Msanmcs OF A PARTICLE 3,
L \We shall study the conservation Jaws for a particle in motion using Newtrmmn mechanics.
. 1. Conservation of linear momentum:

. Newton's second law of motion i o
b _l! e S& ¥ l" ;,';"'( 1) ":,'
;ﬁ' {(mv) - - .4(

IF the total force ¥ is zero, then d}: w 0 and the linear momentum i§ conserved,
! ) r

24 Y = 0, ‘g, « (), Integrating, P = constant.

| 1

L This gives the theorem for conservation of linear momentum of a particle.
£ 2. Conservation of angular momentum:

& Consider a particle of mass m and linear momentum p at a
ition ¥ relative to origin O of an inertial reference frame (Fig. \
L1} -

. @ Theangular momentum L of the particle with respect to

. — -

L= rxp, A r

 Let F be the force acting on the particle. Then the torque t
Vnhp.ﬁdewﬂhmpectmmeongm()ls
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: dr
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ar momentum of a particle is equal to the vector

Scanned by CamScanner

e R N S S i



Scanned by CamScanner



' CLASSICAL MECHANICS .

This is the energy conservation (Heoreim: W? L
rvative Forces ke : ] ‘ﬁ‘g g

Conse tion: A force abring on a particle is conservative if the particle, afie, 8o pi
nition: v 1 ikt 3,k ) o > kineti ) = ! §
Fi?: D;:fmd trip, returns to its initial position with the same Kinelic oty o g had:% Qai“c >

mplete b : i -

(1) & SR tion: Suppose we throw & ball upward against gravity. The ball re,aChesac%in' ‘ -
Explanation: Sup its kinetic energy becomes zero. Then it retumns 1 w ¥

2 B tarily to rest so that 1 : Oy
' coming momentarily : ‘ 5 wn. We assu ; §
) § under gravity with the same kinetic energy with which it was thro s S a""reﬁsﬂ‘

& is zero. Thus the force of gravity is conservative. % _
Examples of Conservative Forces. (/) Gravitational force (if) Electrostatic force (i Blay,

All central forces are conservative forces.
‘ Sclacond Definition: A force acting on a particle is conservative if the net work done by the S
1 in a complete round trip of the particle is zero.

Explanation: Suppose we throw a ball upward against gravity. When the ball is thrown up, 1, \
. work done by the conservative force of gravity is negative. When the ball returns back, the woy
| is positive. We assume that air-resistance is absent. So the negative and positive works are equa)
_ Hence the net work done is zero.
~ Ifthe force F is conservative, then the work done by it around a closed path is zero, i e,

gSF-dr =0 A1)

% Phymcaily it is clear that a system cannot be conservative if friction or other dissipativ'e forces
present, for F . dr due to friction is always positive and the integral cannot vanish.
According to Stokes theorem,

o i

i

]
(=

”curl FedS

s

0

[from Eq. (1)]

s

potential function.

7%

e

vgf' twp Or more particles, we must distinguish, between
cles of the system by sources not belonging to the sys

y tem,
of the interactions between the particles of the s

ystem

’s second law for a general system of NV particlesis
oy
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‘CLASSICAL MECHANICS

YSICS
alue of P = MR )
d F/ is : i .
i From Eq. (5), rate of change of total linear momentum 1S
&:II ) —— R = e) e 6
ont B P = MR =F°. (6)
e : Eq. (6) defines two important characteristics of motion. They are:
. Ce ;« -
4 (i) Centre of mass moves as if the total external force F'© acting on the entire mass of the
system were concentrated at the centre of mass.
5. That : (ii) If the total external force vanishes, the total linear momentum is conserved.
s on Property (ii) is the theorem of conservation of linear momentum for a system of par. ticles. It also
@) implies that since P =0, P = constant or R = constant, i.e., the centre of mass moves with constant
b velocn;v in the absence of external forces. Nucleus R = Constant
‘ Thus, we may state that the velocity of the centre of mass of
o the system remains constant if there are no external forces acting Product
on the system. Nucleus Nucleus
e Example. Consider the uniform motion of a radioactive Exploding P =
" nucleus undergoing disintegration (Fig. 42.4). The nucleus ejects s R =Constant
~ different particles which move off in different directions in such S
-
~ a way that their centre of mass continues to move with constant >
. velocity even after the disintegration. R o
A ! Electron
3) (ay Conservatlon theerem for lmear momentum' Neutrino :
i Fig. 42.4

The net lmear momentum of a system of n-particles is
E = 3p = 3my

' dpP
Emm‘Newton s second law, F*' = =

‘f'ﬁ.\e  the rate of change of linear momentum of a system of particles is equal to the net external

1g on the system.
; dpP

F* = 0, — =0. Integrating, P = constant.
| dt
dzeorem for conservation of linear momentum of the system.

the sum of eﬂemaLW acting on the system of particles is zero, the total
the .system is constant or conserved.”

M@ for angular momentum.
m of i pamcic of the system about any B

(1)

wlZ)
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