QUESTION BANK

SUBJECT: ANALYTICAL GEOMETRY 3D

CLASS: I B.Sc MATHS

UNIT I

Section A

1. What is meant by coplanar?
2. Write down the formula for the normal form of the equation of the plane.
3. $(6,2,3)$ are direction ratio of a line. What are the direction cosines?
4. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$ then find the value of c
5. Find the distance between the points $(4,3,-6)$ and $(-2,1,-3)$

Section B

1. Find the equation of the plane through the point $(1,1,1)$ and the intersection of the planes $\mathrm{x}+\mathrm{y}+\mathrm{z}=6$ and $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}+5=0$
2. The direction cosines $1, m, n$ of two lines are connected by the relations $1+m+n=0$, $2 l \mathrm{~m}+2 \ln -\mathrm{mn}=0$
3. The direction cosines of two lines which are determined by the relations $1+\mathrm{m}-\mathrm{n}=0$, $\mathrm{mn}+6 \ln -12 \mathrm{~lm}=0$
4. Find the distances of the points $(2,3,4)$ and $(1,1,4)$ from the plane $3 x-6 y+2 z+11=0$

Section C

1. A line makes angles $\alpha, \beta, \gamma, \delta$ with the four diagonals of a cube .Prove that $\cos ^{2} \alpha+$ $\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$
2. Find the angle between lines whose direction cosines are (l_{1}, m_{1}, n_{1}) and $\left.l_{2}, m_{2}, n_{2}\right)$
3. Show that the straight lines whose direction cosines are given by the equations $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0, a l^{2}+v m^{2}+w n^{2}=0$ are perpendicular or parallel according as $a^{2}(v+m)+b^{2}(w+u)+c^{2}(u+v)=0$ or $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$

UNIT II

Section A

1. Write down the condition for a line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ in the plane $\mathrm{ax}+\mathrm{by}+\mathrm{d}=0$
2. Define skew lines
3. Write condition for two lines are coplanar
4. Find the value of k , so that the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are perpendicular to each other
5. What is meant by unsymmetric form of the equation of a line?

Section B

1. Show that the lines $\frac{x-4}{1}=\frac{y+3}{-4}=\frac{z+1}{7}, \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}$ intersect and find the coordinates of the point of intersection
2. Find the equation of the plane passing through $(-1,1,1),(1,-1,1)$ and perpendicular to the plane $x+2 y+2 z=5$
3. Find the equation of the plane passing through the point $(1,1,1)$ and the intersection of the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=6$ and $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}+5=0$
4. A square ABCD of diagonal 2 a is folded along the diagonal AC , so that the planes DAC, BAC are at right angles. Show that the shortest distance between DC and AB is then $2 a / \sqrt{3}$

Section C

1. Find the length and equation of the line of shortest distance between the lines $\frac{x+3}{-4}=$ $\frac{y-6}{3}=\frac{z}{2}, \frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$
2. Prove that the lines $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z-10}{8}, \frac{x-4}{1}=\frac{y+3}{-4}=\frac{z-1}{7}$ intersect. Find also their point of intersection and the plane through them
3. Find the magnitude and the equations of the line of shortest distance the lines $\frac{x-8}{3}=$

$$
\frac{y+9}{-16}=\frac{z-10}{7}, \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$$

UNIT III

Section A

1. Define great circle in a sphere
2. Find the centre and radii of the sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y+2 z+3=0$
3. Find the radius and centre of the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z=2$
4. When 2 spheres with radius r_{1} and r_{2} and centre c_{1} and c_{2} touch each other externally
5. Determine the equation of the sphere with centre (a, b, c) and radius r units

Section B

1. Find the equation to the sphere through the four point $(4,-1,2),(0,-2,3),(1,-5,-1)$ and $(2,0,1)$
2. Show that the plane $2 \mathrm{x}+2 \mathrm{y}+\mathrm{z}+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-$ $4 y+2 z-3=0$
3. If r be the radius of the circle $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0, l x+$ $m y+n z=0$. Prove that $\left(r^{2}+d\right)\left(l^{2}+m^{2}+n^{2}\right)=(m w-n v)^{2}+(n u-l w)^{2}+$ $(l v-m u)^{2}$
4. Find the centre and radius of the circle $\mathrm{x}+2 \mathrm{y}+2 \mathrm{z}=15, x^{2}+y^{2}+z^{2}-2 y-$ $4 z=11$
5. Find the equations of the two tangent plane to the sphere, $x^{2}+y^{2}+z^{2}=9$ Which pass through the line $\mathrm{x}+\mathrm{y}=6$,

Section C

1. Derive the equation of the sphere drawn on the line joining $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ as diameter
2. Find the equation of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y+$ $6 z-7=0$ which intersects the line $6 x-3 y-2 z=0=3 z+2$
3. Show that the spheres $x^{2}+y^{2}+z^{2}=64$ and $x^{2}+y^{2}+z^{2}-12 x+4 y-6 z+$ $48=0$ touch internally and find their point of contact

UNIT IV

Section A

1. Define Right circular cone
2. Write down the equation of the tangent plane $\left(x_{1}, y_{1}, z_{1}\right)$ to cone
3. Find the equation of the cone of the second degree which passes through the axes
4. Write down the condition for the second order homogeneous equation $a x^{2}+$ $b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ represents (i) a cone (ii) a pair of planes

Section B

1. Find the equation of the cone whose vertex is $(1,2,3)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$
2. Show that $33 x^{2}+13 y^{2}-95 z^{2}-144 y z-96 z x-48 x y=0$ represents a right circular cone whose axis is the line $3 x=2 y=z$. Find its vertical angle
3. Find the equations of the tangent planes to the cone $9 x^{2}-4 y^{2}+16 z^{2}=0$ which contain the line $\frac{x}{32}=\frac{y}{72}=\frac{z}{27}$
4. Prove that the equation $2 x^{2}-7 y^{2}+2 z^{2}-10 y z-8 z x-10 x y+6 x+12 y-$ $6 z-3=0$ represents a cone whose vertex is $\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$
5. Find the equation to the right circular cone whose vertex is at the origin, whose has a vertical angles of 60°

Section C

1. The axis of the right circular cone with the vertex at the right makes equal angles with the coordinates axes. If the equation of the con is $4\left(x^{2}+y^{2}+z^{2}\right)+$ $9(x y+y z+z x)=0$. Prove that the semi vertical angle of the cone is $\cos ^{-1}\left[\frac{1}{3 \sqrt{3}}\right]$
2. Find the condition for equation $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 f x y=0$ to represent a right circular con
3. Show that the equation of a right cone which passes through $(2,1,3)$ and has its vertex at the point $(1,1,2)$ and axis the line $\frac{x-1}{2}=\frac{y-1}{-4}=\frac{z-2}{3}$ is $17 x^{2}-7 y^{2}+$ $7 z^{2}+24 y z+16 x y-12 z x-18 x-114 y-28 z+70=0$

UNIT V

Section A

1. Define central quadric
2. Write down the equation of the normal to the cone at $\left(x_{1}, y_{1}, z_{1}\right)$
3. Write the condition for the plane $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{p}$ to touch the conicoid $a x^{2}+$ $b y^{2}+c z^{2}=1$
4. Write down the condition that the cone has three mutually perpendicular generators
5. Write down the two tangent planes to a conicoid parallel to the plane $1 \mathrm{x}+\mathrm{my}+$ $n z=0$

Section B

1. Show that the cone whose vertex is at the origin and which passes through the circle of intersection of the sphere $x^{2}+y^{2}+z^{2}=3 r^{2}$ and any plane at a distance r from the origin, has three mutually perpendicular generators
2. Find the intersection of a straight line and a quadric cone
3. Find the equations of the tangent plaes to the ellipsoid $\frac{x^{2}}{6}+\frac{y^{2}}{3}+\frac{z^{2}}{2}=1$ which intersect on the line $\frac{x}{3}=\frac{y-3}{-3}=\frac{z}{1}$. Find also the coordinates of the point of contact.
4. Find the equations of the two tangent planes of the ellipsoid $2 x^{2}+2 y^{2}+$ $2 z^{2}=2$ which passes through the line $\mathrm{z}=0, \mathrm{x}+\mathrm{y}=10$
5. Find the angle between the lines given by $\mathrm{x}+\mathrm{y}+\mathrm{z}=0, \frac{y z}{b-c}+\frac{z x}{c-a}+\frac{x y}{a-b}=0$

Section C

1. Show that the planes $3 \mathrm{x}+2 \mathrm{y}+\mathrm{z}=\mathrm{k}$ touches the ellipsoid $3 x^{2}+4 y^{2}+z^{2}=$ 20 if $k= \pm 10$ and find the length of the chord of contact between the two tangent planes
2. Find the equations of the tangent planes to the cone $9 x^{2}-4 y^{2}+16 z^{2}=0$ which contain the line $\frac{x}{32}=\frac{y}{72}=\frac{z}{72}$
3. Find the equation to the cone through the coordinate axes and the lines in which the plane $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ cuts the cone $a x^{2}+b y^{2}+c z^{2}+2 f y z+$ $2 g z x+2 f x y=0$
