

SWAMI DAYANANDA COLLEGE OF ARTS & SCIENCE, MANJAKKUDI-612610

DEPERTMENT OF MATHEMATICS

Calculus & Fourier Series(16SACMM1)

Study Material

Class : I-B.Sc Physics

Prepared by **S. Ganapathisundaram,** Assistant Professor, Department of Mathematics.

BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALL – 620 024

B.Sc. Physics / Chemistry / Industrial Electronics / Geology - Students

(For the candidates admitted from the academic year 2016-17 onwards)

ALLIED MATHEMATICS

ALLIED COURSE I

CALCULUS AND FOURIER SERIES

Objects:

- 1. To learn the basic need for their major concepts
- 2. To train the students in the basic Integrations

UNIT I

Successive Differentiation – nth derivative of standard functions (Derivation not needed) simple problems only-Leibnitz Theorem (proof not needed) and its applications- Curvature and radius of curvature in Cartesian only (proof not needed)–Total differential coefficients (proof not needed) – Jacobians of two & three variables –Simple problems in all these.

UNIT II

Evaluation of integrals of types

1]
$$\int \frac{px+q}{ax^2+bx+c} dx$$
 2]
$$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$
 3]
$$\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}} dx$$

4]
$$\int \frac{dx}{a+b\cos x}$$
 5] $\int \frac{dx}{a+b\sin x}$ 6] $\int \frac{(a\cos x+b\sin x+c)}{(p\cos x+q\sin x+r)}dx$

Integration by trigonometric substitution and by parts of the integrals

1]
$$\int \sqrt{a^2 - x^2} dx$$
 2] $\int \sqrt{a^2 + x^2} dx$ 3] $\int \sqrt{x^2 - a^2} dx$

UNIT III

General properties of definite integrals - Evaluation of definite integrals of types

1]
$$\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$$
2]
$$\int_{a}^{b} \sqrt{(x-a)(b-x)} dx$$
3]
$$\int_{a}^{b} \sqrt{\frac{x-a}{b-x}} dx$$
Reduction formula (When n is a positive integer) for
1]
$$\int_{a}^{b} e^{ax} x^{n} dx$$
2]
$$\int_{a}^{b} \sin^{n} x dx$$
3]
$$\int_{a}^{b} \cos^{n} x dx$$

4]
$$\int_{0}^{x} e^{ax} x^{n} dx$$
 5] $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$
6] Without proof $\int_{0}^{\frac{\pi}{2}} \sin^{n} x \cos^{m} x dx$ - and illustrations

UNIT IV

Evaluation of Double and Triple integrals in simple cases –Changing the order and evaluating of the double integration. (Cartesian only)

UNIT V

Definition of Fourier Series – Finding Fourier Coefficients for a given periodic function with period 2π and with period 2ℓ - Use of Odd & Even functions in evaluating Fourier Coefficients - Half range sine & cosine series.

TEXT BOOK(S)

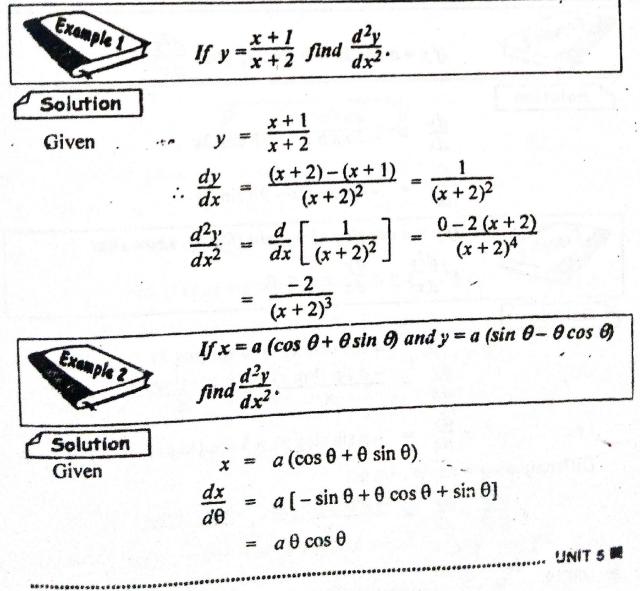
- 1. S. Narayanan, T.K. Manichavasagam Pillai, Calculus, Vol. I, S. Viswanathan Pvt Limited, 2003
- 2. S. Arumugam, Isaac and Somasundaram, Trigonometry & Fourier Series, New Gamma Publishers, Hosur, 1999.

D SUCCESSIVE DIFFERENTIATION

Let y be a function of x, its differential coefficient $\frac{dy}{dx}$ will be in general a function of x which can be differentiated once again. The differential coefficient of $\frac{dy}{dx}$ is called the second differential coefficient of y. Similarly the differential coefficient of second differential coefficient is called the third differential coefficient, and so on. It is denoted by $\frac{dy}{dx}, \frac{d^2y}{dx^2}, \frac{d^3y}{dx^2}, \dots$

The *n*th differential coefficient of y is denoted by $\frac{d^n y}{dx^n}$. The *n*th differential coefficient can also be denoted in the following ways :

$$D^n y, y_n, \frac{d^n y}{dx^n}, y^{(n)}, \left(\frac{d}{dx}\right)^n y.$$



$$\frac{dy}{d\theta} = a\left(\cos\theta + \theta\sin\theta - \cos\theta\right)$$

$$= a\theta\sin\theta,$$

$$\frac{dy}{dx} = \frac{d\theta}{dx} = \frac{a\theta\sin\theta}{a\theta\cos\theta}$$

$$= \tan\theta,$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$$

$$= \frac{d}{dx}\left[\tan\theta\right] = \frac{d}{d\theta}\left(\tan\theta\right) \cdot \frac{d\theta}{dx}$$

$$= \sec^2\theta - \frac{1}{a\theta\cos\theta}$$

$$= \frac{\sec^2\theta}{a\theta}$$
If $y = a\cos 2x + b\sin 3x$, find $\frac{d^2y}{dx^2}$.
Solution
$$\frac{dy}{dx^2} = -2a\sin 2x + 3b\cos 3x$$

$$\frac{d^2y}{dx^2} = -4a\cos 2x - 9b\sin 3x$$
If $y = a\cos(\log x) + b\sin(\log x)$, show that
$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0.$$
Solution
$$y = a\cos(\log x) + b\sin(\log x)$$

$$\frac{dy}{dx} = -a\sin(\log x) + b\sin(\log x)$$

$$\frac{dy}{dx} = -a\sin(\log x) + b\cos(\log x)$$

$$\frac{dy}{dx} = -a\sin(\log x) + b\cos(\log x)$$

$$\frac{dy}{dx} = -a\sin(\log x) + b\cos(\log x)$$
Differentiating w.r.t. 'x', we get
$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -a\cos(\log x) - \frac{b\sin(\log x)}{x}$$

i.e.
$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} = -[a \cos(\log x) + b \sin(\log x)]$$

 $= -y$
 $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$

if $y = a e^{mx} + b e^{-mx}$ show that $\frac{d^{2}y}{dx^{2}} - m^{2}y = 0$.

Solution
 $y = a e^{mx} + b e^{-mx}$
 $\frac{dy}{dx} = m a e^{mx} - m b e^{-mx}$
 $\frac{d^{2}y}{dx^{2}} = m^{2} a e^{mx} + m^{2} b e^{-mx}$
 $= m^{2} (a e^{mx} + b e^{-mx})$
 $\frac{d^{2}y}{dx^{2}} = m^{2} y$
i.e., $\frac{d^{2}y}{dx^{2}} - m^{2} y = 0$

1. If $y = e^{x} \sin x$, prove that $y_{2} - 2xy_{1} + 2y = 0$.
2. If $y = \cos^{-1} x$, show that $(1 - x^{2})y_{2} - xy_{1} = 0$.
3. If $y = e^{m} \cos^{-1} x$, prove that $(1 - x^{2})y_{2} - xy_{1} - m^{2} y = 0$.
4. If $y = x \sin(\log x) + x \log x$, show that $x^{2}y_{2} - xy_{1} + 2y = x \log x$.
5. If $y = (\log x)^{2}$, show that $x^{2}y_{2} - xy_{1} + 4y = 0$.
7. If $y = ax^{2} + bx$, show that $x^{2}y_{2} - 2xy_{1} + 2y = 0$.
8. If $y = \frac{x^{2} + 1}{x}$, show that $x^{2}y_{2} - 2xy_{1} + 2y = 0$.
9. If $xy = ax^{2} + \frac{b}{x}$, show that $x^{2}y_{2} + 2(xy_{1} - y) = 0$.
10. If $y = \log [x + \sqrt{x^{2} + a^{2}}]$ show that $(a^{2} + x^{2})y_{2} + xy_{1} = 0$.

\$.3

IMPORTANT RESULTS ON nTH DERIVATIVES 1. To find the nth derivative of e^{ax}. Let $y = e^{ax}$ $y_1 = \frac{dy}{dx} = a e^{ax}$ $y_2 = \frac{d^2y}{dx^2} = a^2 e^{ax}$ $y_3 = \frac{d^3y}{dx^2} = a^3 e^{ax}$ $y_n = \frac{d^n y}{dx^n} = a^n e^{ax}$ $\therefore \quad \mathbf{D}^n \left(e^{ax} \right) = a^n e^{ax}$ 2. To find the nth derivative of $\frac{1}{ax+b}$ Let $y = \frac{1}{ax+b} = (ax+b)^{-1}$ $\frac{dy}{dx} = y_1 = -1(ax+b)^{-2} \cdot a$ $\frac{d^2y}{dx^2} = y_2 = -1 \cdot (-2) (ax+b)^{-3} \cdot a^2$ $\frac{d^3y}{dx^2} = y_3 = (-1)(-2)(-3)(ax+b)^{-4} \cdot a^3$ $\frac{d^n y}{dx^n} = y_n = (-1)(-2)(-3)\dots(-n)(ax+b)^{-(n+1)} \cdot a^n$ *i.e.*, $\frac{d^n y}{dx^n} = (-1)^n \cdot 2 \cdot 3 \dots \cdot n (ax + b)^{-(n+1)} \cdot a^n$ $D^n\left(\frac{1}{ax+b}\right) = \frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$ i.e., 3. To find the nth derivative of $\frac{1}{(ax+b)^2}$ Let $y = \frac{1}{(ax+b)^2}$

i.e.,
$$y = (ax + b)^{-2}$$

 $\frac{dy}{dx} = y_1 = (-2)(ax + b)^{-3} \cdot a$
 $\frac{d^2y}{dx^2} = y_2 = (-2)(-3)(ax + b)^{-4} \cdot a^2$
 $\frac{d^ny}{dx^n} = y_n = (-2)(-3)\dots[-(n+1)](ax + b)^{-(n+2)} \cdot a^n$
 $\boxed{\mathbf{p}^n \left[\frac{1}{(ax + b)^2}\right] = \frac{(-1)^n (n+1)! a^n}{(ax + b)^{n+2}}$
4. To find the n^{th} derivative of log $(ax + b)$
Let $y = \log (ax + b)$
 $\frac{dy}{dx} = y_1 = \frac{1}{ax + b} \cdot a$
 $y_n = D^n [\log (ax + b)]$
 $= D^{n-1} \left[\frac{1}{ax + b} \cdot a\right]$
 $= a D^{n-1} \left[\frac{1}{ax + b}\right]$
 $= a \frac{(-1)^{n-1} (n-1)! a^{n-1}}{(ax + b)^n}$
5. To find the n^{th} derivative of sin $(ax + b)$
Let $y = \sin (ax + b)$
 $\frac{dy}{dx} = y_1 = a \cos (ax + b)$
 $= a \sin \left(ax + b + \frac{\pi}{2}\right) \cdot a$
 $\frac{d^2y}{dx^2} = y_2 = a \cos \left(ax + b + \frac{\pi}{2} + \frac{\pi}{2}\right)$

 $= a^{2} \sin\left(ax + b + \frac{2\pi}{2}\right)$ $\frac{d^{n}y}{dx^{n}} = y_{n} = a^{n} \sin\left(ax + b + \frac{n\pi}{2}\right)$

6. To find the nth derivative of cos (ax + b) Let $y = \cos(ax + b)$ $\frac{dy}{dx} = y_1 = -a \cdot \sin(ax + b)$ $= a \cos\left(ax + b + \frac{\pi}{2}\right)$ $\frac{d^2y}{dx^2} = y_2 = -a^2 \sin\left(ax + b + \frac{\pi}{2}\right)$ $= a^2 \cos\left(ax + b + \frac{\pi}{2} + \frac{\pi}{2}\right)$ $= a^2 \cos\left(ax + b + \frac{\pi}{2} + \frac{\pi}{2}\right)$

$$\frac{d^n y}{dx^n} = y_n = a^n \cos\left(ax + b + \frac{n\pi}{2}\right)$$

7. To find the nth derivative of $e^{ax} \sin(bx + c)$ Let $y = e^{ax} \sin(bx + c)$ $\frac{dy}{dx} = y_1 = e^{ax} \cos(bx + c) \cdot b + e^{ax} \cdot a \sin(bx + c) \dots (A)$ Put $a = r \cos \theta$... (1) $b = r \sin \theta$... (2)

where r and θ are two new constants. From (1) and (2), we get

NIT 6

$$r^{2} = a^{2} + b^{2} \Rightarrow r = \sqrt{a^{2} + b^{2}} \qquad ... (3)$$

$\frac{(2)}{(1)}$	 $\frac{r\sin\theta}{r\cos\theta}$	*	$\frac{b}{a}$								
l.e.,	tan θ	*	ba							4	

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$

: From (A), we get

$$y_{1} = r \sin \theta e^{ax} \cos (bx + c) + r \cos \theta e^{ax} \sin (bx + c)$$

$$= r e^{ax} [\sin \theta \cos (bx + c) + \cos \theta \sin (bx + c)]$$

$$= r e^{ax} \sin [bx + c + \theta]$$

Now $y_{2} = r [e^{ax} \cos (bx + c + \theta) \cdot b + \sin (bx + c + \theta) a e^{ax}]$

$$= r^{2} e^{ax} [\sin \theta \cos (bx + c + \theta) + \cos \theta \sin (bx + c + \theta)]$$

$$y_{2} = r^{2} e^{ax} \sin (bx + c + 2\theta)$$

In general,

$$y_n = r^n e^{ax} \sin(bx + c + n\theta)$$

$$= (\sqrt{a^2 + b^2})^n e^{ax} \sin\left[bx + c + n\tan^{-1}\left(\frac{b}{a}\right)\right]$$

$$= (a^2 + b^2)^{n/2} e^{ax} \sin\left[bx + c + n\tan^{-1}\left(\frac{b}{a}\right)\right]$$

$$\therefore \boxed{D^n \left[e^{ax} \sin(bx + c)\right]}$$

$$= (a^2 + b^2)^{n/2} e^{ax} \sin\left[bx + c + n\tan^{-1}\left(\frac{b}{a}\right)\right]$$
Note: $D^n \left[e^{ax} \cos(bx + c)\right]$

$$= (a^2 + b^2)^{n/2} e^{ax} \cos\left[bx + c + n\tan^{-1}\left(\frac{b}{a}\right)\right]$$

TABLE

S.No.	$\int f(x) + \delta(1-x)$	$D^n [f(x)]$
1	eax	$a^n \cdot e^{ax}$
2	$\frac{1}{ax+b}$	$\frac{(-1)^n n! a^n}{(ax+b)^{n+1}}$
3	$\frac{1}{(ax+b)^2}$	$\frac{(-1)^n (n+1)! a^n}{(ax+b)^{n+2}}$
4	$\log\left(ax+b\right)$	$\frac{(-1)^{n-1} (n-1)! a^n}{(ax+b)^n}$
.5	$\sin(ax+b)$	$a^n \sin\left(ax+b+\frac{n\pi}{2}\right)$
6	$\cos(ax+b)$	$a^n \cos\left(ax+b+\frac{n\pi}{2}\right)$

5.7

... (4)

UNIT

(v)

$$4. \frac{1}{16} \left\{ 2 \sin\left(x + \frac{n\pi}{2}\right) + 3^{n} \sin\left(3x + \frac{n\pi}{2}\right) - 5^{n} \sin\left(5x + \frac{n\pi}{2}\right) \right\}$$

$$5. \frac{1}{4} (a^{2} + 9b^{2})^{n/2} e^{ax} \cos\left\{3bx + n \tan^{-1}\left(\frac{3b}{a}\right)\right\}$$

$$+ \frac{3}{4} (a^{2} + b^{2})^{n/2} e^{ax} \cos\left\{bx + n \tan^{-1}\left(\frac{b}{a}\right)\right\}$$

$$6. \frac{1}{2} e^{x} \left\{2^{n/2} \cos\left(x + \frac{n\pi}{4}\right) - 10^{n/2} \cos\left(3x + n \tan^{-1} 3\right)\right\}$$

$$7. \frac{(-1)^{n-1} c^{n-1} (ad - bc) n!}{(cx + d)^{n+1}}$$

$$8. \frac{4 (-1)^{n} n!}{(x + 2)^{n+1}} - \frac{3 (-1)^{n} n!}{(x + 1)^{n+1}} + \frac{(1)^{n} (n + 1)!}{(x + 1)^{n+2}}$$

$$9. \frac{(-1)^{n} n!}{2a} \left\{\frac{1}{(x - a)^{n+1}} - \frac{1}{(x + a)^{n+1}}\right\}$$

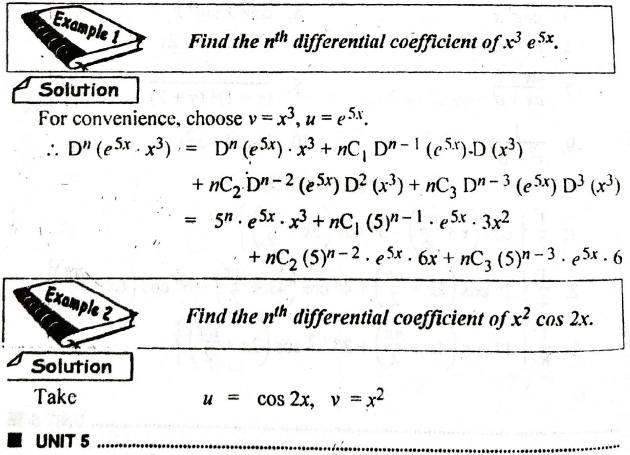
$$10. \frac{(-1)^{n-1} (n-1)!}{(x + 2)^{n}} - \frac{(n-1)!}{(2 - x)^{n}}.$$

LEIBNITZ'S THEOREM

If u and v be any two functions of x, then

$$D^{n}(uv) = D^{n}(u)v + nC_{1}D^{n-1}(u) \cdot D(v) + nC_{2}D^{n-2}(u) \cdot D^{2}(v) + \dots + u \cdot D^{n}$$

Note : This theorem is useful for finding the n^{th} differential coefficient of a product.



 $D^{n} [x^{2} \cos 2x] = D^{n} (\cos 2x) x^{2} + nC_{1} D^{n-1} (\cos 2x) 2x$ $+ nC_2 D^{n-2} (\cos 2x) \cdot 2$ $= 2^{n} \cos\left(2x + \frac{n\pi}{2}\right) \cdot x^{2} + n \, 2^{n-1} \cos\left[2x + \frac{(n-1)\pi}{2}\right] \cdot 2x$ $+\frac{n(n-1)}{2}\cdot 2^{n-2}\cos\left[2x+\frac{(n-2)\pi}{2}\right]\cdot 2$ If $y = a \cos(\log x) + b \sin(\log x)$, show that Example 3 $x^2 y_2 + x y_1 + y = 0$ and $x^{2} y_{n+2} + (2n+1) x y_{n+1} + (n^{2}+1) y_{n} = 0.$ Solution Given $y = a\cos(\log x) + b\sin(\log x)$ Differentiating w.r.t. x, we get $y_1 = -a \sin(\log x) \cdot \frac{1}{r} + b \cos(\log x) \cdot \frac{1}{r}$ $xy_1 = -a\sin(\log x) + b\cos(\log x)$ i.e., Differentiating $xy_2 + y_1 = -a \cos(\log x) \cdot \frac{1}{x} - b \sin(\log x) \cdot \frac{1}{x}$ $x^{2} y_{2} + xy_{1} = -[a \cos(\log x) + b \sin(\log x)]$ $x^2 y_2 + x y_1 + y = 0$ i.e. ... (1) Differentiating (1) w.r.t. x, n times, we get $D^{n}(x^{2} y_{2}) + D^{n}(xy_{1}) + D^{n}(y) = 0$ $D^{n}(y_{2}) \cdot x^{2} + nC_{1} D^{n-1}(y_{2}) \cdot 2x +$ $nC_{2} D^{n-2}(y_{2}) \cdot 2 + D^{n}(y_{1}) \cdot x +$ $nC_{1} D^{n-1}(y_{1}) \cdot 1 + D^{n}(y)$ = 0 $y_{n+2}x^{2} + 2nx y_{n+1} + \frac{n(n-1)}{2}y_{n} \cdot 2 + \bigg\} = 0$ $x y_{n+1} + n y_n + y_n$ $x^{2} y_{n+2} + (2n+1) x y_{n+1} + n^{2} y_{n} - n y_{n} + n y_{n} + y_{n} = 0$ $x^{2} y_{n+2} + (2n+1) x y_{n+1} + (n^{2}+1) y_{n} = 0$ If $y = \sin^{-1} x$, prove that Example 4 $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - n^2 y_n = 0.$ Solution VE HEART A (S). SHALL HAVE Given $y = \sin^{-1} x$

ALLIED MATHEMATICS 5.16 $y_1 = \frac{1}{\sqrt{1 - x^2}} \Rightarrow \sqrt{1 - x^2} \ y_1 = 1$ Diff. w.r.to x, Squaring both sides $(1 - x^2) y_1^2 = 1$ Diff. again w.r.to x, $(1-x^2) 2 y_1 y_2 - 2x y_1^2 = 0$ Divide both sides by $2y_1$, we get $(1-x^2)y_2 - xy_1$ Differentiating it n times by Leibnitz's rule, $\left[(1-x^2) y_{n+2} + n (-2x) y_{n+1} + \frac{n (n-1)}{2!} (-2) y_n \right]$ $- [x y_{n+1} + n(1) y_n] = 0$ $(1-x^2)y_{n+2} - 2nxy_{n+1} - (n^2 - n)y_n - xy_{n+1} - ny_n = 0$ $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 - n + n) y_n = 0$ $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - n^2 y_n = 0$ i.e., Example 5 If sin $(m \sin^{-1} x)$, show that $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} + (m^2 - n^2) y_n = 0.$ Solution $y = \sin(m \sin^{-1} x)$ Given Diff. w.r. to x, $y_1 = \cos(m \sin^{-1} x) \frac{m}{\sqrt{1 - r^2}}$ Cross multiply, $\sqrt{(1-x^2)} y_1 = m \cos(m \sin^{-1} x)$ Squaring both sides $(1-x^2)y_1^2 = m^2 \cos^2(m \sin^{-1} x)$ $= m [1 - \sin^2 (m \sin^{-1} x)]$ (1 - x²) y₁² = m² (1 - y²) Diff. again w.r. to x $(1-x^2) 2y_1 y_2 - 2x y_1^2 = m^2 (-2yy_1)$ Divide throughout by $2y_1$, we have $(1-x^2)y_2 - xy_1 = -m^2y$ $(1-x^2)y_2 - xy_1 + m^2 y = 0$ i.e., . (2) Differentiating (2) n times by Leibnitz's theorem, we have UNIT 5

SUCCESSIVE DIFFERENTIATION $\left[(1-x^2) y_{n+2} + nC_1 (-2x) y_{n+1} + nC_2 (-2) y_n \right]$ $-[xy_{n+1} + nC_1(1)y_n] + m^2y_n = 0$ $\left[\left(1-x^{2}\right)y_{n+2}-2n\,xy_{n+1}-\frac{2n\,(n-1)}{2}\,y_{n}\right]-\left[xy_{n+1}+n\,y_{n}\right]$ $+m^2y_n=0$ $(1-x^2)y_{n+2} - 2nxy_{n+1} - (n^2 - n)y_n - xy_{n+1} - ny_n + m^2y_n = 0$ $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - n + n - m^2)y_n = 0$ i.e., $(1-x^2) y_{n+2} - (2n+1) x y_{n+1} - (n^2 - m^2) y_n = 0$ $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$ If $y = \cos(m \cos^{-1} x)$, show that Example 6 $(1-x^2) y_{n-2} - (2n+1) x y_{n+1} + (m^2 - n^2) y_n = 0.$ Solution $y = \cos\left(m\cos^{-1}x\right)$ Given Diff. w.r.to 'x' $\therefore y_1 = -\sin(m\cos^{-1}x) \frac{-m}{\sqrt{1-x^2}}$ $\sqrt{1-x^2} \cdot y_1 = m \sin(m \cos^{-1} x)$ $(1 - x^2) \cdot y_1^2 = m \sin(m \cos^{-1} x)$ $(1-x^2) \cdot y_1^2 = m^2 \sin^2(m \cos^{-1} x)$ $= m^2 \left[1 - \cos^2 \left(m \cos^{-1} x \right) \right]$ $(1-x^2) \cdot y_1^2 = m^2 (1-y^2)$ $(1 - x^2) 2 y_1 y_2 - 2 x y_1^2 = -m^2 2 y y_1$ Diff. again w.r. to x Dividing both sides by $2 y_1$ $(1-x^2)y_2 - xy_1 + m^2 y = 0$ Differentiating it n times by Leibnitz rule $[(1-x^2)y_{n+2} + n(-2x)y_{n+1} + \frac{n(n-1)}{2}(-2)y_n]$ $-(x\dot{y}_{n+1} + n \cdot 1 \cdot y_n) + m^2 y_n = 0$ *i.e.* $(1 - x^2) y_{n+2} - 2n x y_{n+1} + (n^2 - n) y_n - x y_{n+1} - n y_n + m^2 y_n = 0$ $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - n + n - m^2)y_n = 0$ i.e., $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$ i.e., $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 - m^2)y_n = 0$ i.e., UNIT 5 🔳

If y = sin h (m sinh⁻¹ x) prove that $(1+x^2)y_{n+2} + (2n-1)xy_{n+1} - (n^2 - m^2)y_n = 0.$ Example 7 $y = \sin h \left(m \sin h^{-1} x \right)$ Solution Given $y_1 = \cos h (m \sin h^{-1} x) \frac{m}{\sqrt{1 + x^2}}$ Diff. w.r.to x. $\therefore \sqrt{1+x^2} \cdot y_1 = m \cos h (m \sin h^{-1} x)$ $(1 + x^2) y_1^2 = m^2 \cos h^2 (m \sin h^{-1} x)$ $= m^2 [1 + \sin h^2 (m \sin h^{-1} x]]$ $(1 + x^2) y_1^2 = m^2 (1 + y^2)$ Diff. again w.r.to x, $(1 + x^2) 2y_1 y_2 + 2x y_1^2 = m^2 2y y_1$ Divide both sides by $2y_1$ $(1+x^2)y_2 + xy_1 = m^2 y$... (1) $(1+x^2)y_2 + xy_1 - m^2y = 0$ Diff. (1) n times using Leibnitz's theorem, $\left| (1+x^2) y_{n+2} + n \cdot 2x y_{n+1} + \frac{n(n-1)}{2!} 2 y_n \right|$ $+(xy_{n+1} + n \cdot 1 y_n) - m^2 y_n = 0$ $(1+x^2)y_{n+2} + 2nxy_{n+1} + (n^2 - n)y_n + xy_{n+1} + ny_n - m^2y_n = 0$ $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - n + n - m^2)y_n = 0$ $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ Example 8 If $y = (x + \sqrt{1 + x^2})^m$ show that $(1+x^2) y_{n+2} + (2n+1) x y_{n+1} + (n^2 - m^2) y_n = 0$ Solution Given $y = (x + \sqrt{1 + x^2})^m$ Diff. w.r.to 'x' $\therefore y_1 = m(x + \sqrt{1 + x^2})^{m-1} \left(1 + \frac{1}{2\sqrt{1 + x^2}} \cdot 2x\right)$ $= m (x + \sqrt{1 + x^2})^{m-1} \cdot \left(1 + \frac{x}{\sqrt{1 + x^2}}\right)$ $= m (x + \sqrt{1 + x^2})^{m-1} \cdot \left(\frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}} \right)$ $\sqrt{1+x^2} y_1 = m (x + \sqrt{1+x^2})^m = my$ UNIT 5 .

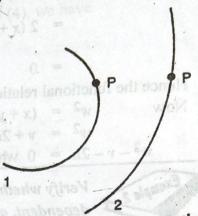
Squaring both sides $(1 + x^2) y_1^2 = m^2 y^2$ Diff. again w.r. to x $(1 + x^2) 2 y_1 y_2 + 2 x y_1^2 = 2 m^2 y y_1$ Dividing through out by $2y_1$... (1) $(1+x^2)y_2 + xy_1 - m^2 y = 0$ Diff. (1) n times using Leibnitz rule, we have $(1+x^2)y_{n+2} + n(2x)y_{n+1} + \frac{n(n-1)}{2!}(2)y_n$ $+(xy_{n+1}+n\cdot 1\cdot y_n)-m^2y_n=0$ *i.e.*, $(1 + x^2) y_{n+2} + 2n x y_{n+1} + (n^2 - n) y_n + x y_{n+1} + n y_n - m^2 y_n = 0$ $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - n + n - m^2)y_n = 0$ i.e.. $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ i.e., which is the required result. Exercises Find the nth differential coefficient of the following : [Ans: $a^{n-2}e^{ax}[a^2x^2+2nax+n(n-1)]$] 1. $x^2 e^{ax}$ [Ans: $x \{x^2 - 3n(n-1)\} \cos\left(x + \frac{n\pi}{2}\right) +$ 2. $x^3 \cos x$ $n \{3x^2 - (n-1)(n-2)\} \sin\left(x + \frac{n\pi}{2}\right)$ $[Ans: (-1)^n (n-4) ! 6 x^{-n+3}]$ 3. $x^3 \log x$ 4. If $y = a \cos(\log x) + b \sin(\log x)$ prove that $x^{2} y_{n+2} + (2n+1) x y_{n+1} + (n^{2}+1) y_{n} = 0.$ 5. If $y = e^{a \sin^{-1} x}$, prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0.$ 6. If $\cos^{-1}\left(\frac{y}{n}\right) = n \log\left(\frac{x}{h}\right)$ prove that $x^2 y_{n+2} + (2n+1) x y_{n+1} + 2 n^2 y_n = 0.$ 7. If $y = (\sin^{-1} x)^2$ prove that $(1 - x^2) y_{n+2} - (2n + 1) x y_{n+1} - n^2 y_n = 0$. 8. If $y^{1/m} + y^{-1/m} = 2x$ show that $(x^2-1)y_{n+2} + (2n+1)xy_{n+1} + (n^2-m^2)y_n = 0.$ 9. If $y = (x^2 - 1)^n$ prove that $(x^2 - 1) y_{n+2} + 2x y_{n+1} - n(n+1) y_n = 0$.

5.19

UNIT 5

CURVATURE

In figure, we have two curves. Of these two curves, one bends more sharply than the other. In otherwords, one has a greater curvature than the other. Let P be a given point on the curve. The part of the curve in a neighbourhood of P be regarded roughly as an arc of a circle. Here we notice from the figure that the radius of such a circle would be small when the curvature is a great, and vice



Definitions: Let P be a given point on a given curve, and Q any other point on it. Let the normals at P and Q intersect in N. If N tends to a definite position C as Q tends to P, then C is called the centre of curvature of the curve at P.

The reciprocal of the distance CP is called the curvature of the curve at P.

The circle with its centre at C and radius CP is called the circle of curvature of the curve at P.

The distance CP is called the radius of curvature of the curve at P. The radius of curvature is usually denoted by the Greek letter ρ .

G FORMULA FOR THE RADIUS OF CURVATURE

Let y = f(x) be the given curve. Let P be a given point on the curve APQ, and let Q be any other point. Let the length of the curve AP be s y and PQ be a small length δs such that the length $AQ = s + \delta s$.

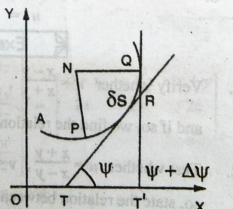
Let the tangent PT at P to the curve make with X-axis the angle ψ , and let the tangent QT' at Q make with the X-axis the angle

 $\psi + \delta \psi$. Let these tangents meet at R.

Let the normals at P and Q be PN and QN respectively, N being their point of intersection. Join PQ.

The radius of curvature at $P = \rho = \lim_{\delta s \to 0} P$

From the triangle PNQ,



		$\frac{\text{chord PQ}}{\sin \angle \text{PNQ}} \qquad (\text{using } \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C})$
i.e.,	$\frac{PN}{chord PQ} =$	$\frac{\sin \angle NQP}{\sin \angle PNQ} = \frac{\sin \angle NQP}{\sin \angle TRT'}$
Given		$\frac{\sin \angle NQP}{\sin \delta \psi}$
i.e.,	PN =	$\frac{\text{chord PQ} \times \sin \angle \text{NQP}}{\sin \delta \psi}$
As $\delta s \rightarrow 0$,	$\delta \psi \rightarrow 0$	2 20 . We 558 2
ρ =	$\lim_{\delta s \to 0} PN =$	$\lim_{\delta\psi\to 0} PN$
$\left(\frac{dk}{dx} = \frac{dk}{dx}\right)$	=	$\begin{array}{c} \text{Lim} \underbrace{\text{chord } PQ \times \sin \angle NQP} \\ \delta \psi \to 0 & \sin \delta \psi \end{array}$
Differe		$\lim_{\delta\psi\to 0} \frac{\text{chord PQ}}{\delta s} \cdot \frac{\delta s}{\delta\psi} \cdot \frac{\delta\psi}{\sin\delta\psi} \sin \angle \text{NQP}$
As $\delta \psi \rightarrow 0$,	$\frac{\text{chord PQ}}{\delta s} \rightarrow$	$1, \frac{\delta \psi}{\sin \delta \psi} \rightarrow 1$ and
A	∠NQP =	$\frac{\pi}{2}$ The final sector $\frac{\pi}{2}$
Since ∠NQ	$P = \frac{\pi}{2} - \angle PQ'$	T' and $\angle PQT' \rightarrow 0$ and $\frac{\delta s}{\delta \psi} \rightarrow \frac{ds}{d\psi}$
Hence	ρ=	δs. δw

Note 1 : The relation between s and ψ for any curve is called the intrinsic equation of the curve.

Note 2 : The circle whose centre is at N and radius PN has the same tangent and the same curvature as the curve has at P. Hence this circle is called the circle of curvature at P.

Example 1Find ρ for the catenary whose intrinsic equation is $s = a \tan \psi$.Solution : $\rho = \frac{ds}{d\psi} = a \sec^2 \psi$.Example 2Find ρ for the cycloid $s = 4a \sin \psi$.Solution : $\rho = \frac{ds}{d\psi} = 4a \cos \psi$.

5.53

CARTESIAN FORMULA FOR RADIUS OF CURVATURE $\frac{dy}{dx} = \tan \Psi$ We know that $\frac{d}{ds}\left(\frac{dy}{dx}\right) = \frac{d}{ds}(\tan\psi)$ $\frac{d}{dx}\left(\frac{dy}{dx}\right)\frac{dx}{ds} = \frac{d\left(\tan\psi\right)}{d\psi} \cdot \frac{d\psi}{ds}$ $\frac{d^2 y}{dx^2} \cdot \frac{dx}{ds} = \sec^2 \psi \cdot \frac{d\psi}{ds} = \sec^2 \psi \cdot \frac{1}{\rho} \quad (\because \rho = \frac{ds}{d\psi})$ $\rho = \frac{\sec^2 \Psi}{\frac{d^2 y}{dx^2} \cdot \frac{dx}{ds}}$ $= \frac{\sec^2 \psi}{\frac{d^2 y}{dx^2} \cdot \cos \psi}$ $(::\cos\psi=\frac{dx}{ds})$ $= \frac{\sec^3 \psi}{\frac{d^2 y}{dx^2}} = \frac{(\sec \psi)^3}{\frac{d^2 y}{dx^2}} = \frac{(\sqrt{1 + \tan^2 \psi})^3}{\frac{d^2 y}{dx^2}}$ $= \frac{\left(1 + \tan^2 \psi\right)^2}{\frac{d^2 y}{dx^2}}$ $\rho = \frac{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$

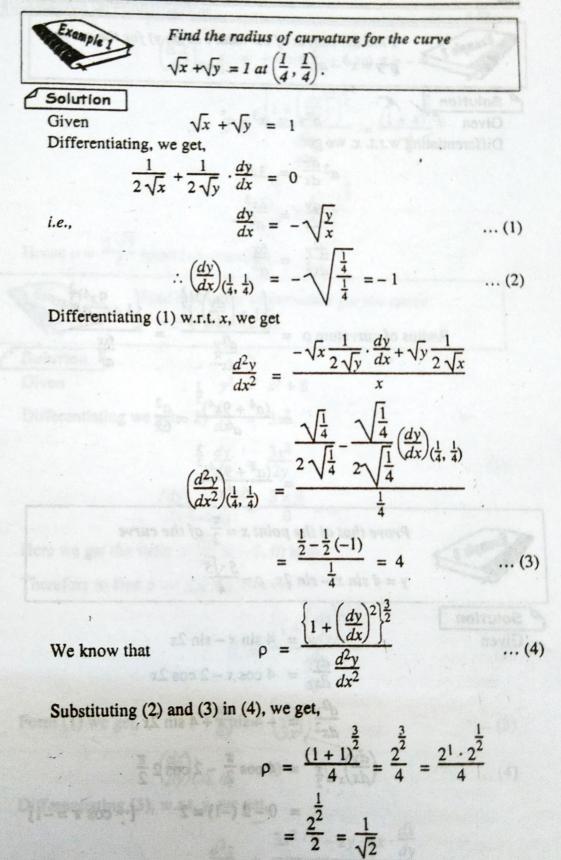
Note 1 : We consider the sign of p is always positive.

UNIT 6

Note 2 : The definition of the radius of curvature shows that its value depends only on the curve and not on the axes. Therefore by interchanging the axes of x and y, we obtain

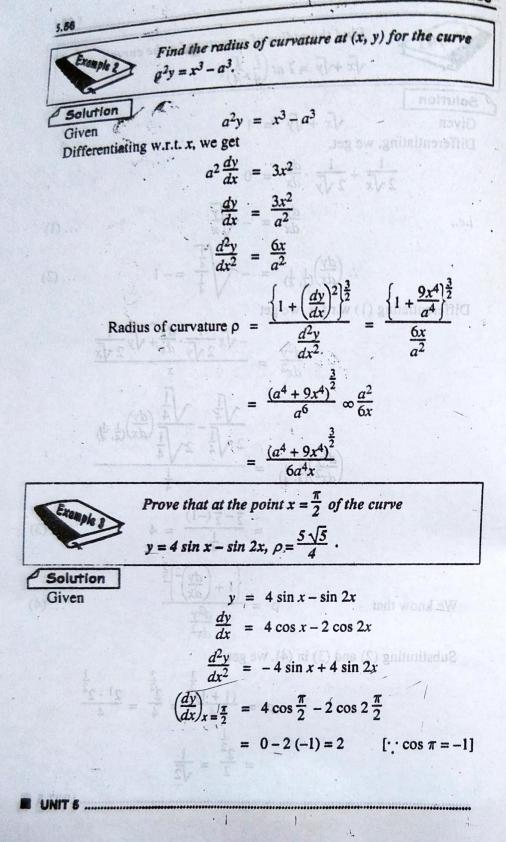
$$=\frac{\left\{1+\left(\frac{dx}{dy}\right)\right\}^{\frac{3}{2}}}{\frac{d^2x}{dy^2}}$$

This formula is useful when the tangent is parallel to the Y-axis, i.e., when $\frac{dy}{dx} = \infty$.



5.55

...... UNIT 6



$$\frac{\left(\frac{d^2 y}{dx^2}\right)_{x=\frac{\pi}{2}}}{(dx^2)_{x=\frac{\pi}{2}}} = -4\sin\frac{\pi}{2} + 4\sin\pi = -4$$

$$\therefore p = \frac{\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}_{\frac{\pi}{2}}^{\frac{\pi}{2}}}{\frac{d^2 y}{dx^2}} = \frac{\left(1 + 4\right)^2}{-4}$$
$$= \frac{5^2}{-4} = \frac{5^1 \cdot 5^2}{-4}$$

Hence
$$\rho = \frac{5\sqrt{5}}{4}$$
 (omitting -ve sign)

 $y^2 = x^3 + 8 at (-2, 0).$

Find the radius of curvature for the curve

Given $y^2 = x^3 + 8$ Differentiating we get, $2y \frac{dy}{dx} = 3x^2$ $\frac{dy}{dx} = \frac{3x^2}{2y}$ (1) $(\frac{dy}{dx})_{(-2, 0)} = \frac{3 \times 4}{0} = \infty$

Here we get the value of $\frac{dy}{dx}$ at (-2, 0) is ∞ . Therefore to find ρ we use the formula

$$\rho = \frac{\left\{1 + \left(\frac{dx}{dy}\right)^2\right\}^{\frac{3}{2}}}{\frac{d^2x}{dx^2}} \qquad \dots (2)$$

Form (1) we get,

 $\frac{dx}{dy} = \left(\frac{2y}{3x^2}\right) \qquad \dots (3)$

I INT 5

$$\left(\frac{dx}{dy}\right)_{(-2, 0)} = 0$$
 ... (4)

Differentiating (3), w.r.t. y, we get,

$$\frac{d^2x}{dy^2} = \frac{3x^2 \cdot 2 - 2y \cdot 6x \cdot \frac{dx}{dy}}{9x^4}$$

5.57

$$\frac{d^2x}{dy^2}_{(-2,0)} = \frac{24-0}{9\times 16} \qquad \left[\because \left(\frac{dx}{dy}\right)_{(-2,0)} = 0 \right]$$
$$= \frac{1}{6} \qquad \dots (5)$$
Substituting (4) and (5) in (2) we get,

$$\rho = \frac{\left(1+0\right)^{\frac{3}{2}}}{\frac{1}{6}} = 6$$
Find p for the curve $y = c \cosh \frac{x}{c}$ at the point (0, c).
[April '93]

Solution

Given
$$y = c \cosh \left(\frac{x}{c}\right)$$
$$\frac{dy}{dx} = c \cdot \sin h \left(\frac{x}{c}\right) \cdot \frac{1}{c} = \sin h \left(\frac{x}{c}\right)$$
$$\left(\frac{dy}{dx}\right)_{(0,c)} = \sin h \left(\frac{0}{c}\right)$$
$$= \sin h 0 = 0 \qquad (\because \sin h 0 = 0)$$
$$\frac{d^2y}{dx^2} = \frac{1}{c} \cosh \left(\frac{x}{c}\right)$$
$$\left(\frac{d^2y}{dx^2}\right)_{(0,c)} = \frac{1}{c} \cosh \left(0\right) = \frac{1}{c} \qquad (\because \cos h 0 = 1)$$
We know that
$$\rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{\left(1 + 0\right)^2}{\frac{1}{c}}$$
$$= c$$

Find the radius of curvature of the curve

$$xy^2 = a^3 - x^3 at (a, 0).$$
 [April, '93]
Solution
Given $xy^2 = a^3 - x^3$... (1)
Differentiating (1) w.r.t. x, we get,
 $x \cdot 2y \frac{dy}{dx} + y^2 = -3x^2$

1

$$\frac{dy}{dx} = \frac{-(3x^2 + y^2)}{2xy} \qquad \dots (2)$$

$$\frac{dy}{dx}(a, 0) = \frac{-(3a^2+0)}{0} = \infty$$

Here $\frac{dy}{dx}$ at (a, 0) is ∞ .

Therefore we use the formula
$$\rho = \frac{\left\{1 + \left(\frac{dx}{dy}\right)^2\right\}^2}{\frac{d^2x}{dy^2}}$$
 ...(3)

From (2) we get,
$$\left(\frac{dx}{dy}\right)_{(a, 0)} = 0$$
 ... (4)

$$\frac{dx}{dy} = \frac{-2xy}{3x^2 + y^2}$$

$$\left(\frac{d^2x}{dy^2}\right) = \frac{-2(3x^2 + y^2)\left(x + y\frac{dx}{dy}\right) + 2xy\left(6x\frac{dx}{dy} + 2y\right)}{(3x^2 + y^2)^2}$$

$$\left(\frac{d^2x}{dy^2}\right)_{(a, 0)} = \frac{-2(3a^2)(a) + 0}{(3a^2 + 0)^2}$$

$$= \frac{-6a^3}{9a^4} = \frac{-2}{3a} \qquad \dots (5)$$

Substituting (4) and (5) in (3) we get

$$\rho = \frac{(1+0)^2}{\frac{-2}{3a}} = \frac{-3a}{2}$$

 $\overline{3a}$ Hence $\rho = \frac{3a}{2}$ (omitting negative sign) $\overline{5a}$ Find ρ for the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. $\overline{5a}$ Solution
Given $x^3 + y^3 = 3axy$ Differentiating w.r.t. x, we get $3x^2 + 3y^2 \frac{dy}{dx} = 3a\left(x\frac{dy}{dx} + y\right)$ $\frac{dy}{dx}(3y^2 - 3ax) = 3ay - 3x^2$ UNIT 5

$$\frac{dy}{dx} = \frac{ay - x^2}{y^2 - ax} \qquad \dots (1)$$

$$(\frac{dy}{dx})_{(\frac{3a}{2}, \frac{3a}{2})} = \frac{a \cdot \frac{3a}{2} - \frac{9a^2}{4}}{\frac{9a^2}{4} - a \cdot \frac{3a}{2}} = \frac{-3a^2}{3a^2} = -1 \dots (2)$$

Differentiating (1) w.r.t. x, we get,

$$\frac{d^2y}{dx^2} = \frac{(y^2 - ax)\left(a\frac{dy}{dx} - 2x\right) - (ay - x^2)\left(2y\frac{dy}{dx} - a\right)}{(y^2 - ax)^2}$$

$$\begin{pmatrix}
\frac{d^{2}Y}{dx^{2}}, \frac{\lambda a}{2} = \frac{\lambda a}{2} = \frac{\left(\frac{9a^{2}}{4} - \frac{3a^{2}}{2}\right)\left[a(-1) - \frac{6a}{2}\right] - \left(\frac{3a^{2}}{2} - \frac{9a^{2}}{4}\right)\left[\frac{6a}{2}(-1) - a\right]}{\left(\frac{9a^{2}}{4} - \frac{3a^{2}}{2}\right)^{2}} \\
= \frac{\left(\frac{3a^{2}}{4}\right)\left(\frac{-8a}{2}\right) - \left(-\frac{3a^{2}}{4}\right)\left(\frac{-8a}{2}\right)}{\frac{9a^{4}}{16}} \\
= (-3a^{3} - 3a^{3}) \times \frac{16}{9a^{4}} \\
= \frac{-32}{3a} \qquad \dots (3)$$
We know that
$$\rho = \frac{\left\{1 + \left(\frac{dy}{dx}\right)^{2}\right\}^{\frac{3}{2}}}{\frac{d^{2}y}{dx^{2}}}$$

ρ =

ρ =

We know that

1.60

$$= \frac{\left[1 + (-1)^2\right]^2}{\frac{-32}{3a}} = \frac{-2^2 \times 3a}{32}$$
$$= \frac{-2^1 \cdot 2^2 \cdot 3a}{32} = \frac{3a\sqrt{2}}{16}$$

 $\frac{3a\sqrt{2}}{16}$ (Omitting negative sign)

3

Hence

UNIT 5

- 8 Exercises R 1. Find the radius of curvature of the following curves. (Ans. 12) (a) $x^4 + y^4 = 2$ at (1, 1). [Ans. 2 \2] (b) $y = e^x$ at the point where it crosses the Y axis. [Ans. $\frac{(109)^{\overline{2}}}{60}$] (c) xy = 30 at (3, 10). (d) $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ at any point (x, y). [Ans. $3a^{\frac{1}{3}}x^{\frac{1}{3}}y^{\frac{1}{3}}$] [Ans. -2a] (e) $x^2y = a(x^2 + y^2)$ at (-2a, 2a). [Ans. 1] (f) $y^2 = \frac{x(x-2)}{x-5}$ at x = 2. [Ans. $\frac{b^2}{a}$] (g) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the vertex. (h) $\sqrt{x} + \sqrt{y} = \sqrt{a} \operatorname{at}\left(\frac{a}{4}, \frac{a}{4}\right)$. [Ans. $\rho \propto a$] $(Ans. \frac{10^2 a}{12})$ (i) $xy^3 = a^4$ at (a, a). [Ans. 3] (j) $y^2 = \frac{x^2(x+4)}{x+1}$ at y = 0. 2. Show that the radius of curvature at any point of the curve $x^{m} + y^{m} = 1$ is $\frac{\{x^{2}(m-1) + y^{2}(m-1)\}^{2}}{(m-1)x^{m-2} \cdot y^{m-2}}$ 3. Show that the curves $y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{\frac{-x}{a}} \right)$ and $y = \frac{a}{2} \left(2 + \frac{x^2}{a^2} \right)$ have the same curvature at the point (0, a). 4. Show that at any point on the cycloid $x = a (\theta - \sin \theta)$, y = $a (1 - \cos \theta)$, the radius of curvature is twice the normal at that
- 5. Show that at any point P on the rectangular hyperbola $xy = c^2$,
 - $\rho = \frac{r^3}{2c^2}$ where r is the distance of P from the origin.

D TOTAL DIFFERENTIAL COEFFICIENT

If u = f(x, y) is a function of x and y where x = f(t) and y = g(t) then

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} \qquad \dots (1)$$

In the differential form, (1) can be written as

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

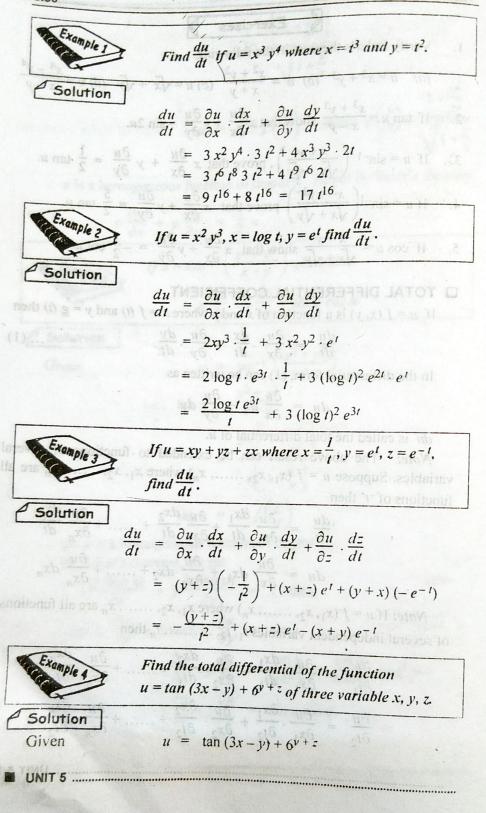
du is called the total differential of u.

Note: The above result can be extended to functions of several variables. Suppose $u = f(x_1, x_2, \dots, x_n)$ where x_1, x_2, \dots, x_n are all functions of 't' then

$$\frac{du}{dt} = \frac{\partial u}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial u}{\partial x_n} \frac{dx_n}{dt}$$
$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \dots + \frac{\partial u}{\partial x_n} dx_n$$

Note: If $u = f(x_1, x_2, ..., x_n)$ where $x_1, x_2, ..., x_n$ are all functions of several independent variables $t_1, t_2, ..., t_n$ then

$$\frac{\partial u}{\partial t_1} = \frac{\partial u}{\partial x_1} \cdot \frac{dx_1}{dt_1} + \frac{\partial u}{\partial x_2} \cdot \frac{dx_2}{dt_1} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_1}$$
$$\frac{\partial u}{\partial t_2} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_2} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_2} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_2}$$
UNIT 5



Solution

$$\frac{\partial u}{\partial x} \cdot dx + \frac{\partial u}{\partial y} \cdot dy + \frac{\partial u}{\partial z} dz = 3 \sec^2 (3x - y) dx + [-\sec^2 (3x - y) + 6^y + z (\log 6)] dy + 6^{y + z} \log 6 dz$$

$$If u = e^x \sin y \text{ where } x = st^2 \text{ and } y = s^2 t \text{ find}$$

$$\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \frac{\partial u}{\partial s} = e^x \sin y \cdot t^2 + e^x \cos y \cdot 2 st$$

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \cdot \frac{\partial u}{\partial t} = e^x \sin y \cdot 2st + e^x \cos y \cdot 2 st$$

$$\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot \frac{\partial u}{\partial t} = e^x \sin y \cdot 2st + e^x \cos y \cdot 2 st$$

$$\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot \frac{\partial u}{\partial t} = e^x \sin y \cdot 2st + e^x \cos y \cdot 2 st$$

$$\frac{\partial u}{\partial t} = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot \frac{\partial u}{\partial t}$$

$$\text{Let } u = f(x, y) = e \text{ be a given implicit function } fx \text{ and } y, \text{ we know that}$$

$$\frac{du}{dx} = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot dy$$
Since $u = c$ is a constant $du = 0$.

$$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$$

$$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0$$

$$\text{Let } f(x, y) = x^3 + y^3 - 3axy$$

$$\frac{\partial f}{\partial x} = 3x^2 - 3ay$$

$$\frac{\partial f}{\partial y} = 3y^2 - 3ax$$
UNIT 5

$$\frac{dx}{dx} = -\frac{\begin{pmatrix} \partial f \\ \partial y \\$$

UNITE

AND AN ANY ANY ANY

$$\begin{aligned} \begin{array}{l} \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{Substituting (2), (3) and (4) in (1), we getter } \\ \begin{array}{l} \frac{d\mu}{dx} = -\sin (x^2 + y^2) \cdot 2x - \sin (x^2 + y^2) \cdot 2y \left(-\frac{d^2 x}{b^2 y} \right) \\ = 2 \sin (x^2 + y^2) \left[\frac{d^2 x}{b^2} \sin (x^2 + y^2) - x \right] \\ \hline \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{P} \\ \textbf{W} \\ \textbf{R} \\$$

5.40	that
	If $u = f(x - y, y - z, z - x)$ show that
Example 5	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
Solution	$x - y = x_1 $
Let	$\begin{array}{c} x - y = x_1 \\ y - z = x_2 \end{array}$
	$z-x = x_3$
	$\therefore u = f(x-y, y-z, z-x) \qquad \text{actualog}$
	$= f(x_1, \dot{x}_2, x_3)$
No	$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial x} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial x} + \frac{\partial u}{\partial x_3} \cdot \frac{\partial x_3}{\partial x}$
Now from (A) ,	we get
	$\frac{\partial x_1}{\partial x} = 1, \ \frac{\partial x_2}{\partial x} = 0 \text{ and } \frac{\partial x_3}{\partial x} = -1$
	$\therefore \frac{\partial u}{\partial x} = \frac{\partial u}{\partial x_1} - \frac{\partial u}{\partial x_3} \qquad \dots (1)$
Similarly	$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial y} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial y} + \frac{\partial u}{\partial x_3} \cdot \frac{\partial x_3}{\partial y}$ $= \frac{\partial u}{\partial x_1} (-1) + \frac{\partial u}{\partial x_2} (1) + \frac{\partial u}{\partial x_3} (0)$
	$\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2} \qquad \dots (2)$
	$\frac{\partial u}{\partial z} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial z} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial z} + \frac{\partial u}{\partial x_3} \cdot \frac{\partial x_3}{\partial z}$
	$= \frac{\partial u}{\partial x_1} (0) + \frac{\partial u}{\partial x_2} (-1) + \frac{\partial u}{\partial x_3} (1)$
(X-	$= -\frac{\partial u}{\partial x_2} + \frac{\partial u}{\partial x_3} \text{bes (6) (2) gailed block (3)} \qquad \dots (3)$
Adding (1), (2) a	and (3), we get
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$	$+\frac{\partial u}{\partial z} = 0$
,	: P ib

UNIT 5

ATION

$$f(z,y) \text{ where } x = r \cos \theta, y = r \sin \theta, \text{ show that}$$

$$f(z,y) \text{ where } x = r \cos \theta, y = r \sin \theta, \text{ show that}$$

$$(\frac{2\pi}{2x})^2 + (\frac{2\pi}{2y})^2 = (\frac{2\pi}{2x})^2 + \frac{1}{2}(\frac{2\pi}{2\theta})^2$$

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$= \frac{\partial z}{\partial x} \cdot \cos \theta + \frac{\partial z}{\partial y} \sin \theta \qquad \dots(1)$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial \theta}$$

$$= \frac{\partial z}{\partial x} (-r \sin \theta) + \frac{\partial z}{\partial y} (r \cos \theta)$$

$$\therefore \frac{1}{r} \cdot \frac{\partial z}{\partial \theta} = -\frac{\partial z}{\partial x} \sin \theta + \frac{\partial z}{\partial y} \cos \theta \qquad \dots(2)$$

$$\text{paring and adding (1) and (2), we get$$

$$(\frac{2\pi}{2r})^2 + \frac{1}{2} (\frac{\partial z}{\partial \theta})^2 = (\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2$$

$$f(z = f(x, y) \text{ where } x = e^{u} + e^{-u}, y = e^{-u} - e^{v}, \text{ prove}$$

$$\text{that } \frac{\partial z}{\partial u} - \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}$$

$$= \frac{\partial z}{\partial x} (e^{-v}) - \frac{\partial z}{\partial y} (e^{-v}) \quad \dots(2)$$

$$(1) - (2) \Rightarrow \frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} (e^{u} + e^{-v}) - \frac{\partial z}{\partial y} (e^{-u} - e^{v})$$

$$= x \frac{\partial z}{\partial y}, - y \frac{\partial z}{\partial y}$$

5.41

UNIT 5

Te the second second

Exercises
1. Find
$$\frac{\partial x}{\partial t}$$
 from the following:
(a) $x = x^3 y^2 + x^2 y^3$ where $x = x^3 y = 2at$. And $x = 8a^3 t^6 (4t + 7)$
(b) $x = \sin(xy^2)$ where $x = \log(x, y = e^t)$. And $y^2 (\frac{1}{4} + 2x) \cos(xy^2)$
(c) $u = \log(x + y^2), x = \sqrt{1 + 1}, y = 1 - \sqrt{t}$
2. Find $\frac{\partial x}{\partial x}$ if
(a) $ax^2 + 2bxy + by^2 + 2gx + 2dy + c = 0$ And $z = (\frac{ax + by + g}{bx + by + f})$
(b) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(c) $x^2 + y^4 = c$
(d) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(e) $x^4 = y^4 = c$
(f) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(g) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(h) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(g) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = 1$
(h) $\frac{a^2}{a^2} - \frac{a^2}{b^2} = \frac{a^2}{a^2} + \frac{a^2}{a$

UNIT & ATTENANT

JACOBIANS

6.63

If u and v are functions of the two independent variables x and y, then the determinant

 $\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$ is called the *Jacobian* of *u*, *v* w.r.t. *x*, *y*. It is denoted by

 $\frac{\partial (u, v)}{\partial (x, y)} \text{ [or] } J\left[\frac{uA v}{xA y}\right]$

Note: The Jacobian of u, v, w w.r.t. x, y, z is

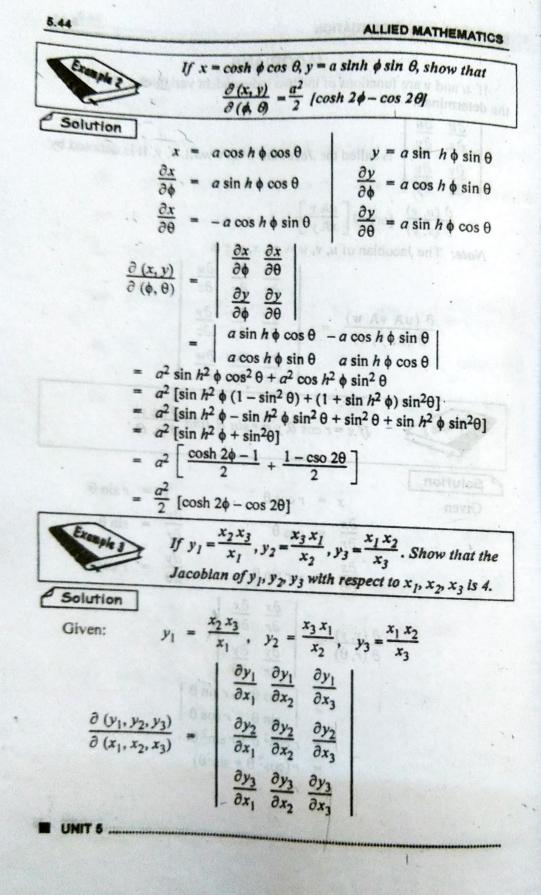
	$\frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y}$	$\frac{\partial u}{\partial z}$
$\frac{\partial (\mathbf{uA} \ \mathbf{vA} \ \mathbf{w})}{\partial (\mathbf{x}, \mathbf{y}, \mathbf{z})} =$			$\frac{\partial v}{\partial z}$
0 0 0 0 5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0			$\frac{\partial w}{\partial z}$

If $x = r \cos \theta$, $y = r \sin \theta$, find $\frac{\partial (x, y)}{\partial (r, \theta)}$

Given

Solution

x	-	$r\cos\theta$	у	=	$r \sin \theta$
$\frac{\partial x}{\partial r}$	-	cosθ	$\frac{\partial y}{\partial r}$		sin 0
$\frac{\partial x}{\partial \theta}$	-	$-r\sin\theta$	$\frac{dy}{d\theta}$		r cos 0
$\frac{\partial(x,y)}{\partial(r,\theta)}$		$\begin{array}{c c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array}$			
	R R W R	$\begin{vmatrix} \cos \theta &= r \sin \theta \\ \sin \theta & r \cos \theta \\ r \cos^2 \theta + r \sin^2 \theta \\ r (\cos^2 \theta + \sin^2 \theta) \\ r \end{vmatrix}$			



NCCESSIVE DIFFERENTIATION 5.45 x1 x2 *2 x3 x3 $-x_2x_3$ x3 x1 x1 x2 Sin 9 -200 $\begin{array}{c} x_2 x_3 \\ x_2 x_3 \end{array}$ -x3 x1 x1 x2 $\frac{1}{x_1^2 x_2^2 x_3^2}$ x3 x1 $-x_1x_2$ 1 $=\frac{x_1^2 x_2^2 x_3^2}{x_1^2 x_2^2 x_3^2}$ -1(1-1)-1(-1-1)+1(1+1)0 + 2 + 2 = 4 $x = r \sin \theta \cos \phi$; $y = r \sin \theta \sin \phi$; If $z = r \cos \theta$ show that $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta$. Solution Given : $y = r \sin \theta \sin \phi$, $r\cos\theta$ $x = r \sin \theta \cos \phi$, = $\frac{\partial y}{\partial r} = \sin \theta \sin \phi, \quad \frac{\partial z}{\partial r} =$ cos 0 $\frac{\partial x}{\partial r}$ = $\sin\theta\cos\phi$, $\frac{\partial y}{\partial \theta} = r \cos \theta \sin \phi, \quad \frac{\partial z}{\partial \theta} = -r \sin \theta$ <u>20</u> = $r\cos\theta\cos\phi$, $\frac{\partial y}{\partial \phi} = r \sin \theta \cos \phi, \quad \frac{\partial z}{\partial \phi}$ <u>dx</u> = 0 . $= -r\sin\theta\sin\phi$, $\frac{\partial x}{\partial \theta}$ $\frac{\partial x}{\partial \phi}$ $\frac{\partial x}{\partial r}$ $\frac{\partial y}{\partial r} \quad \frac{\partial y}{\partial \theta} \quad \frac{\partial y}{\partial \phi}$ $\therefore \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$ $\frac{\partial z}{\partial r}$ <u> 25</u> 20 <u>dz</u>

UNIT 5

 $\frac{\partial x}{\partial v}$

 ∂y

l du

	1 : 0	$r\cos\theta\cos\phi$	$-r\sin\theta\sin\phi$
	1.111 0 000	$r\cos\theta\sin\phi$	· ()
=	$\sin \theta \sin \phi$		0
	cos θ	$-r\sin\theta$	

 $= r^{2} [\sin \theta \cos \phi (0 + \sin^{2} \theta \cos \phi) - \cos \theta \cos \phi (0 - \sin \theta) \\ \cos \theta \cos \phi - \sin \theta \sin \phi (- \sin^{2} \theta \sin \phi - \cos^{2} \theta \sin \phi)]$

 $= r^{2} [\sin^{3} \theta \cos^{2} \phi + \sin \theta \cos^{2} \theta \cos^{2} \phi + \sin^{3} \theta \sin^{2} \phi$ $+ \sin \theta \cos^{2} \theta \sin^{2} \phi]$

- $= r^2 \left[\sin^3 \theta \left(\cos^2 \phi + \sin^2 \phi \right) + \sin \theta \cos^2 \theta \left(\cos^2 \phi + \sin^2 \phi \right) \right]$
- $= r^{2} [\sin^{3} \theta + \sin \theta \cos^{2} \theta] = r^{2} \sin \theta (\sin^{2} \theta + \cos^{2} \theta)$

 $= i^2 \sin \theta$

D PROPERTIES OF JACOBIANS

1. First Property

Pr

If u and v are the functions of x and y, then

$\frac{\partial (u, v)}{\partial (x, y)}$	$\times \frac{\partial(x,y)}{\partial(u,v)}$	=	1 200 G			
roof:			f(x, y)	19963	MONE	
	v	=	$\phi\left(x,y\right)$			
$\frac{\partial (u, v)}{\partial (x, v)}$	$\times \frac{\partial (x, y)}{\partial (u, v)}$	2.0	$\begin{vmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial v} \end{vmatrix}$	<u>∂u</u> ∂y ∂v	×	$\begin{array}{c c} \frac{\partial x}{\partial u} \\ \partial u \\ \partial y \end{array}$

On interchanging the rows and columns of second determinant

$\frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y}$	pa (0)	$\frac{\partial x}{\partial u}$					
$\frac{\partial v}{\partial x}$			$\frac{\partial x}{\partial v}$	$\frac{\partial y}{\partial v}$	76			
$\frac{\partial u}{\partial x}$	$\frac{\partial x}{\partial u}$	$+\frac{\partial u}{\partial y}$	$\frac{\partial y}{\partial u}$	$\frac{\partial u}{\partial x}$.	$\frac{\partial x}{\partial v}$ +	$\frac{\partial u}{\partial y}$	$\frac{\partial y}{\partial v}$	(x, 0, 6) (x, 0, 6)
$\frac{\partial v}{\partial x}$								

dy |

 ∂x

SUCCESSIVE DIFFERENTIATION

2 (******)	
If $x = r \cos \theta$, $y = r \sin \theta$, $z = z$, find $\frac{\partial (x, y, z)}{\partial (r, \theta, z)}$.	
s. If $u = x + y + z$, $u^2 v = y + z$, $u^3 w = z$, show that $\frac{\partial (u, v, y)}{\partial (x, y, z)}$	$\frac{v}{z}$ = u^5 .
9. If $u = x + y + z$, $uv = y + z$, $uvw = z$, evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	[Ans:u]
10. Find the value of $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)}$, if $y_1 = (1 - x_1)$, $y_2 = x_1$ (1)	$-x_{2}),$
$y_3 = x_1 x_2 (1 - x_3).$	
11. Fill in the blanks:	(2 21)
(i) If $x = r \cos \theta$, $y = r \sin \theta$, then the value of the Jacobian $\frac{\partial}{\partial \theta}$	$\frac{(x,y)}{(r,\theta)}$ is
	[Ans: r]
	$\partial(u, v)$,
(ii) $\frac{\partial (u, v)}{\partial (r, s)} \times \frac{\partial (r, s)}{\partial (x, y)} = \dots$ [Ans:	$\frac{\partial (u, v)}{\partial (x, y)}]$
(iii) If $u = x(1 - y)$, $v = xy$, then the value of the Jacobian	
$\frac{\partial (u, v)}{\partial (x, y)} = \dots$	[Ans: x]
(iv) $\frac{\partial (x, y)}{\partial (r, \theta)} \cdot \frac{\partial (r, \theta)}{\partial (x, y)} = \dots$	[Ans: 1]
(v) If $u = x^2$, $v = y^2$, then the value of the Jacobian	
2/)	[Ans: 4xy]
3. Third Property	

If functions u, v, w of three independent variables x, y, z are not independent, then

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = ($$

Proof: As u, v, w are not independent, then f(u, v, w) = 0. ... (1) Differentiating (1) w.r.t. x, y, z, we get

$$\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial x} = 0 \qquad \dots (2)$$

$$\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial y} \cdot \frac{\partial v}{\partial y} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial y} = 0 \qquad \dots (3)$$

$$\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial z} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial z} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial z} = 0 \qquad \dots (4)$$

四十七年5年二十七年至中日 到二、19

Find the value of are

 $\frac{\partial}{\partial} \frac{(u, v)}{(k, s)} \times \frac{\partial}{\partial} \frac{(x, t)}{(k, y)} = \dots$

5.50

Eliminating $\frac{\partial f}{\partial u}$, $\frac{\partial f}{\partial r}$, $\frac{\partial f}{\partial w}$ from (2), (3) and (4), we have

	$\frac{\partial u}{\partial x}$	$\frac{\partial v}{\partial x}$	$\frac{\partial w}{\partial x}$	
-	$\frac{\partial u}{\partial y}$	$\frac{\partial v}{\partial y}$	$\frac{\partial w}{\partial y}$	49711 = (.4
i.	$\frac{\partial u}{\partial z}$	$\frac{\partial v}{\partial z}$	<u><u></u>∂<i>w</i>'</u> ∂ <i>z</i>	· Gi

On interchanging rows and columns, we get

$\frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y}$	<u><u><u></u></u> <u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	6, then th
$\frac{\partial v}{\partial x}$	$\frac{\partial v}{\partial y}$	$\frac{\partial v}{\partial z}$	= 0
$\frac{\partial w}{\partial x}$	$\frac{\partial w}{\partial y}$	<u> </u>	bdi usdi ,
		(v, w) (y, z)	- = ()

or

u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and w = x + y + z, determine whether there is a functional relationship between u, v, w and if so, find it.

$$\frac{\partial 2}{\partial 2} = \frac{y + yz + zx}{w}, \quad v = x^2 + y^2 + z^2$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial x} = \frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial z}$$

$$\frac{\partial 2}{\partial y} = \frac{\partial 2}{\partial y}$$

$$\frac{\partial 2}{\partial y} =$$

.....

=

$$= 2(x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 0$$

Hence the functional relationship exists between, u, v and w. Now $w^2 = (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$

 $w^2 = v + 2u$

 $w^2 - v - 2u = 0$ which is the required relationship.

Verify whether the following functions are functionally dependent, and if so, find the relation between them.

Example

$$u = \frac{x+y}{1-xy}, \quad v = \tan^{-1}x + \tan^{-1}y$$

$$\frac{\partial}{\partial (x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{1+y^2}{(1-xy)^2} & \frac{1+x^2}{(1-xy)^2} \\ \frac{1}{1+x^2} & \frac{1}{1+y^2} \end{vmatrix}$$

$$= \frac{1}{(1-xy)^2} - \frac{1}{(1-xy)^2}$$

Hence u, v are functionally related.

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x + y}{1 - xy}$$

$$v = \tan^{-1} u$$

$$u = \tan v$$
Exercises

or

- 1. Verify whether $u = \frac{x y}{x + y}$, $v = \frac{x + y}{x}$ are functionally dependent, and if so, we find the relation between them. [Ans: $u = \frac{2 - v}{v}$]
- Test whether u = x+y/(x-y), v = xy/(x-y)² are functionally dependent, if so, state the relation between them. [Ans: u² 4v = 1]
 Are x + y z, x y + z, x² + y² + z² 2yz functionally dependent? If
- so, find a relation between them. [Ans: u² + v² = 2w]
 4. If u = x + y + z, v = x² + y² + z², w = x³ + y³ + z³ 3xyz, prove that u, v, w are not independent and find the relation between them.

$$[Ans: 2w = u (3v - u^2)]$$

UNIT 5 🔳

 $[R_1 = R_3]$

Integration formulae
I.
$$\int x^n dx = \frac{2n+1}{n+1} + c$$

I. $\int x^n dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int \frac{1}{x^n} dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int \frac{1}{x^n} dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int \frac{1}{x^n} dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int e^x dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int e^x dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int cosx dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int cosx dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int cosx^n dx = -\frac{1}{(n+1)}x^{n+1} + c$
I. $\int \frac{1}{(n+1)}x^{n+1} + c$
I. $\int \frac{1$

14.
$$\int a^{n} + b^{n} \cdot dx = \frac{1}{\alpha} \left[\frac{(a^{n} + b)^{n+1}}{n+1} \right] + c \quad (n \neq -1)$$
15.
$$\int \frac{1}{a^{n+b}} \cdot dx = \frac{1}{\alpha} \log (a^{n} + b) + c$$
16.
$$\int e^{a^{n+b}} \cdot dx = \frac{1}{\alpha} e^{a^{n+b}} + c$$
17.
$$\int Sin (a^{n} + b) dx = -\frac{1}{\alpha} cos(a^{n} + b) + c$$
18.
$$\int cos (a^{n} + b) dx = \frac{1}{\alpha} sin(a^{n} + b) + c$$
19.
$$\int sec^{2}(a^{n} + b) \cdot dx = \frac{1}{\alpha} tan(a^{n} + b) + c$$
20.
$$\int cosec^{2}(a^{n} + b) \cdot dx = -\frac{1}{\alpha} tan^{-1}(a^{n}) + c$$
21.
$$\int cosec(a^{n} + b) \cdot cot(a^{n} + b) \cdot dx = -\frac{1}{\alpha} cosec(a^{n} + b) + c$$
22.
$$\int \frac{1}{1 + (a^{n})^{2}} \cdot dx = -\frac{1}{\alpha} tan^{-1}(a^{n}) + c$$
23.
$$\int \frac{1}{1 + (a^{n})^{2}} \cdot dx = -\frac{1}{\alpha} sin^{-1}(a^{n}) + c$$
14.
$$\int sinhn \cdot dx = coshx$$

$$\int a^{n} b^{(n)} dx = a \int sinh(a^{n} + b) \cdot dx = a \int si$$

UNT-IV -Integration $\int \int a^2 - \pi^2 \cdot d\pi = \frac{\pi}{2} \int a^2 - \pi^2 + \frac{a^2}{2} \sin^{-1}\left(\frac{\pi}{a}\right)$ $\int \int x^2 - a^2 dx = \frac{x}{2} \int x^2 - a^2 \cosh^{-1}\left(\frac{x}{a}\right)$ $\int \int \pi^2 + \alpha^2 \cdot dx = \frac{\pi}{2} \int \pi^2 + \alpha^2 + \frac{\alpha^2}{2} \sin h'' \left(\frac{\pi}{2}\right)$ 1. Evaluate J. Ja-22 Sol $\int \frac{dx}{\sqrt{4}} = \int \frac{dx}{\sqrt{3^2 - x^2}} = \int \frac{1}{\sqrt{3^2 - x^2}} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{4}$ $= \sin^{-1}\left(\frac{\pi}{3}\right) + C$ 2. Find $\int \frac{dx}{Jx^{2}+F}$ $\int \frac{dx}{Jx^{2}+F}$ Find $\int \frac{dx}{Jx^{2}+t}$ Solution $T = \int \frac{dx}{Jx^{2}+t}$ $= \int \frac{dx}{\left[\pi^2 + \left(\frac{1}{2}\right)^2\right]}$ $\int \frac{dx}{\sqrt{1-x^2+a^2}} = \sin^{-1}h\left(\frac{x}{a}\right)$ $\int \frac{d\pi}{\sqrt{\pi^2 + (f_{\pi})^2}} = \sin \pi h^{-1} \left(\frac{\pi}{\sqrt{f_{\pi}}}\right) + C$ 0+x) par 1/ = x6 3. $\int \frac{dx}{\sqrt{\pi^2 - 25}} dx$ $T = \int \frac{dx}{\sqrt{\sqrt{\pi^2 - 25}}} dx$

 $= \int \frac{d\pi}{1\pi^2} 52$ $\int \frac{dx}{[x^2 - 0]^2} = \cosh^{-1}(\frac{\pi}{a})$ $\int \frac{d\pi}{\sqrt{3}} = \cosh^{-1}\left(\frac{\pi}{5}\right) + C$ (Jactor dx = 2 Jx402) 4. Obtain (dr $\frac{S_{0}}{S_{0}} = \int \frac{dx}{x^{2}+16x6} = \int$ $\int \frac{d\pi}{dx^2} = \frac{1}{a} \tan^{-1} \left(\frac{\pi}{a}\right)^{-1}$ $\int \frac{dx}{dx} = \frac{1}{4} \tan^{-1} \left(\frac{x}{4}\right) + C$ 5. Evaluate Ja2-17 Solut $T = \int \frac{dx}{x^2 - 17}$ $= \int \frac{dx}{x^2 (\sqrt{174})^2}$ $\int \frac{dx}{x^{2-\alpha^2}} = \frac{1}{2\alpha} \log \left(\frac{x-\alpha}{x+\alpha}\right)$ $\int \frac{dx}{x^2 - (JT+)^2} = \frac{1}{2JT+} \log \left(\frac{x - JT+}{x + JT+}\right) + c$

6. Find
$$\int \frac{dx}{\sqrt{n}(-x^2)}$$

solv
 $Lt = I = \int \frac{dx}{81-x^2}$
 $= \int \frac{dx}{9^2-x^2}$
 $= \int \frac{dx}{9^2-x^2}$
 $I = \int \frac{dx}{9^2-x^2} = \frac{1}{2x} \log \left(\frac{9+x}{9+x}\right)$
 $J = \frac{dx}{9^2-x^2} = \frac{1}{19} \log \left(\frac{9+x}{9+x}\right)$
 $I = Fixeduate \int \frac{dx}{\sqrt{1+2x+3x+1}}$
 $= \int \frac{2x+1}{\sqrt{1+2x+3x+1}}$

$$2\pi + 1 = P \frac{d}{dx} (x^{2} + 3\pi + D + P)$$

$$2\pi + 1 = D (2\pi + 3) + B$$

$$(ompose the coefficient on how ends
$$2 = 2A$$

$$A = 1$$

$$1 = 3A + B$$

$$2 = 43$$

$$4x + 3x^{2} + 3x^{2} + 3x^{2} + 3x^{2}$$

$$4x + 4x^{2} + 3x^{2} + 3x^{2}$$$$

Evaluete Junt da the the 9, Soln 58(+7 = A (12x+4)+B Let Equate 'x' 2+ ~ 2 me (navi) 5 = 12A A= 5/12 Equate constant coefficient abia A = 4A + B, B = 7 - 4A = 1 + me= 7 - 4 (%2)= 7 - 8 Black 15 10 Land 5x+1 = 5/12 (12x+4)+1/3 $\int \frac{5x+1}{6x^2+4x+4} = \int \frac{\frac{5}{12}(12x+4)+16}{6x^2+4x+4} \cdot dx$ = 5/2 <u>J 6x2+4x-1</u> . dx + 16/3 <u>J dx</u> 6x2+4x-1 = $\frac{1}{2} \log (6x^2 + 4x - 1) + \frac{1}{3} \int \frac{dx}{6(x^2 + 4x - \frac{1}{6})}$ $= \frac{5}{12} \log \left(6 x^2 + 4 x - 1 \right) + \frac{16}{18} \int \frac{dx}{x^2 + 2 x} - \frac{16}{16}$ $= \frac{5}{12} \log(6\pi^2 + 4\pi - 1) + 8 \frac{1}{4} \int \frac{d\pi}{(\pi + \frac{1}{3})^2 - \frac{5}{18}}$ $= \frac{5}{12} \log (6x^{2} + 4x - 1) + \frac{8}{9} \int \frac{dx}{(x + \frac{1}{3})^{2}} = (\frac{15}{18})^{2}$ $= \frac{5}{12} \log (6x^{2} + 4x - 1) + \frac{8}{9} \frac{1}{2x \sqrt{5}} \log \left[\frac{x + \frac{1}{3} - \sqrt{5}}{18}\right]$ $= \frac{5}{12} \log (6x^{2} + 4x - 1) + \frac{8}{9} \frac{1}{2x \sqrt{5}} \log \left[\frac{x + \frac{1}{3} - \sqrt{5}}{18}\right]$ % log (2x²-x+5) + <u>∓</u> 600⁻¹ (<u>4</u>) N_U ISG

b. Evalue
$$\int_{3\pi^{2}+4\pi\pi^{2}}^{3\pi^{2}+4\pi\pi^{2}} dx$$

Let $3\pi^{-4} = A (6\pi^{2}+4\pi) + B (6\pi^{2}+$

2×+1= A (-2×+4)+B let coefficient 06 24 $2 \times = -2A^{2}$ Equate coeff. of constantant Equ I = 4A + B1+4=B/0-= 8/ B=(5+x2) X = N-x8 $\frac{1-(1+2)+1}{2}=-1(-2)+4+5$ F + KH+ xEl = 2x-4 + 5 + KH + 5xEl $\int \frac{2x+1}{\sqrt{3+9x-x^2}} dx = \int \frac{1}{\sqrt{3+9x-x^2}} dx$ $= -1 \int \frac{-2\pi + 4}{\sqrt{3} + 4\pi - \pi^2} + \frac{5}{\sqrt{3} + 4\pi - \pi^2} \int \frac{d\pi}{\sqrt{3}}$ $= -2 \int 3 + 4 \pi - \pi^{2} + 5 \int \frac{dx}{\int -(x^{2} - 4x - 3)}$ $= -2 \int 3 + 4 \pi - \pi^{2} + 5 \int \frac{dx}{\int -(x^{2} - 2(2x)) + 4 - 4 - 3}$ $= -2 \int 3 + 4 \pi - \pi^2 + 3 \int \frac{d \pi}{(\pi - 2)^2 - (\sqrt{2})^2} = 0$ $= -2 \int 344n - \pi^{2} + 5 \int \frac{d\pi}{\int (\pi - 2)^{2} + (f \neq)^{2}}$ $= -2 \int 3+4\pi - \pi^{2} + 5 \quad Sin k^{-1} \left(\frac{\pi - 2}{57} \right)$

$$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \left(\end{array} \\ \end{array} \\ \left(\end{array} \\ \bigg \\ \left(\bigg) \\ \left(\end{array} \\ \bigg \\ \left(\end{array} \\ \bigg \\ \left(\end{array} \\ \bigg \\ \left(\bigg) \\ \left(\bigg) \\ \left(\end{array} \\ \bigg \\ \left(\bigg) \\ \left(\bigg)$$

$$i \cos x = \frac{1 - k^{2}}{1 + k^{2}},$$

$$I = Evolute \int \frac{dx}{u + s \cos x} + \frac{1}{1 + k^{2}},$$

$$I = \int \frac{dx}{u + s \cos x},$$

$$Put = I = \int \frac{dx}{u + s \cos x},$$

$$Put = \frac{1}{2} \frac{dx}{u + k^{2}},$$

$$I = \int \frac{2ak}{1 + k^{2}},$$

$$I = \int \frac{ak}{1 + k^{2}},$$

$$I = \int$$

$$\begin{aligned} \begin{aligned} \xi &= \tan \frac{\pi}{2} \\ dx &= \frac{2dt}{1+t^2} \\ dx &= \frac{2dt}{1+t^2} \\ dx &= \frac{2t}{1+t^2} \\ I &= \int \frac{2dt}{1+t^2} \\ fx &= \int \frac{dt}{1+t^2} \\ f$$

$$I = \frac{1}{3} \log \left(\frac{u \tan \frac{3}{2} + 2}{u \tan \frac{3}{2} + 2}\right) + c$$

$$S = Evoluate \int_{BSin \frac{1}{2} + u(cosx)} \int_{BSin \frac{1}{2} + u(cosx)}$$

$$= \frac{1}{2} \int \frac{dt}{t+t} \frac{dt}{t} - \frac{y}{t} - \frac{z}{t} -$$

$$21 + 4u = A(1u + 3)$$

$$25 = 17A$$

$$A = \frac{25}{12}$$

$$Put = x = -\frac{3}{2}$$

$$-\frac{9}{2} + u = A(0) + B(\frac{9}{2}, -3)$$

$$-\frac{1}{2} = -\frac{13}{2}B$$

$$-\frac{9}{2} + u = A(0) + B(\frac{9}{2}, -3)$$

$$-\frac{1}{2} = -\frac{13}{2}B$$

$$\frac{1}{12} = \int \frac{27}{12} \int \frac{1}{2} \frac{1}{2}$$

Put
$$n=1$$
 $(1+n)(h)(h)(h)(h)(h)$
 $2 = 6B$
 $\boxed{B-1}$
Put $x = -\frac{1}{2}$
 $(=\frac{1}{2}\sqrt{3})$
 $(=\frac{1}{2}\sqrt{3})$
 $(=\frac{1}{2}\sqrt{3})$
 $(=\frac{1}{2}\sqrt{3})$
 $\int \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1}$
 $\int \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1}$
 $\int \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1}$
 $\int \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1} + \frac{1}{2}\sqrt{1+1}$
 $= \log(2\pi+1) + \frac{1}{2}(\log(2\pi)) - \frac{1}{5}\log(2\pi+1)$
 $= \log(2\pi+1) + \log(2\pi+1) + \log(2\pi+1)$
 $= \log(2\pi+1) + \log(2\pi+1) + \log(2\pi+1) + \log(2\pi+1) + \log(2\pi+1)$
 $= \log(2\pi+1) + \log(2\pi+$

$$-4 = A(0) + B(0) + 4C$$

$$-4 = 4C$$

$$-4 = 4C$$

$$T = 4C$$

$$T = -1$$

$$A(0) + B(0) + 4C$$

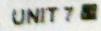
$$A(0) = -1$$

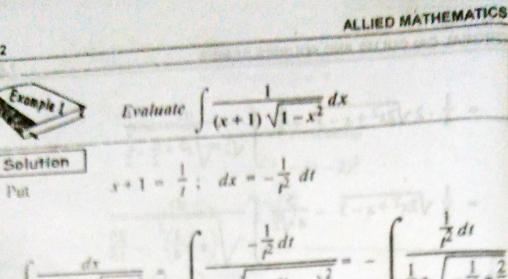
$$A(0) =$$

Equating co efficient of re² on both is O = A + B O + = ,0 =- 1/2 + B [-=)] B = 1/2 $J = \int \frac{-\frac{1}{2}}{1+x} dx + \int \frac{\frac{1}{2} x + \frac{1}{2}}{(x^{2}+1)} dx$ $= -\frac{1}{2} \int \frac{dx}{1+x} + \frac{1}{4} \int \frac{2x}{x^{2}+1} + \frac{1}{2} \int \frac{dx}{x^{2}} + \frac{1}{2} \int \frac{dx}{$ $\sum_{x \in \mathcal{X}} \sum_{x \in \mathcal{X}} \sum_{$ $= \frac{dx}{dx} + \frac{1}{4} \int \frac{d(x^2+1)}{x^2+1} + \frac{1}{2} \int \frac{dx}{(x^2+1)} = T$ Definite integral The integration in the interval (a,b) is given by $\int_{1+\infty}^{0+\infty} b(x+1) dx = F(b) - F(a)$ where $\int f(x) dx = F(x) + c$ is called définite integral of f(a) Properties of definite integrals. $1-\int_{x}^{b}f(x)dx = -\int_{x}^{b}g(x)dx$ $2 \cdot \int_{a}^{b} f(x) \cdot dx = \int_{a}^{b} f(y) dy$ 3- SBCN) dr of SBCN) dx + SBCN) dx

Type 8: Integral of the form $\int \frac{1}{(x+k)\sqrt{ax^2+bx+c}} dx$

This type of integral can be evaluated by putting the substitution

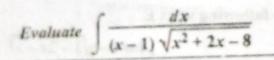




$$+1)\sqrt{1-x^2}$$
 $\int \frac{1}{7}\sqrt{1-(\frac{1}{7}-1)^2} = \int \frac{1}{7}\sqrt{-\frac{1}{7}^2}$

$$= -\int \frac{dI}{\sqrt{2I-1}}$$
$$= \sqrt{2I-1},$$

where $t = \frac{1}{x+1}$



Provent.

Katepis

Solution

$$x-1 = \frac{1}{t}$$
; $dx = -\frac{1}{t^2} dt$

$$\int \frac{dx}{(x-1)\sqrt{x^2+2x-8}} = \int \frac{-\frac{1}{t^2}dt}{\frac{1}{t}\sqrt{\left(\frac{1}{t}+1\right)^2+2\left(\frac{1}{t}+1\right)-8}}$$

$$-\int \frac{dt}{t\sqrt{\frac{1}{t^2}+1+\frac{2}{t}+\frac{2}{t}+2}+8} = -\int \frac{dt}{\sqrt{1-5t^2+4t}}$$

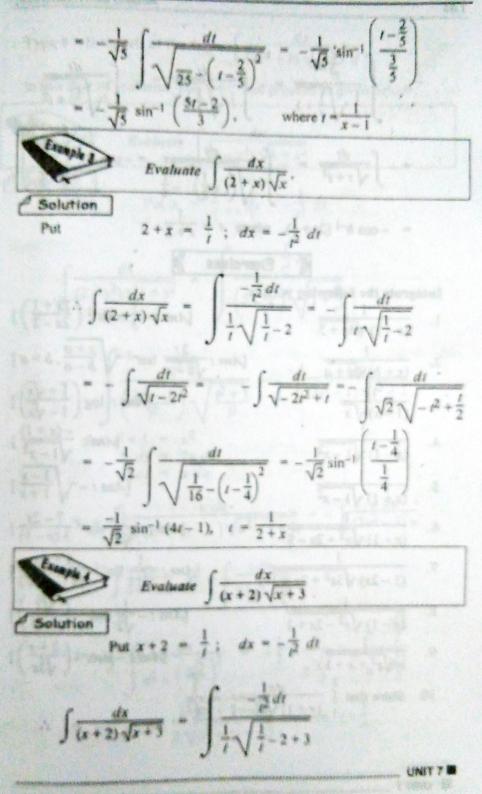
$$\int \frac{dt}{\sqrt{-3t^2 + 4t + 1}} = -\int \frac{dt}{\sqrt{5}\sqrt{-t^2 - \frac{4}{5}t + \frac{1}{5}}}$$

7.62

Part

1

INTEGRAL CALCULUS AND FOURIER SERIES



ALLIED MATHEMATICS 7.64 $\frac{1}{t^2}dt$ dı dt - $\frac{1}{1} + 1$

$$= -\int \frac{dt}{\sqrt{t+t^2}} = -\int \frac{dt}{\sqrt{\left(t+\frac{1}{2}\right)^2 - \frac{1}{4}}} = -\cos h^{-1} \left(\frac{1+\frac{1}{2}}{\frac{1}{2}}\right)^2$$
$$= -\cos h^{-1} (2t+1), \text{ where } t = \frac{1}{x+2}$$

Type 13: Integrals of the form
$$\int \frac{f \cos x + m \sin x + n}{f \cos x + m' \sin x + n'} dx$$
Let $f \cos x + m \sin x + n = A \times (\text{denominator function})$
 $+ B \times (\text{derivative of denominator})$
 $+ B \times (\text{derivative of denominator})$
 $+ C$
where A. B and C are constants.

Type 13: Integrals de coefficients we get the values for A. B and C.

 $\underbrace{\text{Were A. B}}_{\text{becaulting like coefficients we get the values for A. B and C.

 $\underbrace{\text{Were A. B}}_{\text{becaulting like coefficients we get the values for A. B and C.

 $\underbrace{\text{Were A. B}}_{\text{becaulting like coefficients we get the values for A. B and C.

 $\underbrace{\text{Were A. B}}_{\text{becaulting like coefficients of sin x and cos x, we get the values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like coefficients of sin x and cos x, we get the Values for A. B and C.

 $\underbrace{\text{Solution like cos x + 5 sin x}}_{\text{Solution like co$$$$$$$$$$$$$$$$$

INTEGRAL CALCULUS AND FOURIER SERIES

Evaluate
$$\int \frac{dx}{1 + \tan x}$$
Solution
$$\int \frac{dx}{1 + \tan x} = \int \frac{dx}{1 + \cos x} = \int \left(\frac{\cos x}{\cos x + \sin x}\right) dx$$
Now $\cos x = A(\cos x + \sin x) + B(-\sin x + \cos x) + C$
Equating coefficients of $\sin x$ and $\cos x$, we get
$$A + B = 1 \qquad \dots (1)$$

$$A - B = 0 \qquad \dots (2)$$

$$C = 0 \qquad \dots (3)$$
Solving (1) and (2), we get
$$A = \frac{1}{2}, B = \frac{1}{2}, C = 0$$

$$\therefore \cos x = \frac{1}{2}(\cos x + \sin x) + \frac{1}{2}(-\sin x + \cos x)$$

$$dx$$

$$= \frac{1}{2}\int dx + \frac{1}{2}\int \left(-\frac{\sin x + \cos x}{\cos x + \sin x}\right) dx$$

$$= \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x)$$

$$dx$$

$$= \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$
Solution
$$C = \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$

$$C = \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$

$$C = \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$

$$C = \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$

$$C = \frac{1}{2}x + \frac{1}{2}\log(\cos x + \sin x) + C$$

$$C = \frac{1}{2}x + \frac{1}{2}$$

7.79

ALLIED MATHEMATICS

$$\therefore 2 \sin x + \cos x + 3 = \frac{1}{8} (5 + 8 \cos x) - \frac{1}{4} (-8 \sin x) + \frac{19}{8}$$

$$\int \left\{ \frac{2 \sin x + \cos x + 3}{5 + 8 \cos x} \right\} dx = \int \left\{ \frac{\frac{1}{8} (5 + 8 \cos x) - \frac{1}{4} (-8 \sin x) + \frac{19}{8}}{5 + 8 \cos x} \right\} dx$$

$$= \frac{1}{8} \int dx - \frac{1}{4} \int \frac{-8 \sin x}{5 + 8 \cos x} dx + \frac{19}{8} \int \frac{dx}{5 + 8 \cos x}$$

$$= \frac{1}{8} x - \frac{1}{4} \log (5 + 8 \cos x) + \frac{19}{8} \int \frac{dx}{5 + 8 \cos x} \dots (A$$

To evaluate $\int \frac{dx}{5+8\cos x}$

Put
$$t = \tan \frac{x}{2}$$
; $dx = \frac{2 dt}{1 + t^2}$
 $\cos x = \frac{1 - t^2}{1 + t^2}$

2

$$\int \frac{dx}{5+8\cos x} = \int \frac{\frac{2\,dt}{1+t^2}}{5+8\left(\frac{1-t^2}{1+t^2}\right)} = 2\int \frac{dt}{5\left(1+t^2\right)+8\left(1-t^2\right)}$$

di

$$2 \int \frac{dt}{13 - 3t^2} = 2 \int \frac{dt}{3\left(\frac{13}{3} - t^2\right)}$$

$$= \frac{3}{3} \int \frac{1}{\left(\sqrt{\frac{13}{3}}\right)^2} - t^2$$

$$\int \frac{dx}{3 + 8\cos x} = \frac{2}{3} \frac{1}{2 \times \sqrt{\frac{13}{3}}} \log \left\{ \frac{\sqrt{\frac{13}{3}} + t}{\sqrt{\frac{13}{3}} - t} \right\}, t = \tan \frac{x}{2} \dots (B)$$

UNIT 7

INTEGRAL CALCULUS AND FOURIER SERIES

Substituting (B) in (A), we get

$$\int \left\{ \frac{2\sin x + \cos x + 3}{5 + 8\cos x} \right\} dx = \frac{1}{8}x - \frac{1}{4}\log(5 + 8\cos x)$$

& Exercises

X 603 - - - -

Integrate the following w.r.t. x.

1. $\frac{5 \cos x}{2 \cos x + 3 \sin x}$ 2. $\frac{2 \sin x + \cos x}{5 \sin x - 3 \cos x}$ 3. $\frac{\sin x + 18 \cos x}{3 \sin x + 4 \cos x}$ 4. $\frac{3 \sin x + 2 \cos x}{3 \cos x + 5 \cos x}$

 $[Ans: 2x + \log (2 \cos x + \sin x)]$ $[Ans: \frac{7}{34}x + \frac{11}{34} \log (5 \sin x - 3 \cos x)]$ $[Ans: 3x + 2 \log (3 \sin x + 4 \cos x)]$ $[Ans: \frac{21}{34}x + \frac{1}{34} \log (3 \cos x + 5 \sin x)]$

 $+\frac{1}{\sqrt{39}}\log\left\{\frac{\sqrt{\frac{13}{3}}+t}{\sqrt{\frac{13}{3}}-t}\right\}, t = \tan\frac{x}{2}$

ALLIED MATHEMATICS

More magnitum by using trigonometric substitutions
is normalized to the torm
$$\sqrt{x^2 - a^2} + \sqrt{a^2 - x^2} + \sqrt{x^2 + a^2}$$
. The
is normalized to the torm $\sqrt{x^2 - a^2} + \sqrt{a^2 - x^2} + \sqrt{x^2 + a^2}$. The
is normalized to the torm $\sqrt{x^2 - a^2} + \sqrt{a^2 - x^2} + \sqrt{x^2 + a^2}$. The
is normalized to the torm $\sqrt{x^2 - a^2} + \sqrt{a^2 - x^2} + \sqrt{x^2 + a^2}$. The
is normalized to the torm $\sqrt{x^2 - a^2} + \sqrt{a^2 - x^2} + \sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}$.
Note the integrals of the type
 $(a) = \sqrt{a^2 - x^2} + (b) \int \frac{dx}{\sqrt{a^2 + x^2}} + (c) \int \frac{dx}{\sqrt{x^2 - a^2}}$.
Solution
 $x = a \sin \theta$
Differentiating w.r.t. θ , we get
 $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}}$
 $= \int \frac{a \cos \theta}{a \sqrt{1 - \sin^2 \theta}} = \int \frac{\cos \theta}{\cos \theta} d\theta$
 $\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a}$.
(b) To evaluate $\int \frac{dx}{\sqrt{a^2 + x^2}}$.
PETHOD 1:
 $P x = a \tan \theta$
 $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \sec^2 \theta}{\sqrt{a^2 + a^2 \tan^2 \theta}}$.
 $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \sec^2 \theta}{\sqrt{a^2 + a^2 \tan^2 \theta}}$.
 $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \sec^2 \theta}{\sqrt{a^2 + a^2 \tan^2 \theta}}$.
 $= a \int \frac{\sec^2 \theta}{a \sqrt{1 + \tan^2 \theta}} = \int \frac{\sec^2 \theta}{\sec^2 \theta} d\theta$

1 末 tan U MEGRAL CALCULUS AND FOURIER SERIES

$$= \int \sec \theta \, d\theta = \log (\sec \theta + \tan \theta)$$

$$= \log \left[\sqrt{\tan^2 \theta + 1} + \tan \theta \right]$$

$$= \log \left[\sqrt{\frac{x^2}{a^2} + 1} + \frac{x}{a} \right]$$

$$= \log \left[\frac{\sqrt{x^2 + a^2}}{a} + \frac{x}{a} \right]$$

$$= \log \left[\frac{\sqrt{x^2 + a^2}}{a} + \frac{x}{a} \right]$$

$$= \log \left(\sqrt{x^2 + a^2} + x \right) - \log a$$

$$\left[\log \frac{m}{n} = \log m - \log n \right]$$

$$= \log \left(\sqrt{x^2 + a^2} + x \right) + c, \quad c = \log a$$

METHOD 2 :

ab Gar Could

Put $x = a \sin h \theta$ $dx = a \cos h \theta d\theta$

$$\therefore \int \frac{dx}{\sqrt{a^2 + x^2}} = \int \frac{a\cos h\,\theta\,d\theta}{\sqrt{a^2 + a^2}\sin h^2\,\theta} = \int \frac{a\cos h\,\theta\,d\theta}{a\sqrt{1 + \sin h^2\,\theta}}$$

$$= \int \frac{\cos h^2 \theta}{\sqrt{\cos h^2 \theta}} d\theta \ [\because \cos h^2 \theta - \sin h^2 \theta = 1]$$
$$= \int d\theta = \theta = \sin h^{-1} \left(\frac{x}{a}\right)$$

UNIT 7

$$\therefore \int \frac{dx}{\sqrt{a^2 + x^2}} = \sin h^{-1} \left(\frac{x}{a}\right)$$
[OR]
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \log \left(x + \sqrt{x^2 + a^2}\right)$$

ALLIED MATHEMATICS

(c) Evaluate $\int \frac{dx}{\sqrt{x^2 - a^2}}$

1.16

METHOD I : Put x = a sec 0 $dx = a \sec \theta \tan \theta d\theta$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{\sqrt{a^2 \sec^2 \theta - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{a \sqrt{\sec^2 \theta - 1}}$$

$$= \int \frac{\sec \theta \tan \theta}{\sqrt{\tan^2 \theta}} d\theta$$

[:: 1 + tan² θ =

$$[:: 1 + \tan^2 \theta = \sec^2 \theta]$$

$$= \int \sec \theta = \log (\sec \theta + \tan \theta)$$

$$= \log (\sec \theta + \sqrt{\sec^2 \theta - 1})$$

$$= \log \left[\frac{x}{a} + \left(\sqrt{\frac{x^2}{a^2} - 1} \right) \right]$$

$$= \log \left[\frac{x}{a} + \frac{\sqrt{x^2 - a^2}}{a} \right]$$

$$= \log \left(\frac{x + \sqrt{x^2 - a^2}}{a} \right)$$

$$= \log \left(x + \sqrt{x^2 - a^2} \right) - \log a$$

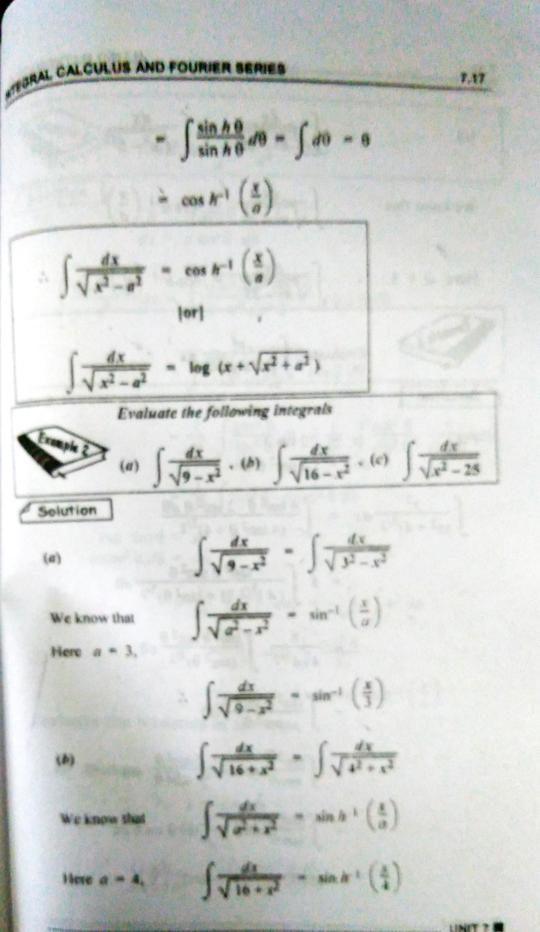
$$= \log \left(x + \sqrt{x^2 - a^2} \right) + c, \ c = \log a$$

METHOD 2 :

$$Put x = a \cos h \theta$$
$$dx = a \sin h \theta d\theta$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \int \frac{a \sin h \theta \, d\theta}{\sqrt{a^2 \cos h^2 \theta - a^2}} = \int \frac{a \sin h \theta \, d\theta}{a \sqrt{\cos h^2 \theta - 1}}$$
$$= \int \frac{\sin h \theta}{\sqrt{\sin^2 \theta}} \, d\theta \quad [\because \cosh^2 \theta - \sinh^2 \theta = 1]$$

INIT 7 404.00



Equiliance the integrals of the type
(a)
$$\int \sqrt{a^2 - x^2} dx$$
, (b) $\int \sqrt{x^2 - a^2} dx$, (c) $\int \sqrt{x^2 + a^2} dx$
Solution
(a) The evolution $\int \sqrt{a^2 - x^2} dx$
Put $x = a \sin \theta$
 $dx = a \cos \theta d\theta$
 $\int \sqrt{a^2 - x^2} dx = \int \sqrt{a^2 - a^2} \sin^2 \theta a \cos \theta d\theta$

CORAL CALCULUS AND FOURIER SERIES

$$= \int a\sqrt{1-\sin^2\theta} \, a\cos\theta \, d\theta$$

$$= a \int \sqrt{\cos^2 \theta} \, a \cos \theta \, d\theta$$

$$= a \int \cos \theta \, a \cos \theta \, d\theta = a^2 \int \cos^2 \theta \, d\theta$$

$$= a^{2} \int \left(\frac{1 + \cos 2\theta}{2}\right) d\theta$$
$$\left[\because \cos^{2} \theta = \frac{1 + \cos 2\theta}{2} \right]$$

$$= \frac{a^2}{2} \left[\int d\theta + \int \cos 2\theta \, d\theta \right]$$

$$= \frac{a^2}{2} \left[\theta + \frac{\sin 2\theta}{2} \right]$$

$$= \frac{a^2}{2} \left[\sin^{-1} \frac{x}{a} - \frac{2 \sin \theta \cos \theta}{2} \right]$$

$$\left[\because \sin^2 \theta = 2 \sin \theta \cos \theta \right]$$

$$= \frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) + \sin \theta \sqrt{1 - \sin^2 \theta} \right]$$

$$= \frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) + \frac{x}{a} \sqrt{1 - \frac{x^2}{a^2}} \right]$$

$$\left[\because x = a \sin \theta \right]$$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) + \frac{x}{a^2} \sqrt{a^2 - x^2} \right]$$
$$= \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right)$$

(b) To evaluate
$$\int \sqrt{x^2 - a^2} dx$$

Put
$$x = a \cos h \theta$$
 UNIT 7

$$dx = a \sin h \theta d\theta$$

$$\int \sqrt{x^2 - a^2} dx = \int \sqrt{a^2 \cos h^2 \theta - a^2} \cdot a \sin h \theta d\theta$$

$$= \int a^2 \sqrt{\cos h^2 \theta - 1} \cdot \sin h \theta d\theta$$

$$[\because \cos h^2 \theta - \sin h^2 \theta = 1]$$

$$= a^2 \int \sqrt{\sin h^2 \theta} \cdot \sin h \theta d\theta$$

$$= a^2 \int \sqrt{\sin h^2 \theta} \cdot \sin h \theta d\theta$$

$$= a^2 \int (\frac{\cos h 2\theta - 1}{2}) d\theta$$

$$[\because \cos h 2\theta = 1 + 2 \sin h^2 \theta]$$

$$= \frac{a^2}{2} [\int \cos h 2\theta d\theta - \int d\theta]$$

$$= \frac{a^2}{2} \left[\frac{\sin h 2\theta}{2} - \theta \right]$$

$$= \frac{a^2}{2} \left[2 \sinh \theta \cos h \theta - \theta \right]$$

$$= \frac{a^2}{2} \left[\cos h \theta \sqrt{\cos h^2 \theta - 1} - \theta \right]$$

$$= \frac{a^2}{2} \left[\cos h \theta \sqrt{\cos h^2 \theta - 1} - \theta \right]$$

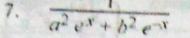
$$= \frac{a^2}{2} \left[x \sin h \theta \cos h \theta - \theta \right]$$

$$= \frac{a^2}{2} \left[\frac{x}{a} \sqrt{\frac{x^2}{a^2} - 1} - \cos h^{-1} \left(\frac{x}{a} \right) \right]$$

$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cos h^{-1} \left(\frac{x}{a} \right)$$

UNIT T

1



[Ans: ab tan b

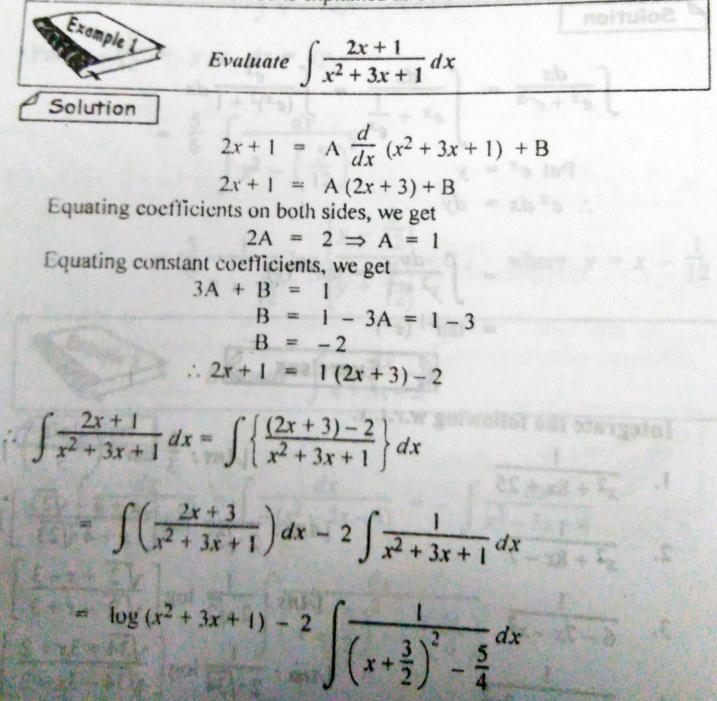
Type 4 : Integral of the form $\int \frac{px+q}{ax^2+bx^2+c} dx$

where a, b, c, p and q are constants.

In this type of problem, express the numerator px + q as follows :

px + q = A (derivative of denominator) + B

By equating like coefficients on both sides we get the values for the two unknowns. The method is explained as below :



 $= \log (x^{2} + 3x + 1) - 2 \int \frac{dx}{\left(x + \frac{3}{2}\right)^{2} - \left(\frac{\sqrt{5}}{2}\right)^{2}}$ $\log (x^2 + 3x + 1) - 2 \frac{1}{2\sqrt{5}} \log \frac{x + \frac{3}{2} - \frac{\sqrt{5}}{2}}{x + \frac{3}{2} + \frac{\sqrt{5}}{2}}$ $\log (x^2 + 3x + 1) - \frac{2}{\sqrt{5}} \log \frac{2x + 3 - \sqrt{5}}{2x + 3 + \sqrt{5}}$ Exception 2 Evaluate $\int \frac{3x+1}{2x^2-x+5} dx$ Solution $3x+1 = A \frac{d}{dx} (2x^2 - x + 5) + B$ Let 3x+1 = A(4x-1)+BEquating coefficient of 'x' on both sides we get $3 = 4A \Rightarrow A = \frac{3}{4}$ Equating constant coefficients we get, = -A + B $B = A + 1 = \frac{3}{4} + 1 = \frac{3+4}{4} = \frac{7}{4}$ $3x+1 = \frac{3}{4}(4x-1) + \frac{7}{4}$ $\int \frac{3x+1}{2x^2-x+5} dx = \int \left\{ \frac{\frac{3}{4}(4x-1)+\frac{7}{4}}{2x^2-x+5} \right\} dx$ $= \frac{3}{4} \int \frac{4x-1}{2x^2-x+5} dx + \frac{7}{4} \int \frac{dx}{2x^2-x+5}$ $= \frac{3}{4} \log (2x^2 - x + 5) + \frac{7}{4} \left(\frac{dx}{2(x^2 - \frac{x}{2} + \frac{5}{2})} \right)$

UNIT 7

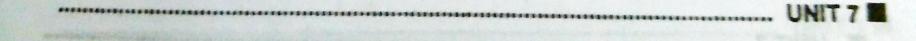
PROPERTIES OF DEFINITE INTEGRALS

We know very well that $\int f(x) dx = F(b) - F(a)$ where

[f(x) dx = F(x) + c

Thes the value of the definite integral depends only on the findin but.

Now we will see some properties of definite integrals.



7.120 Property 1: $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$ Proof: L.H.S. = $\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$ = F(b) - F(a) ...(1) R.H.S. = $-\int_{b}^{a} f(x) dx = -[F(x)]_{b}^{a}$ = -[F(a) - F(b)] = F(b) - F(a) ...(2)

From (1) and (2) we get

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$E.g., \int_{1}^{2} x^{2} dx = -\int_{2}^{1} x^{2} dx = \frac{7}{3}$$

Property 2: $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy$

L.H.S. =
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b}$$
 ...(1)
= $F(b) - F(a)$
R.H.S. = $\int_{a}^{b} f(y) dy = -[F(y)]_{b}^{a}$...(2)
= $F(b) - F(a)$ [$\because [f(y) = F(y) + c]$

From (1) and (2) we get,

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy$$

Thus the value of the definite integral depends only on the limits but not on the variable.

E.g.,
$$\int_{1}^{3} dx = \int_{1}^{3} y^{3} dy = \int_{1}^{3} u^{3} du$$
.

Property 3:
$$\int_{0}^{b} f(x) dx = \int_{0}^{c} f(x) dx + \int_{0}^{b} f(x) dx$$

where c is a point between a and b.
Proof: L.H.S. = $\int_{0}^{b} f(x) dx = [F(x)]_{a}^{b}$
= $F(b) - F(a)$...(1)
R.H.S. = $\int_{1}^{c} f(x) dx + \int_{0}^{c} f(x) dx$
= $[F(x)]_{a}^{c} + [F(x)]_{c}^{b}$
= $[F(c) - F(a)] + [F(b) - F(c)]$
= $F(c) - F(a) + F(b) - F(c)$
= $F(c) - F(a) + F(b) - F(c)$
= $F(c) - F(a) + f(x) dx$
a c
 $f(x) dx = \int_{1}^{c} f(x) dx + \int_{2}^{b} f(x) dx$
a c
E.g. $\int_{1}^{c} (x + x^{2}) dx = \int_{1}^{c} (x + x^{2}) dx + \int_{2}^{c} (x + x^{2}) dx$ where 2 lies between 1
and 3.
Property 4: $\int_{1}^{a} f(x) dx = \int_{1}^{a} f(a - x) dx$
 0
 $f(x) = \int_{0}^{a} f(a - x) dx = \int_{0}^{0} (x + x^{2}) dx + \int_{0}^{c} (x + x^{2}) dx$ where 2 lies between 1
and 3.
Property 4: $\int_{1}^{a} f(x) dx = \int_{1}^{a} f(a - x) dx$
 0
 $f(x) = \int_{0}^{a} f(a - x) dx = \int_{0}^{0} f(a - x) dx$
 $= \int_{0}^{a} f(a - x) dx = \int_{0}^{0} f(x + x^{2}) dx + \int_{0}^{0} (x + x^{2}) dx$ when $x = 0, y = a$
i.e., $-dx = dy$ when $x = 0, y = a$
 $\int_{0}^{a} f(a - x) dx = \int_{0}^{a} f(x) dx$ [Property 1]
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$
 $= \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$

7.121 '

... (1)

... (2)

Note : This property is very important in solving of many difficult problems in integration.

Property 5:
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(-x) dx$$

Proof : We know that

$$\int_{-a}^{a} \int_{-a}^{a} \int_{-a}^{0} \int_{-a}^{0} \int_{0}^{a} \int_{0}^{a}$$

(By property 3)

In the first integral on the right, put x = -y, dx = -dywhen x = -a, y = a; x = 0, y = 0

$$\int_{-a}^{0} \int_{a}^{0} f(x) dx = \int_{a}^{0} f(-y) (-dy) = -\int_{a}^{0} f(-y) dy$$
$$= \int_{a}^{a} f(-y) dy \text{ [By property (1)]}$$
$$= \int_{0}^{a} f(-x) dx \text{ [By property (2)]}$$

Substituting (2) in (1), we get

 $\int_{-a}^{a} f(x) dx = \int_{0}^{a} f(-x) dx + \int_{0}^{a} f(x) dx$

Corollary I : If f(x) is an odd function *i.e.*, f(-x) = -f(x) then

$$\int_{-a}^{a} f(x) dx = -\int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx$$

[In the above result by replacing f(-x) by -f(x)]

 $\therefore \int f(x) \, dx = 0$ [when f(x) is odd] $E.g. 1. \quad \int \sin^5 x \, dx = 0$ $[\cdot \cdot \sin^5 x \text{ is an odd function}]$ $\frac{-\pi}{2}$ $E.g. 2. \qquad \int x^3 dx = 0$ [$: x^3$ is an odd function]

7.123

LINIT T

7.124

$$\int_{\text{Le.}}^{2\pi} \int_{0}^{2\pi} f(x) dx = \int_{0}^{\pi} f(2a-x) dx \qquad \dots (2)$$
Le.
$$\int_{0}^{2\pi} f(x) dx = \int_{0}^{\pi} f(x) dx + \int_{0}^{\pi} f(2a-x) dx$$
Substituting (2) in (1) we get
$$\int_{0}^{2\pi} f(x) dx = \int_{0}^{2} f(x) dx + \int_{0}^{\pi} f(2a-x) dx$$
Corollary 1: If $f(x) = f(2a-x)$ then the above integral becomes
$$\int_{0}^{2\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$$

$$\int_{0}^{2\pi} f(x) dx = 2 \int_{0}^{\pi} f(x) dx$$
Corollary 2:
$$\int_{0}^{\pi} \sin^{n} x dx = 2 \int_{0}^{\pi} \sin^{n} x dx$$

$$\int_{0}^{2\pi} f(x) dx = 2 \int_{0}^{\pi} \sin^{n} x dx$$

$$\int_{0}^{2\pi} f(x) dx = 2 \int_{0}^{\pi} \sin^{n} x dx$$

$$\int_{0}^{2\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$$

$$\int_{0}^{2\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$$

$$\int_{0}^{2\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$$

$$\int_{0}^{2\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$$

$$\int_{0}^{2\pi/2} f(x) dx = 2 \int_{0}^{\pi/2} \sin^{n} x dx$$

$$\int_{0}^{\pi} f(x-x) = \sin^{n} 6 x$$

$$f(x-x) = \sin^{n} 6 (\pi-x) = \sin^{n} x$$

$$\int_{0}^{\pi} f(x) = f(2 \frac{\pi}{2} - x)$$

$$\int_{0}^{\pi} By \text{ cor 1 we get } \int_{0}^{\pi} \sin^{0} x dx = 2 \int_{0}^{\pi/2} \cos^{4} x dx$$

$$\int_{0}^{\pi} f(x) = \cos^{4} (\pi - x) = (-\cos x)^{4} = \cos^{4} x$$

$$\int_{0}^{\pi} f(x) = f(\pi - x)$$

Corollary 3: If
$$f(x) = -f(2a - x)$$
, then the result

$$\int_{2a}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{0}^{a} f(2a - x) dx$$

$$\int_{0}^{2a} f(x) dx = -\int_{0}^{a} f(2a - x) dx + \int_{0}^{a} f(2a - x) dx$$
i.e., $\int_{0}^{2a} f(x) dx = 0$
Note: $\int_{0}^{2a} f(x) dx = 0$

$$\int_{0}^{2a} \int_{0}^{2a} f(x) dx = 0$$

$$\int_{0}^{2a} \int_{0}^{2a} f(x) dx = 0$$

$$\int_{0}^{2a} \int_{0}^{2a} f(x - x) = -\cos^{3} x = -f(x)$$
i.e., $f(\pi - x) = -f(x)$
 $\therefore \int_{0}^{\pi} \cos^{3} x dx = 0$
Note: In general $\int_{0}^{\pi} \cos^{n} x dx = 0$, when *n* is odd.

$$\int_{0}^{2a} \int_{0}^{2a} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx$$

$$\int_{0}^{\pi} \frac{\sin^{n} x dx}{\sin^{n} x + \cos^{n} x} dx$$

$$\int_{0}^{\pi} \frac{\sin^{n} (\frac{\pi}{2} - x)}{\sin^{n} (\frac{\pi}{2} - x) + \cos^{n} (\frac{\pi}{2} - x)} dx$$

$$\left[\therefore \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx + \int_{0}^{a} f(a - x) dx + \int_{0}^{a} f(a - x) dx + \int_{0}^{a} f(x) dx + \int_{0}^{a} f(a - x) dx + \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx$$

$$\int_{0}^{\pi} \int_{0}^{\pi} \int_{$$

ł

A sid

... (1)

... (2)

 $= \int_{0}^{\frac{1}{2}} \frac{\cos^{n} x}{\cos^{n} x + \sin^{n} x} dx$

Adding (1) and (2) we get

$$\int \frac{\sin^n x}{\sin^n x + \cos^n x} \, dx + \int 0^{\frac{\pi}{2}} \frac{\cos^n x}{\cos^n x + \sin^n x} \, dx$$

$$\int_{0}^{\frac{1}{2}} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx$$

$$= \int_{0}^{\frac{\pi}{2}} dx = [x]_{0}^{\frac{\pi}{2}}$$

-

 $21 = \frac{\pi}{2}$

 $Evaluate \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx$

Solution

1.00

Lint -

 $1 = \int_{0}^{\frac{2}{3}} \frac{\sin^2 x}{\sin x + \cos x} dx$

By using the property $\iint_{0}^{a} f(x) dx = \iint_{0}^{a} f(a - x) dx$ we have

$$= \int_{0}^{\frac{\pi}{2}} \frac{\sin^2\left(\frac{\pi}{2} - x\right)}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} dx$$

Integrals of the form $\sqrt{(x-\alpha)(\beta-x)}$, $\frac{1}{\sqrt{(x-\alpha)(\beta-x)}}$ and $\sqrt{\frac{x-\alpha}{\beta-x}}$ where $\beta > \alpha$. The above integrals can be easily integrated by the substitution $x = \alpha \cos^2 \theta + \beta \sin^2 \theta.$ Example Evaluate $\int \sqrt{(x+1)(4-x)} dx$ Solution $\alpha = -1, \beta = 4$ Here $\beta > \alpha$ Put $x = -1\cos^2\theta + 4\sin^2\theta$ $dx = (2\cos\theta\sin\theta + 8\sin\theta\cos\theta) d\theta$ = $10 \cos \theta \sin \theta d\theta$ $x + 1 = -\cos^2 \theta + 4\sin^2 \theta + 1$ = $\sin^2 \theta + 4 \sin^2 \theta$ [:: $1 - \cos^2 \theta = \sin^2 \theta$] ... (1) $x+1 = 5\sin^2\theta$ $4-x = 4 - (-\cos^2\theta + 4\sin^2\theta)$ = $4 + \cos^2 \theta - 4 \sin^2 \theta$

 $= 4 (1 - \sin^2 \theta) + \cos^2 \theta$

 $= 4\cos^2\theta + \cos^2\theta$

= $5\cos^2\theta$

... (2)

$$\int \sqrt{(x+1)(4-x) \, dx} = \int \sqrt{5 \sin^2 \theta \cdot 5 \cos^2 \theta} \, 10 \cos \theta \sin \theta \, d\theta$$

$$= \int 5 \sin \theta \cos \theta \, 10 \cos \theta \sin \theta \, d\theta$$

$$= \int 5 \sin \theta \cos \theta \, 10 \cos \theta \sin \theta \, d\theta$$

$$= \int 50 \int (\sin \theta \cos \theta)^2 \, d\theta$$

$$= \frac{25}{2} \int (\sin^2 \theta \, 2\theta \, d\theta)$$

$$= \frac{25}{2} \int \left(\frac{1-\cos 4\theta}{2}\right) \, d\theta$$

$$= \frac{25}{4} \left[\theta - \frac{\sin 4\theta}{4}\right] \qquad \dots (3)$$

From (1), we get $\sin \theta = \sqrt{\frac{x+1}{5}}$
From (2), we get $\cos \theta = \sqrt{\frac{4-x}{5}}$
Substituting (4) in (3), we get
$$\int \sqrt{(x+1)(4-x)} \, dx = \frac{25}{4} \left[\sin^{-1} \sqrt{\frac{x+1}{5}} - \frac{2 \sin 2\theta \cos 2\theta}{4}\right]$$

$$= \frac{25}{4} \left[\sin^{-1} \sqrt{\frac{x+1}{5}} - \frac{1}{2} \cdot 2 \sin \theta \cos \theta (2 \cos^2 \theta - 1)\right]$$

$$= \frac{25}{4} \left[\sin^{-1} \sqrt{\frac{x+1}{5}} - \sqrt{\frac{x+1}{25}} \sqrt{\frac{4-x}{5}} \left(\frac{2(4-x)}{5} - 1\right)\right]$$

$$= \frac{25}{4} \left[\sin^{-1} \sqrt{\frac{x+1}{5}} - \sqrt{\frac{(x+1)(4-x)}{25}} \left(\frac{8-2x-5}{5}\right)\right]$$

$$= \frac{25}{4} \left[\sin^{-1} \sqrt{\frac{x+1}{5}} - \sqrt{(x+1)(4-x)}} \left(\frac{3-2x}{5}\right)$$

UNIT 7

Example 2	Evaluate $\int \sqrt{\frac{5-x}{x-2}} dx$	C P
Solution		nolonio 2
Here	$\alpha = 5, \beta = 2$	
Put	$x = 2\sin^2\theta + 5\cos^2\theta$	
	$dx = (4 \sin \theta \cos \theta - 10 \cos \theta \sin \theta) d\theta$	
	$= -6 \sin \theta \cos \theta d\theta$	
Now	$5-x = 5-2\sin^2\theta - 5\cos^2\theta$	
	$= 5 - 2 \sin^2 \theta - 5 (1 - \sin^2 \theta)$	
	$= 5 - 2\sin^2\theta - 5 + 5\sin^2\theta$	
	$5 - x = 3\sin^2\theta$	
	$\sin\theta = \sqrt{\frac{5-x}{3}}$	(1)
		(1)
Now .	$x-2 = 2\sin^2\theta + 5\cos^2\theta - 2$	
	$= 2\sin^2\theta + 5(1-\sin^2\theta) - 2$	
	$= 2\sin^2\theta + 5 - 5\sin^2\theta - 2$	
	$= -3\sin^2\theta + 3$	
	$= 3(1 - \sin^2 \theta)$	
	$x-2 = 3\cos^2\theta$	
⇒	$x-2 = 3\cos^2\theta$	
	$\cos\theta = \sqrt{\frac{x-2}{3}}$	· (2
$\int \sqrt{\frac{5}{x}}$	$\frac{1}{-2} dx = \int \sqrt{\frac{3}{3} \cos^2 \theta} \times -6 \sin \theta \cos \theta d\theta$ $= -6 \int \frac{\sin \theta}{\cos \theta} \sin \theta \cos \theta d\theta = -6$	6∫sin² θ <i>d</i> 'θ
	$= -6 \int \frac{[1 - \cos 2\theta]}{2} d\theta = -3 \left[\\ = -3 \left[\sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) - \sin \theta \cos \theta \right] \\ = -3 \left[\sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) - \frac{\sqrt{(5 - x)}}{3} \right] \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x)}{3} \\ = 3 \sin^{-1} \left(\frac{\sqrt{5 - x}}{3} \right) + \frac{\sqrt{(5 - x)}(x$	$\left[\frac{\theta}{x-2}\right]$
and the second sec		The second second

UNIT 7 🕷

7.69

V

111 (1)

... (2)

(3)

Evaluate
$$\int \frac{dx}{\sqrt{(x-\alpha)(\beta-x)}} (\beta < \alpha)$$

Solution

Example 1

7.70

 $x = \alpha \sin^2 \theta + \beta \cos^2 \theta$ $dx = (2\alpha \sin \theta \cos \theta - 2\beta \cos \theta \sin \theta) d\theta$ $= 2 (\alpha - \beta) \sin \theta \cos \theta d\theta$ $x - \alpha = \alpha \sin^2 \theta + \beta \cos^2 \theta - \alpha$ $= \alpha (\sin^2 \theta - 1) + \beta \cos^2 \theta$ $= \alpha (-\cos^2 \theta) + \beta \cos^2 \theta$ $\beta - x = (\beta - \alpha) \cos^2 \theta$ $\beta - x = \beta - \alpha \sin^2 \theta - \beta \cos^2 \theta$ $= \beta (1 - \cos^2 \theta) - \alpha \sin^2 \theta$ $= \beta \sin^2 \theta - \alpha \sin^2 \theta$ $\beta - x = (\beta - \alpha) \sin^2 \theta$

$$\int \frac{dx}{\sqrt{(x-\alpha)}(\beta-x)} = \int \frac{2(\alpha-\beta)\sin\theta\cos\theta\,d\theta}{\sqrt{(\beta-\alpha)}\cos^2\theta\,(\beta-\alpha)\sin^2\theta}$$
$$= -2\int d\theta$$
$$= -2\int d\theta$$
$$= -2(\theta)$$
$$= -2\sin^{-1}\sqrt{\frac{\beta-x}{\beta-\alpha}}$$

The I - Internal - Cat

BERNOULLI'S FORMULA

If u and v are functions of x then

$$\int uv \, dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$$

where u, u', u'', u''', represent the successive derivative of u and v_1, v_2, v_3, \ldots . represent the repeated integrals of v.

Evaluate
$$\int x^{4} e^{2x} dx$$

Solution
 $u = x^{4}$ $v = e^{2x}$
 $u' = 4x^{3}$ $v_{1} = \int e^{2x} dx = \frac{e^{2x}}{2}$
 $u'' = 12x^{2}$ $v_{2} = \frac{e^{2x}}{4}$
 $u''' = 24x$ $v_{3} = \frac{e^{2x}}{2}$
 $u^{iv} = 24$ $v_{4} = \frac{e^{2x}}{16}, v_{5} = \frac{e^{2x}}{32}$
By applying the above formula, we get
 $\int x^{4} e^{2x} dx = \frac{x^{4} \cdot e^{2x}}{2} - 4x^{3} \cdot \frac{e^{2x}}{4} + 12x^{2} \cdot \frac{e^{2x}}{8} - 24x \cdot \frac{e^{2x}}{16} + 24 \cdot \frac{e^{2x}}{32}$
 $= \frac{x^{4} e^{2x}}{2} - x^{3} e^{2x} + \frac{3x^{2}}{2} e^{2x} - \frac{3x}{2} e^{2x} + \frac{3}{2} e^{2x}$
Evaluate $\int x^{2} \sin^{2} x dx$.
Solution
 $u = x^{2};$ $v = \sin 2x$
 $u' = 2$ $v_{1} = -\frac{\cos 2x}{2}$
 $u'' = 2$ $v_{2} = -\frac{\sin 2x}{4}, v_{3} = \frac{\cos 2x}{8}$
By using the above formula
 $\int x^{2} \sin 2x dx = x^{2} \left(\frac{-\cos 2x}{2} \right) - (2x) \left(-\frac{\sin 2x}{4} \right) + 2 \left(\frac{\cos 2x}{8} \right)$

 $= \frac{x^2 \cos 2x}{2} + \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x$

1.01

REDUCTION FORMULA

1,

A reduction formula is a linear relationship which connects the given integral with other integrals which is of the same type but a lower index than the given integral. The original integral or the given integral can be evaluated by successive applications of this reduction formula. This definition of reduction formula can be easily understood from the following examples.

Reduction formula for $\int \sin^n x \, dx$ (*n* being +ve integer)

$$= \int \sin^{n} x \, dx$$

= $\int \sin^{n-1} x \sin x \, dx$
= $\int \sin^{n-1} x \, d(-\cos x)$ [$\because d(-\cos x) = \sin x \, dx$]
= $-\sin^{n-1} x \cos x - \int -\cos x \, d(\sin^{n-1} x)$
= $-\sin^{n-1} x \cos x + \int \cos x (n-1) \sin^{n-2} x \cos x \, dx$
= $-\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \cos^{2} x \, dx$
= $-\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x (1 - \sin^{2} x) \, dx$
= $-\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx - 1$

$$(n-1)\int\sin^n x\,dx$$

...... UNIT 7 18

I,,

$$= -\sin^{n-1} x \cos x + (n-1) I_{n-2} - (n-1)$$

$$I_n + (n-1) I_n = -\sin^{n-1} x \cos x + (n-1) I_{n-2}$$

$$I_n (1+n-1) = -\sin^{n-1} x \cos x + (n-1) I_{n-2}$$

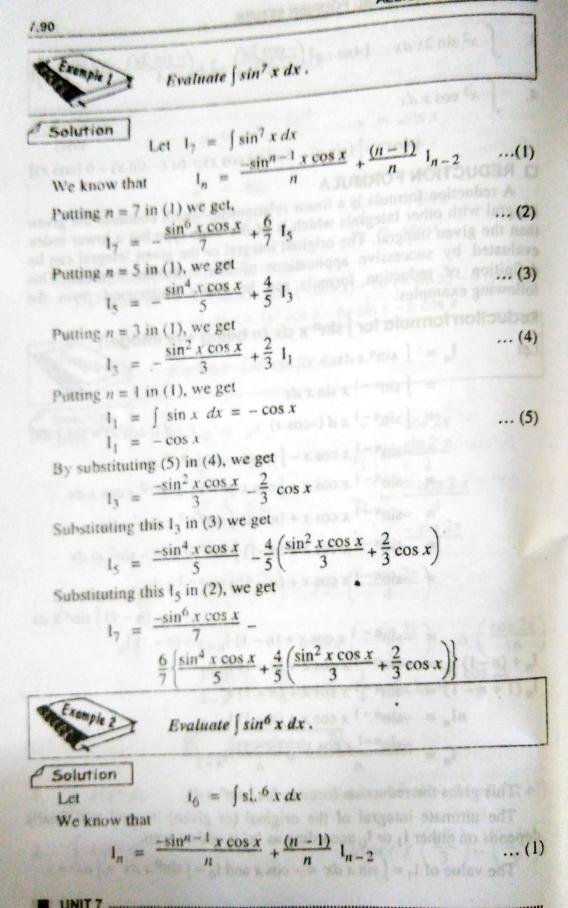
$$nI_n = -\sin^{n-1} x \cos x + (n-1) I_{n-2}$$

$$I_n = \frac{-\sin^{n-1} x \cos x}{n} + \frac{(n-1)}{n} I_{n-2}$$

This gives the reduction formula for $\int \sin^n x \, dx$

The ultimate integral of the original (or given) integral will finally depends on either I_1 or I_0 according as 'n' is odd or even.

The value of $I_1 = \int \sin x \, dx = -\cos x$ and $I_0 = \int \sin^0 x \, dx = \int dx = x$.



Putting
$$n = 6$$
 in (1), we get
 $I_6 = \frac{-\sin^5 x \cos x}{6} + \frac{5}{6} I_4$ (2)
Putting $n = 4$ in (1), we get
 $I_4 = \frac{-\sin^3 x \cos x}{4} + \frac{3}{4} I_2$ (3)
Putting $n = 2$ in (1), we get
 $I_2 = \frac{-\sin x \cos x}{2} + \frac{1}{2} I_0$ (4)
It is not possible to find I₀ from (1). But we know that
 $I_0 = \int \sin^0 x \, dx = \int dx = x$ [:: $(\sin x)^0 = 1$]
 $\therefore I_0 = x$ (5)
By using (2), (3), (4) and (5) we get
 $I_6 = \frac{-\sin^5 x \cos x}{6} + \frac{5}{6} \left[\frac{-\sin^3 x \cos x}{6} + \frac{3}{2} \left\{ \frac{-\sin x \cos x}{2} + \frac{1}{2} x \right\} \right]$
Evaluate $\int \sin^n x \, dx$ (*n being a positive integer*).
 0
Solution $\frac{\pi}{2}$
Let $I_n = \int \sin^n x \, dx$
We know that
 $\int \frac{\sin^n x \, dx}{1} = \left[\frac{-\sin^{n-1} x \cos x}{n} + \frac{(n-1)}{n} \int \sin^{n-2} x \, dx \right]$
 $\therefore I_n = \int \sin^n x \, dx = \left[\frac{-\sin^{n-1} x \cos x}{n} + \frac{(n-1)}{n} \int \int \sin^{n-2} x \, dx \right]$
For both upper and lower limits the first term in R.H.S. become zero.
 $\therefore I_n = \frac{n-1}{n} I_{n-2}$ (1)
Similarly $I_{n-2} = \frac{n-3}{n-4} I_{n-6}$ (3)

Substituting (2), (3), etc. in (1), we get

..... UNIT 7

7.92

UNIT 7

T

$$\therefore \int_{0}^{2} \sin^{9} x \, dx = \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} = \frac{384}{945}$$

Reduction formula for $\int \cos^n x \, dx$ (*n* being +ve integer)

Let
$$l_n = \int \cos^n x \, dx$$

$$= \int \cos^{n-1} x \cos x \, dx$$

$$= \int \cos^{n-1} x \, d(\sin x) \qquad [::\cos x \, dx = d(\sin x)]$$

$$= \cos^{n-1} x \sin x - \int \sin x \, d(\cos^{n-1} x)$$
Integrating by parts, we get,

I

$$= \cos^{n-1} x \sin x - \int \sin x (n-1) \cos^{n-2} x (-\sin x) dx$$

$$= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \sin^2 x \, dx$$

$$= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \left((1 - \cos^2 x) \right) dx$$

$$\cos^{n-1}x\sin x + (n-1)\int \cos^{n-2}x \, dx - \frac{1}{2}$$

$$(n - 1)$$
 cost x dx

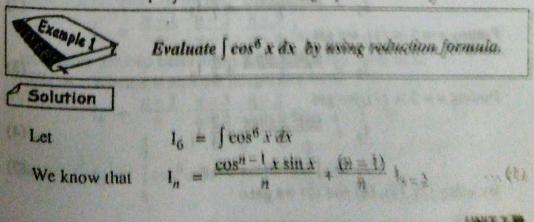
$$= \cos^{n-1} x \sin x + (n-1) \mathbf{1}_{n-2} - (n-1) \mathbf{1}_n$$

$$\mathbf{I}_n + (n-1) \mathbf{I}_n = \cos^{n-1} x \sin x + (n-1) \mathbf{1}_{n-2}$$

$$\mathbf{I}_n (1+n-1) = \cos^{n-1} x \sin x + (n-1) \mathbf{1}_{n-2}$$

$$\mathbf{I}_n = \frac{\cos^{n-1} x \sin x}{n} + \frac{(n-1)}{n} \mathbf{1}_{n-2}$$

This is the reduction formula for $\int \cos^{n} x \, dx$. The ultimate integral of the given integral will finally depends on either I_1 or I_0 according as n is odd or even. Now $I_1 = \int \cos x \, dx = \sin x$, $I_0 = \int \cos^0 x \, dx = \int dx = \infty$.



1 43

Putting n = 6, we get

$$I_6 = \frac{\cos^5 x \sin x}{6} + \frac{5}{6} I_4 \qquad \dots (2)$$

 $I_4 = \frac{\cos^3 x \sin x}{4} + \frac{3}{4} I_2$ Putting n = 4, we get ... (3)

Putting n = 2, we get

$$I_2 = \frac{\cos x \sin x}{2} + \frac{1}{2} I_0 \qquad \dots (4)$$

this a 1- agos are

Where
$$I_0 = \int \cos^0 x \, dx = \int dx = x$$

Substituting (5) in (4) we get

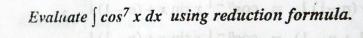
$$_2 = \frac{\cos x \sin x}{2} + \frac{1}{2} x$$

Substituting this value of l_2 in (3) we get

$$I_4 = \frac{\cos^3 x \sin x}{4} + \frac{3}{4} \left(\frac{\cos x \sin x}{2} + \frac{x}{2} \right)$$

Substituting this value of I_4 in (2), we get

$$I_{6} = \frac{\cos^{5} x \sin x}{6} + \frac{5}{6} \left[\frac{\cos^{3} x \sin x}{4} + \frac{3}{4} \left(\frac{\cos x \sin x}{2} + \frac{x}{2} \right) \right]$$



Solution

Lei

 $I_7 = \int \cos^7 x \, dx$

We know that $I_n = \frac{\cos^{n-1}x\sin x}{n} + \frac{(n-1)}{n} I_{n-2}$. (1) Putting n = 7 in (1), we get

$$I_7 = \frac{\cos^6 x \sin x}{7} + \frac{6}{7} I_5 \qquad \dots (2)$$

Putting n = 5 in (1), we get

$$= \frac{\cos^4 x \sin x}{5} + \frac{4}{5} I_3 \qquad \dots (3)$$

Putting n = 3 in (1), we get

Is

$$I_3 = \frac{\cos^2 x \sin x}{3} + \frac{2}{3} I_1 \qquad \dots (4)$$

 $I_1 = \int \cos x \, dx = \sin x \qquad \dots (5)$ By using (2), (3), (4) and (5) we get, UNIT 7

$$I_{7} = \frac{\cos^{6} x \sin x}{7} + \frac{6}{7} \left[\frac{\cos^{4} x \sin x}{5} + \frac{4}{5} \left(\frac{\cos^{2} x \sin x}{3} + \frac{2}{3} \sin x \right) \right]$$

Evaluate $\int \cos^{n} x \, dx$ (*n* being a positive integer)
 $\frac{x}{2}$
Let $I_{n} = \int \cos^{n} x \, dx$
We know that
 $\int \cos^{n} x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{(n-1)}{n} \int \cos^{n-2} x \, dx$
Here $I_{n} = \int \cos^{n} x \, dx$
 $= \left[\frac{\cos^{n-1} x \sin x}{n} \right]_{0}^{\frac{\pi}{2}} + \frac{n-1}{n} \int_{0}^{\frac{\pi}{2}} \cos^{n-2} x \, dx$
 $I_{n} = 0 + \frac{n-1}{n} I_{n-2}$
[: For both upper and lower limits the first term become zero]
 $I_{n} = \frac{n-1}{n} I_{n-2}$
[: For both upper and lower limits the first term become zero]
 $I_{n} = 4 = \frac{n-3}{n-2} I_{n-4}$... (2)
 $I_{n-4} = \frac{n-3}{n-4} I_{n-6}$... (3)
From (1), (2) and (3), we get
 $I_{n} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} I_{n-6}$
Now there are two cases arises depends on the value of *n*.
 $Case (i)$: When *n* is an even integer, we have.
 $I_{n} = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdot \frac{\pi}{10} \cdot \frac{\pi}{2} \cdot \frac{1}{10}$
Now $I_{0} = \int \cos^{0} x \, dx = \int dx = [x]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}$

0

...... UNIT 7

Case (ii) : When n is an odd integer, we have

$$I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3} \cdot I_1$$
Now $I_1 = \int \cos x \, dx = [\sin x]_0 = 1$
 $\therefore I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \cdots \frac{2}{3} \cdot 1$

Evaluate $\int \cos^8 x \, dx$.
 0

Solution
Here $n = 8$ is an even integer.
Hence using the formula under Case (i), we get
 $\frac{\pi^2}{2} \cos^8 x \, dx = \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{105\pi}{768}$

Solution
Here $n = 7$ is an odd integer.
Hence using the formula under Case (ii) we get,
 $\frac{\pi^2}{2} \cos^7 x \, dx$
 0

Solution
Here $n = 7$ is an odd integer.
Hence using the formula under Case (iii) we get,
 $\frac{\pi^2}{2} \cos^7 x \, dx = \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot 1 = \frac{48}{105}$

Reduction formula for $\int \sin^m x \cos^n x \, dx$ (*m*, *n* being positive integer)

We have two types of reduction formulae for $\int \sin^m x \cos^n x \, dx$.

- 1. By reducing the power of $\cos x$ (*i.e.*, reducing *n*)
- 2. By reducing the power of $\sin x$ (*i.e.*, reducing m)

Reduction formula for $\int \sin^m x \cos^n x \, dx$ by reducing *n*

1. Let $I_{m,n} = \int \sin^m x \cos^n x \, dx$.

- $= \int \sin^m x \cos^{n-1} x \cos x \, dx \, .$
- $= \int \sin^m x \cos^{n-1} x \, d \, (\sin x)$

UNIT 7 .

$$= \int \cos^{n-1} x \, d\left(\frac{\sin^{m+1} x}{m+1}\right) \qquad \left\{ \because \int x^n \, dx = \int d\left(\frac{x^{n+1}}{n+1}\right) \right\}$$

$$= \cos^{n-1} x \cdot \frac{\sin^{m+1} x}{m+1} - \int \frac{\sin^{m+1} x}{m+1} \, d\left(\cos^{n-1} x\right)$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} - \frac{1}{m+1} \int \sin^{m+1} x (n-1) \cos^{n-2} x (-\sin x) \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^{m+2} x \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x \sin^2 x \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x (1-\cos^2 x) \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x \cos^{n-2} x \, dx$$

$$= \frac{\cos^{n-1} x \sin^{m+1} x}{(m+1)} + \frac{n-1}{m+1} \int \sin^m x \cos^{n-2} x \, dx$$

$$I_{m,n}\left(1+\frac{n-1}{m+1}\right) = \frac{\cos^{n-1}x\sin^{m+1}x}{m+1} + \frac{n-1}{m+1}I_{m,n-2}$$

$$I_{m,n}\left(\frac{m+1+n-1}{m+1}\right) = \frac{\cos^{n-1}x\sin^{m+1}x}{m+1} + \frac{n-1}{m+1}I_{m,n-2}$$

$$I_{m,n}\left(\frac{m+n}{m+1}\right) = \frac{\cos^{n-1}x\sin^{m+1}x}{m+1} + \frac{n-1}{m+1}I_{m,n-2}$$

$$I_{m,n} = \frac{\cos^{n-1}x\sin^{m+1}x}{m+n} + \frac{n-1}{m+n}I_{m,n-2}$$

This is the required reduction formula in which the power of $\cos x$ is reduced by 2.

2. Reduction formula for $\int \sin^m x \cos^n x \, dx$ by reducing 'm'

Let
$$I_{m,n} = \int \sin^m x \cos^n x \, dx$$

$$= \int \sin^{m-1} x \sin x \cos^n x \, dx$$

$$= \int \sin^{m-1} x \cos^n x \, d(-\cos x)$$

$$= \int \sin^{m-1} x \, d\left(\frac{-\cos^{n+1} x}{n+1}\right) \qquad [\because \int x^n \, dx] = \int d\left(\frac{x^{n+1}}{n+1}\right)$$

..... UNIT 7 1

$$= \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} - \int \frac{-\cos^{n+1}x}{n+1} d(\sin^{m-1}x)$$

$$= \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{1}{n+1}\int \cos^{n+1}x(m-1)\sin^{m-2}x\cos x \, dx$$

$$= \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}\int \cos^{n}x\cos^{2}x\sin^{m-2}x \, dx$$

$$= \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}\int \cos^{n}x(1-\sin^{2}x)\sin^{m-2}x \, dx$$

$$= \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}\int \cos^{n}x\sin^{m-2}x \, dx$$

$$-\frac{m-1}{n+1}\int \sin^{m}x\cos^{n}x \, dx$$

$$I_{m,n} = \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}I_{m-2,n} - \frac{m-1}{n+1}I_{m,n}$$

$$I_{m,n}\left(1+\frac{m-1}{n+1}\right) = \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}I_{m-2,n}$$

$$I_{m,n}\left(\frac{m+n}{n+1}\right) = \frac{-\sin^{m-1}x\cos^{n+1}x}{n+1} + \frac{m-1}{n+1}I_{m-2,n}$$

$$I_{m,n} = \frac{-\sin^{m-1}x\cos^{n+1}x}{m+n} + \frac{m-1}{m+n}I_{m-2,n}$$

This is another form of reduction formula in which the power of $\sin x$ *i.e.*, *m*, is reduced by 2.

Note 1 : Consider the formula

$$I_{m,n} = \frac{\cos^{n-1}x\sin^{m+1}x}{m+n} + \frac{n-1}{m+n} I_{m,n-2}$$

Here if n is odd, then the ultimate integral is $I_{m, 1}$.

$$I_{m,1} = \int \sin^m x \cos^1 x \, dx = \int \sin^m x \, d \, (\sin x)$$
$$= \frac{\sin^{m+1} x}{m+1}$$

If n is even, then the ultimate integral is $I_{m,0}$.

Now $I_{m,0} = \int \sin^m x \cos^0 x \, dx$ = $\int \sin^m x \, dx$

This can be evaluated by using the reduction formula for $\int \sin^m x \, dx$. Note 2 : Consider the formula

$$l_{m,n} = \frac{-\sin^{m-1}x\cos^{n+1}x}{m+n} + \frac{m-1}{m+n}l_{m-2}$$

If m is odd, then the ultimate integral is $I_{1,m}$

Now

$$I_{1,n} = \int \sin x \cos^n x \, dx = \int \cos^n x \, d \left(-\cos x\right)$$
$$= \frac{-\cos^{n+1} x}{n+1}$$

If m is even, then the ultimate integral is $I_{0,n}$.

Now

$$l_{0,n} = \int \sin^0 x \cos^n x \, dx$$
$$= \int \cos^n x \, dx$$

which can be evaluated by using the reduction formula for $\int \cos^n x \, dx$.

Note 3 : If both m and n are odd integer reduce the smaller index. Similarly if both m and n are even reduce the smaller index.

Evaluate
$$\int \sin^{m} x \cos^{n} x dx$$
.
Solution

$$\int \prod_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n} x dx.$$
We know that

$$\int \sin^{m} x \cos^{n} x dx = \frac{\cos^{n-1} x \sin^{m+1} x}{m+n} + \frac{n-1}{m+n} \int \sin^{m} x \cos^{n-2} x dx$$

$$\frac{\pi}{2} \sin^{m} x \cos^{n} x dx = \left[\frac{\cos^{n-1} x \sin^{m+1} x}{m+n}\right]_{0}^{\frac{\pi}{2}} + \frac{n-1}{m+n} \int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n-2} x dx$$

$$\lim_{n,n} = 0 + \frac{n-1}{m+n} \prod_{m,n-2}$$
Similarly

$$\lim_{m,n-2} = \frac{n-3}{m+n-2} \prod_{m,n-4}$$

$$\lim_{m,n-4} = \frac{n-5}{m+n-4} \lim_{m,n-6}$$
when n is odd

$$\lim_{m,n} = \frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \cdot \frac{n-5}{m+n-4} \cdots \lim_{m,1} \cdots (A)$$

7.9/9

 $\frac{7.100}{\text{when } n \text{ is even}} \quad I_{m,n} = \frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \cdot \frac{n-5}{m+n-4} \cdots I_{m,0} \qquad \cdots \text{ (B)}$ Now, $I_{m,1} = \left(\int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos x \, dx \right)$ $= \int_{0}^{\frac{\pi}{2}} \sin^{m} x \, d(\sin \langle x \rangle) = \left[\frac{\sin^{m+1} x}{m+1} \right]_{0}^{\frac{\pi}{2}}$ $\therefore I_{m,1} = \frac{1}{m+1} \qquad \cdots \text{ (C)}$ $\frac{\pi}{2}$ $I_{m,0} = \int_{0}^{\pi} \sin^{m} x \, dx$ $= \frac{m-1}{m} \cdot \frac{m-3}{m-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2} \text{ (m is even)} \qquad \cdots \text{ (D)}$ $= \frac{m-1}{m} \cdot \frac{m-3}{m-2} \cdots \frac{2}{3} \text{ (m is odd)} \qquad \cdots \text{ (E)}$ Combining (A) and (C) we get

$$I_{m,n} = \frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \cdot \frac{n-5}{m+n-4} \cdots \frac{2}{m+3} \cdot \frac{1}{m+1}$$

(n is odd, m may be odd or even)

Combining (B) and (D) we get

$$I_{m,n} = \left[\frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \cdot \frac{n-5}{m+n-4} \cdots \frac{1}{m+2}\right]$$

$$\left[\frac{m-1}{m} \cdot \frac{m-3}{m-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}\right]$$

(Both m and n are even)

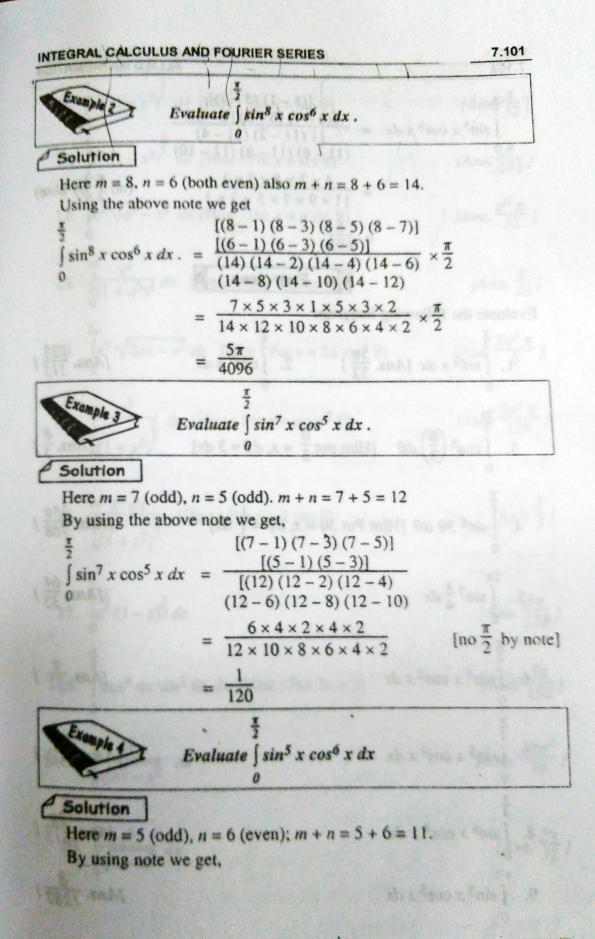
Combining (B) and (E) we get

$$I_{m,n} = \left[\frac{n-1}{m+n} \cdot \frac{n-3}{m+n-2} \cdot \frac{n-5}{m+n-4} \cdots \frac{1}{m+2}\right] \left[\frac{m-1}{m} \cdot \frac{m-3}{m-2} \cdots \frac{2}{3}\right]$$
(*n* is even *m* is odd

Note : $\int_{0}^{\frac{\pi}{2}} \sin^{m} x \cos^{n} x \, dx \, .$ 0 $= \frac{[(m-1)(m-3) \dots \text{ go on subtracting 2 till we get 1]}}{[(m+n)(m+n-2) \dots \text{ go on subtracting 2 till we get 1]}}$

....

UNIT 7



ALLIED MATHEMATICS 7.102 [(5-1)(5-3)][(6-1)(6-3)(6-5)] $\int \sin^5 x \cos^6 x \, dx$ 11(11-2)(11-4)(11-6)(11-8)(11-10) $4 \times 2 \times 5 \times 3 \times 1$ $(no\frac{\pi}{2} by note)$ $11 \times 9 \times 7 \times 5 \times 3 \times 1$ 693

Reduction formula for
$$\int x^n e^{ax} dx$$
 (*n* being a positive integer)
Let $I_n = \int x^n e^{ax} dx = \int x^n d\left(\frac{e^{ax}}{a}\right)$
 $= \frac{x^n e^{ax}}{a} - \int \frac{e^{ax}}{a} \cdot nx^{n-1} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx$
 $I_n = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-1}$
This is the reduction formula for $\int x^n e^{ax} dx$.
Evaluate $\int x^5 e^{2x} dx$.
Solution
Let $I_5 = \int x^5 e^{2x} dx$
We know that $I_n = \frac{x^n e^{ax}}{a} - \frac{n}{a} I_{n-1}$...(1)
Putting $n = 5$ in (1), we get
 $I_5 = \frac{x^5 e^{2x}}{2} - \frac{5}{2} I_4$...(2)
(For our problem $n = 5, a = 2$)
Putting $n = 4, 3, 2, 1$ successively in (1), we get respectively

$$I_{4} = \frac{x^{4} e^{2x}}{2} - \frac{4}{2} I_{3} \qquad \dots (3)$$

$$I_{3} = \frac{x^{3} e^{2x}}{2} - \frac{3}{2} I_{2} \qquad \dots (4)$$

$$I_{2} = \frac{x^{2} e^{2x}}{2} - \frac{2}{2} I_{1} \qquad \dots (5)$$

$$I_{1} = \frac{xe^{2x}}{2} - \frac{1}{2} I_{0} \qquad \dots (6)$$

$$I_{0} = \int x^{0} e^{2x} x \, dx = \int e^{2x} \, dx = \frac{e^{2x}}{2} \qquad \dots (7)$$
From (2), (3), (4), (5), (6) and (7), we get
$$I_{5} = \frac{x^{5} e^{2x}}{2} - \frac{5}{2} \left[\frac{x^{4} e^{2x}}{2} - 2 \left\{ \frac{x^{3} e^{2x}}{2} - \frac{3}{2} \left(\frac{x^{2} e^{2x}}{2} - \frac{xe^{2x} + 1}{4} e^{2x} \right) \right\} \right]$$
Simplifying we get
$$= \frac{x^{5} e^{2x}}{2} - \frac{5}{2} \left[\frac{x^{4} e^{2x}}{2} - x^{3} e^{2x} + \frac{3}{2} x^{2} e^{2x} - \frac{3}{2} xe^{2x} + \frac{3}{4} e^{2x} \right]$$
If $I_{n} = \int x^{n} e^{-x} \, dx$, n being a positive integer, show that
$$\int_{0}^{\infty} x^{n} e^{-x} \, dx = n!$$
Solution
Given
$$I_{n} = \int x^{n} e^{-x} \, dx$$

$$= \int x^{n} d(-e^{-x})$$

$$= -x^{n} e^{-x} - \int -e^{-x} d(x^{n})$$

$$= -x^{n} e^{-x} + n \int e^{-x} x^{n-1} \, dx$$

$$I_{n} = -x^{n} e^{-x} + n \int e^{-x} x^{n-1} \, dx$$

$$I_{n} = -x^{n} e^{-x} + n \int e^{-x} \, dx$$

$$I_{n} = -x^{n} e^{-x} + n \int e^{-x} \, dx$$

Now $I_n = \int_0^\infty x^n e^{-x} dx = [-x^n e^{-x}]_0^\infty + n \int_0^\infty x^{n-1} e^{-x} dx$ i.e., $I_n = 0 + n I_{n-1}$ (2) • $\therefore I_{n-1} = 0 + (n-1)I_{n-2}$... (3) $l_{n-2} = (n-2) l_{n-3}$, etc. ... (4)

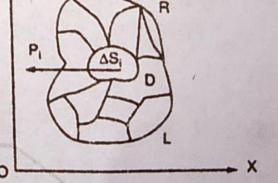
From (2), (3), and (4) we get $l_n = n(n-1)(n-2)(n-3)...l_0$ $l_0 = \int x^0 e^{-x} dx = [-e^{-x}]_0^\infty = (0+1) = 1$ where $l_n = n(n-1)(n-2)...3\cdot 2\cdot 1$ $l_n = n!$ Example 3 If $I_n = \int x^n e^{-x} dx$, prove that $I_n - (n+a) I_{n-1} + a (n-1) I_{n-2} = 0.$ Solution $l_n = \int x^n e^{-x} dx = \int x^n d(-e^{-x})$ $= [-x^{n}e^{-x}]_{0}^{a} - \int -e^{-x} d(x^{n})$ $= (-a^n e^{-a} + 0) + \int n x^{n-1} e^{-x} dx$ $l_n = -a^n e^{-a} + nl_{n-1}$ Replacing n by n - 1 in (1), we get, $I_{n-1} = -a^{n-1}e^{-a} + (n-1)I_{n-2}$ $al_{n-1} = -a^n e^{-a} + a(n-1)l_{n-2}$ L.P. $(1) - (2) \Rightarrow \quad \mathbf{l}_n - a\mathbf{l}_{n-1} = n\mathbf{l}_{n-1} - a(n-1)\mathbf{l}_{n-2}$. (2) $l_{n-1} l_{n} - (a+n) l_{n-1} + a (n-1) l_{n-2} = 0$

Reduction formula to 1

MULTIPLE INTEGRALS (DOUBLE AND TRIPLE INTEGRALS)

Let us consider a closed region R bounded by a line L in the XY-plane. In the region R let z = f(x, y) be a continuous function. Let us divide the region R into *n* parts as $\Delta s_1, \Delta s_2,$..., Δs_n . $\Delta s_1, \Delta s_2, \ldots, \Delta s_n$ are called subregions. To avoid confusion let us assume that $\Delta s_1, \Delta s_2, \ldots, \Delta s_n$ represents subregions

as well as their areas.



Let P_i be any point in the subregion Δs_i [whether P_i may lie inside or in boundary of Δs_i and P_i = (x_i, y_i)]

D EVALUATION OF DOUBLE INTEGRALS

We know that the double integral over the region R of a function f(x, y) is

$$\iint_{\mathsf{R}} f(x, y) \, dx \, dy \qquad \dots (1)$$

Case (i) : Now let R be the region bounded by the lines $x = c_1$, $x = c_2$. $y = c_3$ and $y = c_4$ where c_1 , c_2 , c_3 , c_4 are constants. Clearly the region R is a rectangle ABCD as shown in figure. Since we know the region of integration R the double integral $\iint_R f(x, y) dx dy$ can be written as R

 $\int_{a_{3}c_{1}}^{c_{4}c_{2}} \int_{a_{3}c_{1}}^{c_{4}c_{2}} \dots (2)$ (Here we replace R by putting the limits for both x and y)

NOTE: Consider the double integral $\left[\int f(x,y) \, dx \, dy \right]$

Evaluate dy dx 0 Solution $a\sqrt{a^2 - x^2} \qquad a \qquad \sqrt{a^2 - x^2} \\ \int \int dy \, dx = \int [y] \qquad dx$ $\sqrt{a^2-x^2} dx$ きた 25% $= \left\{ \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + \frac{x}{2} \sqrt{a^2 - x^2} \right\}$ 1 = 22 sin2 0

$$= \frac{d^2}{2} \sin^{-1}(1) = \frac{\pi d^2}{4}$$
Evaluate $\int_{0}^{2a} \int_{0}^{2ax - x^2} xy \, dy \, dx$

$$= \int_{0}^{2a} \sqrt{2ax - x^2} \, dx$$

$$= \int_{0}^{2a} \sqrt{2ax - x^2} \, dx$$

$$= \int_{0}^{2a} \left[\frac{2ax - x^2}{2} \right] \, dx$$

$$= \int_{0}^{2a} \left[\frac{2ax - x^2}{2} \right] \, dx$$

$$= \int_{0}^{2a} \left[\frac{2ax - x^2}{2} \right] \, dx$$

$$= \int_{0}^{2a} \left[\frac{ax^2 - x^2}{2} \right] \, dx$$

$$= \left[a \cdot \frac{x^3}{3} - \frac{x^4}{8} \right]_{0}^{2a} = \left[a \cdot \frac{8a^3}{3} - \frac{16a^4}{8} \right]$$

$$= \left[\frac{8}{3} a^4 - 2a^4 \right]$$

$$= \frac{2a^4}{3}$$
Evaluate $\int_{0}^{\frac{\pi}{2}} a \cos \theta$

$$\frac{x \cos \theta}{\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} dx \, d\theta}$$
Put $a^2 - r^2 \, dr \, d\theta$
Put $a^2 - r^2 = t$

$$-2r \, dr = dt$$

$$r \, dr = \frac{-dt}{2}$$

$$r = 0, \quad t = a^2$$

$$r = a \cos \theta, \quad t = a^2 \sin^2 \theta$$

$$= -\frac{1}{2} \left[\frac{\frac{2}{3}}{\frac{1}{3}} \right]_{a^{2}}^{a^{2} \sin^{3}\theta}$$

$$= -\frac{1}{3} \left[(a^{2} \sin^{2}\theta)^{\frac{3}{2}} - (a^{2})^{\frac{3}{2}} \right]$$

$$= -\frac{1}{3} \left[(a^{3} \sin^{3}\theta - a^{3}) \right]$$

$$\frac{\pi}{2} a \cos^{\theta} \sqrt{a^{2} - r^{2}} dr d\theta = -\frac{1}{3} \int_{a}^{\frac{\pi}{2}} \left[a^{3} (\sin^{3}\theta - 1) \right] d\theta$$

$$= -\frac{a^{3}}{3} \left[\frac{\pi}{2} - \frac{1}{3} \right]$$

$$= -\frac{a^{3}}{3} \left[\frac{2}{3} - \frac{\pi}{2} \right]$$

$$= \frac{a^{3}}{3} \left[\frac{\pi}{2} - \frac{2}{3} \right]$$

$$Evaluate \int \int r^{2} dr d\theta$$

$$= -\frac{\pi}{2} \left[\frac{r^{3}}{3} \right]_{0}^{2} \cos^{\theta} d\theta = \frac{1}{3} \int 8 \cos^{3}\theta d\theta$$

$$= -\frac{\pi}{2} \left[\frac{\pi}{3} - \frac{\pi}{2} \right]$$

$$Evaluate \int \int r^{2} dr d\theta$$

$$= -\frac{\pi}{2} \left[\frac{\pi}{3} - \frac{\pi}{2} \right]$$

$$Evaluate \int \int r^{2} dr d\theta$$

$$= -\frac{\pi}{2} \left[\frac{\pi}{3} - \frac{\pi}{2} \right]$$

$$Evaluate \int \int r^{2} dr d\theta$$

$$= -\frac{\pi}{2} \left[\frac{\pi}{3} - \frac{\pi}{2} \right]$$

$$= -\frac{\pi}{3} \left[\frac{\pi}{3} - \frac{\pi}{2} \right]$$

$$= -\frac{\pi}{3} \left[\frac{\pi}{3} - \frac{\pi}{3} \right]$$

THCS $1\sqrt{1+x^2}$ $\int \frac{dy \, dx}{1 + x^2 + v^2}$ Evaluate [Solution $\int_{0}^{1} \frac{\sqrt{1+x^{2}}}{\int_{0}^{1} \frac{dy \, dx}{1+x^{2}+y^{2}}} = \int_{0}^{1} \frac{\sqrt{1+x^{2}}}{\int_{0}^{1} \frac{dy}{y^{2}+(\sqrt{x^{2}+1})^{2}}} \, dx$ $= \int_{0}^{1} \frac{1}{\sqrt{x^2 + 1}} \left\{ \tan^{-1} \left[\frac{y}{\sqrt{x^2 + 1}} \right] \right\}_{0}^{\sqrt{1 + x^2}} dx$ $= \int \frac{1}{\sqrt{x^2 + 1}} \left[\tan^{-1} \left(1 \right) - \tan^{-1} \left(0 \right) \right] dx$ $= \frac{\pi}{4} \int \frac{1}{\sqrt{x^2 + 1}} dx = \frac{\pi}{4} \left[\log \left(x + \sqrt{x^2 + 1} \right) \right]_0^0$ $= \frac{\pi}{4} \left[\log \left(1 + \sqrt{2} \right) \right]$ Evaluate $\int \sqrt{x} (x^2 + y^2) dy dx$ xemple 6 Solution $1\sqrt{x}$ $\int \int (x^{2} + y^{2}) \, dy \, dx = \int \left[x^{2} y + \frac{y^{3}}{3} \right]^{\sqrt{x}} dx$ $= \int \left[\left(x^{5/2} + \frac{x^{3/2}}{3} \right) - \left(x^3 + \frac{x^3}{3} \right) \right] dx$ $= \int \left(x^{5/2} + \frac{x^{3/2}}{3} - \frac{4x^3}{3} \right) dx$ $= \left[\frac{x^{7/2}}{7/2} + \frac{x^{5/2}}{3 \times 5/2} - \frac{4}{3} \frac{x^4}{4}\right]^1$ $=\frac{2}{7}+\frac{2}{15}-\frac{1}{3}=\frac{3}{35}$

Evaluate
$$\int_{0}^{2} \int_{x}^{x^{2}} e^{y/x} dy dx$$
Solution
$$\int_{0}^{2} \int_{x}^{x^{2}} e^{y/x} dy dx = \int_{0}^{2} \left(\frac{e^{y/x}}{1/x}\right)_{0}^{x^{2}} dx \qquad \left[\int e^{ax} dx = \frac{e^{ax}}{a}\right]$$

$$= \int_{0}^{2} \int_{x}^{x^{2}} e^{x^{2}/x} dx = \int_{0}^{2} xe^{x} dx$$

$$= (xe^{x} - e^{x})_{0}^{2} = 2e^{2} - e^{2} + 1$$

$$= e^{2} - 1$$
Evaluate
$$\int_{0}^{\pi} xy dx dy$$

$$= \frac{a}{2} \left[\int_{0}^{\sqrt{ay}} dy dx = \int_{0}^{a} \sqrt{\frac{ay}{2}} dy dx = \frac{a}{2} \left[\int_{0}^{\sqrt{ay}} dy dx = \int_{0}^{a} y \frac{dy}{2} dy dx = \frac{a}{2} \left[\int_{0}^{\sqrt{ay}} dy dx dy = \int_{0}^{a} y \frac{dy}{2} dy dx = \frac{a}{6} d^{3} dx$$

$$= \frac{e^{4}}{6}$$
Solution
$$\frac{\pi}{2} = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{ay}} dy dx dy = \int_{0}^{\pi} \left[-\cos(\theta + \phi)\right]_{0}^{\frac{\pi}{2}} d\phi$$

$$= \int_{0}^{\frac{\pi}{2}} \left[-\cos\left(\frac{\pi}{2} + \phi\right) + \cos\phi\right] d\phi$$

$$= \int_{0}^{\frac{\pi}{2}} (\sin \phi + \cos \phi) \, d\phi$$

$$[\because \cos (90 + \phi) = -\sin \phi]$$

$$= [-\cos \phi + \sin \phi]_{0}^{\frac{\pi}{2}}$$

$$= [-\cos \phi + \sin \phi]_{0}^{\frac{\pi}{2}}$$

$$= 0 + 1 + 1 - 0 = 2$$

EVALUATION OF TRIPLE INTEGRALS =
EVALUATION OF TRIPLE INTEGRALS =
EVALUATION OF TRIPLE INTEGRALS =
Solution

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y + z + 1)^{-3} \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} [-\frac{1}{2}(x + y + z + 1)^{-3} \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1-x} [-\frac{1}{2}(x + y + z + 1)^{-2}]_{0}^{1-x-y} \, dy \, dx$$

$$= -\frac{1}{2} \int_{0}^{1} [\frac{1}{2}(2)^{-2} - (x + y + 1)^{-2}] \, dy \, dx$$

$$= -\frac{1}{2} \int_{0}^{1} [\frac{1}{4} + (x + y + 1)^{-1}]_{0}^{1-x} \, dx$$

$$= -\frac{1}{2} \int_{0}^{1} [\frac{1}{4} + (x + y + 1)^{-1}]_{0}^{1-x} \, dx$$

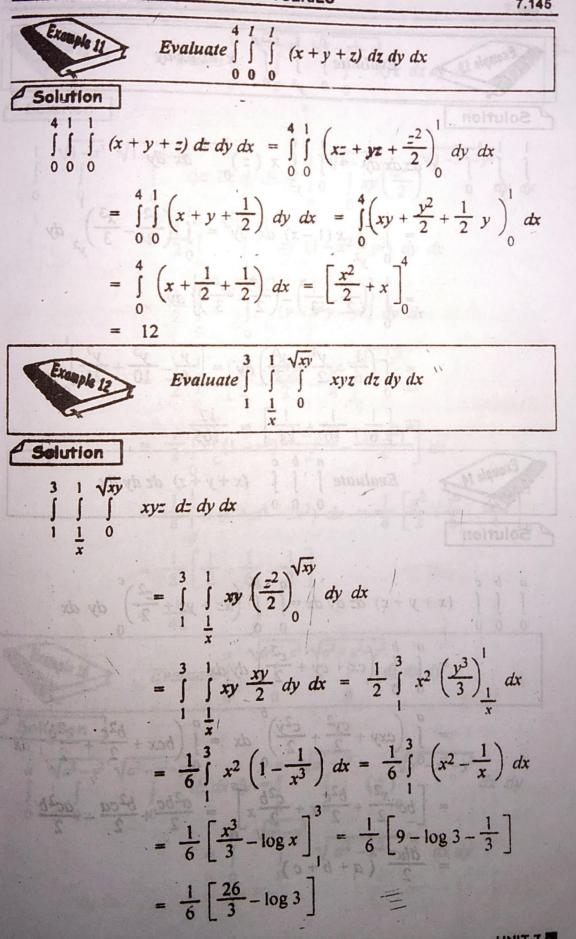
$$= -\frac{1}{2} \int_{0}^{1} [\frac{1}{4} + (x + y + 1)^{-1}]_{0}^{1-x} \, dx$$

$$= -\frac{1}{2} \int_{0}^{1} [\frac{1}{4} - \frac{x}{x-1-1}] \, dx = -\frac{1}{2} \int_{0}^{1} [\frac{1}{4} - \frac{x}{4} - \frac{1}{x+1}] \, dx$$

$$= -\frac{1}{2} \int_{0}^{1} (\frac{3}{4} - \frac{x}{4} - \frac{1}{x+1}) \, dx = -\frac{1}{2} \int_{0}^{1} [\frac{3}{4} - \frac{x}{4} - \frac{1}{x+1}] \, dx$$

$$= -\frac{1}{2} [\frac{3}{4}x - \frac{x^{2}}{8} - \log(x + 1)]_{0}^{1}$$

$$= -\frac{1}{2} [\frac{3}{4} - \frac{1}{8} - \log 2] = \frac{1}{16} [8 \log 2 - 5]$$



..... UNIT 7

$$Evaluate \int_{0}^{1} \int_{y^{2}}^{1-x} x \, dz \, dx \, dy$$
Solution
$$\int_{0}^{1} \int_{y^{2}}^{1-x} x \, dz \, dx \, dy = \int_{0}^{1} \int_{y^{2}}^{1} x (z)_{0}^{1-x} \, dx \, dy$$

$$= \int_{0}^{1} \int_{y^{2}}^{1} x (1-x) \, dx \, dy = \int_{0}^{1} \left(\frac{x^{2}}{2} - \frac{x^{3}}{3}\right)_{y^{2}}^{1} dy$$

$$= \int_{0}^{1} \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{y^{4}}{2} - \frac{y^{6}}{3}\right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{y^{4}}{2} - \frac{y^{6}}{3}\right) dy$$

$$= \int_{0}^{1} \left(\frac{1}{6} - \frac{y^{4}}{2} + \frac{y^{6}}{3}\right) dy = \left[\frac{y}{6} - \frac{y^{5}}{10} + \frac{y^{7}}{21}\right]_{0}^{1}$$

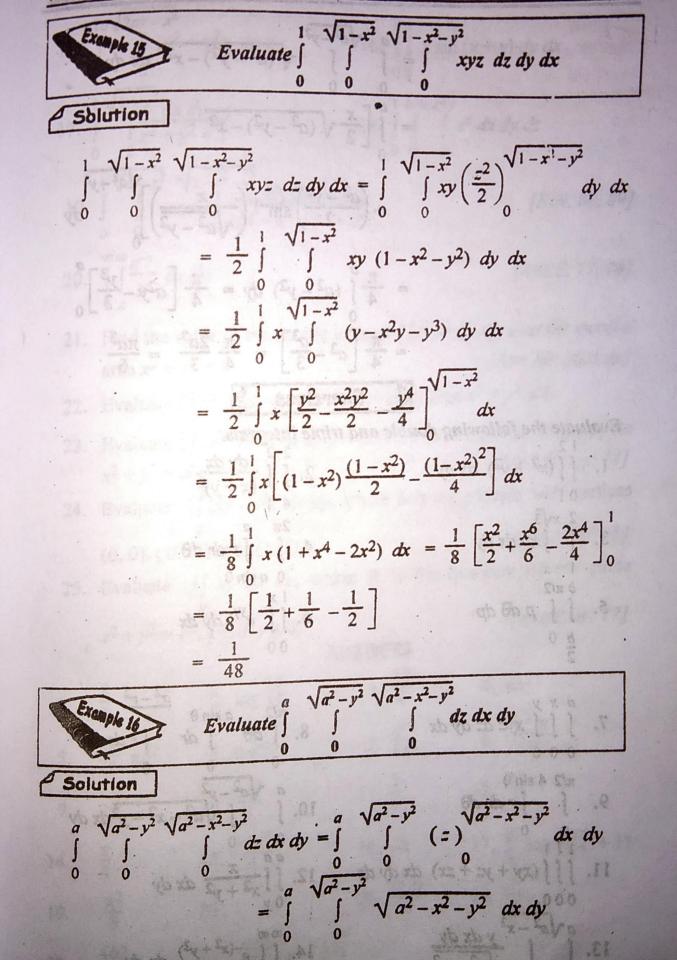
$$= \left[\frac{1}{6} - \frac{1}{10} + \frac{1}{21}\right] = \frac{12}{105}$$
Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y + z) \, dz \, dy \, dx$

$$\int \frac{1}{2} \int_{0}^{1} \int_{0}^{1} (x + y + z) \, dz \, dy \, dx = \int_{0}^{1} \int_{0}^{1} (x + y + z) \, dz \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1} (cx + cy + \frac{c^{2}}{2}) \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{1} (cxy + \frac{cy^{2}}{2} + \frac{c^{2}y}{2})_{0}^{1} dx = \int_{0}^{1} (bcx + \frac{b^{2}c}{2} + \frac{c^{2}b}{2}) \, dx$$

$$= \left[bc \frac{x^{2}}{2} + \frac{b^{2}c}{2}x + \frac{c^{2}b}{2}x^{2} \int_{0}^{1} dx = \frac{a^{2}bc}{2} + \frac{b^{2}ca}{2} - \frac{ac^{2}b}{2}$$



 $= \int \int \sqrt{(a^2 - y^2)} - x^2 \, dx \, dy$ $= \int \left[\frac{x}{2} \sqrt{(a^2 - y^2) - x^2} \right]$ $+\left(\frac{a^2-y^2}{2}\right)\sin^{-1}\left(\frac{x}{\sqrt{a^2-y^2}}\right)\bigg]_{0}^{\sqrt{a^2-y^2}}dy$ $= \frac{\pi}{4} \int (a^2 - y^2) \, dy = \frac{\pi}{4} \left[a^2 y - \frac{y^3}{3} \right]_0$ $= \frac{\pi}{4} \left[a^3 - \frac{a^3}{3} \right] = \frac{\pi}{4} \frac{2a^3}{3} = \frac{\pi a^3}{6}$

CHANGE OF ORDER OF INTEGRATION

The evaluation of some double integrals may be very difficult. In the case, we may evaluate it easily by changing the order of integration in given double integral. When we change the order of integration the limit are also changed. The following points are very important when the change of order of integration takes place.

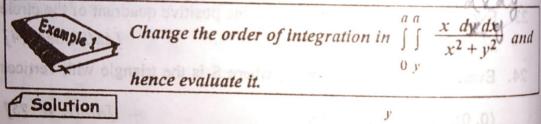
If the limits of the inner integral is a function of, (or function of y) then the first integration should be w.r.t. y (or w.r.t. x)

Draw the region of integration by using the given limits. (Here 2. the knowledge of parabola, ellipse, hyperbola, circle, straight lines are required).

If the integration is first w.r.t. x keeping y as a constant the 3. consider the horizontal strip and find the new limits accordingly.

If the integration is first w.r.t. y, keeping x as a constant the 4. consider the vertical strip and find the new limits accordingly.

After finding the new limits evaluate the inner integral first and 5. then the outer integral.



y = x

r = a

v = 0

First we have to rewrite the given problem as follows.

x dx dy0 y

INIT 7

The limits for x varies from x = y to x = a and the limits for y varies from y = 0to y = a.

The region of integration is enclosed between the following curves. y=0 (x - axis)

x=0

- y = x (a line which bisects the angle between x-axis and y-axis)
- x = a (a line parallel to y axis passing at a distance of 'a' unit from y - axis)
- y = a (a line parallel to x axis passing at a distance of 'a' unit from x - axis)

This region of integration is shown in the figure.

Now we have to change the order of integration. That is we have to first integrate w.r.t. y and then w.r.t. x. Since the first integration is w.r.t. y we have to consider vertical strip.

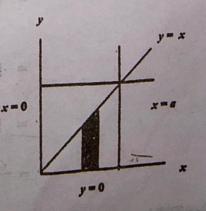
For this vertical strip (see figure) the limits for 'y' varies from 0 to x.

Now we move this vertical strip horizontally from x = 0 to x = a.

i.e., the limits for x is x = 0 to x = a. Hence $\int_{0}^{a} \int_{0}^{a} \frac{x \, dx \, dy}{x^2 + y^2} = \int_{0}^{a} \int_{0}^{x} \frac{x \, dy \, dx}{x^2 + y^2} = \int_{0}^{a} \left(\int_{0}^{x} \frac{x \, dy}{y^2 + x^2} \right) dx$ $= \int_{0}^{a} x \left[\frac{1}{x} \tan^{-1} \left(\frac{y}{x} \right) \right]^{x} dx$ $\therefore \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$ $= \int_{a}^{a} \left[\tan^{-1}\left(\frac{x}{x}\right) - \frac{1}{x} \tan^{-1}\left(\frac{0}{x}\right) \right] dx$ $= \int_{0}^{a} \tan^{-1} (1) dx = \frac{\pi}{4} \int_{0}^{a} dx$ $= \frac{\pi}{4} [x]_{0}^{a} = \frac{\pi}{4} [a-0]$ 25 { (x) sol - [S] - 1 na Change the order of integration in $\int \int$ Example and hence evaluate it. Solution

First we have to rewrite the given problem as

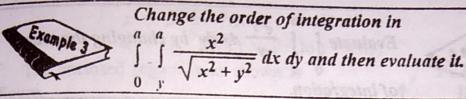
The region of integration is the region enclosed by the four lines y = 0, y = a, x = a, x = y. This region of integration is shown in the figure.



Now we have to change the order of integration. That is our first integration should be w.r.t. y and then w.r.t. x. Since the first integration is w.r.t. y we have to consider vertical strip.

The limits for this vertical strip are y = 0 to y = x. Then we slide this strip horizontally from x = 0 to x = a. *i.e.*, the limits for x is x = 0 to x = a.

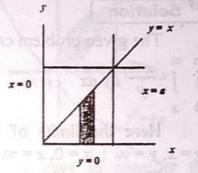
Hence
$$\int_{0}^{a} \int_{y}^{a} \frac{x \, dx \, dy}{\sqrt{x^{2} + y^{2}}} = \int_{0}^{a} \int_{0}^{x} \frac{x \, dy \, dx}{\sqrt{y^{2} + x^{2}}} \\ = \int_{0}^{a} x \left[\log(y + \sqrt{y^{2} + x^{2}}) \right]_{0}^{x} dx \\ = \int_{0}^{a} x \left[\log(y + \sqrt{y^{2} + x^{2}}) \right]_{0}^{x} dx \\ \left[\because \int \frac{dx}{\sqrt{x^{2} + a^{2}}} = \log\left[x + \sqrt{x^{2} + a^{2}}\right] \right] \\ = \int_{0}^{a} x \left\{ \log\left[x + \sqrt{x^{2} + x^{2}}\right] - \log(\sqrt{x^{2}}) \right\} dx \\ = \int_{0}^{a} x \left\{ \log\left[x + \sqrt{2 x^{2}}\right] - \log(x) \right\} dx \\ = \int_{0}^{a} x \left\{ \log x \left[1 + \sqrt{2} \right] - \log(x) \right\} dx \\ = \int_{0}^{a} x \left[\log x + \log\left(1 + \sqrt{2}\right) - \log x \right] dx \\ = \int_{0}^{a} x \log\left(1 + \sqrt{2}\right) dx \\ = \log\left(1 + \sqrt{2}\right) \int_{0}^{a} x \, dx \\ = \log\left(1 + \sqrt{2}\right) \left[\frac{x^{2}}{2} \right]_{0}^{a} \\ = \log\left(1 + \sqrt{2}\right) \left[\frac{a^{2}}{2} - 0 \right] \\ = \log\left(1 + \sqrt{2}\right) \left[\frac{a^{2}}{2} - 0 \right] \\ = \frac{d^{2}}{2} \log\left(1 + \sqrt{2}\right)$$



Solution

The limits for x varies from x = y to x = a and the limits for y varies from y = 0 to y = a.

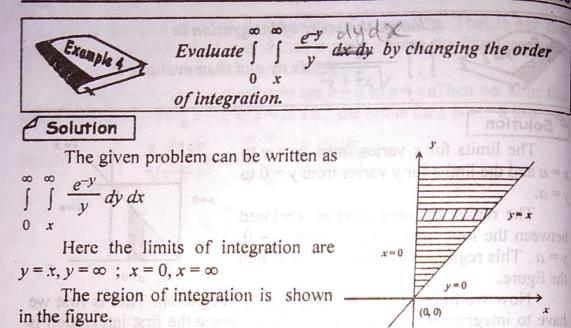
The region of integration is enclosed between the four lines x = y, x = a, y = 0, y = a. This region of integration is shown in the figure.



Now we have to change the order of integration. That is first we have to integrate w.r.t. y and then w.r.t. x. Since the first integration is w.r.t. y we have to consider the vertical strip. Along vertical strip the limits for 'y' varies from y = 0 to y = x.

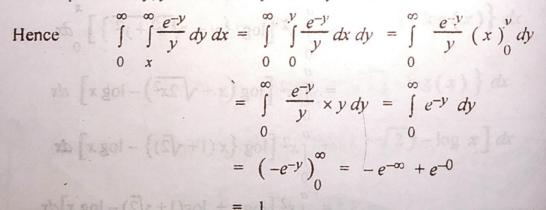
Now sliding this strip horizontally x varies from x = 0 to x = a.

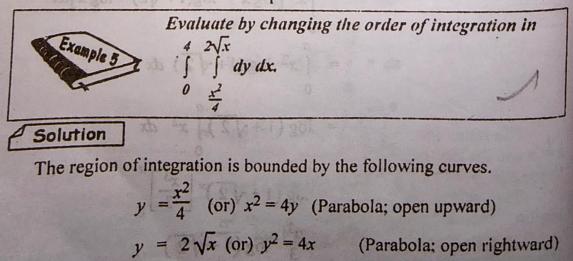
Hence
$$\int_{0}^{a} \int_{y}^{x^{2} + y^{2}} dx \, dy = \int_{0}^{a} \int_{0}^{x} \frac{x^{2}}{\sqrt{x^{2} + y^{2}}} \, dy \, dx$$
$$= \int_{0}^{a} x^{2} \left[\log \left\{ y + \sqrt{x^{2} + y^{2}} \right\} \right]_{0}^{x} dx$$
$$= \int_{0}^{a} x^{2} \left[\log \left\{ x + \sqrt{2x^{2}} \right\} - \log x \right] \, dx$$
$$= \int_{0}^{a} x^{2} \left[\log \left\{ x (1 + \sqrt{2}) \right\} - \log x \right] \, dx$$
$$= \int_{0}^{a} x^{2} \left[\log x + \log(1 + \sqrt{2}) - \log x \right] \, dx$$
$$= \int_{0}^{a} x^{2} \left[\log x + \log(1 + \sqrt{2}) - \log x \right] \, dx$$
$$= \log \left(1 + \sqrt{2} \right) \int_{0}^{a} x^{2} \, dx$$
$$= \log \left(1 + \sqrt{2} \right) \left[\frac{x^{3}}{3} \right]_{0}^{a}$$
$$= \frac{a^{3}}{3} \log \left(1 + \sqrt{2} \right)$$



To change the order means we have to first integrate w.r.t. 'x' and then w.r.t. 'y'.

Since the first integration is w.r.t. 'x' we have to consider horizontal strip. Along this horizontal strip x varies from x = 0 to x = y. Now sliding this strip vertically, y varies from y = 0 to $y = \infty$.



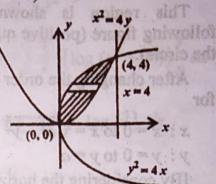


x = 0 (y - axis)x = 4 (line-parallel to y - axis)

The enclosed region is as shown is figure.

The point of intersection of the parabolas $x^2 = 4y$ and $y^2 = 4x$ is (4, 4). The line x = 4 is also passing through the point (4, 4).

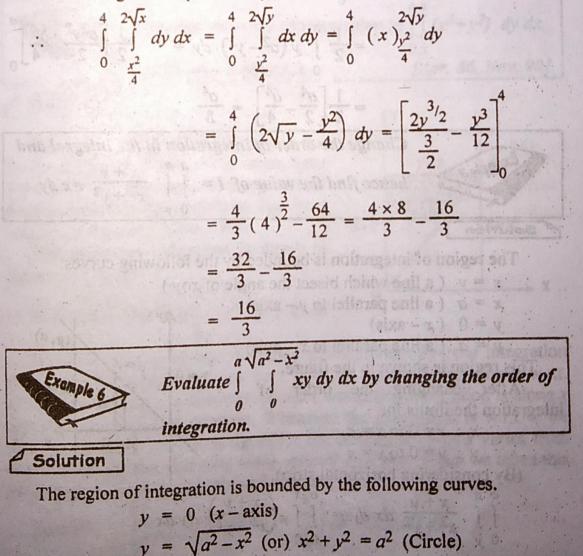
After changing the order of integration the first integration should be w.r.t. 'x' and then w.r.t. 'y'.

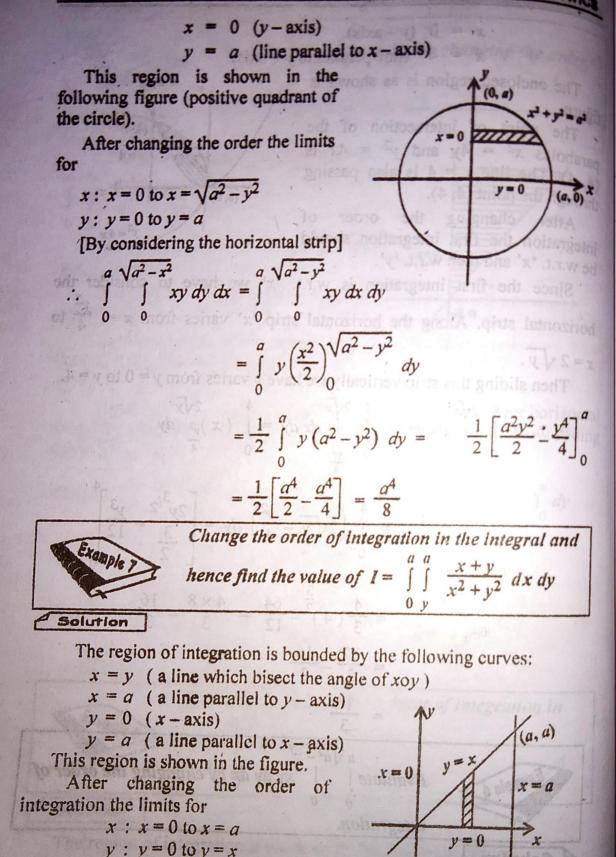


UNIT

Since the first integration is w.r.t. 'x' we have to consider the horizontal strip. Along the horizontal strip 'x' varies from $x = \frac{y^2}{4}$ to $x = 2\sqrt{y}$.

Then sliding this strip vertically we have y varies from y = 0 to y = 4.





(By considering horizontal strip),

$$\int_{0}^{a} \frac{x+y}{x^2+y^2} \, dx \, dy = \int_{0}^{a} \int_{0}^{x} \left(\frac{x+y}{x^2+y^2}\right) \, dy \, dx$$

$$= \int_{0}^{a} \int_{0}^{x} \frac{x}{x^{2} + y^{2}} dy dx + \int_{0}^{a} \int_{0}^{x} \frac{y}{x^{2} + y^{2}} dy dx$$

$$= \int_{0}^{a} x \left\{ \frac{1}{x} \tan^{-1} \left(\frac{y}{x} \right) \right\}_{0}^{x} dx + \int_{0}^{a} \frac{1}{2} \left\{ \log \left(x^{2} + y^{2} \right) \right\}_{0}^{x} dx$$

$$= \int_{0}^{a} \left(\frac{\pi}{4} - 0 \right) dx + \int_{0}^{a} \frac{1}{2} \left\{ \log \left(2x^{2} \right) - \log x^{2} \right\} dx$$

$$= \frac{\pi}{4} \left(x \right)_{0}^{a} + \frac{1}{2} \int_{0}^{a} \log \left(\frac{2x^{2}}{x^{2}} \right) dx$$

$$= \frac{\pi a}{4} + \frac{1}{2} \log 2 \times a$$

$$= \frac{\pi a}{4} + \frac{a}{2} \log 2$$
Change the order of integration in $\int_{0}^{a} (x^{2} + y^{2}) dy dx$
and hence evaluate it (Arr. 86 Nov. 90)

Solution

Here the limits for y varies from y = xto y = a and the limits for x varies from x = 0 to x = a. Our region of integration is the area enclosed between these four lines viz. y = x, y = a, x = 0 and x = a.

The region of integration is shown in figure.

x = 0 y = x x = a x = a

The given integral is $\int \int (x^2 + y^2) dy dx$.

Now we have to change the order of integration. *i.e.*, our integration should be first w.r.t. x and then w.r.t. y. When the first integration is w.r.t. x, we have to keep y as constant. In other words first integration is along x direction keeping y as constant. Whenever the integration is w.r.t. x we take horizontal strips. From figure for the horizontal strips x varies from 0 to y. Now we slide this strip along vertical direction. When we move this strip along vertical direction y varies from 0 to a.

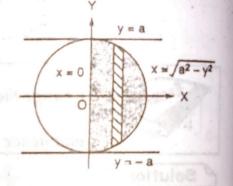
Hence

 $\int_{0x}^{aa} (x^2 + y^2) \, dy \, dx = \int_{0x}^{ay} \int_{0x}^{ay} (x^2 + y^2) \, dx \, dy$

 $= \int_{0}^{a} \left[\frac{x^{3}}{3} + y^{2} \cdot x \right]_{0}^{y} dy = \int_{0}^{a} \left(\frac{y^{3}}{3} + y^{3} \right) dy$ $= \left[\frac{y^{4}}{12} + \frac{y^{4}}{4}\right]_{0}^{a} = \frac{a^{4}}{12} + \frac{a^{4}}{4} = \frac{a^{4}}{3}$ ava2-Change the order of integration in x dx dy. -a [Nov. 88] Solution

The limits for x varies from x = 0 to $x = \sqrt{a^2 - y^2}$ and the limits for y varies from y = -a to y = a.

The region of integration is the region enclosed between the curves x = 0(Y axis), $x = \sqrt{a^2 - y^2}$ (i.e., $x^2 + y^2 = a^2$ which is a circle whose centre is at (0, 0) and radius a), y = -a (a line parallel to X axis passing through (0, -a)), y = a(a line parallel to X axis passing through the point (0, a)). This region is shown in the figure.



Now we have to change the order of integration. That is we first integrate w.r.t. y and then w.r.t. x since first integration is w.r.t. y we consider vertical strip. For this vertical strip y varies from $y = -\sqrt{a^2 - x^2}$ to $y = \sqrt{a^2 - x^2}$. Now we slide this vertical strip horizontally from x = 0 to x = a.

Hence $\int_{-a}^{a\sqrt{a^2-y^2}} \int_{-a}^{a} \sqrt{a^2-x^2} = \int_{0}^{a} \sqrt{a^2-x^2} = \int_{0}^{a} \sqrt{a^2-x^2} \int_{0}^{x} dy dx$ $= 2 \int_{0}^{a} \int_{0}^{x} dy dx$ $= 2 \int_{0}^{a} \int_{0}^{x} (y) \sqrt{a^2-x^2} dx = 2 \int_{0}^{a} x \sqrt{a^2-x^2} dx$ Put $x = a \sin \theta$

 $dx = a \cos \theta \, d\theta$ when $x = 0, \theta = 0$ when $x = a, \theta = \frac{\pi}{2}$

1 (m+ 1) dute = [[(m+ -1)]

$$= 2\int_{0}^{\frac{\pi}{2}} a \sin \theta \sqrt{a^2 - a^2 \sin^2 \theta} \quad a \cos \theta \, d\theta$$

$$= 2a^3 \int_{0}^{\frac{\pi}{2}} \sin \theta \cos^2 \theta \, d\theta = 2a^3 \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d(-\cos \theta)$$

$$= 2a^3 \left[\frac{-\cos^3 \theta}{3} \right]_{0}^{\frac{\pi}{2}} = \frac{2a^3}{3}$$
Change the order of integration and hence
$$= 4a^2 \sqrt{ax}$$
evaluate it $\int_{0}^{\frac{\pi}{2}} f(x) \, dy \, dx$

$$= \frac{4a^2 \sqrt{ax}}{4a}$$
Solution

The limits for y varies from $y = \frac{x^2}{4a}$ to $y = 2\sqrt{ax}$ and the limits for x varies from x = 0 to x = 4a.

The region of integration is enclosed between the following curves viz. $x^2 = 4ay$ (parabola) $y^2 = 4ax$ (parabola), x = 0(Y axis), and x = 4a (a line parallel to Y axis passing through the point (4a, 0)).

The two curves $x^2 = 4ay$ and $y^2 = 4ax$ meet at the point (4a, 4a). Also the line x = 4a passes through the point of intersection of the two parabolas. The region of integration is shown in figure.

 $x^{2} = 4ay$ $y^{2} = 4ax$ $y^{2} = 4ax$ x

For the portion B, we have

region of integration is shown in figure. Now we have to change the order of integration. That is first we integrate w.r.t. x and then w.r.t. y. Since first integration is w.r.t. x, we consider horizontal strip. For the horizontal strip (see fig.) the limits for x varies from $x = \frac{y^2}{4a}$ to $x = \sqrt{4ay}$. Then we move this strip vertically from y = 0 to y = 4a. Hence $4a \ 2\sqrt{ax} \qquad 4a \ 2\sqrt{ay} \ 4a \ 2\sqrt{$

UNIT 7

$$= \int_{0}^{4a} \left[\frac{4ay}{2} \cdot y - \frac{y^{4}}{2 \cdot 16a^{2}} \cdot y \right] dy$$

$$= \left[2a \cdot \frac{y^{3}}{3} \right]_{0}^{4a} - \left[\frac{1}{32 \cdot a^{2}} \cdot \frac{y^{6}}{6} \right]_{0}^{4a}$$

$$= \frac{2a}{3} (64a^{3}) - \frac{1}{32 \times 6 \times a^{2}} (256 \times 16a^{6})$$

$$= \frac{128a^{4}}{3} - \frac{64a^{4}}{3} = \frac{64a^{4}}{3}$$
Change the order of integration and then evaluate
$$\int_{1}^{1} \frac{2-x}{3} \int_{1}^{1} \frac{1}{32 \cdot x} dy dx.$$

Solution

UNIT 7

Here the limits for y varies from $y = x^2$ to y = 2 - x and the limits for x varies from x = 0 to x = 1.

 $= x^{2}$

X = 1

x = 0

The region of integration is shown in figure. Now we have to change the order of integration. That is first integration is w.r.t. x and second integration should w.r.t. y. Since the first integration should w.r.t. x we consider horizontal strips.

 $\int \int dx^2$

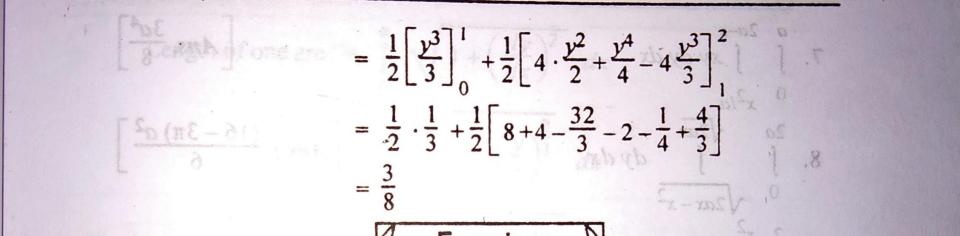
From figure, the region of integration may be divided into two portions A and B. For the portion A, we have

$$I_1 = \int_{0}^{1} \int_{0}^{\sqrt{y}} xy \, dx \, dy$$

For the portion B, we have

$$l_{2} = \int_{0}^{2} \int_{0}^{2-y} xy \, dx \, dy$$

Hence $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dy \, dx = \int_{0}^{1} \int_{0}^{\sqrt{y}} xy \, dx \, dy + \int_{1}^{2} \int_{0}^{2-y} xy \, dx \, dy$
$$= \int_{0}^{1} \left[\frac{x^{2}y}{2} \right]_{0}^{\sqrt{y}} dy + \int_{1}^{2} \left[\frac{x^{2}y}{2} \right]_{0}^{2-y} dy$$
$$= \int_{0}^{1} \frac{y^{2}}{2} dy + \int_{1}^{2} \frac{(2-y)^{2}y}{2} dy$$



4. Spen).dx = Spean).dx $5 \cdot \int^{a} g(x) \cdot dx = \int^{a} g(x) \cdot dx + \int^{a} g(-x) \cdot dx$ (act m) ais an odd punction, The box If + f(x) r.e., g(-x) = -f(x) then $\int g(x) \cdot dx = -\int g(x) \cdot dx + \int g(x) \cdot dx$ 70 If g(n) is an even function i.e. BC-x)=B(x) them $\int_{-\alpha}^{\alpha} g(x) \cdot dx = \int_{0}^{\alpha} g(x) \cdot dx + \int_{0}^{\alpha} g(x) \cdot dx$ $\frac{1}{2}\int g(x) \cdot dx$ 80 $\int g(x) dx = \int g(x) dx + \int g(2a-x) dx$ 9. If B(x) = f(2a - x), (a) $\int g(x) \cdot dx = 2 \int g(x) \cdot dx$ Fourier cerus of the function Fourier sources the Definition: (periodic function) A function B(x) is said to be

Example : B(n) = Sin x We take $T = 2\pi$ $i \beta(x+T) = Sin(x+2T)$ $= 8inx \cos 2\pi + \cos x \sin x$ $= 8inx \cdot 1 + \cos x \cdot 0$ cb. chg2 + rb. cr38 2 - = xh. cr38 IIIly it is time for Lin, 60, 8m But 211 is Least value => P(n) = sinx is a provide forction with the pould 2TT. => p(n)= cosn is a periodic function with the period 211 =) B(n)= tann is the period function With period To Fourier series in (0,28) Fourier series of the function f(n) is the interval (0, 21) is given by at a short $\pi \pi + \frac{2}{5} bn \sin \frac{n\pi \pi}{x}$ $g(\pi) = \frac{\alpha_0}{3} + \frac{2}{n=1} an \cos \frac{n\pi \pi}{x} + \frac{2}{n=1} bn \sin \frac{n\pi \pi}{x}$ where $a_0 = \frac{1}{x} \int_{0}^{2x} g(x) \cdot dx$ where $a_0 = \frac{1}{x} \int_{0}^{2x} g(x) \cdot dx$ $a_0 = \frac{1}{x} \int_{0}^{2x} g(x) \cdot dx \int_{0}^{11x} dx$ and $a_0 = \frac{1}{x} \int_{0}^{2x} g(x) \cdot s \cdot n\pi \cdot dx$

ao, an and be are called Fuller's Here constants p une minut Fourier series in (0,277): Fourier series of the function B(x) in The interval $(0, 2\pi)$ is given by $g(\pi) = \frac{a_0}{2} + \frac{2}{n=1} a_n \cos n \pi + \frac{2}{n=1} b_n \sin n \pi$ othe where, $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $a_0 = \frac{1}{\pi} \int g(\mathbf{x}) \cdot d\mathbf{x}$ $a_n = \frac{1}{\pi} \int B(x) \cos nx \cdot dx$ rb. ma die Catil. 7 and $bn = \frac{1}{\pi} \int g(x) \sin nx \, dx$ Here ao, an, briese Euler's constant. Fourier services in (-2,2) The function & (x) in the interval (-2, 2) is given by perit. $g(x) = \frac{a_0}{2} + \frac{z}{n=1} a_n \cos \frac{n\pi x}{2} + \frac{z}{n=1} a_n$ where S because x because in any one powed and Here ao, ani bin are Euler's Constant. finte

Fourier series in (-TI, T) Fourier series of the function B(x) in the interval (-TT, TT) is given by $\beta(n) = \frac{a_0}{2} + \frac{z}{2} a_n \cosh n + \frac{z}{n=1}$ $a_0 = \frac{1}{\pi} \int g(x) dx$ $a_n = \frac{1}{n} \int g(x) cosnx dx$ Shore an= 1 & Carteson. da bn = $\frac{1}{T}$ $\int f(x) \sin n\pi dx$ Here ao, an, and bn are called Euler's constant. Condition for A fourier expansion (0) & roiteres & [Divichlet's condition] Any function B(x) can be dureloped as a fourier series $\frac{\alpha_0}{2} + \frac{2}{n=1}$ e Marie Z brising where as, an, bri are constant, provided. evence 1) B(x) is periodic, singled valued and finite 1) B(x) has a firite number of firite discontinuities in any one period and no infinite discontinuity is f(x) has at the most a finite number of maxima and minima. 's constant.

8 (TT-1) = (ing (TT+h) = (in(TT+h)=1) h-yo h-yo h-yo : g(x) de (ix=T) = TATT2 B (TT-) = (im B (T1-h)= (in(TT-h)=T h-) 0 (-h) 8 (x) at (x=1)= 8(n-)+ 8(n+) Left hand vinit + signe have : B(x) dt (x= n) = n402 20 TL x 2 TL x 2 TT MT X TO x = (m) g т) он (м= 2 П) = 8 (0) + 8 (211) 8 2 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 End End endre value point g(m) = n (0, a) gEnd point at end DISCONTINOUS B(w) = ~ in (0,2T) B(w) at B(w) at * = T/2, B(T/2) = T/2 Substitute the volue Continuous = (20) 8 és

1. The first out formulas
1. Borrow Util formulas:
Jurida =
$$uri - urid + urid - \dots$$

where
 $u = du$, $u = d^{2u}$.
 $u = frida$, $v = frida$.
 $u = frida$.
 $u = frida$, $v = frida$.
 $u = fri$

$$\begin{cases} (w) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos nn + \sum_{n=1}^{\infty} bn \operatorname{Ston} nn \\ 0 = -\frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} [n - \frac{1}{\pi} - \frac{1}{2\pi}]^{2\pi} \\ 0 = \frac{1}{\pi} \int_{0}^{2\pi} [n - \frac{1}{\pi} - \frac{1}{2\pi}]^{2\pi} \\ 0 = \frac{1}{\pi} \int_{0}^{2\pi} [n - \frac{1}{\pi}]^{2\pi} - (0 - 0)] \\ = \frac{1}{\pi} \int_{0}^{2\pi} [n - n] (\cos nn dn) \\ = \frac{1}{\pi} \int_{0}^{2\pi} [n - n] (\cos nn dn) \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\cos nn dn) \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\cos nn dn) \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\cos nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\cos nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn \\ = \frac{1}{\pi} \int_{0}^{2\pi} (\pi - n) (\sin nn) dn$$

$$bn = \frac{1}{n} \begin{bmatrix} an \\ n \end{bmatrix}$$

$$bn = \frac{1}{n} \begin{bmatrix} an \\ n \end{bmatrix}$$

$$bn = \frac{1}{n} \begin{bmatrix} an \\ n \end{bmatrix}$$

$$contains = \frac{1$$

 $\frac{1}{\pi} \left[\frac{2}{n^2} \frac{\sin n\pi}{n} - 2\pi \left(\frac{-\cos n\pi}{n^2} \right) + 2 \left(\frac{-\sin n\pi}{n^3} \right) \right]_{0}$ $= \frac{1}{\pi} \left[\frac{\chi^2 \hat{s} n n \chi}{n} + \frac{2 \chi cos n \chi}{p^2} - \frac{2 \hat{s} n n \chi}{n 3} \right]^{2\pi}$ $= \left(\frac{1}{\pi}\left[\left(0+\frac{4\pi}{n^2}-0\right)-\left(0+0-0\right)\right]\right]$ ar 4 n2 $bn = \frac{1}{\pi} \int g(x) \cdot \frac{dx}{\cos px} dx$ $= \frac{1}{\pi} \int \pi^2 \cdot \cos \pi \cdot d\pi = \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ $= \frac{1}{\pi} \begin{bmatrix} 2^2 & -\frac{3 \ln n^2}{n} \\ 2^2 & n \end{bmatrix} = \frac{2 \pi}{n^2} \begin{bmatrix} 2 - 3 \ln n^2 \\ -\frac{3 \ln n^2}{n} \end{bmatrix}$ $= \frac{1}{\pi} \left[0 + \frac{4\pi^2}{n} \right]^{-\frac{1}{2}} \left[-\frac{\cos nx}{n^2} \right] + 2 \left(\frac{\cos nx}{n^3} \right)^{-\frac{1}{2}} \left[-\frac{1}{\pi} \left[-\frac{x^2}{n^2} \right]^{-\frac{1}{2}} - \frac{2\pi}{n^2} \left(-\frac{\sin nx}{n^2} \right) + 2 \frac{1}{n^3} \right]_{0}^{-\frac{1}{2}}$ $= \frac{1}{\pi} \left[\frac{-\chi^2 \cos n\chi}{n} + \frac{2\chi}{n} \frac{\sin n\chi}{n} + \frac{2\cos n\chi}{n^3} \right]_{0}^{2\pi}$ $= \frac{1}{\pi} \left[\left(\frac{-4\pi^2}{n} + 0 + \frac{2}{n^3} \right) - \left(-0 + 0 + \frac{2}{n^3} \right) \right]_{0}^{2\pi}$ a = 2× $= \frac{1}{n} \left[\frac{-4\pi}{n^2} + \frac{2}{n^3} + \frac{2}{n^3} \right]$ $= \frac{1}{\pi} \left[-\frac{4\pi^2}{n^2} + \frac{4\pi^2}{n^2} \right] \left[\frac{1}{\pi} = 0.0 \right]$ $\begin{bmatrix}
bn & -\frac{4\pi}{n} \\
p(x) & = \frac{4\pi}{3} \\
p(x)$ 8(m) = 4 TT 2 + 4 2 1 Cosha + 4TT 2 1 Sinnx n=1 n2 n2 n2

find fourier series of period Function $B(x) = (x - x^2)^2$ in Bon (0,22) Soln 8(m) = (8-x=)² internals (0, 27) Fourier series $g(x) = \frac{a_0}{2} + \frac{2}{2} a_1 \cos \frac{n\pi x}{x} + \frac{2}{2} b_1 \frac{3\pi n\pi x}{x}$ $ao = \frac{1}{x} \int g(x) \cdot dx$ $=\frac{1}{2}\int (x-x^2)^2 dx^2$ $\frac{1}{2} \left[\frac{(2-22)^2}{3} - \frac{(2-2)^3}{3} \right]$ $= \frac{1}{38} \left[(-x)^2 - (x)^3 \right] = -\frac{1}{38} \left[-2x^3 \right] = \frac{1}{38} \left[(-2x^3)^2 - (x)^3 \right]$ $ao = \frac{2x^2}{3}$ $ao = \frac{1}{3} \int_{0}^{2} g(x) \cos \frac{n\pi x}{3} dx$ $x = \frac{1}{x} \int_{-\infty}^{2x} (x - x)^2 \cos \frac{n \pi x}{x} dx$ $= \frac{1}{\Re} \left[(\Re - \pi)^2 \left(\frac{\Im \ln \frac{\pi \pi}{\Re}}{\Re} \right) - 2(\Im - \pi)^{(-1)} \frac{(3\pi)^2}{(\pi)^2} \right]$ TIN = ()

$$4 2 \frac{\sin n\pi x}{(\pi\pi)^{5}} \int_{0}^{\pi\pi}$$

$$= \frac{1}{\pi} \left[(3-\pi)^{2} \frac{9}{n\pi\pi} \frac{\sin n\pi w^{2}}{3} - 2(3-\pi) \frac{9^{2}}{n^{2}\pi^{2}} \frac{\cos n\pi}{3} \frac{\pi}{n^{2}\pi} - \frac{28^{3}}{n^{2}\pi^{2}} \frac{\sin n\pi w^{2}}{n^{2}\pi^{2}} \frac{208\pi^{3}}{n^{2}\pi^{3}} - \frac{28^{3}}{n^{2}\pi^{3}} \frac{\sin n\pi x}{n^{2}\pi^{3}} - \frac{1}{28} \left(\frac{283}{n^{2}\pi^{2}} + \frac{283}{n^{2}\pi^{2}} \right) - \left(\frac{0-28^{3}}{n^{2}\pi^{2}} - \frac{0}{n^{2}} \right) - \frac{1}{2} \left(\frac{283}{n^{2}\pi^{2}} + \frac{283}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{28}{n^{2}\pi^{2}} + \frac{283}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{28}{n^{2}\pi^{2}} + \frac{283}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{1}{n^{2}\pi^{2}} + \frac{28}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{1}{n^{2}\pi^{2}} + \frac{28}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} \right) - \frac{1}{2} \left(\frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} \right) - \frac{1}{n^{2}\pi^{2}} \left(\frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} \right) - \frac{1}{n^{2}\pi^{2}} \left(\frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} \right) - \frac{1}{n^{2}\pi^{2}} \left(\frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} + \frac{1}{n^{2}\pi^{2}} \right) - \frac{1}{n^{2}\pi^{2}} - \frac{1}{n^{2}\pi^{2}} + \frac{$$

$$f(x) = \frac{1}{2} \int_{0}^{2} f(x) dx$$

$$\frac{1}{3} \left[\times \left(\frac{\sin \pi \pi x}{\pi y_{k}} \right) = (1) \left[\frac{\cos \pi \pi y_{k}}{(\pi y_{k})} \right]^{2/3} \\ + \frac{1}{3} \left[(-2) + \frac{1}{\pi y_{k}} + (0 + \frac{1}{\pi y_{k}}) \right]^{2/3} \\ = \frac{1}{3} \left[\frac{1}{3} + \frac{1}{3}$$

$$\begin{aligned} \Omega_{0} &= \left(\frac{1}{\lambda} - \int_{0}^{2\delta} \frac{g(xs)}{g(xs)} \frac{d}{ds} + \int_{0}^{2\delta} \frac{g^{2}}{g(xs)} \frac{d}{ds} + \int_{0}^{2\delta} \frac{g^{2}}{g(xs)} \frac{d}{ds} \\ &= \frac{1}{\lambda^{2}} \left(\int_{0}^{\delta} \frac{g}{g(xs)} \frac{d}{ds} + \int_{0}^{\delta} \frac{g^{2}}{g(xs)} \frac{d}{ds} \right) \\ &= \frac{1}{\lambda^{2}} \int_{0}^{\delta} \frac{g(xs)}{g(xs)} \frac{d}{ds} + \int_{0}^{\delta} \frac{g^{2}}{g(xs)} \frac{d}{ds} \\ &= \frac{1}{\lambda^{2}} \int_{0}^{\delta} \frac{g(xs)}{g(xs)} \frac{g(xs)}{g(xs)} \frac{g(xs)}{g(xs)} \frac{g(xs)}{g(xs)} + \int_{0}^{\delta} \frac{g^{2}}{g(xs)} \frac{g(xs)}{g(xs)} \frac{g(xs)}{$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left[x + \frac{1}{\sqrt{2}} \sin \pi \ln \frac{1}{\sqrt{2}} x + \frac{x^2}{\pi^2 \pi^2} \cos \pi \frac{1}{\sqrt{2}} x \right]_{0}^{1} \\
\frac{1}{\sqrt{2}} \left[(2x + x) + \frac{1}{\sqrt{\pi}} - \frac{1}{\pi^2 \pi^2} - \frac{1}{\pi^2 \pi^2} \cos \pi \frac{1}{\pi^2 \pi^2} \right]_{0}^{1} \\
\frac{1}{\sqrt{2}} \left[\left(0 + \frac{x^2}{\pi^2 \pi^2} (-1)^{n} \right) + \left(0 + \frac{x^2}{\pi^2 \pi^2} \right) + \left(0 - \frac{x^2}{\pi^2 \pi^2} \right) \right]_{0}^{1} \\
\frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} (-1)^{n} + \frac{x^2}{\pi^2 \pi^2} (-1)^{n} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2$$

 $\frac{1}{R^2}\left[\frac{2R-x}{n\pi\sqrt{2}}-\frac{1}{\sqrt{2}}\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right]^{\frac{1}{2}}\right]$ $\int \frac{1}{\sqrt{2}} \left[(2\chi - \chi) \frac{1}{n \pi} \cos \frac{n \pi \chi}{2} + \frac{\chi^2}{2} \sin \frac{n \pi \chi}{\chi} \right]$ $\frac{1}{2} = \frac{1}{2^2} \int \left(-\frac{x^2}{n\pi} \left(-\frac{y^2}{n\pi} \right) - \frac{y^2}{n\pi} \left(-\frac{y^2}{n\pi} \right) - \frac{x^2}{n\pi} \left(-\frac{x^2}{n\pi} \right) - \frac{x$ $= \frac{1}{R^2} \begin{bmatrix} -\frac{R^2}{2} & (-1)^n + \frac{R^2}{2} & (-1)^n \end{bmatrix} =$ [bn=0] [1-4 (1-3] (-2.2) 1 (-2 $f(x) = \frac{a_0}{2} + \frac{a_0}{2}$ $= \frac{1}{2} + \frac{2}{2} - \frac{4}{n^2 \pi^2} + \frac{1}{2} + \frac{1}{2}$ cos (2n-1)nti $P(n) = \frac{1}{2} - \frac{4}{\pi^2} = \frac{2}{n=1} \frac{1}{(2n-3)^2} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2$ 10 2 m 2 2 2 2 4 m 1 2 m 2 2 2 2 2 3 $\frac{\left(\frac{\pi}{R}\right)^{2}}{\left(\frac{\pi}{R}\right)^{2}} = \left(1\right) - \left(\frac{\pi}{R}\right)^{2} - \left(1\right) - \left(\frac{\pi}{R}\right)^{2} - \left(1\right)^{2} - \left(1\right)^{2}$

16.10,19 Odd Bunction and a management A function is said to be an B(n) = B(-n) odd function if $B(-\pi) = -\beta(\pi)$ 2 Example TI rest (T, T-) ru g(x) = xB(-x)= -x 8 2 = 00 R = -f(x) = -f(x)0 B(x) is odd and but Even function A function B(n) is said to be an even function if tailouring pros and (-21) = B(22) 2009 dig ad $g(x) = \chi^2$ and (χ, χ_2) is Example g(x) = x $= (-x)^{2}$ $= x^{2} + (-x)^{2}$ = g(m) 0 $\beta(-n) = \beta(n)$.: g (x) is even. Note-1 Suppose B(x) is an odd function in (T,TT), then are (R,R-) is $a_0 = 0$, $a_0 = 0$. To and $bn = \frac{2}{\pi} \int \beta(x) \sin nx \cdot dx$

Fourierseries is given by marting be- $\beta(m) = \frac{2}{n+1} bn \sin n\pi$ Note-2 (m) - - (m) an even function Suppose f(m) is an even function in $(-\pi, \pi)$ then π is $(-\pi, \pi)$? $a_0 = \frac{2}{\pi} \int g(x) dx$ $a_{p} = \frac{2}{\pi} \int_{0}^{\pi} g(x) \cos x \cdot dx$ grad is odd o and bn=0Fourier series is given by $g(n) = \frac{ao}{2} + \frac{2}{2}$ an cos nic $g(n) = \frac{ao}{2} + \frac{2}{n=1}$ Note-2 Suppose finities an odd function in (-2, 2) then an = 0 (m) and $bn = \frac{2}{8} \int g(x) \sin n \pi dx$ Fourier revies is given by $g(n) = \frac{2}{2} bn \sin n \pi \pi$ Note4: Suppose & (x) is a even function in (-2, 2) then 2 with (T, T) is $ao = \frac{2}{2}\int b(x) dx$ $b(x) = \frac{2}{2}\int b(x) dx$ bro

 $an = \frac{2}{2} \int g(x) \cos n \pi dx$ and bn=0 Fourier revies is given by $\mathcal{F}(n) = \frac{a_0}{2} + \sum_{h=1}^{\infty} a_h \cos \frac{h \tan n}{\lambda}$ D Find Fourier series for Ban = n in C. J. T) 10 Find Bourien series for f (2) ligs Given 8(n) - x in (-11, 17) : g(-x) = - x = - (0)g = - f(x) : B(n) is odd \therefore $a_0 = 0$ and $a_n = 0$ B(x)= Ébnsinnx $bn = \frac{2}{\pi} \int g(n) \sin n \alpha \cdot d \alpha$ = 2/ Jr. Sinna. da $= \frac{2}{\pi} \left[\frac{x(-\frac{1}{n})}{n} \cdot \left(\frac{1}{n} \right) - \frac{1}{n} \left(\frac{1}{n} \right) \right]_{n}$ $= \frac{2}{\pi} \left[\frac{-(-1)^{n}}{n} + 0 - (0+0) \right]$ $= 2/((-1)^{n+1})$ $bn = \frac{2(-1)^{n+1}}{2(-1)^{n+1}} \sin n x$ $(\pi) = 2 \le (1)^{n^{1}} \sin n\pi$

20 Find Fourier socies for
$$g(n) \neq n$$
 is
 $-\pi \neq x \neq \pi$
get
 $g(n) = x^2$, $g(n) = x^2$, $g(n) = (-\pi)^2$
 $g(n) = x^2$
 $g(n) = x^2$
 $f(n) = x^2$
 $g(n) = x^2$
 $g(n) = x^2$
 $g(n) = x = \frac{\pi}{2}$ an $\cos nx$
 $g(n) = x = \frac{\pi}{2}$ an $\cos nx$
 $g(n) = x = \frac{\pi}{2}$ f $g(n) dx$
 $a_0 = -\frac{\pi}{2}$ f $g(n) dx$
 $g(n) = -\frac{\pi}{2}$ f

= 2/ [(0+ 2T(CO" - 0) - (0+0-0)] an= 3/ (211(-)) $a_n = \frac{1}{2} \left(-2^n \right)$ $g(n) = \frac{a_0}{2} + \frac{2}{n_{n=1}} a_n \cos 6\pi g$ = T12 + 2 4 C-D" COG DM 8 (x) = 713 + 4 2 1 (-1) COSDX. 3 IB B(n)= n is defined in -2xx cx with Pesdod 28. find the fourier expansion of P(x) (x) = B(x) = x (x) + x = (x) B(-x) = -x (x) = (x)Cive g(-x)==-g(x) time 4 603 Fourier veries be Fourier veries be $g(x) = \tilde{Z}$ by $\frac{1}{\chi}$ $bn = \frac{2}{X} \int \int f(x) \frac{g(x) mux}{X} dx$ $=\frac{2}{\chi}\int_{X}^{X} \sin \frac{n\pi \cdot dx}{\chi} \cdot dx$ $=\frac{2}{\chi}\int_{X}^{X} \sin \frac{n\pi \cdot dx}{\chi} \cdot dx$ $=\frac{2}{\chi}\int_{X}^{X}\left(-\frac{\cos n\pi x}{n\pi \chi}\right) - (1) \frac{\pi \pi^{2}}{\chi^{2}}\int_{0}^{2}$ $=\frac{2}{\chi}\int_{X}^{X}\left[-\frac{\pi}{n\chi}\left(-\frac{\cos n\pi x}{\pi \chi}\right) + \frac{\chi^{2}}{\chi}\sin \frac{\sin n\pi x}{\chi^{2}}\right]_{0}^{X}$

2/2 2 [- 2² (06 D x) $f(x) = \sum_{n \ge 1}^{\infty} \frac{-28 (-1)^n}{n\pi}$ $g(x) = -\frac{28}{\pi} \frac{2}{n} \frac{2}{n} \frac{(-1)^2 \sin n \pi \pi}{8}$ e (1200 M) find the fourier series of flow= x+x. in (-11, TI) of periodicity=271. duce Soln Pesdid 28. ford B(x) = x+x2 $B(-x) = -x + (-x)^{2}$ $g(-x) \neq g(x) =) g(-x) \neq - g(x)$. g(n) is neither even nor odd in add function Fourier series $P(n) = \frac{\alpha_0}{2} = \frac{\delta}{2} an \cos hx + \frac{\delta}{2}$ (-TI . T). E basin hr. $a_0 = \frac{1}{n} \int g(x) dx$ $= \frac{1}{\pi} \int C_{m+x^2} dx$ $= CU + \begin{bmatrix} -\pi \\ -\pi \\ -\pi \end{bmatrix} = CU + \begin{bmatrix} -\pi \\ -\pi \\ -\pi \end{bmatrix} = \begin{bmatrix} -\pi \\ -\pi \\ -\pi \end{bmatrix} =$ $\frac{\pi \pi}{2} = \frac{\pi}{2} = \frac{\pi}{2} + \frac{1}{2} = \frac{\pi}{2} + \frac{\pi}{2} = \frac{$

$$= \frac{1}{\pi} \left[\frac{\pi x}{2} + \frac{\pi x}{3} + \frac{\pi x}{2} + \frac{\pi \pi x}{3} \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi x}{3} + \frac{\pi x}{3} + \frac{\pi x}{3} \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi x}{3} + \frac{\pi x$$

$$bn = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin nx dx$$

$$= \frac{1}{\pi} \int_{\pi}^{\pi} (n+x^{2}) \sin nx dx$$

$$= \frac{1}{\pi} \int_{\pi}^{\pi} x \cdot \sin nx dx + \frac{1}{2\pi} \int_{\pi}^{\pi} x^{2} \sin nx dx$$

$$= \frac{1}{\pi} \int_{\pi}^{\pi} x \cdot \sin nx dx + \frac{1}{2\pi} \int_{\pi}^{\pi} x^{2} \sin nx dx$$
Sind,
 $x \cdot \sin nx \rightarrow cur further
 $x^{2} \sin x \rightarrow odd fundtion$

$$\int_{\pi}^{\pi} x \sin nx dx \Rightarrow x \int_{\pi}^{\pi} x \sin nx dx$$

$$= \int_{\pi}^{\pi} x^{2} \sin nx dx = 0$$

$$bn = 2\pi \cdot 2 \int_{\pi}^{\pi} x \cdot (\sin nx dx)$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\sin nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\sin nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\sin nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\cos nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\cos nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\cos nx}{2} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[2x \cdot (\frac{\cos nx}{2}) + (1) - \frac{\cos nx}{2} \right]_{0}^{\pi}$$$

+
$$\frac{2}{n_1} - \frac{2}{n_1} (\omega) \sin n$$

: $g(\pi) = \frac{1}{3} + \omega \frac{2}{n_2} (\omega)^n \cos n + 2 \frac{2}{n_1} (\omega)^n \sin n$
Find by in the expansion of x' as a
Fourier series in $(-\pi, \pi)$
Chien $g(\pi) = \pi^2$ is an even function in
 $(-\pi, \pi)$: $bn = 0$
If $g(\pi)$ is an odd function defined in
 $(-5, s)$ what value of as and an !
 $(-5, s)$ what value of as and an !
 $(-5, s)$ what value of as and an !
 $(-5, s)$ what value of a start by for x sinx
Find the fourier constant by for x sinx
 $f(\pi) = \pi \cdot \sin \pi \cdot in (-\pi) \cdot \pi$
 $g(\pi) = \pi \cdot \sin \pi \cdot in (-\pi) \cdot \pi$
 $g(\pi) = \pi \cdot \sin \pi \cdot in (-\pi) \cdot \pi$
 $g(\pi) = \frac{1}{2} (\pi) \sin \pi \cdot \frac{1}{2} (\pi) = \frac{1}{2} (\pi) \sin \pi$
 $= \frac{1}{2} (\pi)$
 $g(\pi) = \frac{1}{2} (\pi) \sin \pi$
 $= \frac{1}{2} (\pi)$
 $g(\pi) = \frac{1}{2} (\pi) \sin \pi$
 $g(\pi) = \frac{1}{2} (\pi) \sin \pi$
 $g(\pi) = \frac{1}{2} (\pi) \sin \pi$
 $g(\pi) = \pi^2 \sin \pi$
 $g(\pi) = \pi^3 (\pi) -\pi c \pi c \pi$
 $g(\pi) = \pi^3 (\pi) -\pi c \pi^3$
 $g(-\pi) = -\pi^3$

c-un (= ~ B Ca) 0 00 0 8 (*) 5