
Power in AC circuits

Power factor

Power in AC circuits: Power Factor

$$P = \frac{V_m I_m}{2} \cos \theta \qquad \text{(watts, W)}$$

- When the load is a combination of resistive and reactive elements,
 Power factor will vary between 0 and 1
- More resistive the total impedance, the closer the power factor is to 1
- More reactive the total impedance, the closer the power factor is to 0

In terms of the average power and the terminal voltage and current

$$F_p = \cos \theta = \frac{P}{V_{\text{eff}}I_{\text{eff}}}$$

leading and lagging power factor:

- If the current leads the voltage across a load, the load has a leading PF
- · If the current lags the voltage across the load, the load has a lagging PF

capacitive networks have leading power factors, and inductive networks have lagging power factors.

Power Factor =
$$\frac{\text{watts}}{\text{volt-amperes}}$$

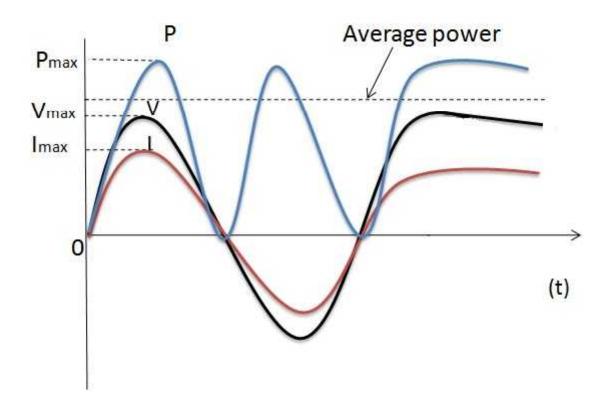
$$= \frac{P}{S} = \frac{VI\cos\phi}{VI} = \cos\phi$$

Power factor =
$$\frac{P}{S}$$

Power factor =
$$\frac{1.5 \text{kW}}{2.308 \text{kVA}}$$

Power factor
$$= 0.65$$

The average **ac power** is found by multiplying the **rms** values of current and **voltage**. Ohm's law for the **rms ac** is found by dividing the **rms voltage** by the impedance. In an **ac circuit**, there is a phase angle between the source **voltage** and the current, which can be found by dividing the resistance by the impedance.

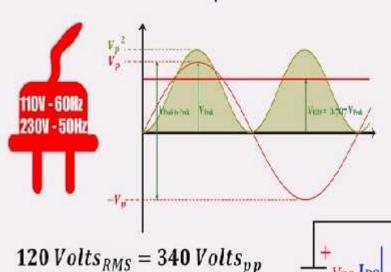

RMS value is equal to the **value** of the direct current that would produce the same average power dissipation in a resistive load.

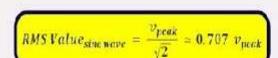
RMS value of AC = 0.707 times its instantaneous value

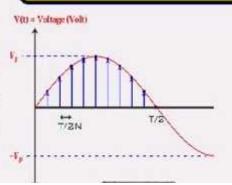
Then the **RMS** voltage (V_{RMS}) of a sinusoidal waveform is determined by multiplying the peak voltage value by 0.7071, which is the same as one divided by the square root of two (1/V2).

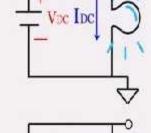
Power in AC Circuits

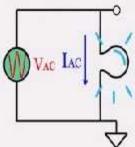
Electrical **power** is the "rate" at which **energy** is being consumed in a **circuit** and as such all electrical and electronic components and devices have a limit to the amount of electrical **power** that they can safely handle. For example, a 1/4 watt resistor or a 20 watt amplifier.


WHAT IS RMS VOLTAGE AND CURRENT?


WHY DO WE USE RMS VALUES?


$v_{RMS} =$	$\frac{1}{T_2 - T_1} \int_{-T_2}^{T_2} (V_p sin(wt))^2 dt$	t
	$I_2 - I_1 J_{T_1}$	


Waveform		RMS
DC	y=A0 A:	A_0
Sine wave	y=AiSin(xt)	$\frac{A_1}{\sqrt{2}}$
Square wave	y=A 0< t <0.5T A y=-A 0.5T< t <t a<="" td=""><td>A_1</td></t>	A_1
Triangle Sawtooth	A A A	$\frac{A_1}{\sqrt{3}}$
DC shifted sine wave	y=Ao+AiSin(x:) A	$\sqrt{{A_0}^2 + {\frac{{A_1}^2}{2}}}$
DC shifted square wave	y=A+A+0< t<0.5T y=A-A+0.5T< t <t< td=""><td>$\sqrt{{A_0}^2 + {A_1}^2}$</td></t<>	$\sqrt{{A_0}^2 + {A_1}^2}$
Sine wave + Square wave	y= Ac-Asin(xt) c<+co.st y= -ac-Asin(xc) o.st<+<	$\sqrt{{A_0}^2+\frac{{A_1}^2}{2}}$
Pulse train	y=0 0< t < t A y=A1 t < t < T	$A_1\sqrt{\frac{T-t_1}{T}}$


$$RMS_{wave} = \sqrt{\frac{\sum_{i=1}^{n} v_i^2}{n}} = \sqrt{\frac{v_1^2 + v_2^2 + ... + n^2}{n}}$$

