
Chapter 2

C++ Basics

What is an Identifier?

• An identifier is the name to denote labels,
types, variables, constants or functions, in a
C++ program.

• C++ is a case-sensitive language.

– Work is not work

• Identifiers should be descriptive

– Using meaningful identifiers is a good
programming practice

Identifier

• Identifiers must be unique
• Identifiers cannot be reserved words (keywords)

– double main return

• Identifier must start with a letter or underscore, and be
followed by zero or more letters (A-Z, a-z), digits (0-9),
or underscores

• VALID
 age_of_dog _taxRateY2K
 PrintHeading ageOfHorse

• NOT VALID

 age# 2000TaxRate Age-Of-Dog main

C++ Data Types

structured

 address

pointer reference

simple

 integral enum floating

float double long double

char short int long bool

array struct union class

C++ Primitive Data Types

Primitive types

integral floating

 char short int long bool float double long double

unsigned

Premitive Data Types in C++

• Integral Types
– represent whole numbers and their negatives
– declared as int, short, or long

• Character Types
– represent single characters
– declared as char
– Stored by ASCII values

• Boolean Type
• declared as bool
• has only 2 values true/false
• will not print out directly

• Floating Types
– represent real numbers with a decimal point
– declared as float, or double
– Scientific notation where e (or E) stand for “times 10 to the ” (.55-e6)

Samples of C++ Data Values

int sample values
4578 -4578 0

bool values
true false

float sample values
95.274 95.0 .265

char sample values
 ‘B’ ‘d’ ‘4’ ‘?’ ‘*’

What is a Variable?

• A variable is a memory address where data
can be stored and changed.

• Declaring a variable means specifying both its
name and its data type.

What Does a
Variable Declaration Do?

• A declaration tells the compiler to allocate

enough memory to hold a value of this data

type, and to associate the identifier with

this location.

• int ageOfDog;

• char middleInitial;

• float taxRate;

Variable Declaration

• All variables must declared before use.

– At the top of the program

– Just before use.

• Commas are used to separate identifiers of
the same type.
int count, age;

• Variables can be initialized to a starting value
when they are declared
int count = 0;

int age, count = 0;

What is an Expression in C++?

• An expression is a valid arrangement of variables,
constants, and operators.

• In C++, each expression can be evaluated to
compute a value of a given type

• In C++, an expression can be:
– A variable or a constant (count, 100)

– An operation (a + b, a * 2)

– Function call (getRectangleArea(2, 4))

Assignment Operator

• An operator to give (assign) a value to a
variable.

• Denote as ‘=‘

• Only variable can be on the left side.

• An expression is on the right side.

• Variables keep their assigned values until
changed by another assignment statement or
by reading in a new value.

Assignment Operator Syntax

• Variable = Expression

– First, expression on right is evaluated.

– Then the resulting value is stored in the memory
location of Variable on left.

NOTE: An automatic type coercion occurs after
evaluation but before the value is stored if the
types differ for Expression and Variable

Assignment Operator Mechanism

• Example:
int count = 0;

int starting;

starting = count + 5;

• Expression evaluation:

– Get value of count: 0

– Add 5 to it.

– Assign to starting

0

12345 (garbage)

5

Input and Output

• C++ treats input and output as a stream of
characters.

• stream : sequence of characters (printable or
nonprintable)

• The functions to allow standard I/O are in
iostream header file or iostream.h.

• Thus, we start every program with
#include <iostream>

using namespace std;

Include Directives and Namespaces

• include: directive copies that file into your
program

• namespace: a collection of names and their
definitions. Allows different namespaces to
use the same names without confusion

Keyboard and Screen I/O

 #include <iostream>

 cin

(of type istream)

 cout

(of type ostream)

Keyboard Screen
executing

program

input data output data

Insertion Operator (<<)

• Variable cout is predefined to denote an
output stream that goes to the standard
output device (display screen).

• The insertion operator << called “put to”
takes 2 operands.

• The left operand is a stream expression, such
as cout. The right operand is an expression of
simple type or a string constant.

Output Statements

SYNTAX

 cout statements can be linked together using << operator.

 These examples yield the same output:

 cout << “The answer is “ ;

 cout << 3 * 4 ;

 cout << “The answer is “ << 3 * 4 ;

cout << Expression << Expression . . . ;

Output Statements (String constant)

• String constants (in double quotes) are to be printed as
is, without the quotes.
cout<<“Enter the number of candy bars ”;

OUTPUT: Enter the number of candy bars

• “Enter the number of candy bars ” is called a prompt.

• All user inputs must be preceded by a prompt to tell
the user what is expected.

• You must insert spaces inside the quotes if you want
them in the output.

• Do not put a string in quotes on multiple lines.

Output Statements (Expression)

• All expressions are computed and then
outputted.

cout << “The answer is ” << 3 * 4 ;

OUTPUT: The answer is 12

Escape Sequences

• The backslash is called the escape character.

• It tells the compiler that the next character is
“escaping” it’s typical definition and is using
its secondary definition.

• Examples:
– new line: \n

– horizontal tab: \t

– backslash: \\

– double quote \”

Newline

• cout<<“\n” and cout<<endl both are used to
insert a blank line.

• Advances the cursor to the start of the next
line rather than to the next space.

• Always end the output of all programs with
this statement.

Formatting for Decimal Point Numbers

• Typed float, or double

• Use the three format statements (magic formula) to
format to fixed decimal notation.
cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

• setf “set flag” means that all real output will be
formatted according to the function, until changed by
either unsetting the flag or a new setf command.

• ios:: means the functions from the iostream library

Extraction Operator (>>)

• Variable cin is predefined to denote an input stream
from the standard input device (the keyboard)

• The extraction operator >> called “get from” takes 2
operands. The left operand is a stream expression,
such as cin--the right operand is a variable of simple
type.

• Operator >> attempts to extract the next item from
the input stream and store its value in the right
operand variable.

Input Statements

SYNTAX

 cin statements can be linked together using >> operator.

 These examples yield the same output:

 cin >> x;

 cin >> y;

 cin >> x >> y;

cin >> Variable >> Variable . . . ;

How Extraction Operator works?

• Input is not entered until user presses
<ENTER> key.

• Allows backspacing to correct.

• Skips whitespaces (space, tabs, etc.)

• Multiple inputs are stored in the order
entered:

cin>>num1>>num2;

User inputs: 3 4

Assigns num1 = 3 and num2 = 4

Numeric Input

• Leading blanks for numbers are ignored.

• If the type is double, it will convert integer to
double.

• Keeps reading until blank or <ENTER>.

• Remember to prompt for inputs

C++ Data Type String

• A string is a sequence of characters enclosed in
double quotes

• string sample values

 “Hello” “Year 2000” “1234”

• The empty string (null string) contains no displayed

characters and is written as “”

C++ Data Type String (cont.)

• string is not a built-in (standard) type
– it is a programmer-defined data type

– it is provided in the C++ standard library

• Need to include the following two lines:
#include <string>

using namespace std;

• string operations include
– comparing 2 string values

– searching a string for a particular character

– joining one string to another (concatenation)

– etc...

Type compatibilities

• Warning: If you store values of one type in variable
of another type the results can be inconsistent:

– Can store integers in floating point or in char (assumes
ASCII value)

– bool can be stored as int: (true = nonzero, false = 0)

• Implicit promotion: integers are promoted to
doubles

double var = 2; // results in var = 2.0

• On integer and doubles together:

– Mixed type expressions: Both must be int to return int,
otherwise float.

Type compatibilities (Implicit
Conversion)

• The compiler tries to be value-preserving.

• General rule: promote up to the first type that can contain
the value of the expression.

• Note that representation doesn’t change but values can be
altered .

• Promotes to the smallest type that can hold both values.

• If assign float to int will truncate
int_variable = 2.99; // results in 2 being stored in int_variable

• If assign int to float will promote to double:
 double dvar = 2; // results in 2.0 being stored in dvar

Type compatibilities (Explicit
Conversion)

• Casting - forcing conversion by putting (type) in front of variable or
expression. Used to insure that result is of desired type.

• Example: If you want to divide two integers and get a real result you must
cast one to double so that a real divide occurs and store the result in a
double.

int x=5, y=2; double z; z = static_cast <double>(x)/y; // 2.5
int x=5, y=2; double z; z = (double)x/y; // 2.5
int x=5, y=2; double z; z = static_cast <double>(x/y) ; // 2.0

• converts x to double and then does mixed division, not integer divide
• static_cast<int> (z) - will truncate z
• static_cast <int> (x + 0.5) - will round positive x {use () to cast complete

expression)
• Cast division of integers to give real result:

int x=5, y=2; double z; z = static_cast <double>(x/y) ; // 2.0

Arithmetic Operators

• Operators: +, -, * /

• For floating numbers, the result as same as Math
operations.

• Note on integer division: the result is an integer. 7/2
is 3.

• % (remainder or modulo) is the special operator just
for integer. It yields an integer as the result. 7%2 is
1.

• Both / and % can only be used for positive integers.

• Precedence rule is similar to Math.

Arithmetic Expressions

• Arithmetic operations can be used to express the
mathematic expression in C++:

dc

ba

xx

zyx

acb

3

1

)(

4

2

2

)/()(

)3*/(1

)(*

**4*

dcba

xxx

zyx

cabb

Simple Flow of Control

• Three processes a computer can do:

– Sequential

expressions, insertion and extraction operations

– Selection (Branching)

if statement, switch statement

– Repetition/Iteration (Loop)

while loop, do-while loop, for loop

bool Data Type

• Type bool is a built-in type consisting of just
2 values, the constants true and false

• We can declare variables of type bool
bool hasFever; // true if has high temperature

bool isSenior; // true if age is at least 55

• The value 0 represents false

• ANY non-zero value represents true

Boolean Expression

• Expression that yields bool result

• Include:

6 Relational Operators

 < <= > >= == !=
3 Logical Operators

 ! && ||

Relational Operators

are used in boolean expressions of form:

 ExpressionA Operator ExpressionB
temperature > humidity

B * B - 4.0 * A * C > 0.0

 abs (number) == 35

 initial != ‘Q’

• Notes:

o == (equivalency) is NOT = (assignment)

o characters are compared alphabetically. However, lowercase letters are higher
ASCII value.

o An integer variable can be assigned the result of a logical expression

o You cannot string inequalities together:

Bad Code: 4<x<6 Good Code: (x > 4) &&(x < 6)

Relational Operators

int x, y ;

x = 4;

y = 6;

 EXPRESSION VALUE

 x < y true

 x + 2 < y false

 x != y true

 x + 3 >= y true

 y == x false

 y == x+2 true

 y = x + 3 7

 y = x < 3 0

 y = x > 3 1

Logical Operators

are used in boolean expressions of form:

 ExpressionA Operator ExpressionB

 A || B (true if either A or B or both are true. It is false otherwise)

 A && B (true if both A and B are true. It is false otherwise)

or

Operator Expression

 !A (true if A is false. It is false if A is true)

Notes:
Highest precedence for NOT, AND and OR are low precedence.

Associate left to right with low precedence. Use parenthesis to override priority or for
clarification

– x && y || z will evaluate “x && y ” first

– x && (y || z) will evaluate “y || z” first

Logical Operators

int age ;

bool isSenior, hasFever ;

float temperature ;

age = 20;

temperature = 102.0 ;

isSenior = (age >= 55) ; // isSenior is false

hasFever = (temperature > 98.6) ; // hasFever is true

 EXPRESSION VALUE

 isSenior && hasFever false

 isSenior || hasFever true

 !isSenior true

 !hasFever false

Precedence Chart

• ++, --, !, - (unary minus), + (unary plus)

• *, /, %

• + (addition), - (subtraction)

• <<, >>

• <, <=, >, >=

• ==, !=

• &&

• ||

• =

Highest

Lowest

Boolean Expression (examples)

taxRate is over 25% and income is less than $20000

temperature is less than or equal to 75 or humidity is
less than 70%

age is between 21 and 60

age is 21 or 22

Boolean Expression (examples)

(taxRate > .25) && (income < 20000)

(temperature <= 75) || (humidity < .70)

(age >= 21) && (age <= 60)

(age == 21) || (age == 22)

Simple if Statement

• Is a selection of whether or not to execute a
statement or a block of statement.

TRUE

FALSE statement(s)

expression

Simple if Statement Syntax

if (Boolean Expression)

 Statement

if (Bool-Expr)

{

 Statement_1

 …

 Statement_n

}

These are NOT equivalent. Why?

if (number == 0)

{

cout << “Hmmmm ”;

cout << “You entered invalid number.\n”;

}

When number has value 0, the

output will be:

Hmmmm You entered invalid number.

When number has value NOT 0,

there is NO output.

if (number == 0)

cout << “Hmmmm ”;

cout << “You entered invalid number.\n”;

When number has value 0, the

output will be:

Hmmmm You entered invalid number.

When number has value NOT 0,

the output will be:

You entered invalid number.

These are equivalent. Why?

Each expression is only true when number has value 0.

if (number == 0)

{

.

.

}

Read as:

If number is 0

if (!number)

{

.

.

}

Read as:

If number is NOT true

If number is false

If-else Statement

• provides selection between executing one of
2 clauses (the if clause or the else clause)

TRUE FALSE

if clause else clause

expression

Use of blocks

• Denoted by { .. }

• Recommended in controlled structures (if and loop)

• Also called compound statement.

if (Bool-Expression)

{

}

else

{

}

“if clause”

“else clause”

Loop

• is a repetition control structure.

• causes a single statement or block of
statements to be executed repeatedly until a
condition is met.

• There are 3 kinds of loop in C++:

– While loop

– Do-While loop

– For loop

While Loop

SYNTAX

 while (Expression)

 {

 … // loop body

 }

• No semicolon after the boolean expression

• Loop body can be a single statement, a null statement,

or a block.

While Loop Mechanism

• When the
expression is
tested and
found to be
false, the loop
is exited and
control passes
to the
statement
which follows
the loop
body.

FALSE

TRUE

 body

statement

Expression

• When the
expression is
tested and
found to be
true, the loop
body is
executed.
Then, the
expression is
tested again.

While Loop Example

int count ;

count = 0; // initialize LCV

while (count < 5) // test expression

{

 cout << count << “ ”; // repeated action

 count = count + 1; // update LCV

}

cout << “Done” << endl ;

Loop Tracing

int count ;

count = 0;

while (count < 5)

{

 cout << count << “ ”;

 count = count + 1;

}

cout << “Done” << endl ;

count Expression Output

0 true 0

1 true 0 1

2 true 0 1 2

3 true 0 1 2 3

4 true 0 1 2 3 4

5 false 0 1 2 3 4 Done

Increment and Decrement
Operators

• Denoted as ++ or --

• Mean increase or decrease by 1

• Pre increment/decrement: ++a, --a
– Increase/decrease by 1 before use.

• Post increment/decrement: a++, a--
– Increase/decrease by 1 after use.

• Pre and Post increment/decrement yield
different results when combining with another
operation.

Pre and Post
Increment and Decrement

int count ;

count = 0;

while (count < 5)

{

 cout << count++ << “ “ ;

}

cout << “Done” << endl ;

count Expression Output

0 true 0

1 true 0 1

2 true 0 1 2

3 true 0 1 2 3

4 true 0 1 2 3 4

5 false 0 1 2 3 4 Done

int count ;

count = 0;

while (count < 5)

{

 cout << ++count << “ “ ;

}

cout << “Done” << endl ;

count Expression Output

0 true 1

1 true 1 2

2 true 1 2 3

3 true 1 2 3 4

4 true 1 2 3 4 5

5 false 1 2 3 4 5 Done

Do-While Loop

SYNTAX

 do

 {

 … // loop body

 } while (Expression);

• Insured that the loop is executed at least once

• The LCV is initialized/updated before the end of the loop.

• Boolean expression is tested at the end of the loop.

• There is a semicolon after the boolean expression.

Do-While Loop Mechanism

• When the
expression is
tested and
found to be
false, the loop
is exited and
control passes
to the
statement
which follows
the loop
body.

FALSE TRUE

 body

statement

Expression

• When the
expression is
tested and
found to be
true, the loop
body is
executed.
Then, the
expression is
tested again.

• The loop body is executed first

Do-While Loop Example

int ans;

do

{

 cout << “Choose a number from 1 to 4: “;// repeated action

 cin >> ans; // LCV is initialized or updated

} while (ans >= 1 && ans <= 4); // test expression

cout << “Done”;

Output Input ans Expression

Choose a number from 1 to 4: 2 2 true

Choose a number from 1 to 4: 3 3 true

Choose a number from 1 to 4: 1 1 true

Choose a number from 1 to 4: 5 5 false

Done

Loop-Controlled Types

Count-controlled: repeat a specified number of times.

Event-driven: some condition within the loop body
changes and this causes the repeating to stop.

Sentinel-controlled: using a specific value to end.
Sentinel: a value that cannot occur as valid data.

Ask-before-Continuing: ask users if they want to
continue.

Flag-Controlled Loops: use a variable whose value is
changed when an event occurs (usually from false to
true).

Count-Controlled Loop

• Has a loop control variable (LCV) as a counter.

• LCV must be

– Initialized before start of the loop

– Tested (boolean expression)

– Updated

Event-driven loop

double salary;

cout << "Enter you salary: ";

cin >> salary;

int years = 0;

while (salary < 50000) {

 salary = salary * 1.02;

 years++;

}

cout << “You need “ << years << “years to get to 50K";

Sentinel-Controlled

do

{

cout<< ”Enter salary, type -1 to exit”; // no one earns negative salary

cin>>salary;

 // process income

} while (salary > 0);

Ask-before-Continuing

char ans = ‘y’; // LCV is initialized

while (ans == ‘Y’ || ans == ‘y’) // test expression

{

 doSomething; // repeated action

 cout << “Do you want to continue? ”;

 cin >> ans; // LCV is updated

};

BREAK statement

allows to exit from any loop.

do

{

 cin>>x;

 if (x % 2 ==0)

 break;

} while (x > 0); // exits when an even number is entered

CONTINUE Statement

allows you to skip the rest of the loop body and go
back to the beginning of the loop.

do
{
 cin>>x;
 if (x % 2 == 0)
 continue;
 cout<<x<<endl;
} while (x <100);
//prints out all odd numbers entered less than 100

Program Style

• Indenting:

– Separate processes with blank lines

– Blank lines are also ignored and are used to increase
readability.

– indent statements within statements (loop body)

• Comments:

– // tells the computer to ignore this line.

– for internal documentation. This is done for program
clarity and to facilitate program maintenance.

General rules for Comments

• Place a comment at the beginning of every file
with the file name, version number, a brief
program description, programmer’s name.

• Place a descriptive comment after each
variable declared.
– Use a blank line before and after variable

declarations

• Place a descriptive comment and a blank line
before each subtask.

Constants

• Syntax: const type identifier = value;

• Ex: const double TAX_RATE = 0.08;

• Convention: use upper case for constant ID.

Why use constants?

• Clarity: Tells the user the significance of the number.
There may be the number 0.08 elsewhere in the
program, but you know that it doesn’t stand for
TAXRATE.

• Maintainability. Allows the program to be modified
easily.
– Ex: Program tax compute has const double

TAXRATE=0.0725. If taxes rise to 8%, programmer only
has to change the one line to const double TAXRATE=0.08

• Safety: Cannot be altered during program execution

