DATA STRUCTURE AND ALGORITHM

Unit I

Arrays and sequential representations — ordered lists — Stacks and Queues — Evaluation
ofExpressions — Multiple Stacks and Queues — Singly Linked List — Linked Stacks and
queues — Polynomial addition.

Data Structure Introduction:

The data structure name indicates itself that organizing the data in memory.
There are many ways of organizing the data in the memory as we have already seen
one of the data structures, i.e., array in C language. Array is a collection of memory
elements in which data is stored sequentially, i.e., one after another. In other words,
we can say that array stores the elements in a continuous manner. This organization
of data is done with the help of an array of data structures. There are also other ways
to organize the data in memory. To structure the data in memory, 'n' number of
algorithms were proposed, and all these algorithms are known as Abstract data
types. These abstract data types are the set of rules.
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Types of Data Structures
There are two types of data structures:

o Primitive data structure

o Non-primitive data structure

Primitive Data structure

The primitive data structures are primitive data types. The int, char, float, double, and
pointer are the primitive data structures that can hold a single value.

Non-Primitive Data structure



The non-primitive data structure is divided into two types:

e Linear data structure
e Non-linear data structure

Linear Data Structure

The arrangement of data in a sequential manner is known as a linear data structure.
The data structures used for this purpose are Arrays, Linked list, Stacks, and Queues.
In these data structures, one element is connected to only one another element in a
linear form.

Non- Linear Structure:

When one element is connected to the 'n' number of elements known as a non-
linear data structure. The best example is trees and graphs. In this case, the elements
are arranged in a random manner.

Data structures can also be classified as:

e Static data structure: It is a type of data structure where the size is allocated
at the compile time. Therefore, the maximum size is fixed.

e Dynamic data structure: It is a type of data structure where the size is
allocated at the run time. Therefore, the maximum size is flexible.

Major Operations

The major or the common operations that can be performed on the data structures
are:

o Searching: We can search for any element in a data structure.

o Sorting: We can sort the elements of a data structure either in an ascending
or descending order.

o Insertion: We can also insert the new element in a data structure.

o Updation: We can also update the element, i.e,, we can replace the element
with another element.

o Deletion: We can also perform the delete operation to remove the element
from the data structure.

Advantages of Data structures

The following are the advantages of a data structure:



o Efficiency: If the choice of a data structure for implementing a particular ADT
is proper, it makes the program very efficient in terms of time and space.

o Reusability: The data structure provides reusability means that multiple client
programs can use the data structure.

o Abstraction: The data structure specified by an ADT also provides the level of
abstraction. The client cannot see the internal working of the data structure,

so it does not have to worry about the implementation part. The client can
only see the interface.

Arrays and Sequential Representation

Definition
o Arrays are defined as the collection of similar type of data items stored at contiguous
memory locations.

o Arrays are the derived data type in C programming language which can store the
primitive type of data such as int, char, double, float, etc.

o Array is the simplest data structure where each data element can be randomly
accessed by using its index number.

o For example, if we want to store the marks of a student in 6 subjects, then we don't
need to define different variable for the marks in different subject. instead of that, we
can define an array which can store the marks in each subject at a the contiguous
memory locations.

The array marks[10] defines the marks of the student in 10 different subjects where
each subject marks are located at a particular subscript in the array
i.e. marks[0] denotes the marks in first subject, marks[1] denotes the marks in 2nd
subject and so on.

Properties of the Array

1. Each element is of same data type and carries a same size i.e. int = 4 bytes.

2. Elements of the array are stored at contiguous memory locations where the first
element is stored at the smallest memory location.

3. Elements of the array can be randomly accessed since we can calculate the address of
each element of the array with the given base address and the size of data element.

Advantages of Array

o Array provides the single name for the group of variables of the same type therefore,
it is easy to remember the name of all the elements of an array.

o Traversing an array is a very simple process, we just need to increment the base
address of the array in order to visit each element one by one.

o Any element in the array can be directly accessed by using the index.



Memory Allocation of the array

As we have mentioned, all the data elements of an array are stored at
contiguous locations in the main memory. The name of the array represents
the base address or the address of first element in the main memory. Each
element of the array is represented by a proper indexing.

The indexing of the array can be defined in three ways.

0 (zero - based indexing) : The first element of the array will be arr[0].
1 (one - based indexing) : The first element of the array will be arr[1].

3. n(n - based indexing) : The first element of the array can reside at any random index
number.

In the following image, we have shown the memory allocation of an array arr of size
5. The array follows 0-based indexing approach. The base address of the array is
100th byte. This will be the address of arr[0]. Here, the size of int is 4 bytes therefore
each element will take 4 bytes in the memory.
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int arr[5]

In 0 based indexing, If the size of an array is n then the maximum index number, an
element can have is n-1. However, it will be n if we use 1 based indexing.

Accessing Elements of an array

To access any random element of an array we need the following information:

1. Base Address of the array.
2. Size of an element in bytes.
3. Which type of indexing, array follows.

Address of any element of a 1D array can be calculated by using the following
formula:



Byte address of element A[i] = base address + size * (i - first index )

2D Array

2D array can be defined as an array of arrays. The 2D array is organized as matrices
which can be represented as the collection of rows and columns.

However, 2D arrays are created to implement a relational database look alike data
structure. It provides ease of holding bulk of data at once which can be passed to
any number of functions wherever required.

How to declare 2D Array

The syntax of declaring two dimensional array is very much similar to

that of a one dimensional array, given as follows.
int arr[max_rows][max_columns];

however, It produces the data structure which looks like following.

(0] a 2 - o - = m-1
O af[o]l[o] afo][1] afoir21 | ---.. afo][n-1]
o | afi][o] alalri] afair=2] | ----- af1][m-1]
2 arz1ro] arzira] 22121 | ----- ar2][n-1]
3 l a[rsirol arsiral arzw=1 | ----- a[31n-11
9 afalro] afalfi] agaig2l | ----- afalin-1]
n-1 a[n-1][0] | a[m-1][1]  afn-23(2] | ----.- aln-1][n-1]
a[n][n]

Above image shows the two dimensional array, the elements are organized in the form of
rows and columns. First element of the first row is represented by a[0][0] where the number
shown in the first index is the number of that row while the number shown in the second
index is the number of the column.
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How do we access data in a 2D array

Similar to one dimensional arrays, we can access the individual cells in a
2D array by using the indices of the cells. There are two indices attached
to a particular cell, one is its row number while the other is its column
number.

However, we can store the value stored in any particular cell of a 2D array to some
variable x by using the following syntax.

. intx = alil[j];

where i and j is the row and column number of the cell respectively.

We can assign each cell of a 2D array to 0 by using the following code:

for (inti=0; i<n;i++)
{
for (intj=0; j<n; j++)
{
aliljl = 0;
}
}

Initializing 2D Arrays

We know that, when we declare and initialize one dimensional array in C
programming simultaneously, we don't need to specify the size of the
array. However this will not work with 2D arrays. We will have to define
at least the second dimension of the array.

The syntax to declare and initialize the 2D array is given as follows.

. intarr[2][2] = {0,1,2,3};

The number of elements that can be present in a 2D array will always be equal to
(number of rows * number of columns).

Mapping 2D array to 1D array

When it comes to map a 2 dimensional array, most of us might think that why this mapping is
required. However, 2 D arrays exists from the user point of view. 2D arrays are created to
implement a relational database table lookalike data structure, in computer memory, the
storage technique for 2D array is similar to that of an one dimensional array.



The size of a two dimensional array is equal to the multiplication of number of rows and the
number of columns present in the array. We do need to map two dimensional array to the one
dimensional array in order to store them in the memory.

A 3 X 3 two dimensional array is shown in the following image. However, this array
needs to be mapped to a one dimensional array in order to store it into the memory.

0 1 2 4—1

e (0,0) (0.1) (0,2) Column Index
1 (1,0) (1,1) (1,2)
2 (2,0) (2,1) (2,2)
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There are two main techniques of storing 2D array elements into memory

Row Index

1. Row Major ordering

In row major ordering, all the rows of the 2D array are stored into the memory
contiguously. Considering the array shown in the above image, its memory allocation
according to row major order is shown as follows.

(0,0) (0,1) (0.2) (1,0) (1,1) x.2) (2,0) (2,1) | (2,2)

first, the 1°' row of the array is stored into the memory completely, then the 2" row
of the array is stored into the memory completely and so on till the last row.

Row-major order

2. Column Major ordering



According to the column major ordering, all the columns of the
2D array are stored into the memory contiguously. The memory
allocation of the array which is shown in in the above image is
given as follows.

(0,0) (1,0) (2,0) (0,3) (1,1) (2,1) (0,2) (1.2) | (2:2)

first, the 1% column of the array is stored into the memory completely, then the
2" row of the array is stored into the memory completely and so on till the last
column of the array.

Column-major order

aqq 212 213
dpq o €23
azq a3z dz3

Calculating the Address of the random element of a 2D array

Due to the fact that, there are two different techniques of storing the two
dimensional array into the memory, there are two different formulas to calculate the
address of a random element of the 2D array.

By Row Major Order
If array is declared by a[m][n] where m is the number of rows while n is the number

of columns, then address of an element a[i][j] of the array stored in row major order
is calculated as,

. Address(al[i][jl) = B. A. + (i * n +j) * size

Hwn =

where, B. A. is the base address or the address of the first element of the array a[0][0] .
Example :

a[10...30, 55...75], base address of the array (BA) = 0, size of an element = 4 bytes .
Find the location of a[15][68].

Address(a[15][68]) = 0 +
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((15-10) x (68 - 55 + 1) + (68 - 55)) x 4

=5x14+13)x4
=83x4
= 332 answer

By Column major order

If array is declared by a[m][n] where m is the number of rows while n is the number
of columns, then address of an element a[i][j] of the array stored in row major order
is calculated as,

. Address(a[i][jl) = ((j*m)+i)*Size + BA

where BA is the base address of the array.
Example:

Al-
5... +20][20 ... 70], BA = 1020, Size of element = 8 bytes. Find the location of a[0][30].

Address [A[0][30]) = ((30-20) x 24 + 5) x 8 + 1020 = 245 x 8 + 1020 = 2980 bytes

Ordered list

An ordered list is a list in which the order of the items is significant.
However, the items in an ordered list are not necessarily sorted.
Consequently, it is possible to change the order o items and still have a
valid ordered list.

Consider a list of the titles of the chapters in this book. The order of the
items in the list corresponds to the order in which they appear in the book.
However, since the chapter titles are not sorted alphabetically, we cannot
consider the list to be sorted. Since it is possible to change the order of the
chapters in book, we must be able to do the same with the items of the list.
As a result, we may insert an item into an ordered list at any position.

A searchable container is a container that supports the following additional
operations:

Insert

-used to put objects into a the container;
withdraw

-used to remove objects from the container;
find

-used to locate objects in the container;



iIsMember
-used to test whether a given object instance is in the container.

stack

A real-world stack allows operations at one end only. For example, we can place or
remove a card or plate from the top of the stack only. At any given time, we can only
access the top element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here,
the element which is placed (inserted or added) last, is accessed first. In stack
terminology, insertion operation is called PUSH operation and removal operation is
called POP operation.

Stack Representation

The following diagram depicts a stack and its operations -
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Stack Stack

A stack can be implemented by means of Array, Structure, Pointer, and Linked List.
Stack can either be a fixed size one or it may have a sense of dynamic resizing.
Here, we are going to implement stack using arrays, which makes it a fixed size
stack implementation.

Basic Operations

Stack operations may involve initializing the stack, using it and then de-initializing it.
Apart from these basic stuffs, a stack is used for the following two primary
operations -

e push() — Pushing (storing) an element on the stack.
e pop() - Removing (accessing) an element from the stack.
When data is PUSHed onto stack.

To use a stack efficiently, we need to check the status of stack as well. For the
same purpose, the following functionality is added to stacks -

o peek() — get the top data element of the stack, without removing it.

e isFull() — check if stack is full.



o iSEmpty() - check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack.
The top pointer provides top value of the stack without actually removing it.

First we should learn about procedures to support stack functions -

peek()

Algorithm of peek() function -

begin procedure peek
return stack[top]
end procedure

isfull()

Algorithm of isfull() function -
begin procedure isfull
if top equals to MAXSIZE
return true
else

return false
endif

end procedure

isempty()

Algorithm of isempty() function —
begin procedure isempty
if top less than 1
return true
else
return false
endif

end procedure

Implementation of isempty() function in C programming language is slightly
different. We initialize top at -1, as the index in array starts from 0. So we check if
the top is below zero or -1 to determine if the stack is empty. Here's the code -

Push Operation

The process of putting a new data element onto stack is known as a Push
Operation. Push operation involves a series of steps -

o Step 1 - Checks if the stack is full.

o Step 2 - If the stack is full, produces an error and exit.



o Step 3 - If the stack is not full, increments top to point next empty space.
o Step 4 — Adds data element to the stack location, where top is pointing.

o Step 5 - Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate
space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows -

begin procedure push: stack, data

if stack 1is full
return null
endif

top « top + 1
stack[top] ~ data

end procedure

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop
Operation. In an array implementation of pop() operation, the data element is not
actually removed, instead top is decremented to a lower position in the stack to
point to the next value. But in linked-list implementation, pop() actually removes
data element and deallocates memory space.

A Pop operation may involve the following steps -
o Step 1 - Checks if the stack is empty.
o Step 2 - If the stack is empty, produces an error and exit.

o Step 3 - If the stack is not empty, accesses the data element at which top is
pointing.

o Step 4 — Decreases the value of top by 1.

o Step 5 — Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows -
begin procedure pop: stack
if stack is empty

return null
endif



data < stack[top]
top « top - 1
return data

end procedure

Queue

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is
open at both its ends. One end is always used to insert data (enqueue) and the other is used
to remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item
stored first will be accessed first.

Queue Representation

As we now understand that in queue, we access both ends for different reasons.

The following diagram given below tries to explain queue representation as data
structure -
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Queue

Basic Operations

Queue operations may involve initializing or defining the queue, utilizing it, and then
completely erasing it from the memory. Here we shall try to understand the basic
operations associated with queues -

e enqueue() — add (store) an item to the queue.
« dequeue() - remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation
efficient. These are -

o peek() — Gets the element at the front of the queue without removing it.

« isfull() - Checks if the queue is full.

o isempty() — Checks if the queue is empty.
In queue, we always dequeue (or access) data, pointed by front pointer and while
enqueing (or storing) data in the queue we take help of rear pointer.
peek()

This function helps to see the data at the front of the queue. The algorithm of
peek() function is as follows -

Algorithm



begin procedure peek
return queue[front]
end procedure

isfull()

As we are using single dimension array to implement queue, we just check for the
rear pointer to reach at MAXSIZE to determine that the queue is full. In case we

maintain the queue in a circular linked-list, the algorithm will differ. Algorithm of
isfull() function —

Algorithm

begin procedure isfull

if rear equals to MAXSIZE
return true
else

return false
endif

end procedure

isempty()
Algorithm of isempty() function -
Algorithm

begin procedure isempty

if front is less than MIN OR front is greater than rear
return true

else

return false
endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized,
hence empty.

Enqueue Operation

Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue -
e Step 1 - Check if the queue is full.

o Step 2 - If the queue is full, produce overflow error and exit.

Step 3 - If the queue is not full, increment rear pointer to point the next
empty space.

o Step 4 — Add data element to the queue location, where the rear is pointing.
e Step 5 - return success.



Sometimes, we also check to see if a queue is initialized or not, to
handle any unforeseen situations.
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Algorithm for enqueue operation

procedure enqueue (data)
if gqueue is full
return overflow
endif
rear « rear + 1
qgueue [rear] ~ data
return true
end procedure

Dequeue Operation

Accessing data from the queue is a process of two tasks - access the data
where front is pointing and remove the data after access. The following steps are
taken to perform dequeue operation -

o Step 1 - Check if the queue is empty.

o Step 2 - If the queue is empty, produce underflow error and exit.

« Step 3 - If the queue is not empty, access the data where front is pointing.
e Step 4 - Increment front pointer to point to the next available data element.

e Step 5 - Return success.
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Algorithm for dequeue operation

procedure dequeue

if queue is empty
return underflow
end if

data = queue[front]
front « front + 1
return true

end procedure

Evaluation of Expression

The way to write arithmetic expression is known as a notation. An arithmetic
expression can be written in three different but equivalent notations, i.e., without
changing the essence or output of an expression. These notations are —

¢ Infix Notation

e Prefix (Polish) Notation

e Postfix (Reverse-Polish) Notation
These notations are named as how they use operator in expression. We shall learn
the same here in this chapter.

Infix Notation

We write expression in infix notation, e.g. a - b + ¢, where operators are used in-
between operands. It is easy for us humans to read, write, and speak in infix
notation but the same does not go well with computing devices. An algorithm to



process infix notation could be difficult and costly in terms of time and space
consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of
operands. For example, +ab. This is equivalent to its infix notation a + b. Prefix
notation is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style,
the operator is postfixed to the operands i.e., the operator is written after the
operands. For example, ab+. This is equivalent to its infix notation a + b.

The following table briefly tries to show the difference in all three notations -

Sr.No. Infix Notation Prefix Notation Postfix Notation
1 a+b +ab ab+
2 (a+b)xc *+abc ab+cx
3 ax(b+c) *a+bc abc+x
4 a/lb+c/d +/ab/cd ab/cd/+
5 (a+Db)=*(c+d) x+ab+cd ab+cd+
6 (a@+b)xc)-d -x+abcd ab+cxd-

Parsing Expressions

As we have discussed, it is not a very efficient way to design an algorithm or
program to parse infix notations. Instead, these infix notations are first converted
into either postfix or prefix notations and then computed.

To parse any arithmetic expression, we need to take care of operator precedence
and associativity also.

Precedence

When an operand is in between two different operators, which operator will take the
operand first, is decided by the precedence of an operator over others. For example



atb*c -2 a+(b*c)

As multiplication operation has precedence over addition, b * ¢ will be evaluated
first. A table of operator precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence appear
in an expression. For example, in expression a + b — ¢, both + and — have the same
precedence, then which part of the expression will be evaluated first, is determined
by associativity of those operators. Here, both + and — are left associative, so the
expression will be evaluated as (a+ b) — c.

Precedence and associativity determines the order of evaluation of an expression.
Following is an operator precedence and associativity table (highest to lowest) -

Sr.No. Operator Precedence Associativity
1 Exponentiation » Highest Right Associative
2 Multiplication ( * ) & Division (/) Second Highest Left Associative
3 Addition ( +) & Subtraction (- ) Lowest Left Associative

The above table shows the default behavior of operators. At any point of time in
expression evaluation, the order can be altered by using parenthesis. For example

Ina + b*c, the expression part b*c will be evaluated first, with multiplication as
precedence over addition. We here use parenthesis for a + b to be evaluated first,
like (a + b)*c.

Postfix Evaluation Algorithm

Step 1 - scan the expression from left to right

Step 2 - if it is an operand push it to stack

Step 3 - if it is an operator pull operand from stack and perform
operation

Step 4 - store the output of step 3, back to stack

Step 5 - scan the expression until all operands are consumed

Step 6 - pop the stack and perform operation
A postfix expression is a collection of operators and operands in which the operator is placed
after the operands. That means, in a postfix expression the operator follows the operands.

Postfix Expression has following general structure...



Operandl Operand?2 Operator

Postfix Expression Evaluation using Stack Data
Structure

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix
expression using Stack data structure we can use the following steps...Read all the symbols
one by one from left to right in the given Postfix Expression

1. If the reading symbol is operand, then push it on to the Stack.

2. Ifthereading symbol is operator (+, -, *,/etc.,), then perform TWO pop
operations and store the two popped oparands in two different variables (operandl
and operand?2). Then perform reading symbol operation using operandl and
operand2 and push result back on to the Stack.

3. Finally! perform a pop operation and display the popped value as final result.

Exam pIe Consider the following Expression..



INnfix Expression
Postfix Expression

T Reading

Initially

End of Expressicon

Stack is Empty

push(s)

valuel =
valuelZ = popQ
result = valueZ + valuel

Prpush(result)

push(3)

push(2)

valuel = popQO
value = popQ
result = valueZ2 - valuel

push{(result)

valuel =
wvalue2 =
result

push(result)

PopQ
PopO

wvalue2 * valuel

result = popQO

Infix Expression (5 + 32)
Postfix Expression 5 3 4+ 8 2 - *

Multiple Stacks and Queues:

Multiple Stacks:

=

(5 + 3) >

= - 2)

2 - B8 2 - *

Above Postfix Expression can be evaluated by using Stack Data Structure as follows

njw

()0

(0N

0|0

-

Following pictures are two ways to do two stacks in array:

1. None fixed size of the stacks:
Graphical Pictwre: without fixxed size of stack

Nothing

Nothing

wvaluel — pop: /7 3
valuez = pop(); /S
result — S + 3z sr8

Fush( S )

(5 + =3)

5 + 32

5 + 32

valuel = pop(: /7 2

valuez — pop(: /7 &

result = 8 - 2: // 6
Pus=sh( 6 )

= - 2)
(5 + 2) . (8 - 2)

valuel = pop(: /7 6

valuez — pop(: /7 &

result = 8 ~ 6; // A48
Pus=sh({ 48 )

(6 * 8)

(5 - 3) ~ (8 - 2)

Display (result)

43

As final result

(2 - 2) = as
value is 48
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% Stack 1 expands from the 0™ element to the right
++ Stack 2 expands from the 12™ element to the left
% As long as the value of Topl and Top2 are not next to each other, it has free elements for

input the data in the array
®  When both Stacks are full, Top1 and Top 2 will be next to each other
+* There is no fixed boundary between Stack 1 and Stack 2
+* Elements —1 and -2 are using to store the information needed to manipulate the stack

(subscript for Top 1 and Top 2)

2. Fixed size of the stacks:
Graphical Picture: with fixed size of stack
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Stack1 Top—mw o

Stack ? Size ——m={ o

o

s Stack 1 expands from the 0™ element to the right

Stack 2 expands from the 6™ element to the left

» As long as the value of Top 1 is less than 6 and greater than 0, Stack 1 has free
elements to input the data in the array

% As long as the value of Top 2 is less than 11 and greater than 5, Stack 2 has free

elements to input the data in the array

When the value of Top 1 is 5, Stack 1 is full

When the value of Top 2 is 10, stack 2 is full

Elements —1 and -2 are using to store the size of Stack 1 and the subscript of the array for

Top 1 needed to manipulate Stack 1
% Elements -3 and —4 are using to store the size of Stack 2 and the subscript of the array for

Top 2 needed to manipulate Stack 2
procedure ADD (i,X ) //add element X to the i'th stack, 1in//
if T(i) = B(i + 1) then call STACK-FULL (i)
T(i) < T(i)+1
V(T(i)) ¢ X //add X to the i'th stack//
end ADD

X/
°

o

L)

e

AS

X/
°

R/
.0

*,

procedure DELETE(i,X ) //delete topmost element of stack i//
if T(i) = B(i) then call STACK-EMPTY(i)

X & V(T(i)

T(i) < T(i)-1

end DELETE



Multiple Queues:

Following pictures are two ways to do two queues in array:

1. None fixed size of the queues:

Grap hical Picture: without fixed size ofthe queue
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Eoundary

Queue 1 expands from the 0™ element to the right and circular back to the 0" element
Queue 2 expands from the 8" element to the left and circular back to the 8" element
Temporary boundary between the Queue 1 and the Queue 2; as long as there has free
elements in the array and boundary would be shift

Free elements could be anywhere in the Queue such as before the front, after the rear, and
between front and rear in the Queue

Queue 1’s and Queue 2 ‘s size could be change if it is necessary. When the Queue 1 is full
and the Queue 2 has free space; the Queue 1 can increase the size to use that free space
from the Queue 2. Same way for the Queue 2

Elements —1, -2, and —3 are using to store the size of the Queue 1, the front of the Queue 1,
and the data count for the Queue 1 needed to manipulate the Queue 1

Elements —4, =5, and —6 are using to store the size of the Queue 2, the front of the Queue 2,
and the data count for the Queue 2 needed to manipulate the Queue 2

Inserts data to the Queue 1, Q1Rear = (Q1Front + Qlcount) % Q1Size

Inserts data to the Queue 2, Q2Rear = (Q2Front + Q2count) % Q2Size + Q1Size

Deletes data from the Queue 1, Q1Front = (Q1Front + 1) % Q1Size

Deletes data from the Queue 2, Q2Front = (Q2Front + 1) % Q2Size + Q1Size

Fixed size of the queue:



Graphical Picture: with fized size ofthe queue
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% Queue 1 expands from the 0" element to the 4™ element and circular back to 0™ element

% Queue 2 expands from the 8" element to the 5" element and circular back to 8" element

«» The boundary is fixed between the Queue 1 and the Queue 2

% Free elements could be anywhere in the Queue such as before the front, after the rear, and
between front and rear in the Queue

% Elements —1, -2, and —3 are using to store the size of the Queue 1, the front of the Queue 1,

and the data count for the Queue 1 needed to manipulate the Queue 1

Elements —4, -5, and —6 are using to store the size of the Queue 2, the front of the Queue 2,

and the data count for the Queue 2 needed to manipulate the Queue 2

Inserts data to the Queue 1, Q1Rear = (Q1Front + Qlcount) % Q1Size

Inserts data to the Queue 2, Q2Rear = (Q2Front + Q2count) % Q2Size + Q1Size

Deletes data from the Queue 1, Q1Front = (Q1Front + 1) % Q1Size

Deletes data from the Queue 2, Q2Front = (Q2Front + 1) % Q2Size + Q1Size
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procedure ADDQ(1.
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procedure DELETEQ(i,
# delete the first node in the ith queue, set Y to it
if (i) =0 then call QUEUE _EMPTY S D:n

else [ X «— F(i): F(i) «— LINK (X)

i &
Y < DATA(X): call RET(X)]Set X o

end DELETEQ and |

A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a
connection to another link. Linked list is the second most-used data structure after
array. Following are the important terms to understand the concept of Linked List.

e Link — Each link of a linked list can store a data called an element.



¢ Next — Each link of a linked list contains a link to the next link called Next.
e LinkedList — A Linked List contains the connection link to the first link called
First.
Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the
next node.

Head Next Next Next
» Dataltems » Dataltems » Dataltems

NULL

As per the above illustration, following are the important points to be considered.
« Linked List contains a link element called first.
o Each link carries a data field(s) and a link field called next.
« Each link is linked with its next link using its next link.

e Last link carries a link as null to mark the end of the list.

Types of Linked List
Following are the various types of linked list.
« Simple Linked List — Item navigation is forward only.
e Doubly Linked List - Items can be navigated forward and backward.
e Circular Linked List — Last item contains link of the first element as next and
the first element has a link to the last element as previous.
Basic Operations
Following are the basic operations supported by a list.
e Insertion — Adds an element at the beginning of the list.
o Deletion - Deletes an element at the beginning of the list.
« Display - Displays the complete list.
e Search - Searches an element using the given key.

« Delete — Deletes an element using the given key.

Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this
with diagrams here. First, create a node using the same structure and find the
location where it has to be inserted.



Head Next Next
» Dataltems Data ltems

NULL

Next
Data Items

Imagine that we are inserting a node B (NewNode), between A (LeftNode)
and C (RightNode). Then point B.next to C -

NewNode.next —-> RightNode;
It should look like this —

Head Next Next
» Dataltems / Data Items

NULL

Next
Data Items

Now, the next node at the left should point to the new node.

LeftNode.next —> NewNode;

.

LefthMNode.next —> NewlNode;

Head Next >

> Data items Data Items

—1 7T
NULL
Next
Data Items

This will put the new node in the middle of the two. The new list should look like this —

Head Next Next Next
> Data items > Data ltems > Data items

What is Single Linked List?

Simply a list is a sequence of data, and the linked list is a sequence of data linked with each
other.
The formal definition of a single linked list is as follows...

Single linked list is a sequence of elements in which every element has link to its next
element in the sequence.

In any single linked list, the individual element is called as "Node". Every "Node" contains two
fields, data field, and the next field. The data field is used to store actual value of the node and
next field is wused to store the address of next node in the sequence.
The graphical representation of a node in a single linked list is as follows...




Stores Address of next node

o BN e

Stores Actual value

Example

Mode Address

G 1001
1004

*front
1001

Operations on Single Linked List

The following operations are performed on a Single Linked List

e Insertion
e Deletion
e Display

Before we implement actual operations, first we need to set up an empty list. First, perform the
following steps before implementing actual operations.

Step 1 - Include all the header files which are used in the program.

Step 2 - Declare all the user defined functions.

Step 3 - Define a Node structure with two members data and next

Step 4 - Define a Node pointer ‘head' and set it to NULL.

Step 5 - Implement the main method by displaying operations menu and make suitable
function calls in the main method to perform user selected operation.

Insertion

In a single linked list, the insertion operation can be performed in three ways. They are as
follows...

1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list

Inserting At Beginning of the list

We can use the following steps to insert a new node at beginning of the single linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode—next = NULL and head = newNode.
Step 4 - If it is Not Empty then, set newNode—next = head and head = newNode.



Inserting At End of the list

We can use the following steps to insert a new node at end of the single linked list...

Step 1 - Create a newNode with given value and newNode — next as NULL.

Step 2 - Check whether list is Empty (head == NULL).

Step 3 - If itis Empty then, set head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the last node in the list
(until temp — next is equal to NULL).

Step 6 - Set temp — next = newNode.

Inserting At Specific location in the list (After a
Node)

We can use the following steps to insert a new node after a node in the single linked list...

Step 1 - Create a newNode with given value.

Step 2 - Check whether list is Empty (head == NULL)

Step 3 - If it is Empty then, set newNode — next = NULL and head = newNode.

Step 4 - If it is Not Empty then, define a node pointer temp and initialize with head.

Step 5 - Keep moving the temp to its next node until it reaches to the node after which
we want to insert the newNode (until temp1 — data is equal to location, here location is
the node value after which we want to insert the newNode).

Step 6 - Every time check whether temp is reached to last node or not. If it is reached to
last node then display 'Given node is not found in the list!!l Insertion not
possible!l!!" and terminate the function. Otherwise move the temp to next node.

Step 7 - Finally, Set 'newNode — next = temp — next' and 'temp — next = newNode'

Deletion

In a single linked list, the deletion operation can be performed in three ways. They are as
follows...

1. Deleting from Beginning of the list
2. Deleting from End of the list
3. Deleting a Specific Node

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 -If it is Empty then, display 'List is Empty!!! Deletion is not possible' and
terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp"' and initialize with head.
Step 4 - Check whether list is having only one node (temp — next == NULL)

Step 5 -If it isTRUEthen sethead =NULL and delete temp (Setting Empty list
conditions)

Step 6 - If it is FALSE then set head = temp — next, and delete temp.



Deleting from End of the list

We can use the following steps to delete a node from end of the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 -If it is Empty then, display 'List is Empty!!! Deletion is not possible' and
terminate the function.

Step 3 -If it is Not Empty then, define two Node pointers 'templ' and 'temp2' and
initialize 'temp1' with head.

Step 4 - Check whether list has only one Node (temp1 — next == NULL)

Step 5 -If it is TRUE. Then, sethead = NULL and delete templ. And terminate the
function. (Setting Empty list condition)

Step 6 - If it is FALSE. Then, set 'temp2 = templ' and move templ to its next node.
Repeat the same until it reaches to the last node in the list. (until temp1 —
next == NULL)

Step 7 - Finally, Set temp2 — next = NULL and delete temp1.

Deleting a Specific Node from the list

We can use the following steps to delete a specific node from the single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 -If it is Empty then, display 'List is Empty!!! Deletion is not possible' and
terminate the function.

Step 3 -If it is Not Empty then, define two Node pointers 'templ' and 'temp2' and
initialize 'temp1' with head.

Step 4 - Keep moving the temp1 until it reaches to the exact node to be deleted or to the
last node. And every time set ‘temp2 = templ' before moving the ‘templ' to its next
node.

Step 5 - If it is reached to the last node then display '‘Given node not found in the list!
Deletion not possible!!!". And terminate the function.

Step 6 - If it is reached to the exact node which we want to delete, then check whether
list is having only one node or not

Step 7 -If list has only one node and that is the node to be deleted, then
set head = NULL and delete temp1l (free(templ)).

Step 8 - If list contains multiple nodes, then check whether templ is the first node in the
list (templ == head).

Step 9 - If templ is the first node then move the head to the next node (head = head —
next) and delete temp1.

Step 10 - If temp1l is not first node then check whether it is last node in the list (temp1 —
next == NULL).

Step 11 -Iftemplis last node then settemp2 — next=NULL and
delete templ (free(templ)).

Step 12 - If templ is not first node and not last node then set temp2 — next = temp1 —
next and delete temp1 (free(templ)).

Displaying a Single Linked List

We can use the following steps to display the elements of a single linked list...

Step 1 - Check whether list is Empty (head == NULL)

Step 2 - If it is Empty then, display 'List is Empty!!!" and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with head.
Step 4 - Keep displaying temp — data with an arrow (--->) until temp reaches to the last
node



e Step 5 - Finally display temp — data with arrow pointing to NULL (temp — data --->
NULL).

Linked stack and Queue:

Linked stack

Instead of using array, we can also use linked list to implement stack. Linked list
allocates the memory dynamically. However, time complexity in both the scenario is
same for all the operations i.e. push, pop and peek.

In linked list implementation of stack, the nodes are maintained non-contiguously in
the memory. Each node contains a pointer to its immediate successor node in the
stack. Stack is said to be overflow if the space left in the memory heap is not enough
to create a node.

top — > HNodepata ¢

|

Mode Data MNext

J

Mode Data MNext

|

Mode Data MNext

Stack

The top most node in the stack always contains null in its address field. Lets discuss
the way in which, each operation is performed in linked list implementation of stack.

Adding a node to the stack (Push operation)

Adding a node to the stack is referred to as push operation. Pushing an element to a
stack in linked list implementation is different from that of an array implementation.
In order to push an element onto the stack, the following steps are involved.

1. Create a node first and allocate memory to it.



2.

If the list is empty then the item is to be pushed as the start node of the list. This
includes assigning value to the data part of the node and assign null to the address

part of the node.

If there are some nodes in the list already, then we have to add the new element in
the beginning of the list (to not violate the property of the stack). For this purpose,
assign the address of the starting element to the address field of the new node and
make the new node, the starting node of the list.

Head
node 1
value
> next
— Head
v
: node 1
value
e > next
node 0
value
— next —
New Node

Deleting a node from the stack (POP operation)

-

-

node 2

value

next

node 2

value

next

al

al

node 3

value

next

node 3

value

next

Deleting a node from the top of stack is referred to as pop operation.
Deleting a node from the linked list implementation of stack is different from
that in the array implementation. In order to pop an element from the stack,

we need to follow the following steps :

1. Check for the underflow condition: The underflow condition occurs when
we try to pop from an already empty stack. The stack will be empty if the

head pointer of the list points to null.

2. Adjust the head pointer accordingly: In stack, the elements are popped
only from one end, therefore, the value stored in the head pointer must be
deleted and the node must be freed. The next node of the head node now

becomes the head node.



Display the nodes (Traversing)

Displaying all the nodes of a stack needs traversing all the nodes of the linked
list organized in the form of stack. For this purpose, we need to follow the
following steps.

1. Copy the head pointer into a temporary pointer.

2. Move the temporary pointer through all the nodes of the list and print the
value field attached to every node.

Linked Queue

In a linked queue, each node of the queue consists of two parts i.e. data part and the
link part. Each element of the queue points to its immediate next element in the
memory.

In the linked queue, there are two pointers maintained in the memory i.e. front
pointer and rear pointer. The front pointer contains the address of the starting
element of the queue while the rear pointer contains the address of the last element
of the queue.

Insertion and deletions are performed at rear and front end respectively. If front and
rear both are NULL, it indicates that the queue is empty.

The linked representation of queue is shown in the following figure.

9 » 1 7 —>4x

front rear

Linked Queue

Operation on Linked Queue

There are two basic operations which can be implemented on the linked
queues. The operations are Insertion and Deletion.

The insert operation append the queue by adding an element to the end of the
queue. The new element will be the last element of the queue.

Firstly, allocate the memory for the new node ptr by using the following statement.
There can be the two scenario of inserting this new node ptr into the linked queue.

we insert element into an empty queue. In this case, the condition front =
NULL becomes true. Now, the new element will be added as the only element of the
queue and the next pointer of front and rear pointer both, will point to NULL.



Deletion operation removes the element that is first inserted among all the queue
elements. Firstly, we need to check either the list is empty or not. The condition front
== NULL becomes true if the list is empty, in this case , we simply write underflow on
the console and make exit. Otherwise, we will delete the element that is pointed by
the pointer front. For this purpose, copy the node pointed by the front pointer into
the pointer ptr. Now, shift the front pointer, point to its next node and free the node
pointed by the node ptr.

UnitII

Trees — Binary tree representations — Tree Traversal — Threaded Binary Trees — Binary Tree
Representation of Trees — Graphs and Representations — Traversals, Connected
Components and Spanning Trees — Shortest Paths and Transitive closure — Activity
Networks — Topological Sort and Critical Paths.

Trees: Non-Linear data structure

A data structure is said to be linear if its elements form a sequence or a linear list.
Previous
linear data structures that we have studied like an array, stacks, queues and linked lists
organize data in linear order. A data structure is said to be non linear if its elements form a
hierarchical classification where, data items appear at various levels.

Trees and Graphs are widely used non-linear data structures. Tree and graph structures
represent hierarchical relationship between individual data elements. Graphs are nothing but
trees with certain restrictions removed.

Trees represent a special case of more general structures known as graphs. In a graph,
there is no restrictions on the number of links that can enter or leave a node, and cycles may be
present in the graph. The figure shows a tree and a non-tree.
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A Tree Not a Tree

Tree is a popular data structure used in wide range of applications. A tree data structure
can be defined as follows...

Tree is a non-linear data structure which organizes data in hierarchical structure and
this is a recursive definition.

A tree data structure can also be defined as follows...

A tree is a finite set of one or more nodes such that:

There is a specially designated node called the root. The remaining nodes are partitioned

into n>=0 disjoint sets T1, ..., Tn, where each of these sets is a tree. We call T1, ..., Tn are the
subtrees of the root.



A tree is hierarchical collection of nodes. One of the nodes, known as the root, is at the top of the
hierarchy. Each node can have at most one link coming into it. The node where the link originates
is called the parent node. The root node has no parent. The links leaving a node (any number of
links are allowed) point to child nodes. Trees are recursive structures. Each child node is itself the
root of a subtree. At the bottom of the tree are leaf nodes, which have no children.

Advantages of trees

Trees are so useful and frequently used, because they have some very serious advantages:
1 Trees reflect structural relationships in the data

"1 Trees are used to represent hierarchies

"1 Trees provide an efficient insertion and searching

" Trees are very flexible data, allowing to move sub trees around with minimum effort

Introduction Terminology

In a Tree, Every individual element is called as Node. Node in a tree data structure, stores
the actual data of that particular element and link to next element in hierarchical structure.
Example
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elemaent is called as "NODE’

1. Root

In a tree data structure, the first node is called as Root Node. Every tree must have root node. We
can say that root node is the origin of tree data structure. In any tree, there must be only one root
node. We never have multiple root nodes in a tree. In above tree, A is a Root node

2. Edge

In a tree data structure, the connecting link between any two nodes is called as EDGE. In a tree
with 'N' number of nodes there will be a maximum of 'N-1' number of edges.

3. Parent

In a tree data structure, the node which is predecessor of any node is called as PARENT NODE.
In simple words, the node which has branch from it to any other node is called as parent node.
Parent node can also be defined as "The node which has child / children". e.g., Parent (A,B,C,D).
4. Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node. In
simple words, the node which has a link from its parent node is called as child node. In a tree, any
parent node can have any number of child nodes. In a tree, all the nodes except root are child
nodes. e.g., Children of D are (H, 1,J).

5. Siblings

In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple
words, the nodes with same parent are called as Sibling nodes. Ex: Siblings (B,C, D)

6. Leaf

In a tree data structure, the node which does not have a child (or) node with degree zero is called
as LEAF Node. In simple words, a leaf is a node with no child. In a tree data structure, the leaf



nodes are also called as External Nodes. External node is also a node with no child. In a tree, leaf
node is also called as "Terminal' node. Ex: (K,L,F,G,M,1,J)

7. Internal Nodes

In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In
simple words, an internal node is a node with atleast one child. In a tree data structure, nodes
other than leaf nodes are called as Internal Nodes. The root node is also said to be Internal Node
if the tree has more than one node. Internal nodes are also called as 'Non-Terminal' nodes.
Ex:B,C,D,EH

8. Degree

In a tree data structure, the total number of children of a node (or)number of subtrees of a node is
called as DEGREE of that Node. In simple words, the Degree of a node is total number of
children it has. The highest degree of a node among all the nodes in a tree is called as 'Degree of
Tree'

@ Here Degrees of B is =
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9. Level
In a tree data structure, the root node is said to be at Level 0 and the children of root node are at
Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In
simple words, in a tree each step from top to bottom is called as a Level and the Level count starts
with '0" and incremented by one at each level (Step). Some authors start root level with 1.
10. Height
In a tree data structure, the total number of edges from leaf node to a particular node in the
longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to be
height of the tree. In a tree, height of all leaf nodes is '0".
11. Depth
In a tree data structure, the total number of edges from root node to a particular node is called as
DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the
longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in
a tree is said to be depth of that tree. In a tree, depth of the root node is '0'.
12. Path
In a tree data structure, the sequence of Nodes and Edges from one node to another node is called
as PATH between that two Nodes. Length of a Path is total number of nodes in that path. In
below example the path A - B - E - J has length 4.

In any tree, “Path”’ is a sequeance
of nodes anmnd edges betwean two

IIE'I.‘I'"‘-.

Here, ‘Path” between A B 1is
A -B-E-J

Here, "Path’ between C & K is
C-G-K

13. Sub Tree



In a tree data structure, each child from a node forms a subtree recursively. Every child node will
form a subtree on its parent node
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Tree Representations

A tree data structure can be represented in two methods. Those methods are as follows...
1.List Representation

2. Left Child - Right Sibling Representation

Consider the following tree...

==
C

1. List Representation

In this representation, we use two types of nodes one for representing the node with data and
another for representing only references. We start with a node with data from root node in the
tree. Then it is linked to an internal node through a reference node and is linked to any other node
directly. This process repeats for all the nodes in the tree.

The above tree example can be represented using List representation as follows...

alry " b =
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Fig: List representation of above Tree
List Representation

—(A(B(E(K,L),F),C(G),D(H({M),1,1)))
— Theroot comes first, followed by a list of sub-trees

data link1 | link2 | ... link k

Fig: Possible node structure for a tree of degree k

2. Left Child - Right Sibling Representation
In this representation, we use list with one type of node which consists of three fields namely
Data field, Left child reference field and Right sibling reference field. Data field stores the actual



value of a node, left reference field stores the address of the left child and right reference field
stores the address of the right sibling node. Graphical representation of that node is as follows...

In this representation, every node's data field stores the actual value of that node. If that node has
left child, then left reference field stores the address of that left child node otherwise that field
stores NULL. If that node has right sibling then right reference field stores the address of right
sibling node otherwise that field stores NULL. The above tree example can be represented using
Left Child - Right Sibling representation as follows...

data
@ left child |[right sibling

OOO
© ()

Representation as a Degree —Two Tree

To obtain degree-two tree representation of a tree, rotate the right- sibling pointers in the left
child-right sibling tree clockwise by 45 degrees. In a degree-two representation, the two children
of anode are referred as left and right children.

Figure 5.6: T eft child-right child tree representation of a tree (p_ 19217

Binary Trees

In a normal tree, every node can have any number of children. Binary tree is a special
type of tree data structure in which every node can have a maximum of 2 children. One is known
as left child and the other is known as right child.
~A tree in which every node can have a maximum of two children is called as Binary Tree.
~In a binary tree, every node can have either O children or 1 child or 2 children but not more than
2 children. Example



There are different types of binary trees and they are...

1. Strictly Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,
every node should have exactly two children or none. That means every internal node must have
exactly two children. A strictly Binary Tree can be defined as follows...

A binary tree in which every node has either two or zero number of children is called Strictly

Binary Tree. Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-
Tree

2. Complete Binary Tree

In a binary tree, every node can have a maximum of two children. But in strictly binary tree,
every node should have exactly two children or none and in complete binary tree all the nodes
must have exactly two children and at every level of complete binary tree there must be 2 level

number of nodes. For example at level 2 there must be 2”2 = 4 nodes and at level 3 there must be
2”3 = 8 nodes.

A binary tree in which every internal node has exactly two children and all leaf nodes are at same
level is called Complete Binary Tree.

Complete binary tree is also called as Perfect Binary Tree

Full BT VS Complete BT

m A full binary tree of depth k is a binary tree of
depth k& having 21 nodes, k>=0.

m A binary tree with n nodes and depth kis
complete iff its nodes correspond to the nodes
numbered from 1 to n in the full binary tree of
depth k.

(B (c)
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Complete binary tree

SRR Full Binary tree of depth 4
3. Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes
wherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is called as Extended
Binary Tree.

Abstract Data Type

Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two
disjoint binary trees called left subtree and right subtree.

ADT contains specification for the binary tree ADT.

Structure Binary_Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or consisting of a root node, left Binary Tree, and right
Binary_Tree.

Functions:

for all bt, bt1, bt2 (1 BinTree, item [J element

Bintree Create()::= creates an empty binary tree



Boolean IsEmpty(bt)::= if (bt==empty binary tree) return TRUE else return FALSE

BinTree MakeBT (bt1, item, bt2)::= return a binary tree whose left subtree is btl, whose right
subtree is bt2, and whose root node contains the data item

Bintree Lchild(bt)::= if (ISEmpty(bt)) return error else return the left subtree of bt

element Data(bt)::= if (ISEmpty(bt)) return error else return the data in the root node of bt
Bintree Rchild(bt)::= if (ISEmpty(bt)) return error else return the right subtree of bt

Samples of Trees=s
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Differences between A Tree and A Binary Tree
* The subtrees of a binary tree are ordered; those of a tree are not ordered.

Above two trees are different when viewed as binary trees. But same when viewed as trees.
Properties of Binary Trees

1.Maximum Number of Nodes in BT

[1 The maximum number of nodes on level i of a binary tree is 2i-1, i>=1.

[1 The maximum number of nodes in a binary tree of depth k is 2«-1, k>=1.

Proof By Induction:

Induction Base: The root is the only node on level i=1.Hence ,the maximum number of nodes on
level i=1 is 2i-1=20=1.

Induction Hypothesis: Let | be an arbitrary positive integer greater than 1.Assume that maximum
number of nodes on level i-1 is 2i-.

Induction Step: The maximum number of nodes on level i-1 is 2i-2 by the induction hypothesis.
Since each node in a binary tree has a maximum degree of 2,the maximum number of nodes on
level i is two times the maximum number of nodes on level i-1,0r 2i-1.

The maximum number of nodes in a binary tree of depth k is

2.Relation between number of leaf nodes and degree-2 nodes: For any nonempty binary tree,
T, if nois the number of leaf nodes and n2 the number of nodes of degree 2, then no=n2+1.
PROOF: Let n and B denote the total number of nodes and branches in T. Let no, n1, n2 represent
the nodes with zero children, single child, and two children respectively.

B+1=n 2> B=n1+2n2==>n1+2n2+1=n,

ni+2n2+1= no+ni+n2 ==> no=n2+1

3. A full binary tree of depth k is a binary tree of depth k having 2 -1 nodes, k>=0.

A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered
from 1 to n in the full binary tree of depth k.

Binary Tree Representation
A binary tree data structure is represented using two methods. Those methods are



1)Array Representation

2)Linked List Representation

1)Array Representation: In array representation of binary tree, we use a one dimensional array
(1-D Array) to represent a binary tree. To represent a binary tree of depth 'n' using array
representation, we need one dimensional array with a maximum size of

A complete binary tree with n nodes (depth = log n + 1) is represented sequentially, then for any
node with index i, 1<=i<=n, we have: a) parent(i) is at i/2 if i'=1. If i=1, i is at the root and has no
parent. b)left_child(i) ia at 2i if 2i<=n. If 2i>n, then i has no left child. c) right_child(i) is at 2i+1
if 2i +1 <=n. If 2i +1 >n, then i has no right child
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2. Linked Representation : We use linked list to represent a binary tree. In a linked list, every
node consists of three fields. First field, for storing left child address, second for storing actual
data and third for storing right child address. In this linked list representation, a node has the
following structure...

TN
data )
. . J"/
lefi uhild\ data \ right_child left_child right_child

typedef struct node *tree_pointer;
typedef struct node
{
int data;
tree_pointer left_child, right_child;
I
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Binary Tree Traversals
When we wanted to display a binary tree, we need to follow some order in which all the nodes of
that binary tree must be displayed. In any binary tree displaying order of nodes depends on the



traversal method. Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal.
There are three types of binary tree traversals.
1)In - Order Traversal 2)Pre - Order Traversal 3)Post - Order Traversal
Binary Tree Traversals
* 1. In - Order Traversal ( leftChild - root - rightChild )
I-D-J-B-F-A-G-K-C-H
* 2. Pre - Order Traversal ( root - leftChild - rightChild )
A-B-D-1-J-F-C-G-K-H
* 3. Post - Order Traversal ( leftChild - rightChild - root )
I-J-D-F-B-K-G-H-C-A

€Y
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1. In - Order Traversal ( leftChild - root - rightChild)

In In-Order traversal, the root node is visited between left child and right child. In this traversal,
the left child node is visited first, then the root node is visited and later we go for visiting right
child node. This in-order traversal is applicable for every root node of all subtrees in the tree. This
is performed recursively for all nodes in the tree. In the above example of binary tree, first we try
to visit left child of root node 'A’, but A's left child is a root node for left subtree. so we try to visit
its (B's) left child 'D' and again D is a root for subtree with nodes D, | and J. So we try to visit its
left child 'I' and it is the left most child. So first we visit 'I'then go for its root node 'D' and later
we visit D's right child 'J'. With this we have completed the left part of node B. Then visit 'B' and
next B's right child 'F' is visited. With this we have completed left part of node A. Then visit root
node 'A'. With this we have completed left and root parts of node A. Then we go for right part of
the node A. In right of A again there is a subtree with root C. So go for left child of C and again it
is a subtree with root G. But G does not have left part so we visit 'G' and then visit G's right child
K. With this we have completed the left part of node C. Then visit root node'C' and next visit C's
right child 'H' which is the right most child in the tree so we stop the process. That means here we
have visited in the orderof | -D-J-B-F-A-G-K-C-H using In-Order Traversal.

In-Order Traversal for above example of binary tree is

I-D-J-B-F-A-G-K-C-H

Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.

Step 2 — Visit root node.

Step 3 — Recursively traverse right subtree.

void inorder(tree_pointer ptr) /* inorder tree traversal */ Recursive

{

if (ptr) {
inorder(ptr->left_child);
printf(“%d”, ptr->data);
indorder(ptr->right_child);
}

}



2. Pre - Order Traversal ( root - leftChild - rightChild)

In Pre-Order traversal, the root node is visited before left child and right child nodes. In this
traversal, the root node is visited first, then its left child and later its right child. This pre-order
traversal is applicable for every root node of all subtrees in the tree. In the above example of
binary tree, first we visit root node ‘A’ then visit its left child 'B' which is a root for D and F. So
we visit B's left child 'D' and again D is a root for I and J. So we visit D's left child'l' which is the
left most child. So next we go for visiting D's right child 'J'. With this we have completed root,
left and right parts of node D and root, left parts of node B. Next visit B's right child'F'. With this
we have completed root and left parts of node A. So we go for A's right child 'C' which is a root
node for G and H. After visiting C, we go for its left child 'G' which is a root for node K. So next
we visit left of G, but it does not have left child so we go for G's right child 'K'. With this we have
completed node C's root and left parts. Next visit C's right child '"H' which is the right most child
in the tree. So we stop the process. That means here we have visited in the order of A-B-D-I-J-F-
C-G-K-H using Pre-Order Traversal.

Algorithm

Until all nodes are traversed —

Step 1 — Visit root node.

Step 2 — Recursively traverse left subtree.

Step 3 — Recursively traverse right subtree.

void preorder(tree_pointer ptr) /* preorder tree traversal */ Recursive

{

if (ptr) {

printf(“%d”, ptr->data);
preorder(ptr->left_child);
preorder(ptr->right_child);
}

}

3. Post - Order Traversal ( leftChild - rightChild - root )

In Post-Order traversal, the root node is visited after left child and right child. In this traversal,
left child node is visited first, then its right child and then its root node. This is recursively
performed until the right most node is visited. Here we have visited in the orderof 1 -J-D -F - B
-K-G-H-C - Ausing Post-Order Traversal.

Algorithm

Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.

Step 2 — Recursively traverse right subtree.

Step 3 — Visit root node.

void postorder(tree_pointer ptr) /* postorder tree traversal */ Recursive

{

if (ptr) {
postorder(ptr->left_child);
postorder(ptr->right_child);
printf(“%d”, ptr->data);

}

}



Arithmetic Expression Using BT

Trace Operations of Inorder Traversal

imnorder trawversasl
A B *C* D+ E
infix expression
proeorder trawversal
+ == A B CDE
prefic expressicon
postorder traversa
OB S C *F ¥ E +
postfix exproession
lewel order trawvwersa

+ T E*DJS0C 8B

"

“mll a3k smoTrader ' mllnse mrn roscei
—— ——
“

Mo Encar
——

il on I amaesrcler
—

Yo' puliae ams rasasi
——

S cilaoen
—

1

- -

5 -

-3 E

= N,

-3 ot il LY . |
= N,

- I SLY . |
-3 e

= B

L= oIl SLY . |
] [ =]

1 il SLY . |
=

il

ragsif

il

prassi kb

11
13
11
1=
=X

L=
15
L3
1=
I

17
L
17
1 WF

g

LT L

-
MHULTL.E

-
I»
L
>
r«L
B

2
L
2
L

L

Il

L

L

L

L

L

L

Preid

pPreevid

Preoid

prreecid

pPrecvid

Binary Search Trees

Binary Search Tree Representation

Binary Search tree exhibits a special behavior. A node's left child must have value less than its

parent's value and node's right child must have value greater than it's parent value.

\

10 |
N/

We're going to implement tree using node object and connecting them through references.

Definition: A binary search tree (BST) is a binary tree. It may be empty. If it is not empty,then
all nodes follows the below mentioned properties —

[] Every element has a unique key.

[J The keys in a nonempty left subtree (right subtree) are smaller (larger) than the key in the root

of subtree.

27

i ™

14

O

19

31

a

(42 )
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O The keys in a nonempty right subtree larger than the key in the root of subtree.

O The left and right subtrees are also binary search trees.

left sub-tree and right sub-tree and can be defined as —



left_subtree (keys) < node (key) <right subtree (keys)
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Fig: Example Binary Search Trees

Graph

A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V
* An edge e = (u,v) is a pair of vertices
Example:

V= {a,b,c,d,e}
E={(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)}

Graph Terminology
Undirected Graph:
An undirected graph is one in which the pair of vertices in a edge is unordered,
(vO, v1) = (v1,v0)
Directed Graph:
A directed graph is one in which each edge is a directed pair of vertices, <vO,
vl> = <vl,vO>
Undirected Graph Directed Graph

@) D
g

Figure 1: An Undirected Graph ~ Figure 2: A Directed Graph

Complete Graph:

A complete graph is a graph that has the maximum number of edges for undirected graph with
n vertices, the maximum number of edges is n(n-1)/2 for directed graph with n vertices, the
maximum number of edges is n(n-1)



Gi
complete graph

V(G1)={0,1,2,3}

V(Gs)={0,1,2}

Adjacent and Incident:
If (vO, v1) is an edge in an undirected graph,
—v0 and v1 are adjacent

—The edge (vO, v1) is incident on vertices vO and v1

If <v0, v1> is an edge in a directed graph
—vO0 is adjacent to v1, and v1 is adjacent from vO
—The edge <vO, v1> is incident on vO and v1

Multigraph:
In a multigraph, there can be more than one edge from vertex P to
vertex Q. In a simple graph there is at most one.

multigraph:
multiple occurrences
ofthe same edge

Graph with self edge or graph with feedback loops:
A self loop is an edge that connects a vertex to itself. In some graph it makes sense to allow self-

loops; in some it doesn't.

; selfedge

Subgraph:



A subgraph of G is a graph G’ such that V(G’) is a subset of V(G) and E(G’) is a
subset of E(G)

JORNO RO @
)
d ol

G (i) (ii) (iii) (i)
Some of the subgraph of Gy

Path:
A path from vertex vp to vertex vq in a graph G, is a sequence of vertices, vp,
vil, vi2, ..., vin, vq, such that (vp, vil), (vil, vi2), ..., (vin, vq) are edges in an

undirected graph

The length of a path is the number of edges on it.

Simple Path and Style:

A simple path is a path in which all vertices, except possibly the first and the
last, are distinct.

A cycle is a simple path in which the first and the last vertices are the same
In an undirected graph G, two vertices, vO and v1, are connected if there is a
path in G from vO to v1.

An undirected graph is connected if, for every pair of distinct vertices vi, vj,
there is a path from vi to vj

connected
PC>.
1 ) 6'2_
(3) Ca>y (s 6
L

tree (acvyclic graph)
Degree
The degree of a vertex is the number of edges incident to that vertex
For directed graph,
—the in-degree of a vertex v is the number of edges that have v as the head
—the out-degree of a vertex v is the number of edges that have v as the tail
—if diis the degree of a vertex iin a graph G with n vertices and e edges, the
number of edges is

S AYES

Example:



undirected graph

directed graph

in-degree

out-degree @ in: 1, out: 2
@ in: 1, out: 0

ADT for Graph
Graph ADT is
Data structures: a nonempty set of vertices and a set of undirected
edges, where each edge is a pair of vertices
Functions: for all graph [1 Graph, v, vi and v2 [] Vertices
e Graph Create()::=return an empty graph
e Graph InsertVertex(graph, v)::= return a graph with v inserted. V
has no incident edge.
e Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between
vl and v2
e Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
incident to it are removed
e Graph DeleteEdge(graph, v, v2)::=return a graph in which the edge
(v1, v2) is removed
e Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
e List Adjacent(graph,v)::= return a list of all vertices that are adjacent
tov
Graph Representations
Graph can be represented in the following ways:
a) Adjacency Matrix
b) Adjacency Lists
c) Adjacency Multilists
a) Adjacency Matrix
Let G=(V,E) be a graph with n vertices.
The adjacency matrix of G is a two-dimensional by array, say adj_mat.
If the edge (vi, vj) is in E(G), adj_mat]i][j]=1
If there is no such edge in E(G), adj_mat[i][j]=0
The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph
need not be symmetric
Examples for Adjacency Matrix:
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Merits of Adjacency Matrix

From the adjacency matrix, to determine the connection of vertices is easy
The degree of a vertex is

For a digraph, the row sum is the out_degree, while the column sum is the
in_degree

ind(vi) =3 A[j.i] outd(vi)=3 Ali. ;]

b) Adjacency Lists
Each row in adjacency matrix is represented as an adjacency list.
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Interesting Operations

e degree of a vertex in an undirected graph
# of nodes in adjacency list

e # of edges in a graph
determined in O(n+e)

e out-degree of a vertex in a directed graph
# of nodes in its adjacency list

e in-degree of a vertex in a directed graph
traverse the whole data structure

Orthogonal representation for graph G3
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Order is of no significance.
headnodes wvertax link
0 — |3 — | 1 &——— | 2 |NULL
1 — |2 ——s ——— | 3 |NULL

c) Adjacency Multilists

An edge in an undirected graph is represented by two nodes in adjacency list
representation.

Adjacency Multilists

—lists in which nodes may be shared among several lists. (an edge is shared by
two different paths)

marked | vertexl| vertex2] plathl path?2

Example for Adjacency Multlists
Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5
vertex 2: M2->M4->M6, vertex 3: M3->M5->M6




(1.0)
N1 I><|0|1|N2IN%I edge (0.1)

N2 [<]0[2 [N3[N4] edge (0.2)
N3 [X[o]3 R|N5I edge (0.3)
N4 [<][1]2[N5 |N6| edge (1.2)
Ns D<]1]3 [\|_N§i| edge (1.3)
Ne 23] ] edge@.3)

six edges
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Some Graph Operations

The following are some graph operations:

a) Traversal Given G=(V,E) and vertex v, find all w! 1V, such that w connects v.
— Depth First Search (DFS) preorder tree traversal

— Breadth First Search (BFS) level order tree traversal

b) Spanning Trees

c) Connected Components

Graph G and its adjacency lists

depth first search: vO, v1, v3, v7, v4, v5, v2, v6
breadth first search: vO, v1, v2, v3, v4, v5, v6, v7

Depth First Search

Depth First Search (DFS) algorithm traverses a graph in a depthward motion
and uses a stack to remember to get the next vertex to start a search, when a
dead end occurs in any iteration.
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As in the example given above, DFS algorithm traverses from A to B to C to D first then to E, then
to F and lastly to G. It employs the following rules.
e Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push
it in a stack.
e Rule 2 - If no adjacent vertex is found, pop up a vertex from the stack. (It will
pop up all the vertices from the stack, which do not have adjacent vertices.)
e Rule 3 - Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description
1 Initialize the
‘3_ \ stack.
A ' B & :
¥ Stack
2 Mark S as visited and put it onto
_NS the stack. Explore any unvisited
T adjacent node from S. We have
three nodes and we can pick any
: of them. For this example, we
e B e shall take the node in an
I \ g alphabetical order.
’ top+ S
g \ _
e Stack




Mark A as visited and put it onto

: \s_v the stack. Explore any unvisited
1 adjacent node from A. Both S and
D are adjacent to A but we are
concerned for unvisited nodes
) AT , © only.
\ T / top+ A
[ s
D s g
it Stack
Visit D and mark it as visited
\ \S and put onto the stack. Here,
T we have B and C nodes, which
are adjacent to D and both are
unvisited. However, we shall
A B S '(OD*‘ o] again choose in an alphabetical
-\\ - / s order.
A
S
D \
~— Stack
We choose B, mark it as visited
\ ‘_5_7 and put onto the stack. Here B
T ‘ does not have any unvisited
top»l B adjacent node. So, we pop B from
‘ the stack.
A B @ ‘ D
- \ ] / - | A
[ s
D S g
— Stack
We check the stack top for return
o to the previous node and check if
T it has any unvisited nodes. Here,
we find D to be on the top of the
stack.
A B & topﬂ D
\ ] / - | A
s




7 Only unvisited adjacent node is
S from D is C now. So we visit C,

mark it as visited and put it onto
top.’ C the stack.
B e D

A

D

As C does not have any unvisited adjacent node so we keep popping the stack
until we find a node that has an unvisited adjacent node. In this case, there's
none and we keep popping until the stack is empty.

Breadth First Search

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and uses a
gueue to remember to get the next vertex to start a search, when a dead end occurs in any
iteration.

/ I \
1, 2, v 3
i \ Y
A B (o]
™~ - A
/ / \
41 5' 6
\ ! I
\ 4 ¥
D E F
°
\
\
\
T %o

As in the example given above, BFS algorithm traverses from Ato Bto E to F
first then to C and G lastly to D. It employs the following rules.

[ Rule 1 - Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in
a queue.

[1 Rule 2 - If no adjacent vertex is found, remove the first vertex from the queue.

[] Rule 3 - Repeat Rule 1 and Rule 2 until the queue is empty.

Step | Traversal Description
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Initialize the queue.

o -

Queue

Queue
We start from visiting S
Hs. (starting node), and mark it
/ | \ as visited.
A [ B c
D
5 Queue
We then see an unvisited
-EE'_ adjacent node from S. In
T this example, we have three
nodes but alphabetically we
choose A, mark it as visited
i " st \ & and enqueue it.
\ / :
D__ Queue
Next, the unvisited adjacent
) node from S is B. We mark
/ T \ it as visited and enqueue it.
A B c
J\ / -
?__ Queue
Next, the unvisited adjacent
- __5__ node from S is C. We mark
/ T \ it as visited and enqueue it.
A‘ # % B Y c 5
\ / c| B A




6 Now, S is left with no
& unvisited adjacent nodes.
/ \ So, we dequeue and find A.
A B -
\ / C B
D Queue
7 From A we have D as
‘rs unvisited adjacent node. We
mark it as visited and
enqueue it.
A B c
\ / D C B
? Queue

At this stage, we are left with no unmarked (unvisited) nodes. But as per the
algorithm we keep on dequeuing in order to get all unvisited nodes. When the
queue gets emptied, the program is over.

Spanning Trees

When graph G is connected, a depth first or breadth first search starting at any
vertex will visit all vertices in G

A spanning tree is any tree that consists solely of edges in G and that includes
all the vertices

E(G): T (tree edges) + N (nontree edges) where T: set of edges used during search
N: set of remaining edges

Examples of Spanning Tree

G Possible spanning trees

Either dfs or bfs can be used to create a spanning tree

— When dfs is used, the resulting spanning tree is known as a depth first
spanning tree

— When bfs is used, the resulting spanning tree is known as a breadth first
spanning tree

While adding a nontree edge into any spanning tree, this will create a cycle
DFS VS BFS Spanning Tree
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DFS Spanning BFS Spanning

A spanning tree is a minimal subgraph, G’, of G such that V(G’)=V(G) and G’ is
connected.

Any connected graph with n vertices must have at least n-1 edges.

A biconnected graph is a connected graph that hasno articulation points.

biconnected graph

two connected components one connected graph

-~ {@

connected graph




biconnected component: a maximal connected subgraph H (no subgraph that is both
biconnected and properly contains H).

biconnected components
Minimum Cost Spanning Tree
(1 The cost of a spanning tree of a weighted undirected graph is the sum of the
costs of the edges in the spanning tree

0 A minimum cost spanning tree is a spanning tree of least cost
O Three different algorithms can be used

— Kruskal

— Prim

— Sollin

Kruskal’s Algorithm

Build a minimum cost spanning tree T by adding edges to T one at a time
Select the edges for inclusion in T in nondecreasing order of the cost

An edge is added to T if it does not form a cycle

Since G is connected and has n > O vertices, exactly n-1 edges will be selected
Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning
tree formed so far. If cycle is not formed, include this edge. Else,
discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Psuedocode for Kruskal’s Algorithm
Kruskal(G, V, E)

{

T={;

while(T contains less than n-1 edges && E is not empty)
{

choose a least cost edge (v,w) from E;
delete (v,w) from E;

if ((v,w) does not create a cycle in T)
add (v,w) to T

else

discard (v,w);

§

if (T contains fewer than n-1 edges)
printf(“No spanning tree\n”);



}

Examples for Kruskal’s Algorithm
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Prim’s Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's algorithm)
uses the greedy approach. Prim's algorithm shares a similarity with the

shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as a
single tree and keeps on adding new nodes to the spanning tree from the given

graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better,

we shall use the same example -
Steps of Prim's Algorithm: The following are the main 3 steps of the Prim's

Algorithm:




1. Begin with any vertex which you think would be suitable and add it to the
tree.

2. Find an edge that connects any vertex in the tree to any vertex that is not in
the tree. Note that, we don't have to form cycles.

3. Stop when n - 1 edges have been added to the tree.

Psuedocode of Prim’s algorithm
Prims(G,V,E)

{

T={;

TV={0};

while (T contains fewer than n-1 edges)
{

let (u,v) be a least cost edge such that and if (there is no such edge ) break;
add v to TV,

add (u,v) to T;

}

if (T contains fewer than n-1 edges)
printf(“No spanning tree\n”);

Examples for Prim's Algorithom
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Example ftor the Shortest Path
1300

San Chic a_c:

Francisco D e 1200

8OO

Los Angeles

8] 1 2
o — 8]
1 300 8]
2 1000 s00 8]
3 1200 8]
<4 1500 0 250
5 1000 8] 900 1400
(] 8] 1000
i 1700 Q

Cost adjacency matrix

(a) ®) © (4)

1500 o 1500 o 250
o 250 o 250 o

o 1000 o 500

(e)




@00

LA
o

SO0
Iteration |S Vertex |LA |SF |DEN|CHI [BO|NY |MIA [NO
Selected |[0] |[1] |[2] {[3] |[4]{[5] |[6]

Imitial I 15[00 0 25|,f;31,‘|+ 0 [ qiiop
1 4 (2)|5 too [+ [+0 [1250(0 [250°|1150 1650
2 {4.5) (o6 +o0  [+0 [+0 [1250(0 [250 |115011650
3 456 (93 +o |+ [2450(1250(0 |250 |1150{1650
4 45631 ;|7 U350 [+ [2450(1250|0 |250 [1150 |1650
5 {45637 |2 3350 3250 |2450{1250 0 |250 |1150 [1650
6 (456372} |1 3350 3250 |2450{1250 {0 |250 |1150 {1650
7 {45.6,372,1}

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=
{0, 50, 10, 1000, 45, 1000},

{1000, 0, 15, 1000, 10, 1000},

{20, 1000, 0, 15, 1000, 1000},
{1000, 20, 1000, 0, 35, 1000},
{1000, 1000, 30, 1000, 0, 1000},

{1000, 1000, 1000, 3, 1000, O}};

int distance[MAX_VERTICES];

short int found{MAX VERTICES];
int n = MAX_VERTICES;
void shortestpath(int v, int cost[][[MAX_ ERXTICES], int distance][], int n,
short int found]])

{



int i, u, w;

for (i=0; i<n; i++)

{

found[i] = FALSE;

distance[i] = cost[v][i];

H

found|v] = TRUE;

distance[v] = O;

for (i=0; i<n-2; i++)

{

determine n-1 paths from v

u = choose(distance, n, found);
found|[u] = TRUE;

for (w=0; w<n; w++)

if (found[w])

if (distance[u]+cost[u][w]|<distance[w])
distance[w| = distance[u]+cost[u][w];
b

}

All Pairs Shortest Paths

All pairs shortest path algorithm finds the shortest paths between all pairs of
vertices.

Solution 1
[1 Apply shortest path n times with each vertex as source. O(n3)

Solution 2
O Represent the graph G by its cost adjacency matrix with cost[i][j]

1 If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently large
number

[0 Ali][j] is the cost of the shortest path form i to j, using only those intermediate
vertices with an index <=k

0 The cost of the shortest path from i to j is A [i][j], as no vertex in G has an
index greater than n-1

0 A [i][jl=cost[i][j]
O Calculate the A, A, A, ..., A from A iteratively
O A [i][jl=min{A [i][j], A [i][k]+A [KI][j]}, k>=0

Graph with negative cycle
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Algorithm for All Pairs Shortest Paths
void allcosts(int cost[][MAX_VERTICES], int distance[][MAX_VERTICES], int n)
{

int i, j, k;

for (i=0; i<n; it++)

for (j=0; j<n; j++) distance]i][j] = cost[i][j];

for (k=0; k<n; k++)

for (i=0; i<n; i++)

for (j=0; j<n; j++)

if (distanceli][k]+distance[k][j] < distance]i][j])
distanceli|[j]= distance[i][k]+distance[k][j];

}

Example

Directed graph and its cost matrix

W
b
W
§
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(a)Digraph G (b)Cost adjacency matrix for G



Transitive Closure
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Goal: given a graph with unweighted edges, determine if there is a path

from i to j for all i and j.

(1) Require positive path (> 0) lengths. transitive closure matrix
(2) Require nonnegative path (B0) lengths. reflexive transitive closure matrix
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(a) Digraph G (b)
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(e) transitive closure matrix A™

There is a path of length >0

1
",
i
0
0
0

0
0
0
0
0

1
0
0
0
0

1

“\1

0

1
0
0
1

1
1

0. 1

0
0

1
1

0

o O o= O

1

1
1
1
1
1

= O O O

0

Adjacency matrix Afor G

reflexive

() reflexive transitive closure matrix A™

Thereis a path of length =0



Unit III
Algorithms - Priority Queues - Heaps - Heap Sort - Merge Sort - Quick Sort -
Binary Search - Finding the Maximum and Minimum.

Algorithm

e An algorithm is a step-by-step procedure to solve a problem in a finite
number of steps.

e Branching and repetition are included in the steps of an algorithm.

e This branching and repetition depend on the problem for which Algorithm is
developed.

o All the steps of Algorithm during the definition should be written in a
human-understandable language which does not depend on any
programming language.

e we can choose any programming language to implement the Algorithm.

e Pseudocode and flow chart are popular ways to represent an algorithm.

An algorithm must satisfy the following criteria:

1. Input: An algorithm should have zero or more but should be a finite number of
inputs. We can also say that it is essential for any algorithm before starting. Input
should be given to it initially before the Algorithm begins.

2. Output: An algorithm must give at least one required result from the given set
of input values. These output values are known as the solution to a problem.

3. Definiteness: Each step must be clear, unambiguous, and precisely defined.
4. Finiteness: Finiteness means Algorithm should be terminated after a finite
number of steps. Also, each step should be finished in a finite amount of time.

5. Effectiveness: Each step of the Algorithm must be feasible i.e., it should be
practically possible to perform the action. Every Algorithm is generally expected to
be effective.

Divide and Conquer
Divide and Conquer is one of the best-known general algorithm design
technique. It works according to the following general plan:
e Given a function to compute on ‘n’ inputs the divide-and-conquer
strategy suggests splitting the inputs into k’ distinct subsets, 1<k<=n,
yielding ‘k’ sub problems.

e These sub problems must be solved, and then a method must be found
to combine sub solutions into a solution of the whole.

e If the sub problems are still relatively large, then the divide-and-conquer
strategy can possibly be reapplied.

e Often the sub problems resulting from a divide-and-conquer design are
of the same type as the original problem. For those cases the
reapplication of the divide-and- conquer principle is naturally expressed
by a recursive algorithm.

A typical case with k=2is diagrammatically shown below.



s

Problem| ofsizen

Sub Problem of size n/2 Sub Problem of size n/2
*

| Solution tosubproblem 1 | [Solutionto subproblem 2|

| Solution to the original problem |

Control Abstraction for divide and conguer:

Algorithm DAndC{ 7}

if Small{ ) then return 5(7);

else

{
divide P into smaller instances M, Pa, .., P, B > 15
Apply DARdC to each of these subproblems;
return Combine(DAnd TP ). DAndC{F: ), ., DAndC{ Py ) )

}

In the above specification,

Initially DAndC(P) is invoked, where ‘P’ is the problem to be solved.

Small (P) is a Boolean-valued function that determines whether the
input size is small enough that the answer can be computed without
splitting. If this so, the function ‘S’ is invoked. Otherwise, the problem P
is divided into smaller sub problems. These sub problems P1, P2 ...Px are
solved by recursive application of DAndC.

Combine is a function that determines the solution to P using the
solutions to the k’ sub problems.

Binary Search

Problem definition: Let ai, 1 <i<n be a list of elements that are sorted in non-
decreasing order. The problem is to find whether a given element x is present in the list
or not. If x is present we have to determine a value j (element’s position) such that aj=x.
If x is not in the list, then j is set to zero.

Solution: Let P = (n, ai...al, X) denote an arbitrary instance of search problem where n
is the number of elements in the list, ai...aiis the list of elements and x is the key element
to be searched for in the given list. Binary search on the list is done as follows:

Stepl: Pick an index g in the middle range [i, I] i.e. g= [(n + 1)/2] and compare x with
aq. Step 2: if x = aqi.e key element is equal to mid element, the problem is immediately
solved.

Step 3: if x <agin this case x has to be searched for only in the sub-list ai, ai+1, ......, ag-
Therefore, problem reduces to (g-i, ai...ag-1, X).

Step 4: if x >aq,x has to be searched for only in the sub-list ag+1, ..., ar. Therefore problem
reduces to (I-i, ag+1...al, X).

For the above solution procedure, the Algorithm can be implemented as recursive or non-
recursive algorithm.

Recursive binary search algorithm



int BinSrch(Type a(], imt i, int 1, Type x)
// Given an array al[i:1] of elements in nondecreasing
// order, 1<=i<=1, determine whether x is present, and
i! if so, return j such that x == a[j]; else return 0.
if (1==i) { // If Swall(P)
if (x==a[i]) return i:
else return 0

»

else { // Reduce P into a smaller subproblem.

int mid = (i+1)/2;

if (x == al[mid]) return mid;

else if (x < al[mid]) return BinSrch(a,i,mid-1,x);

else return BinSrch(a,mid+1,1,x);

¥

Iterative binary search:

int BinSearch(Type a[l, int n, Type x)

// Given an array ali:n] of elements in nondecreasing
// order, n>=0, determine whether x is present, and

// if so, return j such that x == a[j]; else return 0.

{

int low = 1, high = n;

while (low <= high){
int mid = (low + high)/2;
if (x < a[mid]) high = mid - 1;
else if (x > a[mid]) low = mid + 1;
else return(mid);

}

return(0) ;

Finding the maximum and minimum
Problem statement: Given a list of n elements, the problem is to find the maximum and

minimum items.
StraightMaxMin: A simple and straight forward algorithm to achieve this is given below.

void StraightMaxMin(Type a[], int n, Type& max, Type& min)
f/ Set max to the maximum and min to the minimum of a[1:n)
max = min = a[1];
for (int i=2; i<=n; i++) {
if (a[i] > max) max = a[il;
if (a[i] < min) min = a[i];




Explanation:
= StraightMaxMin requires 2(n-1) comparisons in the best, average & worst cases.

= By realizing the comparison of a[i]>max is false, improvement in a algorithm can be done.
Hence we can replace the contents of the for loop by,
If (a[i]>Max) then Max = a[i]; Else if (a[i]<min) min=a[i]
= On the average a[i] is > max half the time. So, the avg. no. of comparison is 3n/2-1.
Algorithm based on Divide and Conquer strategy
LetP=(n,al[i],...... ,a [j]) denote an arbitrary instance of the problem. Here ‘n’ is the no. of
elements in the list (a[i],....,a[j]) and we are interested in finding the maximum and minimum of
the list. If the list has more than 2 elements, P has to be divided into smaller instances.
For example, we might divide ‘P’ into the 2 instances, P1= ( [n/2],a[1], a[n/2])
P2= (n-[n/2], a[[n/2]+1],....... ,a[n])
After having divided ‘P’ into 2 smaller sub problems, we can solve them by recursively invoking
the same divide-and-conquer algorithm.
Algorithm:

void MaxMin(int i, int j, Type& max, Type& min)

// ali:n] is a global array. Parameters i and j are

// integers, 1 <= i <= j <= n. The effect is to set

// max and min to the largest and smallest values in
{/:/ ali:j], respectively.

if (1-== j) max = min = a(i); // Small(P)

else if (i == j-1) { // Another case of Small(P)
if (ali) < alj)) { max = a[j]; min = a[il; }
else { max = a(i]; min = aljl; >

}
else { // If P is not small
// divide P into subproblems.
// Find where to split the set.
int mid=(i+j)/2; Type maxl, mini:
// Solve the subproblems. ;
MaxMin(i, mid, max, min);
MaxMin(mid+1, j, maxi, mini);
// Combine the solutions.
if (max < maxl) max = maxi;
if (min > minl) min = mini;



Example:
Suppose we simulate Maxhin on the following nine elements:
ar (1] (2] [3] (4] [5] [6] [7] [8] [9]
22 13 D g 15 60 1T 31 47
A pood way of keeping track of recursive calls is to build a tree by adding a

node each time a new call is made. For this algorithm each node has four
items of information: 4, 7, maz, and men. On the array af | above, the tree

of recursive calls of MaxMin is as follows

::g_l'::
1.9,60 -5
11,5,22,-§ 6,9,60,17
"3" - —~ T R ::Eifj- Eb " ) xé -'"?_:
1,3,22,-5] 4,5,15,—% 6,7.060,17 2,9.47.31
1‘ - -
1,2,22.1 3i

Analysis - Time Complexity

Now what is the nummber of element comparisons needed for MaxMin? If
T'{n) represents this number, then the resulting recurrence relation is

1 =2

T([n/2)+T{[n/2])+2 n>=2
Tin) =
{ =1

When n is a power of two, n = 2F for some positive integer %, then

T(n) = 2T(n/2)+2
= 2(2T(n/4) +2) + 2
= AT (n/4) +4+2
(3.3)
= 28 1T(2) 4 cicp 1 2
= 26l 2k 9 - 3n/2 -2
Note that 3n/2 — 2 is the best-, average-. and worst-case number of com-

parisons when n is a power of two.

Compared with the straight forward method (2n-2) this method saves 25% in
comparisons.

Space Complexity

Compared to the straight forward method, the MaxMin method requires extra
stack space for i, j, max, min, max1l and minl. Given n elements there will be
[log2n] + 1 levels of recursion and we need to save seven values for each
recursive call. (6 + 1 for return address).

Merge Sort



conquer technique. It sorts a given array A [O ... n - 1] by dividing it into two
halves A [0 .. \n/2]-1] and A [ \n/2] .. n-1], sorting each of them recursively, and
then merging the two smaller sorted arrays into a single sorted one.

ALGORITHM Mergesorti A[0.n — 1])
[ISorts array A[O..n — 1] by recursive mergesort
fInput: An array A[0..n — 1] of orderable elements
AOutput: Array A[0.n — 1] sorted in nondecreasing order
ifn =1
copy A0 [n/2] — 1] to B|O.[n/2] — 1]
copy A[ln/2]..n —1]to C|0..[n/2] — 1]
Mergesort(B[0..|n/2] — 1]
Mergesort(C[0..[n/2] — 1]
Merge( B, C, A) /lsee bhelow

Merge sort is a perfect exampke of a successful application of the divide-and

The merging of two sorted arrays can be done as follows.

» Two pointers (array indices) are initialized to point to the first elements of
the arrays being merged.

» The elements pointed to are compared, and the smaller of them is added
to a new array being constructed

After that, the index of the smaller element is incremented to point to its
immediate successor in the array it was copied from. This operation is
repeated until one of the two given arrays is exhausted, and then the

remaining elements of the other array are copied to the end of the new
array.

ALGORITHM Aferge(B[0..p — 1], C[O..g — 1], A[0..p 4+ g — 1]

fAMerges two sorted arrays into one sorted array
AMnput: Aarays B0 p — 1] and C|0..g — 1] both sorted
AOoutput: Sorted arrav A[O..p + g — 1] of the elements of & and
P j — 0 k=0
while / = pand j = g do

if B|7] = Cl/]

Alk] «— B[i]: i < i+ 1

else A[k] —Cljl j — 7+ 1

kK — &k 4+ 1
iti = p

copy Clj..g —1]to Alk..p + g — 1]
else copy Bli..p — 1|to AJk..p + g — 1]

Example:

The operation of the algorithm on the list 8, 3, 2,9, 7, 1, 5, 4 is illustrated in
the figure.
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Analysis
Here the basic operation is key comparison. As merge sort execution does not
depend on the order of the data, best case and average case runtime are the
same as worst case runtime.

Worst case: During key comparison, neither of the two arrays becomes empty
before the

other one contains just one element leads to the worst case of merge sort.
Assuming for

simplicity that total number of elements n is a power of 2, the recurrence
relation for the

number of key comparisons C(n) is

Cn)=2C/2) ¥+ Cprprpeln) form>1, C(1)=0.

where, Cmerge(n) is the number of key comparisons made during the merging
stage.

Let us analyze Cmerge(n), the number of key comparisons performed during the
merging stage. At each step, exactly one comparison is made, after which the
total number of elements in the two arrays still needing to be processed is
reduced by 1. In the worst case, neither of the two arrays becomes empty before
the other one contains just one element (e.g., smaller elements may come from
the alternating arrays).Therefore, for the worst case, Cmerge(n) = n—1.

Now,

Cuporstn) = 2Corst@m/2) +n—1 forn=>1, C,,r(1) = 0.

Solving the recurrence equation using master theorem:
Here a=2,b =2, f(n) =n, d = 1. Therefore 2 = 21, case 2 holds in the master
theorem
Cworst(n) = ® (ndlog n) = ® (n1log n) = ® (n log n)Therefore Cworst(n) = O (n log
n)
Advantages:

* Number of comparisons performed is nearly optimal.

» For large n, the number of comparisons made by this algorithm in the
average case turns out to be about 0.25n less and hence is also in @(nlog

n).



= Mergesort will never degrade to O (n2)

» Another advantage of mergesort over quicksort and heapsort is its
stability. (A sorting algorithm is said to be stable if two objects with
equal keys appear in the same order in sorted output as they appear in
the input array to be sorted.)

Limitations:

The principal shortcoming of mergesort is the linear amount [O(n) | of extra
storage the algorithm requires. Though merging can be done in-place, the
resulting algorithm is quite complicated and of theoretical interest only.

Variations of merge sort

1. The algorithm can be implemented bottom up by merging pairs of the array’s
elements, then merging the sorted pairs, and so on. (If n is not a power of 2,
only slight bookkeeping complications arise.) This avoids the time and space
overhead of using a stack to handle recursive calls.

2. We can divide a list to be sorted in more than two parts, sort each
recursively, and then merge them together. This scheme, which is particularly
useful for sorting files residing on secondary memory devices, is called multiway
mergesort.

Quick sort

Quicksort is the other important sorting algorithm that is based on the divide-and-conquer
approach. Unlike mergesort, which divides its input elements according to their position in the
array, quicksort divides (or partitions) them according to their value.

A partition is an arrangement of the array’s elements so that all the elements to the left of some
element A[s] are less than or equal to A[s], and all the elements to the right of A[s] are greater
than or equal to it:

AlD]. .. Als — 1] Als] Als +1]... Aln — 1]

all are = A[s] all arc = Als]

Obviously, after a partition is achieved, A[s] will be in its final position in the sorted array,

and we can continue sorting the two subarrays to the left and the right of A[s] independently (e.g.,
by the same method).

In quick sort, the entire work happens in the division stage, with no work required to combine the
solutions to the sub problems.

ALGORITHM Quicksort(All..r])
//Sorts a subarray by quicksort
/Mnput: Subarray of array A[0..n — 1], defined by its left and right

/

/! indices / and r

//Output: Subarray A[/l..r]sorted in nondecreasing order
ifl < r

s < Partition(A|l..r|) //s is a split position
Quiicksort(All..s — 1])

Quiicksort(Als + 1..r])

Partitioning
We start by selecting a pivot—an element with respect to whose value we are going to divide
the subarray. There are several different strategies for selecting a pivot. We use



the sophisticated method suggested by C.A.R. Hoare, the prominent British computer scientist
who invented quicksort.

Select the subarray’s first element: p = A[1].Now scan the subarray from both ends, comparing
the subarray’s elements to the pivot.

= The left-to-right scan, denoted below by index pointer i, starts with the second element. Since
we want elements smaller than the pivot to be in the left part of the subarray, this scan skips over
elements that are smaller than the pivot and stops upon encountering the first element greater than
or equal to the pivot.

= The right-to-left scan, denoted below by index pointer j, starts with the last element of the
subarray. Since we want elements larger than the pivot to be in the right part of the subarray, this
scan skips over elements that are larger than the pivot and stops on encountering the first
element smaller than or equal to the pivot.

After both scans stop, three situations may arise, depending on whether or not
the scanning indices have crossed.
» If scanning indices i and j have not crossed, i.e., i< j, we simply exchange
Ali] and A[j | and resume the scans by incrementing I and decrementing j,
respectively:

I = «J

p allare<p >p | 0 | <P allare2 p

! !

If the scanning indices have crossed over, i.e., i>
j, we will have partitioned the subarray after exchanging the pivot with
Aljl:

Jo allare < p <p | =p allare 2 p

If the scanning indices stop while pointing to the same element, i.e., i = j, the
value they are pointing to must be equal to p. Thus, we have the subarray
partitioned, with the split positions =i=j:

—j=i—

P all are < p =p allare z p

We can combine this with the case-2 by exchanging the pivot with A[j] whenever 17



ALGORITHM HoarePartition(A[l.r])

//Partitions a subarray by Hoare’s algorithm. using the first element as a pivot

//Tnput: Subarray of array A[0..n — 1], defined by its left and right indices [ and » (1<r)
//Output: Partition of A[L.r]., with the split position returned as this function’s value

p < All]
i1 jer+1
repeat
repeat i < i + lLuntil A[i]|= p
repeat j < j — luntil A|j] = p
swap(A[il. ALj])
until i = j
swap(A[7], A[j]) /undo last swap when i = j
swap(A[l], A[j])
return ;

Example: Example of quicksort operation. (a) Armray’s transformations with pivots shown in
bold. (b) Tree of recursive calls to Quicksort with input values land r of subarray bounds and
split position s of a partition obtained.
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Analysis

Best Case -Here the basic operation is key comparison. Number of key
comparisons made before a partition is achieved is n + 1 if the scanning indices
cross over and n if they coincide. If all the splits happen in the middle of
corresponding subarrays, we will have the best case. The number of key
comparisons in the best case satisfies the recurrence,

Civie ) =26 (0/2)Fn 10En=l Cigall)=U.

According to the Master Theorem, Crest{n) €0(n log2 n); solving it exactly for n =
2k yields

Cpest(n) = n log2 n.

Worst Case - In the worst case, all the splits will be skewed to the extreme: one
of the two subarrays will be empty, and the size of the other will be just 1 less
than the size of the subarray being partitioned. This unfortunate situation will
happen, in particular, for increasing arrays. Indeed, if A[0..n — 1] is a strictly
increasing array and we use A[O] as the pivot, the left-to-right scan will stop on
A[1] while the right-to-left scan will go all the way to reach A[O], indicating the
split at position 0:So, after making n + 1 comparisons to get to this partition
and exchanging the pivot A[O] with itself, the algorithm will be left with the
strictly increasing array A[l..n — 1] to sort. This sorting of strictly increasing
arrays of diminishing sizes will continue until the last one A[n-2.. n—1] has
been processed. The total number of key comparisons made will be equal to

1} 2) y
CoorgiM) =+ +n+ --4+3= it ] 3 € Bir=).

-
e

Average Case - Let Cavg(n) be the average number of key comparisons made by
quicksort on a randomly ordered array of size n. A partition can happen in any
position s (0 < s < n—1) after n+1comparisons are made to achieve the partition.
After the partition, the left and right subarrays will have s and n - 1-'s
elements, respectively. Assuming that the partition split can happen in each
position s with the same probability 1/n, we get the following recurrence
relation:

=1

Congn)=="3 [0+ 1) + Cpupls) + Copeln = 1=5)] forn =1,

"

5=l

ConelM =0, C,(1)=0.

Its solution, which is much trickier than the worst- and best-case analyses,
turns out to be

Cave(n) = 2n Inn 2 1.39n log, n.

Thus, on the average, quicksort makes only 39% more comparisons than in the
best case. Moreover, its innermost loop is so efficient that it usually runs faster
than mergesort on randomly ordered arrays of nontrivial sizes. This certainly
justifies the name given to the algorithm by its inventor.

Variations: Because of quicksort’s importance, there have been persistent
efforts over the years to refine the basic algorithm. Among several
improvements discovered by researchers are:

» Better pivot selection methods such as randomized quicksort that uses a
random element or the median-of-three method that uses the median of the
leftmost, rightmost, and the middle element of the array



» Switching to insertion sort on very small subarrays (between 5 and 15
elements for most computer systems) or not sorting small subarrays at all and
finishing the algorithm with insertion sort applied to the entire nearly sorted
array

= Modifications of the partitioning algorithm such as the three-way partition into
segments smaller than, equal to, and larger than the pivot

Limitations: 1. It is not stable. 2. It requires a stack to store parameters of
subarrays that are yet to be sorted. 3. While Performance on randomly ordered
arrays is known to be sensitive not only to the implementation details of the
algorithm but also to both computer architecture and data type.

Unit - 4
Greedy Method : The General Method — Optimal Storage on Tapes — Knapsack Problem — Job
Sequencing with Deadlines — Optimal Merge Patterns.

GENERAL METHOD

Greedy Method

Greedy is the most straight forward design technique. Most of the problems have n
inputs and require us to obtain a subset that satisfies some constraints. Any subset that
satisfies these constraints is called a feasible solution. We need to find a feasible solution
that either maximizes or minimizes the objective function. A feasible solution that does
this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one
element at a time, by choosing the best possible element at each stage. At each stage, a
decision is made regarding whether or not a particular input is in an optimal solution.
This is done by considering the inputs in an order determined by some selection
procedure. If the inclusion of the next input, into the partially constructed optimal
solution will result in an infeasible solution then this input is not added to the partial
solution. The selection procedure itself is based on some optimization measure. Several
optimization measures are plausible for a given problem. Most of them, however, will
result in algorithms that generate sub-optimal solutions. This version of greedy
technique is called subset paradigm. Some problems like Knapsack, Job sequencing with
deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each
decision is made using an optimization criterion that can be computed using decisions
already made. This version of greedy method is ordering paradigm. Some problems like
optimal storage on tapes, optimal merge patterns and single source shortest path are
based on ordering paradigm.

CONTROL ABSTRACTION

Algorithm Greedy (a, n)

// a(1 : n) contains the ,n” inputs

{

solution := [; // initialize the solution to empty fori:=1 to n do
{

X := select (a);

if feasible (solution, x) then

solution := Union (Solution, x);

b

return solution;

by



Procedure Greedy describes the essential way that a greedy based algorithm will look,

once a particular problem is chosen and the functions select, feasible and union are

properly implemented.

The function select selects an input from ,a“, removes it and assigns its value to ,x“. Feasible is a
Boolean valued function, which determines if ,x“ can be included into the solution vector. The
function Union combines ,x” with solution and updates the objective function.

KNAPSACK PROBLEM

Let us apply the greedy method to solve the knapsack problem. We are given ,n” objects
and a knapsack. The object ,i” has a weight wiand the knapsack has a capacity ,m”. If a
fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pixiis

earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is ,m”, we require the total weight of all chosen objects to be at

most ,m”. The problem is stated as:

e )
maximize E F=
§fo= 1

arr
subject to E = > = nr where, O = % = 1 and 1 = i =< N
i—1

The profits and weights are positive numbers.

Algorithm

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the
algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m, n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of
// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1].

// mis the knapsack size and x[1: n] is the solution vector.

{

fori:=1tondox[i] :=0.0// initialize x U := m;
fori:=1tondo

{

if (w(i) > U) then break;

x [i] :=1.0; U :=U - wJi];

b

if (i < n)then x[i] := U/ w[i];

b

Running time:

The objects are to be sorted into non-decreasing order of pi/ wiratio. But if we disregard

the time to initially sort the objects, the algorithm requires only O(n) time.

Example:

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, pz2, p3) = (25, 24,

15) and (w1, w2, ws) = (18, 15, 10).

OPTIMAL STORAGE ON TAPES

There are ,n” programs that are to be stored on a computer tape of length ,L“. Each
program ,i“ is of length li, 1 < i < n. All the programs can be stored on the tape if and
only if the sum of the lengths of the programs is at most , L".

We shall assume that whenever a program is to be retrieved from this tape, the tape is
initially positioned at the front. If the programs are stored in the orderi =i1,i2, .. ...
, in, the time ty needed to retrieve program isis proportional to



If all the programs are retrieved equally often then the expected or mean retrieval time
(MRT) is: 1

. Z tj

n 1=J =n

For the optimal storage on tape problem, we are required to find the permutation for
the 'n’ programs so that when they are stored on the tape in this order the MRT is
minimized.

n a
d@= > > 1.
J =1 K =1

Example

Let n = 3, (I3, 12, I3) = (5, 10, 3). Then find the optimal ordering?
Solution:

There are n! = 6 possible orderings. They are:

Ordering I d(I}

1,2, 3 5+ (5 +10) +(5 + 10 + 3) = 38
1, 3,2 S5+ (5+3)+(5+3+10) = 31
2,1,3 10 + (10 + 5) + (10 + 5 + 3) = 43
2,3, 1 10 + (10 + 3) + (10 + 3 + 5) = 41
3,1,2 3+4(3+5)+(3+5+10) = 29
3,2, 1 3+(3+10)+(3+10+5) = 34

From the abowve, it simply requires to store the programs in non-decreasing order
(increasing order) of their lengths. This can be carried out by using a efficient sorting
algorithm (Heap sort). This ordering can be carried out in O (n log n) time using heap
sort algorithm.

The tape storage problem can be extended to several tapes. If there are m = 1 tapes,
B P Tm -1, then the progrgms are to be distributed over these tapes.

The total retrieval time (RT) is E d(I;)
i=o

The objective is to store the programs in such a way as to minimize RT.

The programs are to be sorted in non decreasing order of their lengths Ii's, h = I < .. .
AU
The first ‘'m’ programs will be assigned to tapes T, . . . . ,Tm-1 respectively. The next 'm’

programs will be assigned to Tgy, . . . . ,Tm1 respectively. The general rule is that
program i is stored on tape T; mod m.

Algorithm:



The algorithm for assigning programs to tapes is as follows:
Algorithm Store (n, m)
// n is the number of programs and m the number of tapes

{

j := 0; // next tape to store on fori :=1 to n do

{

Print (,append program”, i, ,to permutation for tape”, j); j := (j + 1) mod m;
b

b

On any given tape, the programs are stored in non-decreasing order of their lengths.

JOB SEQUENCING WITH DEADLINES

When we are given a set of ,n"” jobs. Associated with each Job i, deadline di > 0 and
profit Pi > 0. For any job ,i“ the profit pi is earned iff the job is completed by its deadline.
Only one machine is available for processing jobs. An optimal solution is the feasible
solution with maximum profit.

Sort the jobs in ,j” ordered by their deadlines. The array d [1 : n] is used to store the
deadlines of the order of their p-values. The set of jobs j[1 : k] suchthatj[r],1 <r<k
are the jobsin ,jand d (j [1]) = d (j[2]) £ ... =d (j[K]). To test whether J U {i} is
feasible, we have just to insert i into J preserving the deadline ordering and then verify
thatd [J[r]] =r, 1 =r < k+1.

Example:
Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (di1dz2d3d4) = (2, 1, 2, 1). The
feasible solutions and their values are:

S.MNo | Feasible Solution Procuring Value Remarks
seguence

1 1,2 2,1 110

2 1,3 1,30r3,1 115

3 1,4 4,1 127 OPTIMAL
4 2,3 2,3 25

5 3,4 4,3 42

& 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27




Algorithm:

The algonthm constructs an optimal set J of jobs that can be processed by their
deadlines.

Algorithm Greedylob (d, 3, m)
ff Jis a set of jobs that can be completed by their deadlines.
{

1= 4{1%;
fori := 2 to n do
1

if (all jobs in J U {i} can be completed by their dead lines)
then 1 := 131U {i};

OPTIMAL MERGE PATERNS

Given ,n” sorted files, there are many ways to pair wise merge them into a single sorted
file. As, different pairings require different amounts of computing time, we want to
determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise
merge ,,n” sorted files together. This type of merging is called as 2-way merge patterns.
To merge an n-record file and an m-record file requires possibly n + m record moves,
the obvious choice choice is, at each step merge the two smallest files together. The
two-way merge patterns can be represented by binary merge trees.

Algorithm to Generate Two-way Merge Tree:

struct treenode

{

treenode * Ichild;
treenode * rchild;

+



Algorithm to Generate Two-way Merge Tree:

struct treenode

{
treencde * Ichild;
treenode * rchild;

+i

Algorithm TREE (n)
f/f hist is a global of n single node binary trees

{
fori:=1ton -1 do
{
pt < new tresnode
(pt = Ichild) « least (list); ff merge two trees with smallest
lengths
{pt — rchild) < least (list);
(pt — weight) <« ((pt — lchild) — weight) + ({pt — rchild) — weight);
insert (list, pt);
s
return least (list); /f The tree left in list is the merge
tree
}

Example 1:
Suppose we are having three sorted files X1, X2 and Xz of length 30, 20, and 10 records each.
Merging of the files can be carried out as follows:

S.No | First Merging Record moves in | Second Record moves in | Total no. of
first merging merging second merging records moves
1. | % &x,=T1 50 Ty & X5 &0 50 + 60 = 110
2. 2B X:=T1 30 Ty & Xy 60 30 + 60 = 90

The Second case is optimal.

Example 2:
Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to
find optimal way of pair wise merging to give an optimal solution using binary merge
tree representation.

olutlon.

Merge Xaand X3 to get 15 record moves. Call this Z1.
1 X5

= H @
piio

Merge Z1and Xito get 35 record moves. Call this Za.



Merge ¥; and Xs to get 60 record mowes. Call this Z,.
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Merge Z; and Zito get 20 record moves, This is the answer. Call this Z.,.
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- X3 w2

X1
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K4 K3

Therefore the total number of record moves is 15 + 35 + 60 + 95 = Z205%. This is an
optimal merge pattern for the given problem.

Unit V
Back tracking: The General Method — The 8-Queens Problem — Sum of Subsets — Graph Coloring.

Backtracking
Some problems can be solved, by exhaustive search. The exhaustive-search technique

suggests generating all candidate solutions and then identifying the one (or the ones) with a
desired property.

Backtracking is a more intelligent variation of this approach. The principal idea is to
construct solutions one component at a time and evaluate such partially constructed
candidates as follows. If a partially constructed solution can be developed further without
violating the problem’s constraints, it is done by taking the first remaining legitimate option
for the next component. If there is no legitimate option for the next component, no
alternatives for any remaining component need to be considered. In this case, the algorithm



backtracks to replace the last component of the partially constructed solution with its next
option.

It is convenient to implement this kind of processing by constructing a tree of choices being
made, called the state-space tree. Its root represents an initial state before the search for a
solution begins. The nodes of the first level in the tree represent the choices made for the first
component of a solution; the nodes of the second level represent the choices for the second
component, and soon. A node in a state-space tree is said to be promising if it corresponds to
a partially constructed solution that may still lead to a complete solution; otherwise, it is
called non-promising. Leaves represent either non-promising dead ends or complete
solutions found by the algorithm.

In the majority of cases, a state space tree for a backtracking algorithm is constructed in the
manner of depth-first search. If the current node is promising, its child is generated by adding
the first remaining legitimate option for the next component of a solution, and the processing
moves to this child. If the current node turns out to be non-promising, the algorithm
backtracks to the node’s parent to consider the next possible option for its last component; if
there is no such option, it backtracks one more level up the tree, and so on. Finally, if the
algorithm reaches a complete solution to the problem, it either stops (if just one solution is
required) or continues searching for other possible solutions.

General method

In many applications of the backtrack method. the desired solution is
expressible as an n-tuple (z,,...,z,), where the z; are chosen from some
finite set S;. Often the problem to be solved calls for finding one vector

Suppose m; is the size of set S;. Then there are m = mymy---my, n-
tuples that are possible candidates for satisfying the function P. The brute
force approach would be to form all these n-tuples, evaluate each one with
P, and save those which yield the optimum. The backtrack algorithm has
as its virtue the ability to yield the same answer with far fewer than m
trials. Its basic idea is to build up the solution vector one component at a
time and to use modified criterion functions P;(x;....,x;) (sometimes called

bounding functions) to test whether the vector being formed has any chance
of success. The major advantage of this method is this: if it is realized that
the partial vector (z,.zs,...,x;) can in no way lead to an optimal solution,
then m;, ;- - - my possible test vectors can be ignored entirely.

Many of the problems we solve using backtracking require that all the
solutions satisfy a complex set of constraints. For any problem these con-
straints can be divided into two categories: ezplicit and implicit.



Definition 7.1 Explicit constraints are rules that restrict each z; to take

on values only from a given set.

Common examples of explicit constraints are

z; 20 or S;
z; =0 or 1 or S;
li<zi<uw; or 5

{all nonnegative real numbers}

{0,1}

{a:l; <a<wu}

(1

a

The explicit constraints depend on the particular instance I of the problem
being solved. All tuples that satisfy the explicit constraints define a possible

solution space for I.

Definition 7.2 The implicit constraints are rules that determine which of
the tuples in the solution space of I satisfy the criterion function. Thus
implicit constraints describe the way in which the z; must relate to each

other.

General Algorithm (Recursive)

Algorithm Backtrack(k)

// This schema describes the backtracking process using
// recursion. On entering, the first & — 1 values

// z[1],z[2],...,z[k — 1] of the solution vector

{ / {1 : n] have been assigned. z[ ] and n are global.

for (each z[k] € T'(z[1],...,z[k — 1]) do
if (Bi(z[1].2[2],...,x[k]) # 0) then

if (z[1],z[2],...,z[k] is a path to an answer node)

then write (z[1 : k]);
if (K < n) then Backtrack(k + 1);

}
}

General Algorithm (Iterative)

0



Algorithm |IBacktrack(s)

// This schema describes the backtracking process.
// All solutions are generated in x[1 : nn] and printed
// as soon as they are determined.

{
2= 13
while (A £ 0) do
if (there remains an untried x[k] € T (=[1]. =[2],.. ..
x|k — 1)) and Bi(=xz[1],....=x[k]) is true) then
if (z[1),....=x[Ak] is a path to an answer node)
then write (|1 : £]);
k:= Kk + 1: // Consider the next set.
else &k := k — 13 // Backtrack to the previous set.
}
¥

General Algorithm for backtracking
ALGORITHM Backtrack(X|[1..i])
//Gives a template of a generic backtracking algorithm
/[[Input: X[1..i]specifies first i promising components of a solution
//Output: All the tuples representing the problem’s solutions
if X[1..i]is a solution write X|[1..i]

else //see Problem 9 in this section’s exercises
for each element x € S, | consistent with X[1..i] and the constraints do
X[i+1]<x

Backtrack(X[1..i +1])

N-Queens problem

The problem is to place n queens on an n x n chessboard so that no two queens attack each other

by being in the same row or in the same column or on the same diagonal.

So let us consider the four-queens problem and solve it by the backtracking technique. Since each of the
four queens has to be placed in its own row, all we need to do is to assign a column for each queen on the

board presented in figure.

1 44— qgueen

— queen 2

Ma

44— Queen 3

= W

+— (ueend

We start with the empty board and then place queen 1 in the first possible position of its row, which is
in column 1 of row 1. Then we place queen 2, after trying unsuccessfully columns 1 and 2, in the first
acceptable position for it, which is square (2, 3), the square in row 2 and column 3. This proves to be a
dead end because there is no acceptable position for queen 3. So, the algorithm backtracks and puts
gueen 2 in the next possible position at (2, 4). Then queen 3 is placed at (3, 2), which proves to be
another dead end. The algorithm then backtracks all the way to queen 1 and moves it to (1, 2). Queen 2
then goes to (2, 4), queen 3 to(3, 1), and queen 4 to (4, 3), which is a solution to the problem. The state-
space tree of this search is shown in figure.
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Figure: State-space tree of solving the four-queens problem by backtracking. x denotes an
unsuccessful attempt to place a queen in the indicated column. The numbers above the nodes indicate
the order in which the nodes are generated.

If other solutions need to be found, the algorithm can simply resume its operations at the leaf at
which it stopped. Alternatively, we can use the board’s symmetry for this purpose.

Finally, it should be pointed out that a single solution to the n-queens problem for any n > 4 can
be found in linear time.

Note: The algorithm NQueens() is not in the syllabus. It is given here for interested learners. The
algorithm is referred from textbook T2.

Algorithm NQueens(k,n)

// Using backtracking, this procedure prints all

// possible placements of n queens on an n X n

// chessboard so that they are nonattacking.

for i := 1 to n do
if Place(k,7) then

zlk] := 1;
if (k = n) then write (z[1 : n]);
else NQueens(k + 1,n);
}
}



Algorithm Place(k,1)

// Returns true if a queen can be placed in kth row and
// ith column. Otherwise it returns false. z[ | is a

// global array whose first (k — 1) values have been set.
// Abs(r) returns the absolute value of r.

for j:=1to k—1do
if ((x [j'; =1) // Two in the same column
¢ (Abs{ (2[j] — i) = Abs(j — k)))
// or in the same diagonal
then return false;
return true;

Sum of subsets problem

Problem definition: Find a subset of a given set A = {a, . . ., an} of n positive integers whose
sum is equal to a given positive integer d.

For example, for A ={1, 2, 5, 6, 8} and d = 9, there are two solutions: {1, 2, 6} and {1, 8}. Of
course, some instances of this problem may have no solutions.

It is convenient to sort the set’s elements in increasing order. So, we will assume that
al<a<...<an.

The state-space tree can be constructed as a binary tree like that in Figure shown below for the
instance A = {3, 5, 6, 7} and d = 15.
The number inside a node is the sum of the elements already included in the subsets represented by the
node. The inequality below a leaf indicates the reason for its termination.

X/'a\l
e
w1th B ————__ W/03
_\\n/o\»
53 ©)
with 6 w/o 6 with 6 Nv/o 6 with 6 w/o 6 X
o 4\ 0+13<15
©) (a1 (5)
with 7 w/o 7 X x %4 =<

4+7>15 94+7>15 3+7<15 11+7>15 5+7<15

solutson
8<1 5

The root of the tree represents the starting point, with no decisions about the given elements made
as yet. Its left and right children represent, respectively, inclusion and exclusion of a1 in a set
being sought.
Similarly, going to the left from a node of the first level corresponds to inclusion of a2 while
going to the right corresponds to its exclusion, and so on. Thus, a path from the root to a node on
the ith level of the tree indicates which of the first in numbers have been included in the subsets
represented by that node.



We record the value of s, the sum of these numbers, in the node. If s is equal to d, we have a solution to
the problem. We can either report this result and stop or, if all the solutions need to be found, continue by
backtracking to the node’s parent. If s is not equal to d, we can terminate the node as non-promising if
either of the following two inequalities holds:

s +a;4 1 >d (the sum s is too large).

n
s + Z a; =d (the sum s is too small).
J=i—+1
Example: Apply backtracking to solve the following instance of the subset sum problem: A
={1,3,4,5}and d = 11.

Graph coloring

Let G be a graph and m be a given positive integer. We want to discover
whether the nodes of G can be colored in such a way that no two adjacent
nodes have the same color yet only m colors are used. This is termed the
m-colorability decision problem and it is discussed again in Chapter 11. Note
that if d is the degree of the given graph. then it can be colored with d + 1

colors. The m-colorability optimization problem asks for the smallest integer
m for which the graph G can be colored. This integer is referred to as the
chromatic number of the graph. For example, the graph of Figure 7.11 can
be colored with three colors 1,2, and 3. The color of each node is indicated
next to it. It can also be seen that three colors are needed to color this graph
and hence this graph’s chromatic number is 3.
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Figure 7.11 An example graph and its coloring

A graph is said to be planar iff it can be drawn in a plane in such a
way that no two edges cross each other. A famous special case of the m-
colorability decision problem is the 4-color problem for planar graphs. This
problem asks the following question: given any map, can the regions be
colored in such a way that no two adjacent regions have the same color
yet only four colors are needed? This turns out to be a problem for which
graphs are very useful, because a map can easily be transformed into a graph.
Each region of the map becomes a node, and if two regions are adjacent,
then the corresponding nodes are joined by an edge. Figure 7.12 shows a
map with five regions and its corresponding graph. This map requires four



colors. For many years it was known that five colors were sufficient to color
any map, but no map that required more than four colors had ever been
found. After several hundred years, this problem was solved by a group of
mathematicians with the help of a computer. They showed that in fact four
colors are sufficient. In this section we consider not only graphs that are
produced from maps but all graphs. We are interested in determining all
the different ways in which a given graph can be colored using at most m
colors.

Figure 7.12 A map and its planar gra,ph representation
Suppose we represent a graph by its adjacency matrix G[1 : n.1 : n],
where G[i, j] = 1if (i, 7) is an edge of G, and G[i, j] = 0 otherwise. The colors
are represented by the integers 1,2, ....m and the solutions are given by the
n-tuple (zy,....z,), where r; is the color of node i. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a

level n + 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.

Algorithm 7.7 Finding all m-colorings of a graph

Algorithm mColoring(k)

// This algorithm was formed using the recursive backtracking
// schema. The graph is represented by its boolean adjacency
// matrix G[1: n,1:n]. All assignments of 1,2,.... m to the
// vertices of the graph such that adjacent vertices are

// assigned distinct integers are printed. k is the index

// of the next vertex to color.

repeat
{// Generate all legal assignments for z|k].
NextValue(k); // Assign to z[k] a legal color.
if (z[k] = O then return; // No new color possible
if (k=n) then // At most m colors have been
// used to color the n vertices.
write (z[1 : n]);
else mColoring(k + 1);
} until (false);



Algorithm NextVaIue(k)

// .r[l]. ..., x[k = 1] have been assigned integer values in

// the range 1, ] such that adjacent vertices have distinct
/ integers. A value for z[k] is determined in the range

// [0,m]. z[k] is assigned the next highest numbered color

// while maintaining distinctness from the adjacent vertices

// of vertex k. If no such color exists, then z[k] is 0.

{

repeat

z[k] := (z[k] + 1) mod (m + 1); // Next highest color.
if (z[k] = 0) then return; // All colors have been used.
for j:=1 to n do
{ // Check if this color is

// distinet from adjacent colors.

if ((G[k.j] #0) and (z[K] = =[]]))

// If (k,7) is and edge and if ad].

// vertices have the same color.

then break;

if (j = n+ 1) then return; // New color found
} until (false); // Otherwise try to find another color.
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Figure 7.13 State space tree for mCﬂlnnng when n =3 and m = 3

Function mColoring is begun by first assigning the graph to its adja-
cency matrix, setting the array x| | to zero, and then invoking the statement

mCoIoring(l)

recursive backtracking schema of Algorithm 7.1. Function NextValue (Algo-
rithm 7.8) produces the possible colors for z; after x; through zx_, have
been defined. The main loop of mColoring repeatedly picks an element from
the set of possibilities, assigns it to xg, and then calls mColoring recursively.
For instance, Figure 7.14 shows a simple graph containing four nodes. Below
that is the tree that is generated by mColoring. Each path to a leaf repre-
sents a coloring using at most three colors. Note that only 12 solutions exist
with ezactly three colors. In this tree, after choosing 1 = 2 and zy = 1,
the possible choices for x3 are 2 and 3. After choosing 1 = 2, z9 = 1, and

x3 = 2, possible values for x4 are 1 and 3. And so on.
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Figure 7.14 A 4-node graph and all possible 3-colorings
Analysis

An upper bound on the computing time of mColoring can be arrived at by
noticing that the number of internal nodes in the state space tree is 31! m'.
At each internal node, O(mn) time is spent by NextValue to determine the
children corresponding to legal colorings. Hence the total time is bounded
by S0 ) mitin = ¥ min = n(m"t! = 2)/(m ~ 1) = O(nm™).



