then X can take 2 or 9 to win.

Although O takes good positions as the first two moves, but O takes a bad position as

third move:

 X1 → O5 → X6 → O2 → X8 → O3 → X7, then X can take 4 or 9 to win.

 X1 → O5 → X6 → O2 → X8 → O4 → X9, then X can take 3 or 7 to win.

O takes a bad position as first move (except of 5, all other positions are bad):

 X1 → O3 → X7 → O4 → X9, then X can take 5 or 8 to win.

 X1 → O9 → X3 → O2 → X7, then X can take 4 or 5 to win.

 X1 → O2 → X5 → O9 → X7, then X can take 3 or 4 to win.

 X1 → O6 → X5 → O9 → X3, then X can take 2 or 7 to win.

Many board games share the element of trying to be the first to get n-in-a-row,

including Three Men's Morris, Nine Men's Morris, pente, gomoku, Qubic, Connect

https://en.wikipedia.org/wiki/Board_game
https://en.wikipedia.org/wiki/Three_Men%27s_Morris
https://en.wikipedia.org/wiki/Three_Men%27s_Morris
https://en.wikipedia.org/wiki/Pente
https://en.wikipedia.org/wiki/Pente
https://en.wikipedia.org/wiki/Qubic
https://en.wikipedia.org/wiki/Qubic

Four, Quarto, Gobblet, Order and Chaos, Toss Across, and Mojo. Tic-tac-toe is an instance of

an m,n,k-game, where two players alternate taking turns on an m×n board until one of them

gets k in a row. Harary's generalized tic-tac-toe is an even broader generalization.

Other variations of tic-tac-toe include:

 3-dimensional tic-tac-toe on a 3×3×3 board. In this game, the first player has an

easy win by playing in the centre if 2 people are playing.

One can play on a board of 4x4 squares, winning in several ways. Winning can include: 4

in a straight line, 4 in a diagonal line, 4 in a diamond, or 4 to make a square.

Another variant, Qubic, is played on a 4×4×4 board; it

was solved by Oren Patashnik in 1980 (the first player can force a

win). Higher dimensional variations are also possible.

 In misère tic-tac-toe the player wins if the opponent

gets n in a row. A 3×3 game is a draw. More generally, the first

player can draw or win on any board (of any dimension) whose side

length is odd, by playing first in the central cell and then mirroring

the opponent's moves.

 In "wild" tic-tac-toe, players can choose to place either X or O on each move.

 There is a game that is isomorphic to tic-tac-toe, but on the surface appears

completely different. It is called Pick15 or Number Scrabble Two players in turn say a number

between one and nine. A particular number may not be repeated. The game is won by the player

who has said three numbers whose sum is 15. If all the numbers are used and no one gets three

numbers that add up to 15 then the game is a draw.Plotting these numbers on a 3×3 magic

square shows that the game exactly corresponds with tic-tac-toe, since three numbers will be

arranged in a straight line if and only if they total 15.

Question Answering:

In this series of programs that read in English text and then answer questions, also Stated

in English about that text.

A QA implementation, usually a computer program, may construct its answers by

querying a structured database of knowledge or information, usually a knowledge base. More

commonly, QA systems can pull answers from an unstructured collection of natural language

documents.Some examples of natural language document collections used for QA systems

include:

https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Connect_Four
https://en.wikipedia.org/wiki/Gobblet
https://en.wikipedia.org/wiki/Gobblet
https://en.wikipedia.org/wiki/Toss_Across
https://en.wikipedia.org/wiki/Mojo_(board_game)
https://en.wikipedia.org/wiki/M%2Cn%2Ck-game
https://en.wikipedia.org/wiki/Harary%27s_generalized_tic-tac-toe
https://en.wikipedia.org/wiki/Qubic
https://en.wikipedia.org/wiki/Solved_board_games
https://en.wikipedia.org/wiki/Oren_Patashnik
https://en.wikipedia.org/wiki/Mis%C3%A8re
https://en.wikipedia.org/wiki/Isomorphic
https://en.wikipedia.org/wiki/Number_Scrabble
https://en.wikipedia.org/wiki/Magic_square
https://en.wikipedia.org/wiki/Magic_square

Artificial Intelligence

.

A local collection of reference texts,

 Internal organization documents and web pages

 Compiled newswire reports

 A set of Wikipedia pages

 A subset of World Wide Web pages

For Example: Mary went shopping for a new coat. She found a red one she really

liked. When she got it home, she discovered that it went perfectly with her favorite dress.

Consider the above paragraph, we make the Questions,

Q1: What did Mary go for shopping for?

Q2: What did Mary find that she liked?

Q3: Did Mary buy anything?

Question Patterns:

A set of templates that match common question forms and produce patterns to be used to

match against inputs.

Templates and patterns are paired so that if a template matches successfully against an

input question then its associated text patterns are used to try to find appropriate answers in the

text.

The Algorithm:

To answer a question, do the following:

1. Compare each element of the question patterns against the Question and use all

those that match successfully to generate a set of the text patterns.

2. Pass each of these patterns through a substitution process that generates

alternative forms of verbs.

3. Apply each of these text patterns to text, and collect all the resulting answers.

4. Reply with the st of answers just collected

Problems, Problem Spaces and search:

To build a system to solve a particular problem, we need to do Four Things:

1. Define the Problem precisely.

2. Analyze the problem

3. Isolate and represent the task knowledge that is necessary to solve the problem.

4. Choose the best problem-solving technique(s) and apply it (them) to the particular

problem.

Defining a Problem as a State Space Search:

• State space search

• Search strategies

• Problem characteristics

• Design of search programsProblem solving = Searching for a goal state

State Space Search: Playing Chess

• Each position can be described by an 8-by-8 array.

• Initial position is the game opening position.

• Goal position is any position in which the opponent does not have a legal move and his

or her king is under attack.

• Legal moves can be described by a set of rules:

 Left sides are matched against the current state.

 Right sides describe the new resulting state.

• State space is a set of legal positions.

• Starting at the initial state.

• Using the set of rules to move from one state to another.

• Attempting to end up in a goal state.

Artificial Intelligence

.

State Space Search: Water Jug Problem

“You are given two jugs, a 4-litre one and a 3-litre one. Neither have any measuring

markers on it. There is a pump that can be used to fill the jugs with water. How can you get

exactly 2 litres of water into 4-litre jug?”

State Space Search: Water Jug Problem

• State: (x, y)

x = 0, 1, 2, 3, or 4

y = 0, 1, 2, 3

• Start state: (0, 0).

• Goal state: (2, n) for any n.

• Attempting to end up in a goal state.

1. (x, y) → (4, y) if x < 4

2. (x, y) → (x, 3) if y < 3

3. (x, y) → (x − d, y) if x > 0

4. (x, y) → (x, y − d) if y > 0

5. (x, y) → (0, y) if x > 0

6. (x, y) → (x, 0) if y > 0

7. (x, y) → (4, y − (4 − x)) if x + y ≥ 4, y > 0

8. (x, y) → (x − (3 − y), 3) if x + y ≥ 3, x > 0

9. (x, y) → (x + y, 0) if x + y ≤ 4, y > 0

10. (x, y) → (0, x + y) if x + y ≤ 3, x > 0

11. (0, 2) → (2, 0)

12. (2, y) → (0, y)

1. current state = (0, 0)

2. Loop until reaching the goal state (2, 0)

 Apply a rule whose left side matches the current state − Set the new current state

to be the resulting state

(0, 0) (0, 3) (3, 0) (3, 3) (4, 2) (0, 2) (2, 0)

The role of the condition in the left side of a rule ⇒ restrict the application of the rule ⇒

more efficient

1. (x, y) → (4, y) if x < 4

2. (x, y) → (x, 3) if y < 3

Special-purpose rules to capture special-case knowledge that can be used at some stage in

solving a problem

11. (0, 2) → (2, 0)

12. (2, y) → (0, y)

State Space Search: Summary

1. Define a state space that contains all the possible configurations of the relevant objects.

2. Specify the initial states.

3. Specify the goal states.

4. Specify a set of rules:

 What are unstated assumptions?

 How general should the rules be?

 How much knowledge for solutions should be in the rules?

Control Strategies

Requirements of a good search strategy:

1. It causes motion Otherwise; it will never lead to a solution.

2. It is systematic Otherwise; it may use

more steps than necessary.

3. It is efficient Find a good, but not

necessarily the best, answer.

Breadth-First Search

It starts from the root node, explores the

neighboring nodes first and moves towards the

next level neighbors. It generates one tree at a

time until the solution is found. It can be

implemented using FIFO queue data structure.

This method provides shortest path to the solution.

If branching factor (average number of

child nodes for a given node) = b and depth = d,

then number of nodes at level d = bd.

Artificial Intelligence

.

The total no of nodes created in worst case is b + b2 + b3 + … + bd.

Disadvantage

Since each level of nodes is saved for creating next one, it consumes a lot of memory

space. Space requirement to store nodes is exponential. Its complexity depends on the number of

nodes. It can check duplicate nodes.

Depth-First Search

It is implemented in recursion with LIFO stack

data structure. It creates the same set of nodes as

Breadth-First method, only in the different order.

As the nodes on the single path are stored in

each iteration from root to leaf node, the space

requirement to store nodes is linear. With branching

factor band depth as m, the storage space is bm.

Disadvantage:

This algorithm may not terminate and go on infinitely on one path. The solution to this

issue is to choose a cut-off depth. If the ideal cut-off isd, and if chosen cut-off is lesser than d,

then this algorithm may fail. If chosen cut-off is more than d, then execution time increases.

Its complexity depends on the number of paths. It cannot check duplicate nodes.

Bidirectional Search

It searches forward from initial state and backward from goal state till both meet to

identify a common state.

The path from initial state is concatenated with the inverse path from the goal state. Each

search is done only up to half of the total path.

Uniform Cost Search

Sorting is done in increasing cost of the path to a node. It always expands the least cost

node. It is identical to Breadth First search if each transition has the same cost. It explores paths

in the increasing order of cost.

Disadvantage:

There can be multiple long paths with the cost ≤ C*. Uniform Cost search must explore

them all.

Iterative Deepening Depth-First Search

It performs depth-first search to level 1, starts over, executes a complete depth-first

search to level 2, and continues in such way till the solution is found.

It never creates a node until all lower nodes are generated. It only saves a stack of nodes.

The algorithm ends when it finds a solution at depth d. The number of nodes created at depth d is

bd and at depth d-1 is bd-1.

Comparison of Various Algorithms Complexities

Let us see the performance of algorithms based on various criteria −

Criterion
Breadth

First

Depth First

Bidirectional
Uniform

Cost

Interactive

Deepening

Time bd bm bd/2 bd bd

Space bd bm bd/2 bd bd

Optimality Yes No Yes Yes Yes

Completeness Yes No Yes Yes Yes

Artificial Intelligence

.

Search Strategies: Heuristic Search

• Heuristic: involving or serving as an aid to learning, discovery, or problem-solving by

experimental and especially trial-and-error methods. (Merriam-Webster’s dictionary)

• Heuristic technique improves the efficiency of a search process, possibly by sacrificing

claims of completeness or optimality.

• Heuristic is for combinatorial explosion.

• Optimal solutions are rarely needed.

The Travelling Salesman Problem:

“A salesman has a list of cities, each of which he must visit exactly once. There are direct

roads between each pair of cities on the list. Find the route the salesman should follow for the

shortest possible round trip that both starts and finishes at any one of the cities.”

A 1 10 D 5 B5

Nearest neighbour heuristic:

1. Select a starting city.

2. Select the one closest to the current city.

3. Repeat step 2 until all cities have been visited.

Nearest neighbour heuristic:

1. Select a starting city.

2. Select the one closest to the current city.

3. Repeat step 2 until all cities have been visited.

O(n2) vs. O(n!)

• Heuristic function: state descriptions → measures of desirability

Problem Characteristics:

To choose an appropriate method for a particular problem:

• Is the problem decomposable?

• Can solution steps be ignored or undone?

• Is the universe predictable?

• Is a good solution absolute or relative?

• Is the solution a state or a path?

• What is the role of knowledge?

• Does the task require human-interaction?

Is the problem decomposable?

• Can the problem be broken down to smaller problems to be solved independently?

• Decomposable problem can be solved easily.

Artificial Intelligence

.

Start Goal

Blocks World

CLEAR(x) → ON(x, Table)

CLEAR(x) and CLEAR(y) → ON(x, y)

ON(B, C) and ON(A, B)

ON(B, C) ON(A, B)

CLEAR(A) ON(A, B)

Can solution steps be ignored or

undone?

Theorem proving a lemma that has been proved can be ignored for next steps.

Ignorable!

Can solution steps be ignored or undone?

The 8-Puzzle

3 8 2

3 2 1

4 6 1

Moves can be undone and backtracked.

Recoverable!

7

5

Can solution steps be ignored or undone?

Playing Chess Moves cannot be retracted. Irrecoverable!

• Ignorable problems can be solved using a simple control structure that never backtracks.

• Recoverable problems can be solved using backtracking.

• Irrecoverable problems can be solved by recoverable style methods via planning.

Is the universe predictable?

The 8-Puzzle Every time we make a move, we know exactly what will happen.

Certain outcome!

Few Examples:

 Playing bridge.

 Controlling a robot arm

 Helping a lawyer decide how to defend his against a murder charge.

Playing Bridge We cannot know exactly where all the cards are or what the other players

will do on their turns.

Uncertain outcome!

• For certain-outcome problems, planning can be used to generate a sequence of operators

that is guaranteed to lead to a solution.

• For uncertain-outcome problems, a sequence of generated operators can only have a

good probability of leading to a solution.

Plan revision is made as the plan is carried out and the necessary feedback is provided.

Is a good solution absolute or relative?

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years.

7. It is now 2004 A.D.

Is a good solution absolute or relative?

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years.

7. It is now 2004 A.D

Artificial Intelligence

.

Is Marcus alive?

1. Marcus was a man.

2. Marcus was a Pompeian.

3. Marcus was born in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years.

7. It is now 2004 A.D.

Is Marcus alive?

Different reasoning paths lead to the answer. It does not matter which path we

follow.

The Travelling Salesman Problem We have to try all paths to find the shortest one.

• Any-path problems can be solved using heuristics that suggest good paths to explore.

• For best-path problems, much more exhaustive search will be performed.

fork”.

Is the solution a state or a path?

Finding a consistent intepretation “The bank president ate a dish of pasta salad with the

– “bank” refers to a financial situation or to a side of a river?

– “dish” or “pasta salad” was eaten?

– Does “pasta salad” contain pasta, as “dog food” does not contain “dog”?

– Which part of the sentence does “with the fork” modify?

What if “with vegetables” is there?

No record of the processing is necessary.

The Water Jug Problem The path that leads to the goal must be reported.

• A path-solution problem can be reformulated as a state-solution problem by describing

a state as a partial path to a solution.

• The question is whether that is natural or not.

What is the role of knowledge?

Playing Chess Knowledge is important only to constrain the search for a solution.

Reading Newspaper Knowledge is required even to be able to recognize a solution.

Does the task require human-interaction?

• Solitary problem, in which there is no intermediate communication and no demand for

an explanation of the reasoning process.

• Conversational problem, in which intermediate communication is to provide either

additional assistance to the computer or additional information to the user.

Problem Classification

• There is a variety of problem-solving methods, but there is no one single way of solving

all problems.

• Not all new problems should be considered as totally new. Solutions of similar

problems can be exploited.

Search Strategies

Requirements of a good search strategy:

1. It causes motion Otherwise, it will never lead to a solution.

2. It is systematic Otherwise, it may use more steps than necessary.

3. It is efficient Find a good, but not necessarily the best, answer.

Such as BFS,DFS….

Search and Search Techniques:

AI - Popular Search Algorithms

Searching is the universal technique of problem solving in AI. There are some single-

player games such as tile games, Sudoku, crossword, etc. The search algorithms help you to

search for a particular position in such games.

Single Agent Pathfinding Problems

The games such as 3X3 eight-tile, 4X4 fifteen-tile, and 5X5 twenty four tile puzzles are

single-agent-path-finding challenges. They consist of a matrix of tiles with a blank tile. The

player is required to arrange the tiles by sliding a tile either vertically or horizontally into a blank

space with the aim of accomplishing some objective.

The other examples of single agent pathfinding problems are Travelling Salesman

Problem, Rubik’s Cube, and Theorem Proving.

Artificial Intelligence

.

Search Terminology

 Problem Space − It is the environment in which the search takes place. (A set of

states and set of operators to change those states)

 Problem Instance − It is Initial state + Goal state.

 Problem Space Graph − It represents problem state. States are shown by nodes

and operators are shown by edges.

 Depth of a problem − Length of a shortest path or shortest sequence of operators

from Initial State to goal state.

 Space Complexity − The maximum number of nodes that are stored in memory.

 Time Complexity − The maximum number of nodes that are created.

 Admissibility − A property of an algorithm to always find an optimal solution.

 Branching Factor − The average number of child nodes in the problem space

graph.
 Depth − Length of the shortest path from initial state to goal state.

State Space Search: Summary

1. Define a state space that contains all the possible configurations of the relevant objects.

2. Specify the initial states.

3. Specify the goal states.

4. Specify a set of rules:

******************Unit 1 Completed******************

Unit II

Heuristic Search Strategies:

Heuristic (Informed) Search Strategies:

To solve large problems with large number of possible states, problem-specific

knowledge needs to be added to increase the efficiency of search algorithms.

Heuristic Evaluation Functions

They calculate the cost of optimal path between two states. A heuristic function for

sliding-tiles games is computed by counting number of moves that each tile makes from its goal

state and adding these number of moves for all tiles.

Pure Heuristic Search

It expands nodes in the order of their heuristic values. It creates two lists, a closed list for

the already expanded nodes and an open list for the created but unexpanded nodes.

In each iteration, a node with a minimum heuristic value is expanded, all its child nodes

are created and placed in the closed list. Then, the heuristic function is applied to the child nodes

and they are placed in the open list according to their heuristic value. The shorter paths are saved

and the longer ones are disposed.

Hill-Climbing Search

It is an iterative algorithm that starts with an arbitrary solution to a problem and attempts

to find a better solution by changing a single element of the solution incrementally. If the change

produces a better solution, an incremental change is taken as a new solution. This process is

repeated until there are no further improvements.

function Hill-Climbing (problem), returns a state that is a local maximum.

inputs: problem, a problem

local variables: current, a node neighbor, a node

current <-Make_Node(Initial-State[problem])

loop

do neighbor <- a highest_valued successor of current

Artificial Intelligence

.

if Value[neighbor] ≤ Value[current] then

return State[current]

current <- neighbor

end

Disadvantage –

This algorithm is neither complete, nor optimal.

Local Beam Search

In this algorithm, it holds k number of states at any given time. At the start, these states

are generated randomly. The successors of these k states are computed with the help of objective

function. If any of these successors is the maximum value of the objective function, then the

algorithm stops.

Otherwise the (initial k states and k number of successors of the states = 2k) states are

placed in a pool. The pool is then sorted numerically. The highest k states are selected as new

initial states. This process continues until a maximum value is reached.

function BeamSearch(problem, k), returns a solution state.

start with k randomly generated states

loop

generate all successors of all k states

if any of the states = solution, then return the state

else select the k best successors

end

Simulated Annealing

Annealing is the process of heating and cooling a metal to change its internal structure for

modifying its physical properties. When the metal cools, its new structure is seized, and the

metal retains its newly obtained properties. In simulated annealing process, the temperature is

kept variable.

We initially set the temperature high and then allow it to ‘cool' slowly as the algorithm

proceeds. When the temperature is high, the algorithm is allowed to accept worse solutions with

high frequency.

Start

1. Initialize k = 0; L = integer number of variables;

2. From i → j, search the performance difference Δ.

3. If Δ <= 0 then accept else if exp(-Δ/T(k)) > random(0,1) then accept;

4. Repeat steps 1 and 2 for L(k) steps.

5. k = k + 1;

Repeat steps 1 through 4 till the criteria is met.

End

Travelling Salesman Problem

In this algorithm, the objective is to find a low-cost tour that starts from a city, visits all

cities en-route exactly once and ends at the same starting city.

Start

Find out all (n -1)! Possible solutions, where n is the total number of cities.

Determine the minimum cost by finding out the cost of each of these (n -1)!

solutions.

Finally, keep the one with the minimum cost.

end

Artificial Intelligence

.

A * Search

It is best-known form of Best First search. It avoids expanding paths that are already

expensive, but expands most promising paths first.

f(n) = g(n) + h(n), where

 g(n) the cost (so far) to reach the node

 h(n) estimated cost to get from the node to the goal

 f(n) estimated total cost of path through n to goal. It is implemented using priority

queue by increasing f(n).

Greedy Best First Search

It expands the node that is estimated to be closest to goal. It expands nodes based on

f(n) = h(n). It is implemented using priority queue.

Disadvantage

It can get stuck in loops. It is not optimal.

Breadth-First Search

It starts from the root node, explores the

neighboring nodes first and moves towards the next

level neighbors. It generates one tree at a time until the solution is found. It can be implemented

using FIFO queue data structure. This method provides shortest no of nodes created in worst case

is b + b2 + b3 + … + bd.

Disadvantage –

Since each level of nodes is saved for creating next one, it consumes a lot of memory

space. Space requirement to store nodes is exponential.

Its complexity depends on the number of nodes. It can check duplicate nodes.

Bidirectional Search

It searches forward from initial state and backward from goal state till both meet to

identify a common state.

The path from initial state is concatenated with the inverse path from the goal state. Each

search is done only up to half of the total path.

Knowledge Representation

Knowledge-representation is the field of artificial intelligence that focuses on designing

computer representations that capture information about the world that can be used to solve

complex problems. The justification for knowledge representation is that

conventional procedural code is not the best formalism to use to solve complex problems.

Knowledge representation makes complex software easier to define and maintain than

procedural code and can be used in expert systems.

For example, talking to experts in terms of business rules rather than code lessens the

semantic gap between users and developers and makes development of complex systems more

practical.

In simple terms knowledge, representation is a technique which is used in artificial

intelligence with the fundamental goal of representing knowledge in a standard manner such that

it facilitates inferencing or reasoning or resolution from that knowledge.

It analyzes how to think formally and how to use a symbol to represent a knowledge

along with different situation that allows inferencing knowledge representation to help to address

the different problems like how do we represent facts about the world, how do we reason about

the facts, what kinds of representations are appropriate and how can an agent perform well in

reasoning.

https://en.wikipedia.org/wiki/Procedural_code
https://en.wikipedia.org/wiki/Expert_systems

Artificial Intelligence

.

There are the variety of ways to represent knowledge or facts which have been exploited

in AI programs. In all variety of knowledge representations we deal with two kinds of entities

and they are facts which are referred to the truth in some relevant world.

These are the things we want to represent and the second entity will be the

representations of facts which are acquired from some chosen formalism. These are the things

which we will actually be able to manipulate.

The above two entities can be structured at two levels : The knowledge level of which

facts is described. The symbol level at which representations of objects at the knowledge level

are defined in terms of symbols that can be manipulated by programs.

The facts and the representations are linked with the two-way mappings. This link is

called representation mappings. The forward representation mapping maps from the facts to the

representations. The backward representation mapping goes the other way that is from

representations to facts.

Knowledge representation goes hand in hand with automated reasoning because one of

the main purposes of explicitly representing knowledge is to be able to reason about that

knowledge, to make inferences, assert new knowledge, etc. Virtually all knowledge

representation languages have a reasoning or inference engine as part of the system.

Knowledge representation Issues:

Representation and Mapping:

In simple terms knowledge, representation is a technique which is used in artificial

intelligence with the fundamental goal of representing knowledge in a standard manner such that

it facilitates inferencing or reasoning or resolution from that knowledge. It analyzes how to think

formally and how to use a symbol to represent a knowledge along with different situation that

allows inferencing knowledge representation to help to address the different problems like:

1. How do we represent facts about the world?

2. How do we reason about the facts?

3. What kinds of representations are appropriate?

4. How can an agent perform well in reasoning?

https://en.wikipedia.org/wiki/Automated_reasoning
https://en.wikipedia.org/wiki/Knowledge_representation_language
https://en.wikipedia.org/wiki/Knowledge_representation_language

For the purpose of solving complex problems that are encountered in artificial

intelligence, we need both a large amount of knowledge and some mechanism for manipulating

that knowledge in order to create solutions to those new problems. There are the variety of ways

to represent knowledge or facts which have been exploited in AI programs. In all variety of

knowledge representations we deal with two kinds of entities and they are:

1. Facts: It is referred to the truth in some relevant world. These are the things we

want to represent.

2. The second entity will be the representations of facts which are acquired from

some chosen formalism. These are the things which we will actually be able to manipulate.

The above two entities can be structured at two levels:

1. The knowledge level of which facts is described.

2. The symbol level at which representations of objects at the knowledge level are

defined in terms of symbols that can be manipulated by programs.

The facts and the representations are linked with the two-way mappings. This link is

called representation mappings. The forward representation mapping maps from the facts to the

representations. The backward representation mapping goes the other way that is from

representations to facts.

One common representation is natural language (particularly English) sentences.

Regardless of the representation of facts that we use in a program, we may also need to be

concerned with an English representation of those facts in order to facilitate for getting the

information into and out of the system. We need the mapping functions from English sentences

to the representation which we actually use and from it back to sentences.

Artificial Intelligence

.

A good knowledge representation system should have the following approach to

representing the given information so that the reasoning becomes easy.

1. Representational Adequacy: It is the ability to represent all kinds of knowledge

that are needed in a particular domain. This means a good knowledge representation should be

able to represent any kind of knowledge in a standard manner.

2. Inferential Adequacy: It is the ability to manipulate the different facts that are

represented in a standard format in such a way that it derives new structured knowledge from an

old one. In short, a good knowledge representation system should be able to infer the new facts

from the given facts.

3. Inferential Efficiency: It is the ability to derive the new facts from the given fact

in an efficient or optimal manner that is a good knowledge representation should be able to

incorporate some additional information which can be used to focus the attention of inference

engine in the most promising direction.

4. Acquisitional Adequacy: It is the ability to acquire new knowledge from the

environment in an efficient manner.

Types of Knowledge:

1. Simple Relational Knowledge:It is the simplest way of storing facts by using a

relational method where each fact about a set of objects is set out systematically in columns. This

representation gives little opportunity for inference but it can be used as the knowledge basis for

inference engines.A simple way to store facts. Each fact about a set of objects is set out

systematically in columns.Little opportunity for inference.

Knowledge basis for inference engines.

2. Inheritable Knowledge: It is a referential knowledge which is made up of objects

that consistof: Attributes Corresponding associated values.

3. Inferential Knowledge: It is a representation knowledge as formal logic.

For example:

All dogs have tails.

∀x: dog(x) → has a tail(x).

4. Procedural Knowledge: The basic idea of procedural knowledge is to encode the

knowledge in some procedures. These procedures may include small programs that know how to

do specific things and how to proceed.

Advantages:

 It sets certain rules which are very strict which can be used to derive more facts.

The truth of the new statement can be verified.

 It guarantees the correctness.

 Many inference procedures available to in implement standard rules of

logic. e.g Automated theorem proving.

Approaches to Knowledge Representation:

A good knowledge representation system should have the following approach to

representing the given information so that the reasoning becomes easy. Representational

Adequacy is the ability to represent all kinds of knowledge that are needed in a particular

domain. This means a good knowledge representation should be able to represent any kind of

knowledge in a standard manner.

Inferential Adequacy is the ability to manipulate the different facts that are represented in

a standard format in such a way that it derives new structured knowledge from an old one. In

short, a good knowledge representation system should be able to infer the new facts from the

given facts.

Inferential Efficiency is the ability to derive the new facts from the given fact in an

efficient or optimal manner that is a good knowledge representation should be able to incorporate

some additional information which can be used to focus the attention of inference engine in the

most promising direction.

Acquisitional Adequacy is the ability to acquire new knowledge from the environment in

an efficient manner. The types of knowledge are simple relational knowledge, inheritable

knowledge, inferential knowledge and procedural knowledge. Simple Relational Knowledge is

the simplest way of storing facts by using a relational method where each fact about a set of

objects is set out systematically in columns.

Inheritable Knowledge is a referential knowledge which is made up of objects that

consist of attributes and corresponding associated values. Inferential Knowledge is a

representation knowledge as formal logic. The basic idea of procedural knowledge is to encode

the knowledge in some procedures. These procedures may include small programs that know

how to do specific things and how to proceed.

Issues in Knowledge Representation:

The issues in Knowledge representation are: Are there any attributes of the object which

are so basic that they have occurred in almost every problem domain. Are there any important

Artificial Intelligence

.

relationships that exist among the different attributes of objects. At what level should the

knowledge is represented and what are the primitives. How should the set of objects be

represented? How can the relevant part of the information can be accessed when they are

required.

Frame Problem:

It is a technique that is used for knowledge representation. A semantic network is a

graphical representation of knowledge consisting of nodes and arcs where the node is the object

and arc are the relations between different objects. The most

commonly used relations are:

is a,

has a,

member of,

belongs to,

inheritance etc.

Example1: p: Ram is the father of Shyam.

Example2: Ram's height is greater than Shyam's height.

.

Frames:

A frame is a collection of attributes which are usually called slots and their associated

values which describe the same entity in the real world. We build a frame system as a collection

of frames which are connected to each other by virtue of the fact that the value of an attribute of

one frame may be another frame. Frames are also an extensive part of knowledge representation

and reasoning scheme. Frames were originally derived from the semantic network. and are

therefore part of structure based knowledge representation.

For example:

Person is a: mammal.

Cardinality: 6,00,00,000.

Adult-male is a: person

Cardinality: 2,00,00,000

*height: 6.0".

Football-Player is an: Adult-male.

Cardinality: 1000

*height: 6.2".

Upendra instance: Football-Player.

team: MMFC

score: 4

height: 6.1".

uniform-color: Black.

Each friend represents either a class or an instance. In this example, the friends, person,

adult-male, football player are classes whereas the frame Upendra is an instance. There are two

types of attributes, one is the attributes associated with class and attributes that are to be inherited

by each instance of the class. This is called frame.

******************Unit 2 Completed******************

Artificial Intelligence

.

Unit III

Using Predicate Logic:

Proposition is a declarative statement which is either true or false but not both. Truth

function is a function to check whether a given statement or expression is true or false. Logic is a

set of approach with specific reasoning. The logic that deals with propositions is called a

propositional logic.

Let ‘p’ and ‘q’ be two propositions. Then, the converse of ‘p → q’ is ‘q → p’. The

inverse of ‘p → q’ is ‘¬p → ¬q’ and the contrapositive of ‘p → q’ is ‘¬q → ¬p’.

Tautology is a compound statement which is always true no matter what the truth values

of the constituent propositions is. Contradiction is a compound statement which is always false

no matter what the truth value of constituent propositions is.

Contingency is a compound statement which is either true or false no matter what the

truth value of constituent propositions is. Let ‘p’ and ‘q’ be two compound propositions. Then,

‘p’ is logical equivalence to ‘q’ if the truth values of ‘p’ and ‘q’ are equal.

Representing simple facts in Logic:

It is raining RAINING

It is sunny SUNNY

It is windy WINDY

If it is raining, then it is not sunny RAINING → ¬SUNNY

Predicate Logic Syntax

• Theorem proving is decidable

• Cannot represent objects and quantification

• Can represent objects and quantification

• Theorem proving is semi-decidable

• Constant symbols: a, b, c, John, ...

To represent primitive objects

• Variable symbols: x, y, z, ...

To represent unknown objects

• Predicate symbols: safe, married, love, ...

To represent relations

 married(John) love(John, Mary)

• Function symbols: square, father, ...

To represent simple objects

• safe(square(1, 2))

• love(father(John), mother(John))

• Terms:

To represent complex objects – Constant symbols – If f is a function symbol, and

t1, t 2,... tn are terms, then so is f(t1, t2, ..., tn) love(mother(father(John)), John)

• Logical connectives: ¬, 𝖠, ∨, ⇒, ⇔

• Universal quantifier: ∀x: p(x) ∀x: love(father(x), mother(x))

• Existential quantifier: ∃x: p(x) ≡ ¬∀x: ¬p(x)∃x: ¬married(x)

• Sentences:

 Atomic sentences: p(t1, t2, ..., tn)

 If α is a sentence, then so are ¬α and (α)

 If α and β are sentences, then so are α 𝖠 β, α ∨ β, α ⇒ β,and α ⇔β

 If α is a sentence, then so are ∀α and ∃α

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.

6. Everyone is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

Artificial Intelligence

.

8. Marcus tried to assassinate Caesar.

9 Using Predicate Logic

1. Marcus was a man. man(Marcus)

2. Marcus was a Pompeian. Pompeian(Marcus)

3. All Pompeians were Romans. ∀x: Pompeian(x) → Roman(x)

4. Caesar was a ruler. ruler(Caesar)

5. All Pompeians were either loyal to Caesar or hated him.

(inclusive-or)

∀x: Roman(x) → loyalto(x, Caesar) ∨ hate(x, Caesar) (exclusive-or)

∀x: Roman(x) → (loyalto(x, Caesar) 𝖠 ¬hate(x, Caesar)) ∨ (¬loyalto(x, Caesar) 𝖠 hate(x, Caesar))

6. Every one is loyal to someone.

∀x: ∃y: loyalto(x, y) ∃y: ∀x: loyalto(x, y)

7. People only try to assassinate rulers they are not loyal to.

∀x: ∀y: person(x) 𝖠 ruler(y) 𝖠 tryassassinate(x, y)→ ¬loyalto(x, y)

7. People only try to assassinate rulers they are not loyal to.

∀x: ∀y: person(x) 𝖠 ruler(y) 𝖠 tryassassinate(x, y)→ ¬loyalto(x, y)

8. Marcus tried to assassinate Caesar. Tryassassinate (Marcus, Caesar)

Was Marcus loyal to Caesar?

man(Marcus)

ruler(Caesar)

tryassassinate(Marcus, Caesar)

𝖴 ∀x: man(x) → person(x) ¬loyalto(Marcus, Caesar)

• Many English sentences are ambiguous.

• There is often a choice of how to represent knowledge.

Reasoning:

1. Marcus was a Pompeian.

2. All Pompeians died when the volcano erupted in 79 A.D.

3. It is now 2008 A.D.

Is Marcus alive?

21 26 March, 2009

1. Marcus was a Pompeian.

Pompeian(Marcus)

2. All Pompeians died when the volcano erupted in 79 A.D.

erupted(volcano, 79) 𝖠 ∀x: Pompeian(x) → died(x, 79)

3. It is now 2008 A.D.

now = 2008

===

1. Marcus was a Pompeian.

Pompeian(Marcus)

2. All Pompeians died when the volcano erupted in 79 A.D.

erupted(volcano, 79) 𝖠 ∀x: Pompeian(x) → died(x, 79)

3. It is now 2008 A.D.

now = 2008

∀x: ∀t1: ∀t2: died(x, t1) 𝖠 greater-than(t2, t1) → dead(x, t2)

• Obvious information may be necessary for reasoning

• We may not know in advance which statements to deduce (P or ¬P).

KB |= α (α is a logical consequence of KB)

How to prove it automatically?

Resolution:

Proof by refutation

KB |= α ⇔ KB 𝖠 ¬α|= false (empty clause)

Resolution inference rule

(α ∨ ¬β) 𝖠 (γ ∨ β) premise (α ∨ γ) conclusion

Resolution in Propositional Logic:

1. Convert all the propositions of KB to clause form (S).

L1∨ L2∨ ...∨ Ln P or ¬P

Artificial Intelligence

.

1. Convert all the propositions of KB to clause form (S).

2. Negate α and convert it to clause form. Add it to S.

3. Repeat until either a contradiction is found or no progress can be made:

a. Select two clauses (α ∨ ¬P) and (γ ∨ P).

b. Add the resolvent (α ∨ γ) to S.

Example:

KB = {P, (P 𝖠 Q) → R, (S ∨ T) → Q, T} α = R

Example:

KB = {P(a), ∀x: (P(x) 𝖠 Q(x)) → R(x), ∀y: (S(y) ∨ T(y)) → Q(y), T(a)}

α = R(a)

Unification:

 UNIFY(p, q) = unifier θ where θ(p) = θ(q)

 ∀x: knows(John, x) → hates(John, x) knows(John, Jane) ∀y: knows(y, Leonid)

∀y: knows(y, mother(y)) ∀x: knows(x, Elizabeth)

 ∀x: knows(John, x) → hates(John, x) knows(John, Jane) ∀y: knows(y, Leonid)

∀y: knows(y, mother(y)) ∀x: knows(x, Elizabeth)

 UNIFY(knows(John, x), knows(John, Jane)) = {Jane/x} UNIFY(knows(John, x),

knows(y, Leonid)) = {Leonid/x, John/y} UNIFY(knows(John, x), knows(y, mother(y))) =

{John/y, mother(John)/x} UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL 3

Unification: Standardization

UNIFY(knows(John, x), knows(y, Elizabeth)) = {John/y, Elizabeth/x}

Unification: Occur check

UNIFY(knows(x, x), knows(y, mother(y))) = FAIL

Unification: Most general unifier

UNIFY(knows(John, x), knows(y, z)) = {John/y, John/x, John/z} = {John/y, Jane/x,

Jane/z} = {John/y, v/x, v/z} = {John/y, z/x, Jane/v} = {John/y, z/x}

Conversion to Clause Form

1. Eliminate →. P → Q ≡ ¬P ∨ Q

2. Reduce the scope of each ¬ to a single term.

¬(P ∨ Q) ≡ ¬P 𝖠 ¬Q ¬(P 𝖠 Q) ≡ ¬P ∨ ¬Q ¬∀x: P ≡ ∃x: ¬P ¬∃x: p ≡ ∀x: ¬P ¬¬ P ≡ P

3. Standardize variables so that each quantifier binds a unique variable.

(∀x: P(x)) ∨ (∃x: Q(x)) ≡ (∀x: P(x)) ∨ (∃y: Q(y))

4. Move all quantifiers to the left without changing their relative order.

∀x: (P(x) ∨ ∃y: Q(y)) ≡ ∀x: ∃y: (P(x) ∨ (Q(y)) (∀x: P(x)) ∨ (∃y: Q(y)): don’t move!

5. Eliminate ∃ (Skolemization).

∃x: P(x) ≡ P(c) Skolem constant ∀x: ∃y P(x, y) ≡ ∀x: P(x, f(x)) Skolem function

6. Drop ∀. ∀x: P(x) ≡ P(x).

7. Convert the formula into a conjunction of disjuncts. (P 𝖠 Q) ∨ R ≡ (P ∨ R) 𝖠 (Q ∨ R)

8. Create a separate clause corresponding to each conjunct.

9. Standardize apart the variables in the set of obtained clauses.

1. Eliminate →.

2. Reduce the scope of each ¬ to a single term.

3. Standardize variables so that each quantifier binds a uniquevariable.

4. Move all quantifiers to the left without changing their relativeorder.

5. Eliminate ∃ (Skolemization).

6. Drop ∀.

7. Convert the formula into a conjunction of disjuncts.

8. Create a separate clause corresponding to each conjunct.

9. Standardize apart the variables in the set of obtained clauses.

Artificial Intelligence

.

Resolution in Predicate Logic

1. Convert all the propositions of KB to clause form (S).

2. Negate α and convert it to clause form. Add it to S.

3. Repeat until a contradiction is found:

a. Select two clauses (α ∨ ¬ p(t1)).

b. θ = mgu(p(t1, t2, ..., tn)) and (γ ∨ p(t’1, t’2, ..., t’n , t2, ..., tn), p(t’1, t’2, ..., t’n))

c. Add the resolvent θ(α ∨ γ) to S.

Example:

KB = {P(a), ∀x: (P(x) 𝖠 Q(x)) → R(x), ∀y: (S(y) ∨ T(y)) → Q(y), T(a)}

α = R(a)

Example

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.

6. Every one is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

Example

1. Man(Marcus).

2. Pompeian(Marcus).

3. ∀x: Pompeian(x) → Roman(x).

4. ruler(Caesar).

5. ∀x: Roman(x) → loyalto(x, Caesar) ∨ hate(x, Caesar).

6. ∀x: ∃y: loyalto(x, y).

7. ∀x: ∀y: person(x) 𝖠 ruler(y) 𝖠 tryassassinate(x, y)→ ¬loyalto(x, y).

8. tryassassinate(Marcus, Caesar).

Example

Prove: hate(Marcus, Caesar)

Question Answering

1. When did Marcus die?

2. Whom did Marcus hate?

3. Who tried to assassinate a ruler?

4. What happen in 79 A.D.?.

5. Did Marcus hate everyone?

Soundness and Completeness

• Soundness of a reasoning algorithm/system R: if KB derives α using R, then KB |=|=|=|= α

• Completeness of a reasoning algorithm/system R: if KB |=|=|=|= α, then KB derives α using R

 Resolution algorithm is sound and complete

• In general:

– Soundness: any returned answer is a correct answer.

– Completeness: all correct answers are returned.

Programming in Logic

PROLOG:

• Only Horn sentences are acceptable

A ← B1, B2, ..., Bm≡ A ∨ ¬B1∨ ¬B2∨ ...∨ ¬Bm A, B i : atoms

PROLOG:

• The occur-check is omitted from the unification: unsound

test ← P(x, x) P(x, f(x))

PROLOG:

• Backward chaining with depth-first search: incomplete

P(x, y) ← Q(x, y) P(x, x) Q(x, y) ← Q(y, x)

PROLOG:

• Unsafe cut: incomplete

A ← B, C ← A

B ← D, !, E

D ← ← B, C← D, !, E, C← !, E, C

PROLOG:

• Negation as failure: ¬P if fails to prove P

 Unit III Complted

Artificial Intelligence

.

Unit IV

Representing Knowledge Using Rules:

Types of rules are mostly used in the Rule-based production systems.

1) Knowledge Declarative Rules :

These rules state all the facts and relationships about a problem.

Example :

IF inflation rate declines

THEN the price of gold goes down.

These rules are a part of the knowledge base.

2) Inference Procedural Rules

These rules advise on how to solve a problem, while certain facts areknown.

Example :

IF the data needed is not in the system

THEN request it from the user.

These rules are part of the inference engine.

3) Meta rules

These are rules for making rules. Meta-rules reason about which rules should be

considered for firing.

Example :

IF the rules which do not mention the current goal in their premise,

AND there are rules which do mention the current goal in their premise,

THEN the former rule should be used in preference to the latter.

− Meta-rules direct reasoning rather than actually performing reasoning.

− Meta-rules specify which rules should be considered and in which order they should be

invoked.

KR – procedural & declarative versus Declarative Knowledge

 Procedural Knowledge : knowing 'how to do'

Includes : rules, strategies, agendas, procedures, models.

These explains what to do in order to reach a certain conclusion.

Example

Rule: To determine if Peter or Robert is older, first find their ages.

It is knowledge about 'how to do' something. It manifests itself in the doing of something, e.g.,

manual or mental skills cannot reduce to words. It is held by individuals in a way which does not allow it

to be communicated directly to other individuals.

Accepts a description of the steps of a task or procedure. It Looks similar to declarative

knowledge, except that tasks or methods are being described instead of facts or things.

 Declarative Knowledge : knowing 'what', knowing 'that'

Includes : concepts, objects, facts, propositions, assertions, models.

It is knowledge about facts and relationships, that It can be expressed in simple and clear

statements,

and It can be added and modified without difficulty.

Examples : A car has four tyres; Peter is older than Robert.

Declarative knowledge and explicit knowledge are articulated knowledge and may be treated as

synonyms for most practical purposes. Declarative knowledge is represented in a format that can be

manipulated, decomposed and analyzed independent of its content.

 Comparison :

Comparison between Procedural and Declarative Knowledge:

Procedural Knowledge Declarative Knowledge

 Hard to debug

 Easy to validate

 Black box

 White box

 Obscure

 Explicit

 Process oriented

 Data - oriented

 Extension may effect stability

 Extension is easy

 Fast , direct execution

 Slow (requires interpretation)

 Simple data type can be used

 May require high level data type

 Representations in the form of sets of rules, organized into routines and

subroutines.

 Representations in the form of production system, the entire set of rules for

executing the task.

Artificial Intelligence

.

Comparison between Procedural and Declarative Language :

Procedural Language Declarative Language

 Basic, C++, Cobol, etc

 SQL

 Most work is done by interpreter of the languages

 Most work done by Data Engine within the DBMS

 For one task many lines of code

 For one task one SQL statement

 Programmer must be skilled in translating the objective into lines of procedural code

 Programmer must be skilled in clearly stating the objective as a SQL statement

 Requires minimum of management around the actual data

 Relies on SQL-enabled DBMS to hold the data and execute the SQL statement .

 Programmer understands and has access to each step of the code

 Programmer has no interaction with the execution of the SQL statement

 Data exposed to programmer during execution of the code

 Programmer receives data at end as an entire set

 More susceptible to failure due to changes in the data structure

 More resistant to changes in the data structure

 Traditionally faster, but that is changing

 Originally slower, but now setting speed records

 Code of procedure tightly linked to front end

 Same SQL statements will work with most front ends Code loosely linked to front end.

 Code tightly integrated with structure of the data store

 Code loosely linked to structure of data; DBMS handles structural issues

 Programmer works with a pointer or cursor

 Programmer not concerned with positioning

 Knowledge of coding tricks applies only to one language

 Knowledge of SQL tricks applies to any language using SQLprogramming offers a

formalism for specifying a computation in termsof logical relations between entities.

• logic program is a collection of logic statements.

• programmer describes all relevant logical relationships between the various entities.

• computation determines whether or not, a particular conclusion follows from those

logical statements.

• Characteristics of Logic program

Logic program is characterized by set of relations and inferences.

− program consists of a set of axioms and a goal statement.

− rules of inference determine whether the axioms are sufficient to ensure the truth of the goal

statement.

− execution of a logic program corresponds to the construction of a proof of the goal statement

from the axioms.

− programmer specify basic logical relationships, does not specify the manner in which inference

rules are applied.

Thus Logic + Control = Algorithms

• Examples of Logic Statements

− Statement

A grand-parent is a parent of a parent.

− Statement expressed in more closely related logic terms as,

A person is a grand-parent if she/he has a child and that child is a parent.

− Statement expressed in first order logic as(for all) x: grandparent (x, y) :- parent (x, z), parent

(z, y) read as x is the grandparent of y if x is a parent of z and z is a parent of y

Programming Language

language includes :

− the syntax

− the semantics of programs and

− the computational model.

There are many ways of organizing computations. The most familiar paradigm is procedural. The

program specifies a computation by saying "how" it is to be performed. FORTRAN, C, and Object-

oriented languages fall under this general approach.

Another paradigm is declarative. The program specifies a computation by giving the properties of

a correct answer. Prolog and logic data language (LDL) are examples of declarative languages, emphasize

the logical properties of a computation. Prolog and LDL are called logic programming languages.

PROLOG (PROgramming LOGic) is the most popular Logic programming language rose

within the realm of Artificial Intelligence (AI). It became popular with AI researchers, who know

more about "what" and "how" intelligent behavior is achieved.

KR – Logic Programming and Terminology (relevant to Prolog programs) language, the

formation of components (expressions, statements,etc.), is guided by syntactic rules. The

components are divided into two parts: (A) data components and (B) program components.

(A) Data components :

Data components are collection of data objects that follow hierarchy. Data object of any

kind is also called

Artificial Intelligence

.

a term. A term is a constant, a variable or a compound term.

Simple data object is not decomposable; e.g. atoms, numbers, constants, variables.

Syntax distinguishes the data objects, hence no need for declaring them. Structured data object

are made of several components.

Forward and Backward Chaining:

Given a set of rules, there are essentially two ways to generate new knowledge: one,

forward chaining and the other, backward chaining.

 Forward chaining : also called data driven. It starts with the facts, and sees what

rules apply.

 Backward chaining : also called goal driven. It starts with something to find out,

and looks for rules that will help in

answering it.

Forward Chaining

It is a strategy of an expert system

to answer the question, “What can happen

next?”

Here, the Inference Engine follows

the chain of conditions and derivations and

finally deduces the outcome. It considers all

the facts and rules, and sorts them before

concluding to a solution.

This strategy is followed for working on conclusion, result, or effect. For example,

prediction of share market status as an

effect of changes in interest rates.

Backward Chaining

With this strategy, an expert

system finds out the answer to the

question,“Why this happened?”

On the basis of what has already

happened, the Inference Engine tries to

find out which conditions could have

happened in the past for this result. This

strategy is followed for finding out cause

or reason. For example, diagnosis of

blood cancer in humans.

Example Rule 1

R1 : KR – forward-backward reasoning ,

IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : IF fire THEN switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

■ Example 2

Rule R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : IF fire THEN ADD switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Example Rule KR – forward-backward reasoning

3 : A typical Forward Chaining,

R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : If fire THEN ADD switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Fact F4 : smoky [from F1 by R2]

Fact F2 : fire [from F2, F4 by R1]

Fact F6 : switch_on_sprinklers [from F2 by R3]

■ Example 4 : A typical Backward Chaining

Rule R1 : IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : If _fire THEN switch_on_sprinklers

Fact F1 : hot [Given]

Fact F2 : alarm_beeps [Given]

Artificial Intelligence

.

Goal : Should I switch sprinklers on?

Chaining Forward chaining system, KR – forward chaining ,properties , algorithms, and

conflict

resolution strategy are illustrated.

■ Forward chaining system

 facts are held in a working memory

 condition-action rules represent actions to be taken when specified facts occur in

working memory.

 typically, actions involve adding or deleting facts from the working memory.

■ Properties of Forward Chaining

 all rules which can fire do fire.

 can be inefficient - lead to spurious rules firing, unfocused problem solving

 set of rules that can fire known as conflict set.

 decision about which rule to fire is conflict resolution.

Engine facts

KR – forward chaining

■ Forward chaining algorithm - I

Repeat

 Collect the rule whose condition matches a fact in WM.

 Do actions indicated by the rule.(add facts to WM or delete facts from WM) Until

problem is solved or no condition match

Apply on the Example 2 extended (adding 2 more rules and 1 fact)

Rule R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : If fire THEN ADD switch_on_sprinklers

Rule R4 : IF dry THEN ADD switch_on_humidifier

Rule R5 : IF sprinklers_on THEN DELETE dry

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Fact F2 : Dry [Given]

Now, two rules can fire (R2 and R4)

Rule R4 ADD humidifier is on [from F2]

ADD smoky [from F1]

ADD fire [from F2 by R1]

ADD switch_on_sprinklers [by R3]

Rule R2[followed by sequence of actions]

DELEATE dry, ie humidifier is off a conflict ![by R5]

■ Forward chaining algorithm - II (applied to example 2 above)

Repeat

 Collect the rules whose conditions match facts in WM.

 If more than one rule matches as stated above then

Use conflict resolution strategy to eliminate all but one

Do actions indicated by the rules (add facts to WM or delete facts from WM) Until

problem is solved or no condition match

Conflict Conflict Resolution set is Strategy

the set of rules that have KR – forward chaining ,their conditions satisfied by working

memory elements. Conflict resolution normally selects a single rule to fire.

The popular conflict resolution mechanisms are :Refractory, Recency, Specificity.

 Refractory: It is a rule should not be allowed to fire more than once on the

samedata.

It discard executed rules from the conflict set.

It prevents undesired loops.

 Recency: It rank instantiations in terms of the recency of the elements in the

premise of the rule. The rules which use more recent data are preferred. It is working memory

elements are time-tagged indicating at what cycle each fact was added to working memory.

 Specificity: The rules which have a greater number of conditions and are

therefore more difficult to satisfy, are preferred to more general rules with fewer conditions.

There are more specific rules are ‘better’ because they take more of the data into account.

Alternative Instead KR – forward chaining to Conflict Resolution – Use Meta

Knowledge,of conflict resolution strategies, sometimes we want to useknowledge in deciding

which rules to fire. Meta-rules reason aboutwhich rules should be considered for firing. They

direct reasoning ratherthan actually performing reasoning.

Meta-knowledge : knowledge about knowledge to guide search.

Example of meta-knowledgeIF conflict set contains any rule (c , a) such that

a = "animal is mammal'' THEN fire (c , a)

This example says meta-knowledge encodes knowledge about how to guide search for

solution.

Meta-knowledge, explicitly coded in the form of rules with "object level" knowledge.

Artificial Intelligence

.

KR – backward chaining Chaining:

Chaining system and the algorithm are illustrated.

■ Backward chaining system

 Backward chaining means reasoning from goals back to facts.The idea is to focus

on the search.

 Rules and facts are processed using backward chaining interpreter.

 Checks hypothesis, e.g. "should I switch the sprinklers on?"

■ Backward chaining algorithm

 Prove goal G If G is in the initial facts , it is proven. Otherwise, find a rule which

can be used to conclude G, and try to prove each of that rule's conditions.

Encoding of rules

Rule R1 : IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : If fire THEN switch_on_sprinklers

Fact F1 : hot [Given]

Fact F2 : alarm_beeps [Given]

Goal : Should I switch sprinklers on?

Depends vs Backward on Chaining problem, and KR – backward

chaining ,on properties of rule set.

 Backward chaining is likely to be better if there is clear hypotheses.Examples :

Diagnostic problems or classification problems, Medical expert systems

 Forward chaining may be better if there is less clear hypothesis and want to see

what can be concluded from current situation;

Examples : Synthesis systems - design / configuration.

Knowledge algorithm consists KR – control knowledge, of: logic component, that

specifies the knowledge to be used in solving problems, and control component, that determines

the problem-solving strategies by means of which that knowledge is used.

Thus Algorithm = Logic + Control .

The logic component determines the meaning of the algorithm whereas the control

component only affects its efficiency. An algorithm may be formulated in different ways,

producing same behavior. One formulation, may have a clear statement in logic component but

employ a sophisticated problem solving strategy in the control component.

The other formulation, may have a complicated logic component but employ a simple

problem-solving strategy. The efficiency of an algorithm can often be improved by improving

the control component without changing the logic of the algorithm and therefore without

changing the meaning of the algorithm. The trend in databases is towards the separation of logic

and control.

The programming languages today do not distinguish between them. The programmer

specifies both logic and control in a single language. The execution mechanism exercises only

the most rudimentary problem-solving capabilities.

Computer programs will be more often correct, more easily improved, and more readily

adapted to new problems when programming languages separate logic and control, and when

execution mechanisms provide more powerful problem-solving facilities of the kind provided by

intelligent theorem-proving systems.

------Unit IV Completed------

Artificial Intelligence

.

Unit V

Game Playing:

What is Game?

• The term Game means a sort of conflict in which n individuals orgroups (known as

players) participate.

• Game theory denotes games of strategy.

• John von Neumann is acknowledged as father of game theory. Neumanndefined Game

theory in 1928 and 1937 and established the mathematicalframework for all subsequent

theoretical developments.

• Game theory allows decision-makers (players) to cope with otherdecision-makers

(players) who have different purposes in mind. Inother words, players determine their own

strategies in terms of the strategies and goals of their opponent.

• Games are integral attribute of human beings. Games engage the intellectual faculties of

humans.

• If computers are to mimic people they should be able to play games.

Overview:

Besides the topic of attraction to the people, has close relation to "intelligence", and its

well-defined states and rules. The most commonly used AI technique in game is "Search".

A "Two-person zero-sum game" is most studied game where the two players have exactly

opposite goals. Besides there are "Perfect information games"(such as chess and Go) and

"Imperfect information games" (such as bridge and games where a dice is used).

Given sufficient time and space, usually an optimum solution can be obtained for the

former by exhaustive search, though not for the latter. However, for many interesting games,

such a solution is usually too inefficient to be practically used.

Applications of game theory are wide-ranging. Von Neumann and Morgenstern indicated

the utility of game theory by linking with economic behavior.

▪ Economic models : For markets of various commodities with differing numbers of

buyers and sellers, fluctuating values of supply and demand, seasonal and cyclical variations,

analysis of conflicts of interest in maximizing profits and promoting the widest distribution of

goods and services.

▪ Social sciences : The n-person game theory has interesting uses in studying the

distribution of power in legislative procedures, problems of majority rule,individual and group

decision making.

▪ Epidemiologists : Make use of game theory, with respect to immunization procedures

and methods of testing a vaccine or other medication.

▪ Military strategists : Turn to game theory to study conflicts of interest resolved through

"battles" where the outcome or payoff of a war game is either victory or defeat.

Solitaire is not considered a game by game theory.

The term 'solitaire' is used for single-player games of concentration.

• An instance of a game begins with a player choosing from a set of specified (game

rules) alternatives. This choice is called a move.

• After first move, the new situation determines which player to make next move and

alternatives available to that player.

▪ In many board games, the next move is by other player.

▪ In many multi-player card games, the player making next move depends on who dealt,

who took last trick, won last hand, etc.

• The moves made by a player may or may not be known to other players. Games in

which all moves of all players are known to everyone are called games of perfect information.

▪ Most board games are games of perfect information.

▪ Most card games are not games of perfect information.

• Every instance of the game must end.

• When an instance of a game ends, each player receives a payoff.

A payoff is a value associated with each player's final situation. A zero-sum game is one

in which elements of payoff matrix sum to zero.

In a typical zero-sum game :

▪ win = 1 point,

▪ draw = 0 points, and

▪ loss = -1 points.

Overview Theory

Theory does not prescribe a way or say how to play a game. Game theory is a set of ideas

and techniques for analyzing conflict situations between two or more parties. The outcomes are

determined by their decisions.

General game theorem : In every two player, zero sum, non-random, perfect knowledge

game, there exists a perfect strategy guaranteed to at least result in a tie game.

The frequently used terms :

▪ The term "game" means a sort of conflict in which n individuals or groups (known as

players) participate.

▪ A list of "rules" stipulates the conditions under which the game begins.

Artificial Intelligence

.

▪ A game is said to have "perfect information" if all moves are known to each of the

players involved.

▪ A "strategy" is a list of the optimal choices for each player at every stage of a given

game.

▪ A "move" is the way in which game progresses from one stage to another, beginning

with an initial state of the game to the final state.

▪ The total number of moves constitute the entirety of the game.

▪ The payoff or outcome, refers to what happens at the end of a game.

▪ Minimax - The least good of all good outcomes.

▪ Maximin - The least bad of all bad outcomes.

The primary game theory is the Mini-Max Theorem. This theorem says :

"If a Minimax of one player corresponds to a Maximin of the other player, then that

outcome is the best both players can hope for Game Playing”

▪ Games can be Deterministic or non-deterministic.

▪ Games can have perfect information or imperfect information.

Games Deterministic Non- Deterministic Perfect information Chess, Checkers, Go,

Othello, Tic-tac-toe

Backgammon, Monopoly Imperfect information Navigating a maze Bridge, Poker,

Scrabble

Relevance Game Theory and Game Plying:

How relevant the Game theory is to Mathematics, Computer science and Economics is

shown in the Fig below.

Glossary of terms in the context of Game Theory

 Game

Denotes games of strategy. It allows decision-makers (players) to cope with other

decision-makers (players) who have different purposes in mind. In other words, players

determine their own strategies in terms of the strategies and goals of their opponent.

 Player

Could be one person, two persons or a group of people who share identical interests with

respect to the game.

 Strategy

A player's strategy in a game is a complete plan of action for whatever situation might

arise. It is the complete description of how one will behave under every possible circumstance.

You need to analyze the game mathematically and create a table with "outcomes" listed for each

strategy.

A two player strategy table

Players Strategies

Player A Strategy 1

Player A Strategy 2

Player A Strategy 3 etc

Player B Strategy 1 Tie A wins B wins . . .

Player B Strategy 2 B wins Tie A wins . . .

Player B Strategy 3 A wins B wins Tie . . . etc

The MiniMax Search Procedure:

A game can be thought of as a tree of possible future game states. For example, in

Gomoku the game state is the arrangement of the board, plus information about whose move it

is. The current state of the game is the root of the tree (drawn at the top). In general this node has

several children, representing all of the possible moves that we could make.

Each of those nodes has children representing the game state after each of the opponent's

moves. These nodes have children corresponding to the possible second moves of the current

player, and so on.

The leaves of the tree are final states of the game: states where no further move can be

made because one player has won, or perhaps the game is a tie. Actually, in general the tree is a

graph, because there may be more than one way to get to a particular state. In some games (e.g.,

checkers) it is even possible to revisit a prior game state.

Minimax search

Suppose that we assign a value of positive infinity to a leaf state in which we win,

negative infinity to states in which the opponent wins, and zero to tie states. We define a

function evaluate that can be applied to a leaf state to determine which of these values is correct.

If we can traverse the entire game tree, we can figure out whether the game is a win for

the current player assuming perfect play: we assign a value to the current game state by we

recursively walking the tree. At leaf nodes we return the appropriate values. At nodes where we

get to move, we take the max of the child values because we want to pick the best move; at

nodes where the opponent moves we take the min of child values. This gives us the following

pseudo-code procedure for minimax evaluation of a game tree.

Artificial Intelligence

.

fun minimax(n: node): int =

if leaf(n) then return evaluate(n)

if n is a max node

v := L

for each child of n

v' := minimax (child)

if v' > v, v:= v'

return v

if n is a min node

v := W

for each child of n

v' := minimax (child)

if v' < v, v:= v'

return v

Consider the following game tree, where the leaves are annotated with W or L to indicate

a winning or losing position for the current player (L < W), and interior nodes are labeled with +

or - to indicate whether they are "max" nodes where we move or "min" nodes where the

opponent moves. In this game tree, the position at the root of the tree is a losing position because

the opponent can force the game to proceed to an "L" node:

+

/ \

/ \

- -

/ \ /|\

+ L L W W

/ \

W L

We can see this by doing a minimax evaluation of all the nodes in the tree. Each node is

labeled with its minimax value in red:

L

/ \

/ \

L L

/ \ /|\

W L L W W

/ \

W L

Static evaluation

Usually expanding the entire game tree is infeasible because there are so many possible

states. The solution is to only search the tree to a specified depth. The evaluate function

(the static evaluator) is extended so it returns a value between L and W for game positions that

are not final positions. For game positions that look better for the current player, it returns larger

numbers. When the depth limit of the search is exceeded, the static evaluator is applied to the

node as if it were a leaf:

(* the minimax value of n, searched to depth d *)

fun minimax(n: node, d: int): int =

if leaf(n) or depth=0 return evaluate(n)

if n is a max node

v := L

for each child of n

v' := minimax (child,d-1)

if v' > v, v:= v'

return v

if n is a min node

v := W

for each child of n

v' := minimax (child,d-1)

if v' < v, v:= v'

return v

For example, consider the following game tree searched to depth 3, where the static

evaluator is applied to a number of nodes that are not leaves in the game tree:

Artificial Intelligence

.

6

/ \

/ \

6 L

/ \ |\

6 8 L W

/|\ |\ |\

1 5 6 8 3 1 W

The value of the root of the tree is 6 because the current player can force the game to go

to a "leaf" node (as defined by the depth cutoff) whose value is at least 6. Notice that by finding

out the value of the current position, the player also learns what is the best move to make: the

move that transitions the game to the immediate child with maximum value.

Designing the static evaluator is an art: a good static evaluator should be very fast,

because it is the limiting factor in how quickly the search algorithm runs. But it also needs to

capture a reasonable approximation of how good the current board position is, because it

captures what the player is trying to achieve during play. In practice, game AI designers have

found that it doesn't pay to build intelligence into the static evaluator when the same information

can be obtained by searching a level or two deeper in the game tree.

How deeply should the tree be searched? This depends on how much time is available to

do the search. Each increase in depth multiplies the total search time by about the number of

moves available at each level.

Alpha-Beta Pruning

The full minimax search explores some parts of the tree it doesn't have to. For example,

consider the tree above and suppose that our search is proceeding in left-to-right order.

6

/ \

/

6 (a)

/ \

6 8 (b)

/|\ |\

1 5 6 8 ...

Once we have seen the node whose static evaluation is 8, we know that there is no point

to exploring any of the rest of the children of the max node above it. Those children could only

increase the value of the max node (b) above, but the min node above that (a) is going to have

value at most 6 anyway. No matter what happens in the part of the tree under the ..., it can't affect

the minimax value of the min node labeled 6. Avoiding searching a part of a tree is

called pruning; this is an example of alpha-beta pruning.

In general the minimax value of a node is going to be worth computing only if it lies

within a particular range of values. We can capture this by extending the code of the minimax

function with a pair of arguments min and max. The new spec of minimax is that it always

returns a value in the range [min, max]. For example, when evaluating the node (b) above, we

can set max to 6 because there is no reason to find out about values greater than 6. There are

corresponding cases where there is no reason to find out about values less than some minimum

value. The min and maxbounds are used to prune away subtrees by terminating a call

to search early. Once a child node has been seen that pushes the node's value outside the range of

interest, there is no point in exploring the rest of the children. This idea is captured by adding the

tests

if v > max return max and if v < min return min in the following code:

(* the minimax value of n, searched to depth d.

* If the value is less than min, returns min.

* If greater than max, returns max. *)

fun minimax(n: node, d: int, min: int, max: int): int =

if leaf(n) or depth=0 return evaluate(n)

if n is a max node

v := min

for each child of n

v' := minimax (child,d-1,...,...)

if v' > v, v:= v'

if v > max return max

return v

if n is a min node

v := max

for each child of n

v' := minimax (child,d-1,...,...)

if v' < v, v:= v'

if v < min return min

return v

Because we don't care about values less than min or greater than max, we also initialize

the variable v to min in the max case and max in the min case, rather than to L and W. Notice

that if this procedure is invoked as minimax(n,d,L,W), it will behave just like

the minimax procedure without min and max bounds, assuming that the static evaluator only

Artificial Intelligence

.

returns values between Land W. Thus, a top-level search is invoked in this way so that we get the

same answer as before pruning.

The only thing missing from our search algorithm now is to compute the

right min and max values to pass down. Clearly we could safely pass down the

same min and max received in the call, but then we wouldn't have achieved anything. Consider

the max node case after we have gone around the loop. In general the variable v will be greater

than min. In the recursive invocation ofminimax there is no point to finding out about values less

or equal to v; they can't possibly affect the value of v that is returned. Therefore, instead of

passing min down in the recursive call, we pass v itself. Conversely, in the min node case, we

pass v in place of max:

(* the minimax value of n, searched to depth d.

* If the value is less than min, returns min.

* If greater than max, returns max. *)

fun minimax(n: node, d: int, min: int, max: int): int =

if leaf(n) or depth=0 return evaluate(n)

if n is a max node

v := min

for each child of n

v' := minimax (child,d-1,v,max)

if v' > v, v:= v'

if v > max return max

return v

if n is a min node

v := max

for each child of n

v' := minimax (child,d-1,min,v)

if v' < v, v:= v'

if v < min return min

return v

This is pseudo-code for minimax search with alpha-beta pruning, or simply alpha-beta

search. We can verify that it works as intended by checking what it does on the example tree

above. Each node is shown with the [min,max] range that minimax is invoked with. Pruned parts

of the tree are marked with X.

6[L,W]

/ \

/ \

/ \

6[L,W] L[6,W]

/ \ | \

/ \ | X

6[L,W] 6[L,6] L[6,W]

/ | \ | \

/ | \ | X

/ | \ |

1[L,W] 5[1,W] 6[5,W] 8[L,6]

In general the [min,max] bounds become tighter and tighter as you proceed down the tree

from the root.

Making pruning effective:

How effective is alpha-beta pruning? It depends on the order in which children are

visited. If children of a node are visited in the worst possible order, it may be that no pruning

occurs. For max nodes, we want to visit the best child first so that time is not wasted in the rest

of the children exploring worse scenarios. For min nodes, we want to visit the worst child first

(from our perspective, not the opponent's.) There are two obvious sources of this information:

1. The static evaluator function can be used to rank the child nodes

2. Previous searches of the game tree (for example, from previous moves) performed

minimax evaluations of many game positions. If available, these values may be used to rank the

nodes.

When the optimal child is selected at every opportunity, alpha-beta pruning causes all the

rest of the children to be pruned away at every other level of the tree; only that one child is

explored. This means that on average the tree can searched twice as deeply as before—a huge

increase in searching performance.

Expert Systems:

Expert systems (ES) are one of the prominent research domains of AI. It is introduced

by the researchers at Stanford University, Computer Science Department.

What are Expert Systems?

The expert systems are the computer applications developed to solve complex problems

in a particular domain, at the level of extra-ordinary human intelligence and expertise.

Artificial Intelligence

.

Characteristics of Expert Systems

 High performance

 Understandable

 Reliable

 Highly responsive

Capabilities of Expert Systems

The expert systems are capable of

 Advising

 Instructing and assisting human in

decision making

 Demonstrating

 Deriving a solution

 Diagnosing

 Explaining

 Interpreting input

 Predicting results

 Justifying the conclusion

 Suggesting alternative options to a problem

They are incapable of

 Substituting human decision makers

 Possessing human capabilities

 Producing accurate output for inadequate knowledge base

 Refining their own knowledge

Components of Expert Systems

The components of ES include

 Knowledge Base

 Inference Engine

 User Interface

Let us see them one by one briefly

Knowledge Base

It contains domain-specific and high-quality knowledge. Knowledge is required to

exhibit intelligence. The success of any ES majorly depends upon the collection of highly

accurate and precise knowledge.

What is Knowledge?

The data is collection of facts. The information is organized as data and facts about the

task domain. Data, information, and past experience combined together are termed as

knowledge.

Components of Knowledge Base

The knowledge base of an ES is a store of both, factual and heuristic knowledge.

 Factual Knowledge − It is the information widely accepted by the Knowledge

Engineers and scholars in the task domain.

 Heuristic Knowledge − It is about practice, accurate judgement, one’s ability of

evaluation, and guessing.

Knowledge representation

It is the method used to organize and formalize the knowledge in the knowledge base. It

is in the form of IF-THEN-ELSE rules.

Knowledge Acquisition

The success of any expert system majorly depends on the quality, completeness, and

accuracy of the information stored in the knowledge base.

The knowledge base is formed by readings from various experts, scholars, and

the Knowledge Engineers. The knowledge engineer is a person with the qualities of empathy,

quick learning, and case analyzing skills.

He acquires information from subject expert by recording, interviewing, and observing

him at work, etc. He then categorizes and organizes the information in a meaningful way, in the

form of IF-THEN-ELSE rules, to be used by interference machine. The knowledge engineer also

monitors the development of the ES.

Knowledge acquisition is the process used to define the rules and ontologies required for

a knowledge-based system. The phrase was first used in conjunction with expert systems to

describe the initial tasks associated with developing an expert system, namely finding and

interviewing domain experts and capturing their knowledge via rules, objects, and frame-

based ontologies.

Expert systems were one of the first successful applications of artificial

intelligence technology to real world business problems. Researchers at Stanford and other AI

laboratories worked with doctors and other highly skilled experts to develop systems that could

automate complex tasks such as medical diagnosis. Until this point computers had mostly been

used to automate highly data intensive tasks but not for complex reasoning. Technologies such

as inference engines allowed developers for the first time to tackle more complex problems.

As expert systems scaled up from demonstration prototypes to industrial strength

applications it was soon realized that the acquisition of domain expert knowledge was one of if

https://en.wikipedia.org/wiki/Knowledge-based_system
https://en.wikipedia.org/wiki/Expert_systems
https://en.wikipedia.org/wiki/Knowledge_domain
https://en.wikipedia.org/wiki/Rule-based_system
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Stanford_university
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Inference_engine

Artificial Intelligence

.

not the most critical task in the knowledge engineering process. This knowledge acquisition

process became an intense area of research on its own. One of the earlier works on the topic used

Batesonian theories of learning to guide the process.

One approach to knowledge acquisition investigated was to use natural language

parsing and generation to facilitate knowledge acquisition. Natural language parsing could be

performed on manuals and other expert documents and an initial first pass at the rules and

objects could be developed automatically. Text generation was also extremely useful in

generating explanations for system behavior. This greatly facilitated the development and

maintenance of expert systems.

A more recent approach to knowledge acquisition is a re-use based approach. Knowledge

can be developed in ontologies that conform to standards such as the Web Ontology Language

(OWL). In this way knowledge can be standardized and shared across a broad community of

knowledge workers. One example domain where this approach has been successful

is bioinformatics.

Inference Engine

Use of efficient procedures and rules by the Inference Engine is essential in deducting a

correct, flawless solution.

In case of knowledge-based ES, the Inference Engine acquires and manipulates the

knowledge from the knowledge base to arrive at a particular solution.

In case of rule based ES, it

 Applies rules repeatedly to the facts, which are obtained from earlier rule application.

 Adds new knowledge into the knowledge base if required.

 Resolves rules conflict when multiple rules are applicable to a particular case.

To recommend a solution, the Inference Engine uses the following strategies

 Forward Chaining

 Backward Chaining

Forward Chaining:

It is a strategy of an expert system to answer the question, “What can happen next?”

Here, the Inference Engine follows the chain of conditions and derivations and finally

deduces the outcome. It considers all the facts and rules, and sorts them before concluding to a

solution.

This strategy is followed for working on conclusion, result, or effect. For example,

prediction of share market status as an effect of changes in interest rates.

https://en.wikipedia.org/wiki/Knowledge_engineering
https://en.wikipedia.org/wiki/Natural_language_parsing
https://en.wikipedia.org/wiki/Natural_language_parsing
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Bioinformatics

Backward Chaining

With this strategy, an expert system finds out the answer to the question,“Why this

happened?”

On the basis of what has already happened, the Inference Engine tries to find out which

conditions could have happened in the past for this result. This strategy is followed for finding

out cause or reason. For example, diagnosis of blood cancer in humans.

User Interface

User interface provides interaction between user of the ES and the ES itself. It is

generally Natural Language Processing so as to be used by the user who is well-versed in the

task domain. The user of the ES need not be necessarily an expert in Artificial Intelligence.

It explains how the ES has arrived at a particular recommendation. The explanation may

appear in the following forms

 Natural language displayed on screen.

 Verbal narrations in natural language.

 Listing of rule numbers displayed on the screen.

The user interface makes it easy to trace the credibility of the deductions.

Requirements of Efficient ES User Interface

 It should help users to accomplish their goals in shortest possible way.

 It should be designed to work for user’s existing or desired work practices.

 Its technology should be adaptable to user’s requirements; not the other way round.

 It should make efficient use of user input.

Expert Systems Limitations

No technology can offer easy and complete solution. Large systems are costly; require

significant development time, and computer resources. ESs has their limitations which include

 Limitations of the technology

 Difficult knowledge acquisition

 ES are difficult to maintain

 High development costs

Artificial Intelligence

.

Applications of Expert System

The following table shows where ES can be applied.

Application Description

Design Domain Camera lens design, automobile design.

Medical Domain
Diagnosis Systems to deduce cause of disease from observed data, conduction

medical operations on humans.

Monitoring Systems
Comparing data continuously with observed system or with prescribed behavior such

as leakage monitoring in long petroleum pipeline.

Process Control

Systems

Controlling a physical process based on monitoring.

Knowledge Domain Finding out faults in vehicles, computers.

Finance/Commerce
Detection of possible fraud, suspicious transactions, stock market trading, Airline

scheduling, cargo scheduling.

Expert System Technology

There are several levels of ES technologies available. Expert systems technologies

include ,

 Expert System Development Environment − The ES development environment

includes hardware and tools. They are

 Workstations, minicomputers, mainframes.

 High level Symbolic Programming Languages such as LIStProgramming

(LISP) and PROgrammation en LOGique (PROLOG).

 Large databases.

 Tools − they reduce the effort and cost involved in developing an expert system to large

extent.

 P owerful editors and debugging tools with multi-windows.

 They provide rapid prototyping

 Have Inbuilt definitions of model, knowledge representation, and inference

design.

 Shells − A shell is nothing but an expert system without knowledge base. A shell

provides the developers with knowledge acquisition, inference engine, user interface, and

explanation facility. For example, few shells are given below −

 Java Expert System Shell (JESS) that provides fully developed Java API for

creating an expert system.

 Vidwan, a shell developed at the National Centre for Software Technology,

Mumbai in 1993. It enables knowledge encoding in the form of IF-THEN rules.

Development of Expert Systems: General Steps

The process of ES development is iterative. Steps in developing the ES include ,

Identify Problem Domain

 The problem must be suitable for an expert system to solve it.

 Find the experts in task domain for the ES project.

 Establish cost-effectiveness of the system.

Design the System

 Identify the ES Technology

 Know and establish the degree of integration with the other systems and

databases.

 Realize how the concepts can represent the domain knowledge best.

Develop the Prototype From Knowledge Base: The knowledge engineer works to −

 Acquire domain knowledge from the expert.

 Represent it in the form of If-THEN-ELSE rules.

Test and Refine the Prototype

 The knowledge engineer uses sample cases to test the prototype for any

deficiencies in performance.

 End users test the prototypes of the ES.

Develop and Complete the ES

 Test and ensure the interaction of the ES with all elements of its environment,

including end users, databases, and other information systems.

 Document the ES project well.

 Train the user to use ES.

Maintain the ES

 Keep the knowledge base up-to-date by regular review and update.

Artificial Intelligence

.

 Cater for new interfaces with other information systems, as those systems evolve.

Benefits of Expert Systems

 Availability − They are easily available due to mass production of software.

 Less Production Cost − Production cost is reasonable. This makes them

affordable.

 Speed − They offer great speed. They reduce the amount of work an individual

puts in.

 Less Error Rate − Error rate is low as compared to human errors.

 Reducing Risk − They can work in the environment dangerous to humans.

 Steady response − They work steadily without getting motional, tensed or

fatigued.

Explanation :

* The 1st line is the statement "Socrates is a man."

* The 2nd line is a phrase "all human are mortal"into the equivalent "for all X, if X is a

man then X is mortal".

* The 3rd line is added to the set to determine the mortality of Socrates.

* The 4th line is the deduction from lines 2 and 3. It is justified by the inference rule

modus tollens which states that if the conclusion of a rule is known to be false, then so is the

hypothesis.

* Variables X and Y are unified because they have same value.

* By unification, Lines 5, 4b, and 1 produce contradictions and identify Socrates as

mortal.

* Note that, resolution is an inference rule which looks for a contradiction and it is

facilitated by unification which determines if there is a substitution which makes two terms the

same.

Logic model formalizes the reasoning process. It is related to relational data bases and

expert systems.

Example Rule 1

R1 : KR – forward-backward reasoning ,

IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : IF fire THEN switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

■ Example 2

Rule R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : IF fire THEN ADD switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Example Rule KR – forward-backward reasoning

3 : A typical Forward Chaining,

R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : If fire THEN ADD switch_on_sprinklers

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Fact F4 : smoky [from F1 by R2]

Fact F2 : fire [from F2, F4 by R1]

Fact F6 : switch_on_sprinklers [from F2 by R3]

■ Example 4 : A typical Backward Chaining

Rule R1 : IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : If _fire THEN switch_on_sprinklers

Fact F1 : hot [Given]

Fact F2 : alarm_beeps [Given]

Goal : Should I switch sprinklers on?

Chaining Forward chaining system, KR – forward chaining ,properties , algorithms, and

conflict

resolution strategy are illustrated.

Artificial Intelligence

.

 Forward chaining system

 facts are held in a working memory

 condition-action rules represent actions to be taken when specified facts occur in

working memory.

 typically, actions involve adding or deleting facts from the working memory.

 Properties of Forward Chaining

 all rules which can fire do fire.

 can be inefficient - lead to spurious rules firing, unfocused problem solving

 set of rules that can fire known as conflict set.

 decision about which rule to fire is conflict resolution.

KR – forward chaining

 Forward chaining algorithm - I

Repeat

 Collect the rule whose condition matches a fact in WM.

 Do actions indicated by the rule.(add facts to WM or delete facts from WM) Until

problem is solved or no condition match

Apply on the Example 2 extended (adding 2 more rules and 1 fact)

Rule R1 : IF hot AND smoky THEN ADD fire

Rule R2 : IF alarm_beeps THEN ADD smoky

Rule R3 : If fire THEN ADD switch_on_sprinklers

Rule R4 : IF dry THEN ADD switch_on_humidifier

Rule R5 : IF sprinklers_on THEN DELETE dry

Fact F1 : alarm_beeps [Given]

Fact F2 : hot [Given]

Fact F2 : Dry [Given]

Now, two rules can fire (R2 and R4)

Rule R4 ADD humidifier is on [from F2]

ADD smoky [from F1]

ADD fire [from F2 by R1]

ADD switch_on_sprinklers [by R3]

Rule R2[followed by sequence of actions]

DELEATE dry, ie humidifier is off a conflict ![by R5]

■ Forward chaining algorithm - II (applied to example 2 above)

Repeat

 Collect the rules whose conditions match facts in WM.

 If more than one rule matches as stated above then

Use conflict resolution strategy to eliminate all but one

Do actions indicated by the rules (add facts to WM or delete facts from WM) Until

problem is solved or no condition match

Conflict Conflict Resolution set is Strategy

the set of rules that have KR – forward chaining ,their conditions satisfied by

working memory elements. Conflict resolution normally selects a single rule to fire.

The popular conflict resolution mechanisms are :Refractory, Recency, Specificity.

 Refractory: It is a rule should not be allowed to fire more than once on the

samedata.

It discard executed rules from the conflict set.

It prevents undesired loops.

 Recency: It rank instantiations in terms of the recency of the elements in the

premise of the rule. The rules which use more recent data are preferred. It is working memory

elements are time-tagged indicating at what cycle each fact was added to working memory.

 Specificity: The rules which have a greater number of conditions and are

therefore more difficult to satisfy, are preferred to more general rules with fewer conditions.

There are more specific rules are ‘better’ because they take more of the data into account.

 Alternative Instead KR – forward chaining to Conflict Resolution – Use

Meta Knowledge,of conflict resolution strategies, sometimes we want to useknowledge in

deciding which rules to fire. Meta-rules reason aboutwhich rules should be considered for firing.

They direct reasoning ratherthan actually performing reasoning.

Meta-knowledge : knowledge about knowledge to guide search.

Example of meta-knowledgeIF conflict set contains any rule (c , a) such that a = "animal

is mammal'' THEN fire (c , a) This example says meta-knowledge encodes knowledge about

how to guide search for solution. Meta-knowledge, explicitly coded in the form of rules with

"object level" knowledge.

Artificial Intelligence

.

KR – backward chaining Chaining

Chaining system and the algorithm are illustrated.

■ Backward chaining system

 Backward chaining means reasoning from goals back to facts.The idea is to focus

on the search.

 Rules and facts are processed using backward chaining interpreter.

 Checks hypothesis, e.g. "should I switch the sprinklers on?"

■ Backward chaining algorithm

 Prove goal G If G is in the initial facts , it is proven. Otherwise, find a rule which

can be used to conclude G, and try to prove each of that rule's conditions.

Encoding of rules

Rule R1 : IF hot AND smoky THEN fire

Rule R2 : IF alarm_beeps THEN smoky

Rule R3 : If fire THEN switch_on_sprinklers

Fact F1 : hot [Given]

Fact F2 : alarm_beeps [Given]

Goal : Should I switch sprinklers on?

Depends vs Backward on Chaining

problem, and KR – backward chaining ,on properties of rule set.

 Backward chaining is likely to be better if there is clear hypotheses.Examples :

Diagnostic problems or classification problems, Medical expert systems

 Forward chaining may be better if there is less clear hypothesis and want to see

what can be concluded from current situation;

Examples : Synthesis systems - design / configuration.

Knowledge algorithm consists KR – control knowledge, of: logic component, that

specifies the knowledge to be used in solving problems, and control component, that determines

the problem-solving strategies by means of which that knowledge is used.

Thus Algorithm = Logic + Control .

The logic component determines the meaning of the algorithm whereas the control

component only affects its efficiency. An algorithm may be formulated in different ways,

producing same behavior. One formulation, may have a clear statement in logic component but

employ a sophisticated problem solving strategy in the control component.

The other formulation, may have a complicated logic component but employ a simple

problem-solving strategy. The efficiency of an algorithm can often be improved by improving

the control component without changing the logic of the algorithm and therefore without

changing the meaning of the algorithm. The trend in databases is towards the separation of logic

and control.

The programming languages today do not distinguish between them. The programmer

specifies both logic and control in a single language. The execution mechanism exercises only

the most rudimentary problem-solving capabilities.

Computer programs will be more often correct, more easily improved, and more readily

adapted to new problems when programming languages separate logic and control, and when

execution mechanisms provide more powerful problem-solving facilities of the kind provided by

intelligent theorem-proving systems.

Perception and Action:

Perception:

The definition of AI is based on the nature of the problems it tackles, namely those for

which humans currently outperform computers. Also , it includes cognitive tasks. A part from

those two aspects, there are many other tasks(that also fall with in this realm) such as basic

perceptual and motor skills in which even lower animals posses phenomenal capabilities

compared to computers.

Perception involves interpreting sights, sounds, smells and touch. Action includes the

ability to negative through the world and manipulate objects. If we want to build robots that live

in the world, we must understand these processes. Figure 4.3 shows a design for a complete

autonomous robot. Most of AI is concerned with only cognition, we will simply add sensors and

effectors to them. But the problems in perception and action are substantial in their own right and

are being tackled by researchers in the field of robotics.

In the past, robotics and AI have

been largely independent endeavors, and

they have developed different techniques

to solve different problems. One key

difference between AI programs and

robots is that AI programs usually operate

in computer-stimulated worlds, robots

must operate in physical world. For

example, in the case of moves in chess, an

AI program can search millions of nodes

in a game tree without ever having to

sense or touch anything in the real world.

A complete chess-playing robot, on the

Artificial Intelligence

.

other hand, must be capable of grasping pieces, visually interpreting board positions, and

carrying on a host of other actions. The distinction between real and simulated worlds has several

implications as given below:

A design for an Autonomous Robot:

1. The input to an AI program is symbolic in form (example : a typed English sentence),

whereas the input to a robot is typically an analog signal ,such as a two dimensional video image

or a speech wave form.

2. Robots require special hardware for perceiving and affecting the world, while AI

programs require only general-purpose computers.

3. Robot sensors are inaccurate, and their effectors are limited in precision.

4. Many robots must react in real time. A robot fighter plane, for example, cannot afford

to search optimally or o stop monitoring the world during a LISP garbage collection.

5. The real world is unpredictable, dynamic, and uncertain. A root cannot hope to

maintain a correct and complete description of the world. This means that a robot must consider

the trade-off between devising and executing plans. This trade-off has several aspects. For one

thing a robot may not possess enough information about the world for it to do any useful

planning. In that case, it must first engage in information gathering activity. Furthermore, once it

begins executing a plan, the robot must continually the results of its actions. If the results are

unexpected, then re-planning may be necessary.

6. Because robots must operate in the real world, searching and back tracking can be

costly.

Recent years have seen efforts to integrate research in robotics and AI. The old idea of

simply sensors and effectors to existing AI programs has given way to a serious rethinking of

basic AI algorithms in light of the problems involved in dealing with the physical world.

Research in robotics is likewise affected by AI techniques, since reasoning about goals and plans

is essential for mapping perceptions onto appropriate actions.

At this point one might ask whether physical robots are necessary for research purposes.

Since current AI programs already operate in simulated worlds, why not build more realistic

simulations, which better model the real world? Such simulators do exist. There are several

advantages to using a simulated world: Experiment can be conducted very rapidly, conditions

can easily be replicated, programs can return to previous states at no cost, and sensory input can

be treated no fragile, expensive mechanical parts. The major drawback to simulators is figuring

out exactly which factors to build in. experience with real robots continue4s to expose tough

problems that do not arise even in the most sophisticated simulators. The world turns out – not

surprisingly to be an excellent model of itself, and a readily available one.

We perceive our environment through many channels: sight, sound, touch, smell, taste.

Many animals process these same perceptual capabilities, and others also able to monitor entirely

different channels. Robots, too, can process visual and auditory information, and they can also

equip with more exotic sensors. Such as laser rangefinders, speedometers and radar.

Two extremely important sensory channels for human are vision and spoken language. It

is through these two faculties that we gather almost all of the knowledge that drives our problem-

solving behaviors.

Vision: Accurate machine vision opens up a new realm of computer applications.

These applications include mobile robot navigation, complex manufacturing tasks analysis of

satellite images, and medical image processing. The question is that how we can transform raw

camera images into useful information about the world.

A Video Camera provides a computer with an image represented as a two-dimensional

grid of intensity levels. Each grid element, or pixel, may store a single bit of information (that is ,

black/white) or many bits(perhaps a real-valued intensity measure and color information). A

visual image is composed of thousands of pixels. What kinds of things might we want to do with

such an image? Here are four operations, in order of increasing complexity:

1. Signal Processing:- Enhancing the image, either for human consumption or as input to

another program.

2. Measurement Analysis:- For images containing a single object, determining the two-

dimensional extent of the object depicted.

3. Pattern Recognition:- For single – object images, calssifying the object into a

category drawn from a finite set of possibilities.

4. image Understanding :- For images containing many objects, locating the object in

the image, classifying them, and building a three-dimensional model of the scene.

There are algorithms that perform the first two operations. The third operation, pattern

recognition varies in its difficulty. It is possible to classify two-dimensional (2-D) objects, such

as machine parts coming down a conveyor belt, but classifying 3-D objects is harder because of

the large number of possible orientations for each object. Image understanding is the most

difficult visual task, and it has been the subject of the most study in AI. While some aspects of

image understanding reduce to measurement analysis and pattern recognition, the entire problem

remains unsolved , because of difficulties that include the following:

1. An image is two-dimensional, while the world is three-dimensional some information

is necessarily lost when an image is created.

2. One image may contain several objects, and some objects may partially occlude others.

3. The value of a single pixel is affected by many different phenomena, including the

color of the object, the source of the light , the angale and distance of the camera, the pollution in

the air, etc. it is hard to disentangle these effects.

Artificial Intelligence

.

As a result, 2-D images are highly ambiguous. Given a single image, we could construct

any number of 3-D worlds that would give rise to the image . it is impossible to decide what 3-D

solid it should portray. In order to determine the most likely interpretation of a scene , we have to

apply several types of knowledge.

Speech Recognition:

Natural Language understanding systems usually accept typed input, but for a

number of applications this is not acceptable. Spoken language is a more natural form of

communication in many human-computer interfaces. Speech recognition systems have been

available for some time, but their limitations have prevented widespread used . Below are five

major design issues in speech systems. These issues also provide dimensions along which

systems can be compared with one another.

1. Speaker Dependence versus Speaker Independence : A speaker –independent

system can liten to any speakear and translate the sounds into written text. Speaker independence

ishard to achieve because of the wide variations in pitch and accent. It is easier to build a speaker

–dependent system, which can be trained on the voice

Robotics:

Robotics is a domain in artificial intelligence that deals with the study of creating

intelligent and efficient robots.

What are Robots?

Robots are the artificial agents acting in real world environment.

What is Robotics?

Robotics is a branch of AI, which is composed of Electrical Engineering, Mechanical

Engineering, and Computer Science for designing, construction, and application of robots.

Aspects of Robotics

 The robots have mechanical construction, form, or shape designed to accomplish

a particular task.

 They have electrical components which power and control the machinery.

 They contain some level of computer program that determines what, when and

how a robot does something.

Difference in Robot System and Other AI Program

Here is the difference between the two

AI Programs Robots

They usually operate in

computer-stimulated worlds.

They operate in real physical world

The input to an AI program is in

symbols and rules.

Inputs to robots is analog signal in the form of

speech waveform or images

They need general purpose

computers to operate on.

They need special hardware with sensors and

effectors.

Robot Locomotion

Locomotion is the mechanism that makes a robot capable of moving in its environment.

There are various types of locomotions

 Legged

 Wheeled

 Combination of Legged and Wheeled Locomotion

 Tracked slip/skid

Legged Locomotion

 This type of locomotion consumes more power

while demonstrating walk, jump, trot, hop, climb up or down, etc.

 It requires more number of motors to accomplish a

movement. It is suited for rough as well as smooth terrain where

irregular or too smooth surface makes it consume more power for

a wheeled locomotion. It is little difficult to implement because of

stability issues.

 It comes with the variety of one, two, four, and six

legs. If a robot has multiple legs then leg coordination is necessary

for locomotion.

The total number of possible gaits (a periodic sequence of

lift and release events for each of the total legs) a robot can travel

depends upon the number of its legs.

If a robot has k legs, then the number of possible events N = (2k-1)! .

In case of a two-legged robot (k=2), the number of possible events is

N = (2k-1)! = (2*2-1)! = 3! = 6.

Artificial Intelligence

.

Hence there are six possible different events −

 Lifting the Left leg

 Releasing the Left leg

 Lifting the Right leg

 Releasing the Right leg

 Lifting both the legs together

 Releasing both the legs together

In case of k=6 legs, there are 39916800 possible events. Hence the complexity of robots

is directly proportional to the number of legs.

Wheeled Locomotion

It requires fewer number of motors to accomplish a

movement. It is little easy to implement as there are less stability

issues in case of more number of wheels. It is power efficient as

compared to legged locomotion.

 Standard wheel − Rotates around the wheel axle and

around the contact

 Castor wheel − Rotates around the wheel axle and

the offset steering joint.

 Swedish 45o and Swedish 90o wheels − Omni-

wheel, rotates around the contact point, around the wheel axle, and around the rollers.

 Ball or spherical wheel − Omnidirectional wheel,

technically difficult to implement.

Slip/Skid Locomotion

In this type, the vehicles use tracks as in a tank. The robot

is steered by moving the tracks with different speeds in the same

or opposite direction. It offers stability because of large contact

area of track and ground.

Components of a Robot

Robots are constructed with the following −

 Power Supply − The robots are powered by batteries, solar power, hydraulic, or

pneumatic power sources.

 Actuators − They convert energy into movement.

them.

 Electric motors (AC/DC) − They are required for rotational movement.

 Pneumatic Air Muscles − They contract almost 40% when air is sucked in them.

 Muscle Wires − They contract by 5% when electric current is passed through

 Piezo Motors and Ultrasonic Motors − Best for industrial robots.

 Sensors − They provide knowledge of real time information on the task

environment. Robots are equipped with vision sensors to be to compute the depth in the

environment. A tactile sensor imitates the mechanical properties of touch receptors of human

fingertips.

Computer Vision

This is a technology of AI with which the robots can see. The computer vision plays vital

role in the domains of safety, security, health, access, and entertainment.

Computer vision automatically extracts, analyzes, and comprehends useful information

from a single image or an array of images. This process involves development of algorithms to

accomplish automatic visual comprehension.

Hardware of Computer Vision System

This involves,

 Power supply

 Image acquisition device such as camera

 a processor

 a software

 A display device for monitoring the system

 Accessories such as camera stands, cables, and connectors

Tasks of Computer Vision

 OCR − In the domain of computers, Optical Character Reader, a software to

convert scanned documents into editable text, which accompanies a scanner.

 Face Detection − Many state-of-the-art cameras come with this feature, which

enables to read the face and take the picture of that perfect expression. It is used to let a user

access the software on correct match.

 Object Recognition − They are installed in supermarkets, cameras, high-end cars

such as BMW, GM, and Volvo.

 Estimating Position − It is estimating position of an object with respect to camera

as in position of tumor in human’s body.

Artificial Intelligence

.

Application Domains of Computer Vision

 Agriculture

 Autonomous vehicles

 Biometrics

 Character recognition

 Forensics, security, and surveillance

 Industrial quality inspection

 Face recognition

 Gesture analysis

 Geo science

 Medical imagery

 Pollution monitoring

 Process control

 Remote sensing

 Robotics

 Transport

Applications of Robotics

The robotics has been instrumental in the various domains such as,

 Industries − Robots are used for handling material, cutting, welding, color

coating, drilling, polishing, etc.

 Military − Autonomous robots can reach inaccessible and hazardous zones during

war. A robot named Daksh, developed by Defense Research and Development Organization

(DRDO), is in function to destroy life-threatening objects safely.

 Medicine − The robots are capable of carrying out hundreds of clinical tests

simultaneously, rehabilitating permanently disabled people, and performing complex surgeries

such as brain tumors.

 Exploration − The robot rock climbers used for space exploration, underwater

drones used for ocean exploration are to name a few.

 Entertainment − Disney’s engineers have created hundreds of robots for movie

making.

===================Unit V Completed====================

	INDEX
	(Arts and Science) Department of Computer Science.
	Artificial Intelligence
	Introduction:
	What is Artificial Intelligence?
	History of AI
	Philosophy of AI
	Goals of AI
	What Contributes to AI?
	Programming Without and With AI
	What is AI Technique?
	Applications of AI

	Speech and Voice Recognition
	Real Life Applications of AI Research Areas
	Task Classification of AI
	AI Techniques:
	Tic-Tac-Toe:
	Other variations of tic-tac-toe include:
	Question Answering:
	A local collection of reference texts,
	Question Patterns:
	The Algorithm:

	Problems, Problem Spaces and search:
	Defining a Problem as a State Space Search:
	State Space Search: Playing Chess
	State Space Search: Water Jug Problem

	State Space Search: Summary
	Control Strategies
	Breadth-First Search
	Disadvantage
	Depth-First Search
	Disadvantage:
	Bidirectional Search
	Uniform Cost Search
	Disadvantage: (1)
	Iterative Deepening Depth-First Search

	Search Strategies: Heuristic Search
	The Travelling Salesman Problem:

	Problem Characteristics:
	The 8-Puzzle

	Can solution steps be ignored or undone?
	Is the universe predictable?

	Is a good solution absolute or relative?
	Is a good solution absolute or relative?
	Is Marcus alive?
	Is Marcus alive? (1)
	Is the solution a state or a path?
	What is the role of knowledge?
	Does the task require human-interaction?
	Problem Classification

	Search Strategies
	Search and Search Techniques:
	Single Agent Pathfinding Problems

	Search Terminology

	State Space Search: Summary (1)
	Heuristic Evaluation Functions
	Pure Heuristic Search
	function Hill-Climbing (problem), returns a state that is a local maximum. inputs: problem, a problem
	do neighbor <- a highest_valued successor of current
	Local Beam Search
	start with k randomly generated states loop
	if any of the states = solution, then return the state else select the k best successors
	Simulated Annealing
	Start
	2. From i → j, search the performance difference Δ.
	4. Repeat steps 1 and 2 for L(k) steps.

	Travelling Salesman Problem
	Start
	solutions.
	A * Search

	Greedy Best First Search
	Disadvantage

	Breadth-First Search
	Disadvantage –
	Bidirectional Search

	Knowledge Representation
	Knowledge representation Issues:
	Representation and Mapping:
	Types of Knowledge:

	Advantages:
	Approaches to Knowledge Representation:
	Issues in Knowledge Representation:

	Frame Problem:
	Frames:
	For example:

	Using Predicate Logic:
	Representing simple facts in Logic:
	Predicate Logic Syntax
	Reasoning:

	Resolution:
	Proof by refutation
	Resolution inference rule
	Example:
	Example: (1)
	Unification:
	Unification: Standardization
	Unification: Occur check
	Unification: Most general unifier

	Conversion to Clause Form
	Resolution in Predicate Logic
	Example:
	Example
	Example (1)
	Example (2)
	Soundness and Completeness
	Programming in Logic
	KR – procedural & declarative versus Declarative Knowledge
	Procedural Knowledge Declarative Knowledge

	Comparison between Procedural and Declarative Language :
	• Characteristics of Logic program
	(A) Data components :
	Forward Chaining
	Backward Chaining
	Example Rule 1
	■ Example 2
	3 : A typical Forward Chaining,
	■ Example 4 : A typical Backward Chaining
	■ Forward chaining system
	■ Properties of Forward Chaining
	Engine facts
	■ Forward chaining algorithm - I
	Now, two rules can fire (R2 and R4)
	■ Forward chaining algorithm - II (applied to example 2 above)
	Conflict Conflict Resolution set is Strategy
	KR – backward chaining Chaining:
	■ Backward chaining system
	■ Backward chaining algorithm
	Encoding of rules
	Thus Algorithm = Logic + Control .

	Game Playing:
	What is Game?
	"If a Minimax of one player corresponds to a Maximin of the other player, then that outcome is the best both players can hope for Game Playing”
	Relevance Game Theory and Game Plying:
	Glossary of terms in the context of Game Theory
	 Player
	 Strategy
	The MiniMax Search Procedure:
	Minimax search
	Static evaluation
	Alpha-Beta Pruning
	Making pruning effective:
	Components of Expert Systems
	Components of Knowledge Base
	Knowledge representation
	Inference Engine
	Forward Chaining:
	Backward Chaining
	Requirements of Efficient ES User Interface
	Expert Systems Limitations
	Applications of Expert System
	Expert System Technology
	Development of Expert Systems: General Steps
	Identify Problem Domain
	Design the System
	Develop the Prototype From Knowledge Base: The knowledge engineer works to −
	Maintain the ES
	Benefits of Expert Systems
	Explanation :
	Example Rule 1
	■ Example 2
	3 : A typical Forward Chaining,
	 Forward chaining system
	 Properties of Forward Chaining
	 Forward chaining algorithm - I
	Now, two rules can fire (R2 and R4)
	■ Forward chaining algorithm - II (applied to example 2 above)
	Conflict Conflict Resolution set is Strategy
	■ Backward chaining system
	■ Backward chaining algorithm
	Encoding of rules
	Depends vs Backward on Chaining
	Thus Algorithm = Logic + Control .
	Perception:
	A design for an Autonomous Robot:
	Speech Recognition:
	What are Robots?
	What is Robotics?
	Aspects of Robotics
	Difference in Robot System and Other AI Program
	Robot Locomotion
	Legged Locomotion
	Wheeled Locomotion
	Slip/Skid Locomotion
	Components of a Robot
	Computer Vision
	Tasks of Computer Vision
	Application Domains of Computer Vision
	Applications of Robotics

