
B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 1

U N I T - 4

Greedy Method : The General Method – Optimal Storage on Tapes – Knapsack

Problem – Job Sequencing with Deadlines – Optimal Merge Patterns.

The Greedy Method - The General Method

The greedy method is the most straightforward design technique.

It can be applied to a wide variety of problems.

Most of these problems have n inputs and require us to obtain a

subset that satisfies some constraints.

Any subset that satisfies these constraints is called a feasible

solution.

We need to find a feasible solution that either maximizes or

minimizes a given objective function.

A feasible solution that does this is called an optimal solution.

The greedy method suggests that one can devise an algorithm that

works in stages, considering one input at a time.

At each stage, a decision is made regarding whether a particular

input is in an optimal solution.

This is done by considering the inputs in an order determined by

some selection procedure.

If the inclusion of the next input into the partially constructed optimal

solution will result in an infeasible solution, then this input is not added

to the partial solution. Otherwise, it is added.

The selection procedure itself is based on some optimization

measure. This measure may be the objective function. In fact, several

different optimization measures may be plausible for a given problem.

Most of these, however, will result in algorithms that generate

suboptimal solutions. This version of the greedy technique is called the

subset paradigm.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 2

The function Select selects an input from a[] and removes it. The

selected input's value is assigned to x.

Feasible is a Boolean-valued function that determines whether x can

be included into the solution vector.

The function Union combines x with the solution and updates the

objective function.

The function Greedy describes the essential way that a greedy

algorithm will look, once a particular problem is chosen and the

functions Select, Feasible, and Union are properly implemented.

1 Algorithm Greedy(a, n)

2 / / a[l : n] contains the n inputs.

3 {

4 solution := 0; / / Initialize the solution.

5 for i := 1 to n do

6 {

7 x := Select(a);

8 if Feasible(solution, x) then

9 solution:= Union(solution, x);

10 }

11 return solution;

12 }

KNAPSACK PROBLEM

 We are given n objects and a knapsack or bag.

 Object i has a weight Wi and the knapsack has a capacity m.

 If a fraction xi 0≤ xi ≤1, of object i is placed into the knapsack,

then a profit of PiXi is earned.

 The objective is to obtain a filling of the knapsack that maximizes

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 3

the total profit earned.

 Since the knapsack capacity is m, we require the total weight of

all chosen objects to be at most m.

 Formally, the problem can be stated as

The profits and weights are positive numbers. A feasible solution is

any set (x 1 , ... , Xn) satisfying the given constraints. An optimal solution

is a feasible solution which is maximized.

Of these four feasible solutions, solution 4 yields the maximum

profit. This solution is optimal for the given problem instance.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 4

_ __ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ _ _ _ __ _ _ __ _ _

Algorithm GreedyKnapsack (m, n)

{

for i1 to n do x[i] = 0.0;

U = m;

for i1 to n do

 {

if(w[i] > U) then break;

x[i] = 1.0;

U = U – w[i];

}

if (i<=m) x[i] = U/w[i];

}

_ __ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ _ _ _ __ _ _ __ _ _

JOB SEQUENCING WITH DEADLINES

We are given a set of n jobs. Associated with job i is an

integer deadline di≥0 and a profit Pi ≥0.

For any job i the profit Pi is earned iff the job is completed by its

deadline.

To complete a job, one has to process the job on a machine for

one unit of time. Only one machine is available for processing jobs.

A feasible solution for this problem is a subset J of jobs such

that each job in this subset can be completed by its deadline.

The value of a feasible solution J is the sum of the profits of the

jobs in J, or ∑iεJpi. An optimal solution is a feasible solution with

maximum value.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 5

Example: Let n = 4, (p1,P2,p3,p4) = (100, 10, 15, 27) and (d1, d2,

d3, d4) = (2, 1, 2, 1). The feasible solutions and their values are:

 Solution 3 is optimal. In this solution only jobs 1 and 4 are processed

and the value is 127. These jobs must be processed in the order job 4

followed by job 1. Thus the processing of job 4 begins at time zero and

that of job 1 is completed at time 2.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 6

OPTIMAL STORAGE ON TAPES

There are n programs that are to be stored on a computer

tape of length l.

Associated with each program i is a length li, 1≤i≤n. All

programs can be stored on the tape if and only if the sum of the

lengths of the programs is at most l.

We assume that whenever a program is to be retrieved from this

tape, the tape is initially positioned at the front.

Hence, if the programs are stored in the order I= i1, i2, ... , in, the

time tj needed to retrieve program ij is proportional to ∑l≤k≤j lik.

If all programs are retrieved equally often, then the expected or

mean retrieval time (MRT) is (1/n) ∑l≤j≤n tj.

In the optimal storage on tape problem, we are required to find

a permutation for the n programs so that when they are stored on

the tape in this order the MRT is minimized.

This problem fits the ordering paradigm. Minimizing the MRT

is equivalent to minimizing d(I) =∑l≤j≤n∑l≤k≤j lik.

Example: Let n = 3 and (li, l2, l3) = (5, 10, 3). There are n! =

6 possible orderings. These orderings and their respective d values

are:

 The optimal ordering is 3, 1, 2. □

A greedy approach to building the required permutation would

choose the next program on the basis of some optimization measure.

The next program to be stored on the tape would be one that minimizes

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 7

the increase in d. We observe that the increase in d is minimized if the

next program chosen is the one with the least length from among the

remaining programs.

1 Algorithm Store(n, m)

2 / / n is the number of programs and m the number

of tapes.

3 {

4 j := O; / / Next tape to store on

5 for i := 1 to n do

6 {

7 write ("append program", i,

8 "to permutation for tape", j);

9 j := (j + 1) mod m;

10 }

10 }

OPTIMAL MERGE PATTERNS

The optimal merge pattern problem describes that there two

sorted files containing n and m records respectively could be merged

together to obtain one sorted file in time O(n +m).

When more than two sorted files are to be merged together, the

merge can be accomplished by repeatedly merging sorted files in

pairs.

Thus, if files x1 , x2, x3 and x4 are to be merged, we could first

merge x1 and x2 to get a file y1. Then we could merge y1 and x3 to get

y2. Finally, we could merge y2 and x4 to get the desired sorted file.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 8

Alternatively, we could first merge x1 and x2 getting yl, then

merge x3 and x4 and get y2, and finally merge y1 and y2 and get the

desired sorted file.

Given n sorted files, there are many ways in which to pairwise

merge them into a single sorted file.

Different pairings require differing amounts of computing time.

The problem we address ourselves to now is that of determining an

optimal way to pairwise merge n sorted files.

Example: Method 1:The files x1, x2 and x3 are three sorted files of

length 30, 20, and 10 records each. Merging x1 and x2 requires 50 record

moves. Merging the result with x3 requires another 60 moves. The total

number of record moves required to merge the three files this way is 110.

Method 2: Merge x2 and X3 (taking 30 moves) and then x1

(taking 60 moves), the total record moves made is only 90.

Hence, the second merge pattern is faster than the first.

A greedy attempt to obtain an optimal merge pattern is easy to

formulate. Since merging an n-record file and an m-record file

requires possibly n +m record moves, the obvious choice for a

selection criterion is: at each step merge the two smallest size files

together.

Thus, if we have five files (x1,... , x5) with sizes (20, 30, 10, 5,

30), our greedy rule would generate the following merge pattern:

1. Merge x4 and x 3 to get z1 (15 moves)

2. Merge z1 and x1 to get z2 (35 moves)

3. Merge x2 and x5 to get z3 (60 moves)

4. Merge z2 and z3 to get the answer z4 (95 moves)

The total number of record moves is 205.

The merge pattern such as the one just described will be

referred to as a two-way merge pattern (each merge step involves the

merging of two files). The two-way merge patterns can be represented

by binary merge trees.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 9

Figure shown below a binary merge tree representing the optimal

merge pattern obtained for the above five files.

The leaf nodes are drawn as squares and represent the given five

files. These nodes are called external nodes.

The remaining nodes are drawn as circles and are called internal

nodes. Each internal node has exactly two children, and it represents

the file obtained by merging the files represented by its two children.

The number in each node is the length (i.e., the number of records) of

the file represented by that node.

 The external node X4 is at a distance of 3 from the root node z4 (a node
at level i is at a distance of i - 1 from the root). Hence, the records of file x4

are moved three times, once to get z1, once again to get z2, and finally one
more time to get Z4. If di is the distance from the root to the external node for
file Xi and qi, the length of Xi is then the total number of record moves for this

binary merge tree is

This sum is called the weighted external path length of the tree.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 10

treenode = record {

treenode* !child; treenode* rchild;

integer weight; };

 Algorithm Tree(n) {

 for i := 1 to n - 1 do {

 pt:= new treenode; / / Get a new tree node.

 (pt[child) := Least(list); / / Merge two trees with

 (ptrchild) := Least(list); / / smallest lengths.

 (ptweight) := ((ptlchild) weight)

 + ((ptrchild) weight);

 Insert(list, pt);

 }

 return Least(list); / / Tree left in list is the merge tree.

}

Huffman Codes

Another application of binary trees with minimal weighted

external path length is to obtain an optimal set of codes for messages

M1, ... , Mn+l·

Each code is a binary string that is used for transmission of the

corresponding message. At the receiving end the code is decoded

using a decode tree.

A decode tree is a binary tree in which external nodes

represent messages.

B.Sc., CS/B.C.A., – Data Structures & Algorithms – Unit IV (Greedy Method)

Enathi Rajappa Arts & Science College - Dept.of CS Page 11

The binary bits in the code word for a message determine the

branching needed at each level of the decode tree to reach the correct

external node.

For example, if we interpret a zero as a left branch and a one as a

right branch, then the decode tree of the above Figure corresponds to

codes 000, 001, 01, and 1 for messages M1, M2, M3, and M4

respectively. These codes are called Huffman codes.

