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U N I T - 4 

Greedy Method : The General Method – Optimal Storage on Tapes – Knapsack 

Problem – Job Sequencing with Deadlines – Optimal Merge Patterns. 

-------------------- 

 

The Greedy Method - The General Method 

 

The greedy method is the most straightforward design technique. 

It can be applied to a wide variety of problems.  

Most of these problems have n inputs and require us to obtain a 

subset that satisfies some constraints.  

Any subset that satisfies these constraints is called a feasible 

solution.  

We need to find a feasible solution that either maximizes or 

minimizes a given objective function.  

A feasible solution that does this is called an optimal solution.   

The greedy method suggests that one can devise an algorithm that 

works in stages, considering one input at a time.  

At each stage, a decision is made regarding whether a particular 

input is in an optimal solution.   

This is done by considering the inputs in an order determined by 

some selection procedure.  

If the inclusion of the next input into the partially constructed optimal 

solution will result in an infeasible solution, then this input is not added  

to the  partial solution.  Otherwise,  it  is added.   

The selection procedure itself is based on some optimization 

measure. This measure may be the objective function. In fact, several 

different optimization measures may  be plausible for a given problem. 

Most of these, however, will result in algorithms that generate 

suboptimal solutions. This version of the greedy technique is called the 

subset paradigm. 
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The function Select selects an input from a[] and removes it. The 

selected input's value is assigned to x.  

Feasible is a Boolean-valued function that determines whether x can 

be included into the solution vector.  

The function Union combines x with the solution and updates the 

objective function.  

The function Greedy describes the essential way that a greedy 

algorithm will look, once a particular problem is chosen and the 

functions Select, Feasible, and Union are properly implemented. 

 
 

1 Algorithm Greedy(a, n) 

2 / / a[l : n] contains the n inputs. 

3 { 

4 solution := 0; / / Initialize the solution. 

5 for i := 1 to  n do 

6 { 

7 x :=  Select(a); 

8 if Feasible(solution, x) then 

9 solution:= Union(solution, x); 

10 } 

11 return solution; 

12 } 

 

 

KNAPSACK  PROBLEM 

 We are given n objects and a knapsack or bag.  

 Object i has a weight Wi and the knapsack  has a capacity m.   

 If a fraction xi 0≤ xi ≤1,  of object  i is placed into  the  knapsack,  

then  a  profit  of PiXi is earned.  

 The objective  is to obtain a filling of the knapsack that maximizes 
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the total profit earned.  

 Since the knapsack capacity  is m, we  require the  total  weight  of 

all chosen  objects  to be at most m.  

 Formally, the problem can be stated as 

 
The profits and weights  are positive numbers. A feasible solution is 

any set (x 1 , ...    , Xn) satisfying the given constraints. An optimal solution 

is a feasible solution which is maximized. 

 
 

Of these four feasible solutions, solution 4 yields the maximum 

profit. This solution is optimal for the given problem instance.  
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_ __ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ _ _ _ __ _ _ __ _ _  

Algorithm GreedyKnapsack (m, n)  

{  

for i1 to n do  x[i] = 0.0;  

U = m;  

for i1 to n do 

 {  

if(w[i] > U)  then break;  

x[i] = 1.0; 

U = U – w[i];  

}  

if (i<=m) x[i] = U/w[i];  

} 

_ __ _ _ __ _ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ _ _ _ __ _ _ __ _ _  

 

 

JOB SEQUENCING WITH DEADLINES 

We are given a set  of n  jobs.  Associated  with job i  is an  

integer  deadline di≥0 and a profit Pi ≥0.  

For any job i the profit Pi is earned iff the job is completed by its  

deadline.   

To complete a job, one has to process the job on a machine for 

one unit of time. Only one machine is available for processing jobs.  

A feasible solution for this problem is a subset J of jobs such 

that each job in this subset can be completed by its deadline.  

The value of a feasible solution J is the sum of the profits of the 

jobs in J, or ∑iεJpi. An optimal solution is a feasible solution with 

maximum value.  
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Example:  Let n = 4, (p1,P2,p3,p4)  = (100, 10, 15, 27) and  (d1, d2, 

d3, d4) = (2, 1, 2, 1). The feasible solutions and  their values are: 

 
 Solution 3 is optimal.  In  this solution only  jobs  1  and  4 are  processed  

and the  value is 127.  These  jobs  must  be processed  in  the  order  job 4 

followed by job 1. Thus the  processing  of  job 4  begins at  time zero  and  

that  of  job  1 is completed at  time 2. 
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OPTIMAL STORAGE ON TAPES 

There are n programs that are to be stored on a computer  

tape of length l.  

Associated  with each  program  i  is a  length  li, 1≤i≤n. All 

programs can be stored on the tape if and  only if the  sum  of the  

lengths of the programs is at most l.  

We assume that whenever a program is to be retrieved from this 

tape, the tape is initially  positioned  at  the  front.   

Hence, if the   programs  are  stored  in the  order I= i1, i2, ...  , in,  the  

time tj  needed to retrieve program ij is proportional to ∑l≤k≤j lik. 

If all programs are retrieved equally often, then the expected or 

mean retrieval time (MRT) is (1/n) ∑l≤j≤n tj. 

In  the  optimal storage on tape problem, we are  required to  find 

a  permutation  for  the  n  programs so that  when  they  are stored on 

the tape in this order the MRT is minimized.   

This problem  fits the ordering paradigm. Minimizing the MRT 

is equivalent to minimizing d(I) =∑l≤j≤n∑l≤k≤j lik. 

Example: Let n  = 3 and  (li, l2, l3)  =  (5, 10, 3).  There are  n! = 

6 possible orderings. These orderings and their respective d values 

are: 

 
 The  optimal ordering is 3, 1, 2. □ 

A greedy approach to building the required  permutation  would 

choose the next program on the basis of some optimization measure. 

The next program to be stored on the tape would be one that minimizes 
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the increase in d. We  observe  that  the increase in  d  is  minimized  if the 

next program chosen is the one with the least length from among the 

remaining programs. 

 
 

1 Algorithm Store(n, m) 

2 / / n is the number of programs and m the number 

of tapes. 

3 { 

4 j :=  O; / /  Next tape to store on 

5 for i := 1 to n do 

6 { 

7 write ("append program", i, 

8 "to permutation for tape", j); 

9 j := (j + 1) mod m; 

10 } 

10 } 

 

 

OPTIMAL MERGE PATTERNS 

The optimal merge pattern problem describes that there two 

sorted files containing n and m records respectively could be merged 

together to obtain one sorted file in time O(n +m).  

When more than two sorted  files are  to  be  merged  together,  the  

merge can  be accomplished  by  repeatedly  merging  sorted  files in  

pairs.    

Thus,  if files x1 , x2, x3 and x4 are to be merged, we could first 

merge x1 and x2 to get a file y1. Then we could merge y1 and  x3 to get  

y2. Finally, we could merge y2 and x4 to get  the  desired sorted file.   
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Alternatively, we could first merge x1 and  x2 getting  yl,  then  

merge  x3  and  x4  and  get  y2, and finally merge y1 and y2 and get the 

desired sorted file.  

Given n sorted files, there are many ways in which to pairwise   

merge   them   into   a   single   sorted file.  

Different pairings require differing amounts of computing  time.  

The problem we address ourselves to now is that of determining  an  

optimal  way to pairwise merge n sorted files.  

Example:  Method 1:The files x1, x2 and x3  are three sorted files of 

length 30, 20, and  10  records each.  Merging x1 and  x2 requires 50 record 

moves.  Merging the result with x3 requires another 60 moves.  The  total 

number of record moves required to merge the  three files this way is 110.   

Method 2: Merge x2 and X3  (taking 30 moves) and  then x1  

(taking 60 moves), the total record moves  made is only  90.   

Hence, the  second  merge  pattern  is faster than  the first. 

A greedy attempt to obtain an optimal merge pattern is easy to 

formulate. Since merging an n-record file and  an m-record file 

requires possibly n +m  record  moves,  the  obvious choice for a 

selection criterion is:  at  each step merge the two smallest size files 

together.  

Thus, if we have five files (x1,... , x5)  with sizes (20, 30, 10, 5, 

30),  our greedy  rule would generate  the following merge pattern:  

1. Merge x4  and x 3  to get z1 (15 moves) 

2. Merge z1 and x1 to get z2 (35 moves) 

3. Merge x2 and x5 to get z3 (60 moves) 

4. Merge z2 and  z3  to  get  the  answer  z4 (95 moves)  

The  total  number of record  moves is 205.  

The merge pattern  such  as  the  one  just  described  will  be  

referred  to as a two-way merge pattern (each merge step involves the 

merging of two files). The two-way merge patterns can be represented  

by  binary merge trees.  
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Figure shown below a binary merge tree representing the optimal 

merge pattern obtained for the above five files.  

The leaf nodes are drawn as squares and represent the given five 

files. These nodes are called external nodes.  

The remaining nodes are drawn as circles and are called internal 

nodes. Each internal node has exactly  two children, and  it  represents  

the  file obtained by merging the files represented by its two children.  

The number in each node is the length (i.e., the number of records) of 

the file represented by that node. 

 
 The  external  node  X4  is at  a  distance of 3 from  the  root  node z4  ( a  node 
at level i  is at  a  distance  of i  -  1 from  the  root).  Hence,  the  records  of  file x4 

are  moved  three times, once  to  get  z1, once again  to get  z2, and  finally one 
more time to get Z4. If di is the distance from the root to the external node for 
file Xi  and qi, the  length of Xi  is then the total number of record moves for this 

binary merge tree is 

 
 

This sum is called the weighted external path length of the tree. 
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_____________________________________________________ 

treenode = record { 

treenode* !child; treenode* rchild; 

integer weight; }; 

 Algorithm Tree(n)  { 

 for i := 1 to n - 1 do  { 

 pt:= new treenode; / /  Get a new tree node. 

 ( pt[child) := Least(list);  / /  Merge two trees with 

 ( ptrchild) := Least(list);  / /  smallest  lengths. 

 ( ptweight) :=   ((ptlchild) weight) 

 + ((ptrchild) weight); 

 Insert(list, pt); 

 } 

 return Least(list); / / Tree left in list is the merge tree. 

} 

_____________________________________________________ 

 

Huffman Codes 

Another application of binary trees with minimal weighted 

external path length is to obtain an optimal set of codes for messages 

M1, ... , Mn+l·  

Each code is a binary string that is used for transmission of the 

corresponding message. At  the  receiving  end  the  code  is decoded  

using a  decode  tree.  

A decode tree is a binary tree in which external nodes 

represent messages. 
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The binary bits in the code word for a message determine the 

branching needed at each level of the decode tree to reach the  correct  

external node.  

For example, if we interpret a zero as a left  branch and a one as a 

right branch, then the decode tree of  the above Figure corresponds  to 

codes 000, 001, 01, and 1 for messages M1, M2, M3, and M4 

respectively. These codes are called Huffman codes.  


