
M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 1 

 

 

 

ANNAI WOMEN’S COLLEGE 

( Arts & Science ) 

(Affiliated to Bharathidasan University, Tiruchirappalli - 620 024) 

TNPL Road, Punnam Chatram, Karur - 639 136. 

 

Faculty Name  : Mrs. M. Priya MCA., M.Phil., 

Major       :  B.Sc(CS)       Semester  : II 

Subject Code  : 16SCCCS2                     Subject     : Programming in C++ 

 

SYLLABUS 

PROGRAMMING IN C++ 

UNIT-I 

Principles of object oriented programming – Beginning with C++ -  

Tokens, Expressions and control structures – Functions in C++. 

UNIT – II 

Classes and objects – Constructors and destructors – New operators – 

Operator overloading – Type conversion. 

UNIT - III 

Inheritance : Extending Classes – Pointers - Virtual Functions and 

Polymorphism 

UNIT - IV 

Managing Console I/O Operations – Working with Files – Templates – 

Exception Handling 

UNIT - V 

Standard Template Library – Manipulating Strings – Object Oriented 

Systems Development 

UNIT-I 

Principles of object oriented programming – Beginning with C++ -  

Tokens, Expressions and control structures – Functions in C++. 

Principles of object oriented programming 

 BASIC CONCEPTS OF OOP: 

 Object-oriented programming is an approach that provides a 

way of modularizing programs by creating partitioned memory area 

for both data and functions that can be used as templates for creating 

copies of such modules on demand. 

 The important concepts of OOPs are: 

• Objects 

• Classes 

• Data abstraction and encapsulation 

• Inheritance  

• Polymorphism 

• Dynamic binding 

• Message passing 

❖ Objects: 

→ Objects are the basic run-time entities in an object-oriented 

system. Each object that contains data, and functions (code to 

manipulate the data). 

→ They may represent a person, a place, a bank account, a table 

of data or any item that the program has to handle. 

→ When a program is executed, the objects interact by sending 

messages to one another. 

 

 

 

 

 

 

 

 

 
 

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 2 

Classes: 

→ A class is a collection of objects of similar type. The entire set 

of data and code of an object can be made a user-defined data 

type with the help of a class. 

→ Objects are like variables of the class. 

→ Once a class has been defined, we can create any number of 

objects belonging to that class. 

→ For example, mango, apple and orange are objects of the class 

fruit. 

❖ Data Abstraction and Encapsulation: 

→ Abstraction: Abstraction refers to the act of representing 

essential features without including the background details 

or explanations. 

→ The classes use the concept of data abstraction known as 

Abstract Data Types (ADT). 

→ Encapsulation: The wrapping up of data and functions into 

a single unit (called class) is known is known as 

encapsulation. 

→ The insulation of the data from direct access by the 

program is called data hiding or information hiding. 

→ These functions provide the interface between the object’s 

data and the program. 

❖ Inheritance: 

→ Inheritance is the process by which objects of one class 

acquire the properties of objects of another class. 

→ It supports the concept of hierarchical classification. 

→ For example, the bird is a part of the class ‘flying bird’ 

which is again a part of the class ‘bird’. 

→ The principle behind this is that each derived class shares 

common characteristics with the class from which it is 

derived. 

→ The concept of inheritance provides the idea of reusability.  

→ We can add additional features to an existing class without 

modifying it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

❖ Polymorphism: 

→ Polymorphism means the ability to take more than one 

form.  

→ Poly (many), morph (forms) 

→ Using a single operator to perform different types of 

operations is known as operator overloading. 

→ Using a single function name to perform different types of 

tasks is known as function overloading. 

 

 
                       

                        



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 3 

❖ Dynamic Binding: 

→ Binding refers to the linking of a procedure call to the code 

to be executed in response to the call. 

→ Dynamic binding (late binding) means that the code 

associated with a given procedure call in not known until 

the time of the call at run-time. 

→ At run-time, the code matching the object under current 

reference will be called. 

❖ Message Passing: 

→ An object-oriented programming consists of a set of objects that 

communicate each other. 

→ The objects can communicate with one another by message 

passing. 

→ Message passing involves specifying the name of the object, the 

name of the function (message) and the information to be sent. 

 

 

 

 

 

 

 BENEFITS OF OOP: 

OOP offers several benefits to both the program designer and 

the user. 

• The redundancy can be eliminated by using inheritance. 

• The development time can be reduced and the productivity can be 

increased by using standard working modules. 

• The data hiding helps the programmer to build secure programs. 

• It is possible to create multiple instances of an object without any 

interference. 

• The data-centered design approach enables us to capture more 

details of a model in implementable form. 

• Object-oriented systems can be easily upgraded from small to large 

systems. 

• Message passing techniques for communication between objects 

makes the interface descriptions with external systems much 

easier. 

• Software complexity can be easily managed. 

 OBJECT-ORIENTED LANGUAGES: 

 A language that is specially designed to support the OOP 

concepts makes it easier to implement them. 

 There are two categories of languages that support OOP: 

1. Object-based programming languages 

2. Object-oriented programming languages 

• Object-based programming is the style of programming 

primarily supports encapsulation and object identity. 

Major features: 

✓ Data encapsulation 

✓ Data hiding and access mechanisms 

✓ Automatic initialization and clear-up of objects 

✓ Operator overloading 

✓ Ex: Ada 

• Object-oriented programming incorporates all of object-based 

programming along with inheritance and dynamic binding.  

OOP=object-based features + inheritance + dynamic binding 

Ex: C++, Smalltalk, Java 

 APPLICATIONS OF OOP: 

✓ Real-time systems 

✓ Simulation and modeling 

✓ Object-oriented databases 

✓ AI and expert systems 

✓ Hypertext, hypermedia and expertext  

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 4 

✓ Neural networks and parallel programming 

✓ Decision support and office automation systems 

✓ CIM/CAM/CAD systems 

BEGINNING WITH C++ 

Introduction: 

 C++ is an object oriented programming language developed by 

Bjarne Stroustrup starting in 1979 at Bell Labs. 

C++ runs on a variety of platforms, such as Windows, Mac 

OS, and the various versions of UNIX 

Initially named the new language in “c with classes” later in 

1983 the name was changed into C++ (Idea of increment version of C) 

STRUCTURE OF C++ PROGRAM 

The structure of C++ program is divided into four different 

sections: 

1. Header File Section   

2. Class Declaration section   

3. Member Function definition section   

4. Main function section   

 

(1) Header File Section:  

✓ This section contains various header files.   

✓ You can include various header files in to your program 

using this section. 

✓ For example:  # include <iostream.h > 

✓ Header file contains declaration and definition of 

various built in functions as well as object.  

(2) Class Declaration Section:  

• This section contains declaration of class.   

• You can declare class and then declare data members and 

member functions inside that class. 

 

 

 

 

 

 

 

 

 

(3) Member Function Definition Section:   

✓ This section is optional in the structure of C++ program.  

✓ Because you can define member functions inside the class or 

outside the class.  

✓ If all the member functions are defined inside the class then 

there is no need of this section.  

✓ This section is used only when you want to define member 

function outside the class.  

✓ This section contains definition of the member functions that 

are declared inside the class. 

For example:  

void Demo:: input ()  

{  

cout << “Enter Value of A:”;  

cin >> a;  

cout << “Enter Value of B:”;  

cin >> b;  

} 

 

 

For example:  

class Demo  

{  

int a, b;  

public:  

void input();  

void output();  

}; 

SYNTAX: 

 

class classname  

{ 

Member declarations;  

Function declarations; 

}; 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 5 

 (4) Main Function Section:  

n this section you can create an object of the class and then using this 

object you can call various functions defined inside the class as per 

your requirement. 

For example:  

Void main ()  

{  

Demo d1;  

d1.input ();  

d1.output ();  

} 

TOKENS 

 The smallest individual units in a program are called tokens. 

The tokens are: 

1. Keywords 

2. Identifiers 

3. Constants 

4. Strings 

5. Operators 

A C++ program is written using these tokens, white spaces, and the 

syntax of the language. 

 

❖ KEYWORDS: 

Keywords are reserved words and they have predefined meaning. 

They can’t be used as user-defined program elements. Etc… 

 Ex: class, while, switch, for,if,else  

❖ IDENTIFIERS AND CONSTANTS: 

• Identifier refers to the name of a variable, a function, an array, 

or a class. 

Naming rules: 

▪ Only alphabetic characters, digits and underscores are 

permitted.  

▪ The first letter must be an alphabet or an underscore. 

▪ Uppercase and lowercase letters are distinct. 

▪ Keywords cannot be used as an identifier. 

▪ There is no limit on the length.  

▪ White spaces are not allowed. 

• Ex:    

◦ name, first_name, name_1, _123 are valid 

identifiers. 

◦ amount$, 12a, first name are invalid identifiers. 

• Constants refer to fixed values that do not change during the 

execution of a program. 

◦ Constants do not have memory locations. 

◦ Ex: 123, 12.34, “C++”, '\0' 

❖ STRING: 

A string is a sequence of characters. In C++, character array is 

used to store a string. 

Ex:  "Welcome" 

❖ OPERATORS: 

       An operator is a symbol which is used to perform the given 

mathematical operations. There are many types of operators in C++. 

These can be broadly categorized as: arithmetic, relational, logical, 

bitwise, assignment and other operators.  

Arithmetic Operators 

Assume variable A holds 10 and variable B holds 20, then − 

• +         Adds two operands. A + B will give 30 

• -     Subtracts second operand from the first. A - B will give -10 

• *          Multiplies both operands. A * B will give 200 

• /          Divides numerator by de-numerator. B / A will give 2 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 6 

• %        Modulus Operator and remainder of after an integer 

division. B % A will give 0 

• ++       Increment operator, increases integer value by one. A++ 

will give 11 

• --        Decrement operator, decreases integer value by one. A-- 

will give 9 

Relational Operators 

Assume variable A holds 10 and variable B holds 20, then − 

• ==        Checks if the values of two operands are equal or not, 

if yes then condition becomes true.      (A == B) is not true. 

• !=        Checks if the values of two operands are equal or not, if 

values are not equal then condition becomes true. (A != B) is 

true. 

• >        Checks if the value of left operand is greater than the 

value of right operand, if yes then condition becomes true. (A > 

B) is not true. 

• <        Checks if the value of left operand is less than the value 

of right operand, if yes then condition becomes true. (A < B) is 

true. 

• >=        Checks if the value of left operand is greater than or 

equal to the value of right operand, if yes then condition 

becomes true. (A >= B) is not true. 

• <=        Checks if the value of left operand is less than or equal 

to the value of right operand, if yes then condition becomes 

true. (A <= B) is true. 

Logical Operators 

Assume variable A holds 1 and variable B holds 0, then − 

• &&        Called Logical AND operator. If both the operands 

are non-zero, then condition becomes true.(A && B) is false. 

• ||        Called Logical OR Operator. If any of the two operands 

is non-zero, then condition becomes true.(A || B) is true. 

• !        Called Logical NOT Operator. Use to reverses the logical 

state of its operand. If a condition is true, then Logical NOT 

operator will make false.!(A && B) is true. 

Bitwise Operators 

Bitwise operator works on bits and perform bit-by-bit operation. The 

truth tables for &, |, and ^ are as follows. 

• &        Binary AND Operator copies a bit to the result if it 

exists in both operands.(A & B) will give 12 which is 0000 

1100 

• |        Binary OR Operator copies a bit if it exists in either 

operand.(A | B) will give 61 which is 0011 1101 

• ^        Binary XOR Operator copies the bit if it is set in one 

operand but not both.(A ^ B) will give 49 which is 0011 0001 

• ~        Binary Ones Complement Operator is unary and has the 

effect of 'flipping' bits.(~A ) will give -61 which is 1100 0011 

in 2's complement form due to a signed binary number. 

• <<        Binary Left Shift Operator. The left operands value is 

moved left by the number of bits specified by the right 

operand.A << 2 will give 240 which is 1111 0000 

• >>        Binary Right Shift Operator. The left operands value is 

moved right by the number of bits specified by the right 

operand.A >> 2 will give 15 which is 0000 1111 

Assignment Operators 

• =        Simple assignment operator, Assigns values from right 

side operands to left side operand.C = A + B will assign value 

of A + B into C 

• +=        Add AND assignment operator, It adds right operand to 

the left operand and assign the result to left operand.C += A is 

equivalent to C = C + A 

• -=        Subtract AND assignment operator, It subtracts right 

operand from the left operand and assign the result to left 

operand.C -= A is equivalent to C = C - A 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 7 

• *=        Multiply AND assignment operator, It multiplies right 

operand with the left operand and assign the result to left 

operand.C *= A is equivalent to C = C * A 

• /=        Divide AND assignment operator, It divides left 

operand with the right operand and assign the result to left 

operand.C /= A is equivalent to C = C / A 

• %=        Modulus AND assignment operator, It takes modulus 

using two operands and assign the result to left operand.C %= 

A is equivalent to C = C % A 

• <<=        Left shift AND assignment operator.C <<= 2 is same 

as C = C << 2 

• >>=        Right shift AND assignment operator.C >>= 2 is 

same as C = C >> 2 

• &=        Bitwise AND assignment operator.C &= 2 is same as 

C = C & 2 

• ^=        Bitwise exclusive OR and assignment operator.C ^= 2 

is same as C = C ^ 2 

• |=        Bitwise inclusive OR and assignment operator.C |= 2 is 

same as C = C | 2 

EXPRESSIONS AND THEIR TYPES 

An expression is a combination of operators, constants and 

variables arranged as per the rules of the language. It may also include 

function calls which return values.  

An expression may consist of one or more operands, and zero 

or more operators to produce a value. 

Types: 

    •   Constant expressions 

    •   Integral expressions 

    •    Float expressions 

    •   Pointer expressions 

    •   Relational expressions 

    •   Logical expressions 

    •   Bitwise expressions 

An expression may also use combinations of the above expressions. 

Such expressions are known as compound expressions. 

Constant Expressions: Constant Expressions consist of only constant 

va1ues. 

Examples: 

    15 

    20 + 5 / 2.O 

    'x' 

Integral Expression: Integral Expressions are those which produce 

results after implementing all the automatic and explicit type 

conversions.  

Examples: 

     m 

     m * n - S 

     m * ' x' 

     5 + int(2.0) where m and n are integer variables. 

Float Expressions: Float Expressions are those which, after all 

conversions, produce floating-point results. 

Examples: 

     x + y 

     x * y / 10 

     5 * float (10) 

     10.75 

where x and y are floating-point variables. 

Pointer Expressions: Pointer Expressions produce address values.  

    Examples: 

&m 

Ptr 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 8 

ptr + l where m is a variable and ptr is a pointer. 

Relational Expressions: Relational Expressions yield results of type 

bool which takes a value true or false. Relational expressions are also 

known as Boolean expressions. 

Examples: 

     x<= y 

     a+b == c+d 

     m+n > 100 

Logical Expressions: Logical Expressions combine two or more 

relationa1 expressions and produces bool type results.  

Examples: 

     a>b && x== 10    

     x ==10 || y== 5 

Bitwise Expressions: Bitwise Expressions are used to manipulate data 

at bit level. They are basically used for testing or shifting bits. Shift 

operators are often used for multiplication and division by powers of 

two.  

Examples: 

x << 3   // Shift three bit position to left 

y >>1   // Shift one bit position to right 

Special Assignment Expressions: 

Chained Assignment: A chained statement can not be used to 

initialize variables at the time of declaration.  

       x=(y=10); or    x=y=10; 

First 10 is assigned to y and then to x. 

Embedded Assignment 

   x = (y = 50) + 10 ; 

Compound Assignment 

C++ supports a compound assignment operator. The general 

form of the compound assignment operator is: 

     variable1 op= variable2; 

Example: 

     x = x + 10; can be written as  x += 10; 

   The operator += is known as compound assignment operator 

or short-hand assignment operator.  

CONTROL STRUCTURES 

Introduction 

Control structures form the basic entities of a “structured 

programming language“. Control structures are used to alter the flow 

of execution of the program. 

There are three types of control structures available in C and 

C++ 

1. Sequence structure (straight line paths) 

2. Selection structure (one or many branches) 

3. Loop structure (repetition of a set of activities) 

 

 

Sequence structure: 

 

http://www.circuitstoday.com/wp-content/uploads/2012/09/sequence_structure.png


M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 9 

 

Selection Structure: 

Selection structures are used to perform ‘decision making‘ and 

then branch the program flow based on the outcome of decision 

making. 

Selection structures are implemented in C/C++ with If, If Else 

and Switch statements. 

If and If Else statements are 2 way branching statements where 

as Switch is a multi branching statement. 

i) Simple if 

ii) if else 

iii) else if ladder 

iv) Nested if 

v) switch statement 

 

 

Simple if: 

This expression is evaluated. If expression is TRUE statements 

inside the braces will be executed 

if (expression) 

{ 

statement 1; 

statement 2; 

} 

if else: 

Expression 1 is evaluated. If  TRUE, statements inside the 

curly braces are executed. If FALSE program control is transferred to 

immedate else if statement. 

Syntax: 

http://www.circuitstoday.com/wp-content/uploads/2012/09/selection_structure_modified.png


M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 10 

if(expression 1) 

{  

statement 1; 

} 

else  

{ 

statement 2; 

} 

Else if: 

Expression 1 is evaluated. If  TRUE, statements inside the 

curly braces are executed. 

If FALSE program control is transferred to immediate else if 

statement. 

If expression 1 is FALSE, expression 2 is evaluated. If 

expression 2 is FALSE, expression 3 is evaluated. 

If all expressions (1, 2 and 3) are FALSE, the statements that 

follow this else (inside curly braces) is executed. 

Syntax: 

 

if(expression 1) 

 { 

statement 1; 

 } 

else if(expression 2) 

{ 

statement 2; 

} 

else if(expression 3)  

{ 

statement 3; 

} 

else  

{ 

statement 4; 

} 

Switch statement: Switch is a multi branching control statement. Case 

is the keyword used to match the integer/character constant from 

expression. value1, value2 ... are different possible values that can 

come in expression. break is a keyword used to break the program 

control from switch block. 

Syntax: 

switch(expression)  

{ 

case value1:  

statement 1; 

break; 

case value2: 

statement 2; 

break; ………. 

default:  

statement n; 

break; 

} 

Loop Structure: 

A loop structure is used to execute a certain set of actions for a 

predefined number of times or until a particular condition is satisfied.  

There are 3 control statements available in C/C++ to 

implement loop structures. While, Do while and For statements. 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 11 

 

 

 

While loop: 

This condition is tested for TRUE or FALSE. Statements inside 

curly braces are executed as long as condition is TRUE. 

while(condition)  

{ 

statement 1; 

statement 2; 

} 

 

do while loop: 

do 

{ 

statement 1; 

statement 2; 

} 

while(condition); 

 

The for statement 

 

for(initialization statements; test condition; iteration statements) 

{ 

statement 1; 

statement 2; 

} 

 

 

 

 

FUNCTIONS IN C++ 

Introduction 

A function is a group of statements that together perform a 

task. Every C++ program has at least one function, which is main(). 

We can divide up program into separate functions. 

A function is known with various names like a method or a 

sub-routine or a procedure etc. 

A function declaration tells the compiler about a function's 

name, return type, and parameters. A function definition provides the 

actual body of the function. 

Function Declaration: A function declaration tells the compiler about 

a function name and how to call the function. 

http://www.circuitstoday.com/wp-content/uploads/2012/09/loop_structure.png


M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 12 

The actual body of the function can be defined separately. 

A function declaration has the following parts − 

return_type function_name( parameter list ); 

Defining a Function 

The general form of a C++ function definition is as follows − 

return_type function_name( parameter list ) 

{ 

body of the function 

} 

A C++ function definition consists of a function header and a 

function body. Here are all the parts of a function − 

Return Type − A function may return a value. The return_type is the 

data type of the value the function returns. Some functions perform the 

desired operations without returning a value.  

Function Name − This is the actual name of the function. The 

function name and the parameter list together constitute the function 

signature. 

Parameters − A parameter is like a placeholder. When a function is 

invoked, you pass a value to the parameter. This value is referred to as 

actual parameter or argument. The parameter list refers to the type,  

and number of the parameters of a function. 

Function Body − The function body contains a collection of 

statements that define what the function does. 

 

Calling a Function 

While creating a C++ function, you give a definition of what 

the function has to do. To use a function, you will have to call or 

invoke that function. 

EXAMPLE: 

#include <iostream.h> 

int max(int num1, int num2); 

int main ()  

{ 

   int a = 100; 

   int b = 200; 

   int ret; 

   ret = max(a, b); 

   cout << "Max value is : " << ret << endl; 

   return 0; 

} 

int max(int num1, int num2)  

{ 

   int result; 

   if (num1 > num2) 

      result = num1; 

   else 

      result = num2; 

   return result;  

} 

Methods of calling function 

1. Call by Value: This method copies the actual value of 

an argument into the formal parameter of the function. 

2. Call by Pointer: This method copies the address of an 

argument into the formal parameter. Inside the function, the 

address is used to access the actual argument used in the call. 

3. Call by Reference: This method copies the reference 

of an argument into the formal parameter. Reference is used to 

access the actual argument used in the call. 

INLINE FUNCTIONS: 

• An Inline function is a function this is expanded in line when it is 

OUTPUT: 

Max value is : 200 

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 13 

invoked. 

• The compiler replaces the function call with the corresponding 

function when it is invoked. 

• It is used to eliminate the cost of calls to small functions. Because, 

every time a function is called, It takes a lot of extra time in 

executing the tasks such as jumping to the function, saving return 

address into the stack, and returning to the calling function.  

• Syntax 

 

 

 

 

 

 

 

• To make a function inline, the inline keyword is added in the 

function header. 

• In some situations, inline functions may not work. They are: 

✓ For a function returning values. If a loop, a switch, or a 

goto exists. 

✓ For functions not returning values, if a return statement 

exists. 

✓ If functions contain static variables. 

✓ If inline functions are recursive. 

//Inline Function Example 

#include<iostream.h> 

inline int max(int a,int b) 

{ 

if(a>b) 

   return(a); 

else 

   return(b); 

} 

void main() 

{ 

int a=10,b=20; 

cout<<"\n Big="<<max(a,b); 

} 

 

DEFAULT ARGUMENTS: 

• C++ allows us to call a function without specifying all its 

arguments. 

• The function assigns a default value to the parameter which 

does not have a matching argument in the function call. 

• Default values are specified when the function is declared. 

• Advantages: 

◦ We can use default arguments to add new parameters to the 

existing functions. 

◦ Default arguments can be used to combine similar 

functions into one. 

//Default Arguments Example 

#include<iostream.h> 

void printline(char c='*',int count=15) 

{ 

cout<<"\n"; 

for(int i=1;i<=count;i++) 

   cout<<c; 

} 

void main() 

inline function-header  

{ 

function body 

} 

Output: 

Big=20 

Output: 
 

*************** 

 Hai. 

############### 

 You are welcome to C++ Lab. 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 14 

{ 

printline(); 

cout<<"\n Hai."; 

printline('#'); 

cout<<"\n You are welcome to C++ Lab."; 

printline('$',30); 

} 

 

FUNCTION OVERLOADING: 

• Overloading refers to the use of the same thing for different 

purposes. 

• The same function name can be used to perform a variety of 

tasks is referred to as Function overloading. It is also known as 

function polymorphism. 

 

 

 

• Ex: 

Function prototype Function call 

int add(int a, int b); cout<<add(5,10); 

int add(int a, int b, int c); cout<<add(5,10,15); 

double add(double x, double y); cout<<add(12.5, 7.5); 

//Function overloading example 

#include<iostream.h> 

int add(int a) 

{ 

   return(a+a); 

} 

int add(int a,int b) 

{ 

   return(a+b); 

} 

float add(float a,float b) 

{ 

   return(a+b); 

} 

void main() 

{ 

cout<<"\nFunction Overloading"; 

cout<<"\nOne int arg\n"<<add(10); 

cout<<"\nTwo int args\n"<<add(10,20); 

cout<<"\nTwo float args\n"<<add(11.22f,33.44f); 

} 

UNIT – II 

Classes and objects – Constructors and destructors – New 

operators – Operator overloading – Type conversions 

CLASSES AND OBJECTS 

• A class is a way to bind the data and its associated functions 

together. 

• It hides the data from external use, if necessary. 

• It is used to create a user-defined data type. (Abstract data 

type) 

• A class specification has two parts: 

◦ Class declaration – Describes the type and scope of its 

members. 

◦ Class function definition – Describes how the class 

Output: 

Function Overloading 

One int arg 

20 

Two int args 

30 

Two float args 

44.66 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 15 

functions are implemented. 

The general form of a class declaration is: 

 

 

 

 

 

 

 

 

 

 

 

 

• The keyword ‘class’ specifies, that what follows is an abstract 

data of type class_name. 

• The body of a class is enclosed within braces and terminated 

by a semicolon. 

• The class body contains the declaration of variables and 

functions. These functions and variables are collectively called 

class members. The variables are called as data members and 

the functions are called as member functions. 

• They are grouped under two sections, namely, private and 

public to denote which of the members are private and which 

of them are public. 

• The keywords private and public are known as visibility 

labels. 

• The private members can be accessed only from within the 

class. It is called data hiding. 

• The public members can be accessed from outside the class 

also. 

Creating objects and accessing class members: 

✓ Once a class has been defined, we can create variables of type 

class by using class name. 

✓ The class variables are known as objects. 

✓ The declaration of object is similar to that of a variable of any 

basic data type. 

✓ Ex: 

class person 

{ 

char name[20]; 

 char place[20]; 

public: 

 void read(); 

 void display(); 

}; 

✓ To access the class members, the dot operator is used. 

o Syntax: 

object_name.member_name; 

Ex:  

 x.read(); 

 y.display(); 

//Classes and Objects Example 

#include<iostream.h> 

class person 

{ 

  char name[20]; 

  char place[20]; 

public: 

class class_name 

{ 

  private: 

variable declarations; 

function declarations 

  public: 

  variable declarations; 

 function declarations; 

};             

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 16 

  void read() 

  { 

    cout<<"\n Enter name and place\n"; 

    cin>>name>>place; 

  } 

  void display() 

  { 

    cout<<"\n Name: "<<name; 

    cout<<"\n Place: "<<place; 

  } 

}; 

void main() 

{ 

cout<<"\n Classes and objects \n"; 

person p;         // Creating objects 

p.read(); 

p.display(); 

} 

 

 

FRIEND FUNCTION: 

• A nonmember function cannot have an access to the private 

data members of a class. 

• The friend function is used to access the private data of a class 

where it is declared. 

• To make a function friendly to a class, the function declaration 

should be preceded by the keyword friend. 

• Special Characteristics of a friend function: 

◦ It is not in the scope of the class to which it has been 

declared as friend. 

◦ It cannot be called using the object of that class. 

◦ It can be invoked like a normal function without the help of 

any object. 

◦ It cannot access the member names directly, and has to use 

an object name and dot membership operator with each 

member name. 

◦ It can be declared either in the public or the private part of 

a class. 

◦ Usually, it has the objects as arguments. 

 

//Friend function example 

#include<iostream.h> 

class B; 

class A 

{ 

int a; 

public: 

A(int x) 

{ 

a=x; 

} 

friend void add(A,B); 

}; 

class B 

{ 

int b; 

public: 

B(int x) 

Output 

 Friend function 

 Sum=30 

Output: 

 Classes and objects  

 

 Enter name and place 

 Rose 

 Pattukkottai 

 

 Name: Rose 

 Place: Pattukkotai 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 17 

{ 

b=x; 

} 

friend void add(A,B); 

}; 

void add(A obj1,B obj2) 

{ 

cout<<"\n Sum="<<obj1.a+obj2.b; 

} 

void main() 

{ 

cout<<"\n Friend function\n"; 

A obj1(10); 

B obj2(20); 

add(obj1,obj2); 

} 

 

 

 

 

CONSTRUCTORS 

A constructor is a special member function whose task is to 

initialize the objects of its class. 

The function name is same as the class name. 

A constructor is invoked whenever an object of its associated 

class is created. 

Characteristics of the constructor function: 

• They should be declared in the public section. 

• They are invoked automatically when the objects are created. 

• They do not have return types, even void. They cannot return 

values. 

• They cannot be inherited. 

• Like normal functions, they can have default arguments. 

• Constructors cannot be virtual. 

• We cannot refer to their addresses. 

• They make 'implicit calls' to the operators 'new' and 'delete' 

when memory allocation is required. 

Types: 

❖ Default Constructor: A constructor that accepts no parameters 

(arguments) is called the default constructor. If there is no such 

constructor, the compiler supplies a default constructor. 

o Ex: add a; 

❖ Parameterized Constructors: Like a normal function, C++ 

permits us to pass arguments to a constructor. These constructors 

are called as parameterized constructor. 

o Ex: add a(10,20); 

❖ Copy constructor: A copy constructor is used to declare and 

initialize an object from another object. The process of initializing 

through a copy constructor is known as copy initialization. A copy 

constructor takes to an object of the same class as itself as an 

argument.  

o Ex: 

add a(10,20); 

add a1; 

a1=a;        //Copy constructor 

********************************************** 

//Constructors example 

#include<iostream.h> 

class add 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 18 

{ 

  int a,b; 

public: 

  add()   //Default constructor 

  { 

     a=0; 

     b=0; 

  } 

  add(int m,int n)  //Argumented Constructor 

  { 

     a=m; 

     b=n; 

  } 

  add(add obj)    //Copy constructor 

  { 

     a=obj.a; 

     b=obj.b; 

  } 

  void sum() 

  { 

     cout<<"\n Sum="<<a+b; 

  } 

}; 

void main() 

{ 

add a1; 

add a2(10,20); 

add a3; 

a3=a2; 

a1.sum(); 

a2.sum(); 

a3.sum(); 

} 

DESTRUCTORS 

• A destructor is used to destroy the objects that have been 

created by a constructor.  

• The function name is same as the class name and preceded by a 

tilde (~). 

• A destructor never takes any argument. It does not return any 

value. It will be invoked implicitly by the compiler upon exit 

from the program. 

• It is used to clean up storage that is no longer accessible. 

• The delete operator is used to free the allocated memory. 

• The primary use of destructors is in freeing up the memory 

reserved by the object before it gets destroyed. 

//Destructors example 

#include<iostream.h> 

class add 

{ 

  int a,b; 

public: 

  add(int m,int n) 

  { 

     a=m; 

     b=n; 

  } 

  void sum() 

  { 

Output: 

 

Constructors 

 

 Sum=0 

 Sum=30 

 Sum=30 

Output: 

 

 Destructors  

 

 Sum=30 

 Sum=50 

 Deleting objects 

 Deleting objects 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 19 

     cout<<"\n Sum="<<a+b; 

  } 

  ~add() 

  { 

    cout<<"\n Deleting objects"; 

  } 

}; 

void main() 

{ 

cout<<"\n Destructors \n"; 

add a1(10,20); 

add a2(20,30); 

a1.sum(); 

a2.sum(); 

} 

 

 

 

 

 

 

NEW OPERATORS IN C++ 

C++ has a rich set of operators. All C operators are valid in 

C++ also. In addition, C++ introduces some new operators. 

1. I/O operators 

a. <<    → Insertion operator (input) 

b. >>    → Extraction operator (output) 

2. ::         → Scope resolution operator 

3. Member dereference operators 

a. ::*       →Pointer-to-member declarator 

b. ->*      → Pointer-to-member operator 

c. .*         →Pointer-to-member operator 

4. Memory management operators 

a. Delete → Memory release operator 

b. new     → Memory allocation operator 

5. Manipulators 

a. Endl    → Line feed operator 

b. setw     → Field width operator 

Scope Resolution Operator: 

 Scope resolution operator (::) in C++ is used to define a 

function outside a class or when we want to use a global variable but 

also has a local variable with the same name. 

Syntax: 

         : : variable_name;   

Example: 

#include<iostream.h> 

int m=10; 

int main() 

{ 

int m=20; 

{ 

int k=m; 

int m=30; 

cout<<" we are in inner block \n"; 

OUTPUT: 

We are in inner block 

k=20 

m=30 

: :m=10 

We are in outer block 

m=20 

: :m=10 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 20 

cout<<"k="<<k<<"\n"; 

cout<<"m="<<m<<"\n"; 

cout<<"::m="<<::m<<"\n"; 

} 

cout<<"we are in outer block \n"; 

cout<<"m="<<m<<"\n"; 

cout<<"::m="<<::m<<"\n"; 

return 0; 

} 

Manipulators: 

 Manipulators are the operators that are used to format the data 

display. The most commonly used manipulators are endl and setw. 

endl operator: 

 The endl operator used in an output statement, causes a 

linefeed to be inserted. It has the same effect using the newline 

character “\n”. ex: cout<<”welcome”<<endl; 

setw operator: 

 The setw operator is used to set a common field width for the 

data. Setw(field width). Ex: cout<<setw(5)<<sum; here, the sum 

value is 345 then the value will be display in following format. 

 

 

 

Example: 

#include<iostream.h> 

#include<iomanip.h> 

int main() 

{ 

int basic=12000, 

int allowance=150, 

int total; 

salary=basic+allowance; 

cout<<”BASIC=”<< setw(10)<<basic<<endl  

       <<”ALLOWANCE=”<<setw(10)<<allowance<<endl 

       <<”TOTAL=”<<setw(10)<<total<<endl; 

return 0; 

} 

OPERATOR OVERLOADING 

 The mechanism of giving special meaning to an operator is 

known as operator overloading. 

To define an additional task to an operator, a special function 

called operator function is used to define the function. 

 

The general form of an operator function is: 

 return-type classname::operator op(argument list) 

 { 

  // Function body 

 } 

 Where, return-type specifies the return type of the function.   

op – the operator to be overloaded. Operator function must be either 

member function or friend function.  

  

The process of overloading involves the following steps: 

1. Create a class that defines the data type that is to be used in 

the overloading operation. 

2. Declare the operator function operator op() in the public 

part of the class. It may be either a member function or a 

friend function. 

3. Define the operator function to implement the required 

  3 4 5 

OUTPUT:           

              BASIC=*****12000 

ALLOWANCE=*******150 

             TOTAL=*****12150 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 21 

operations. 

Rules for operator overloading: 

1. Only existing operators can be overloaded. New operators 

cannot be overloaded. 

2. The overloaded operator must have at least one operand that is 

of user-defined type. 

3. Overloaded operators follow the syntax rules of the original 

operators. They cannot be overridden. 

4. There are some operators that cannot be overloaded: 

• Membership operator (.) 

• Pointer-to-member operator (.*) 

• Scope resolution operator (::) 

• sizeof operator 

• Conditional Operator (?:) 

5. We cannot use friend functions to overload certain operators. 

• =    Assignment operator 

• (  )  Function call operator  

• [ ]   Subscripting operator 

• -> Class member access operator  

6. For unary operators, by means of a member function, there is 

no explicit argument. In case of a friend function, there is one 

argument. 

 

7. For binary operators, by means of a member function, there is 

one explicit argument. In case of a friend function, there are 

two arguments. 

8.   When using binary operators through member function, the 

left-hand operand must be an object of the relevant class. 

9. Binary arithmetic operators such as +, -, * and / must explicitly 

return a value. They must not attempt to change their own 

arguments. 

//Operator overloading example 

#include<iostream.h> 

class complex 

{ 

  float real,imag; 

public: 

   complex(){ } 

   complex(float r, float i) 

   { 

     real=r; 

     imag=i; 

   } 

   void display() 

   { 

     cout<<real<<"+i"<<imag; 

   } 

   complex operator +(complex); 

}; 

complex complex::operator +(complex c) 

{ 

complex c1; 

c1.real=real+c.real; 

c1.imag=imag+c.imag; 

return(c1); 

} 

void main() 

{ 

cout<<"\n Binary Operator Overloading\n"; 

Output 

 Binary Operator Overloading 

 C1=12+i56 

 C2=10+i20 

 C3=22+i76 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 22 

complex c1(12.34,56.78); 

complex c2(10.123,20.232); 

complex c3; 

c3=c1+c2; 

cout<<"\n C1="; 

c1.display(); 

cout<<"\n C2="; 

c2.display(); 

cout<<"\n C3="; 

c3.display(); 

} 

TYPE CONVERSIONS: 

 Type cast is a basically conversion between from one data type to 

another data type. There are two types of conversion. 

1. Implicit conversion (Automatic conversion): It done by 

the compiler on its own, without any external trigger form 

the user. 

Example:       

#include<iostream.h> 

int main() 

{ 

int m; 

float x=3.141; 

cout<<”implicit conversion”<<endl; 

m=x; 

cout<<”the value of m=”<<m; 

return 0; 

} 

Here, automatically convert x (float) to an integer before its 

value assigned to m. 

2. Explicit conversion: This process is also called type 

casting and it is user-defined. The compiler does not 

support automatic type conversion for such data types. It 

can be done by TWO ways. 

a. Conversion by assignment: type(expression) 

Ex: 

int main() 

{ 

double x=1.24; 

int sum=(int)x+1; 

cout<<”SUM=”<<sum; 

return 0; 

} 

OUTPUT:    SUM=2 

 

b. Conversion using casting operator: C++ supports 

four types of casting. 

➢ Static cast 

➢ Dynamic cast 

➢ Const cast 

➢ Reinterpret cast 

 

 

Situations: 

Three types of situations might arise in the data conversion between 

incompatible data types. 

• Conversion from basic type to class type. 

• Conversion from class type to basic type. 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 23 

• Conversion from one class type to another class type. 

Conditions: 

 The casting operator function should satisfy the following 

conditions. 

• It must be a class member. 

• It must not specify a return type. 

• It must not have any arguments. 

RECURSION 

• A function calls itself is referred to as recursion. 

• The function is called itself either directly or indirectly. 

• The recursive function requires a conditional check, to avoid 

the recursive calls of function goes into an infinite loop. 

// Recursion Example 

#include<iostream.h> 

#include<conio.h> 

int fact(int n) 

{  if((n==1)||(n==0)) 

  return(1); 

else 

  return(n*fact(n-1));   } 

void main() 

{    int n=5; 

cout<<"\n Factorial of "<<n<<" is "<<fact(n);   

 } 

 

 

 

TYPE CONVERSIONS 

 

   There are three types of data conversion between uncompatible types. 

• Conversion from basic type to class type 

• Conversion from class type to basic type 

• Conversion from one class type to another class type. 

Conversion from basic type to class type: 

• In this type of conversion the source type is basic type and the 

destination type is class type. 

• Basic type is converted into class type. 

• The constructor can be used to perform type conversion during 

the object creation. 

Conversion from class type to basic type: 

• In this type of conversion the source type is class type and the 

destination type is basic type. 

• Class type is converted into basic type. 

• C++ allows us to define an overloaded casting operator that 

could be used to convert a class type data to a basic type. 

• The general form of an overloaded casting operator function, 

 

     
• usually referred to as a conversion function, is: 

This function converts a class type data to typename. 

The casting operator function should satisfy the following conditions: 

  • It must be a class member. 

  • It must not specify a return type. 

  • It must not have any arguments. 

Conversion from one class type to another class type: 

This type of conversion between objects of different classes can be 

carried out by either a constructor or a conversion function.  

 

Example: 
/* Program to convert basic type to class type using constructor */ 
#include "iostream.h" 
#include "conio.h" 

operator typename() 

{ 

//  Function statements 

} 
OUTPUT 

Factorial of 5 is 120 

OUTPUT 
Enter time duration in minutes Basic 
Type to ==> Class Type Conversion... 
100 
1: Hours(s) 
40 Minutes 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 24 

class Time 
{ 
 int hrs,min; 
 public: 
                Time(int); 
  void display(); 
}; 
Time :: Time(int t) 
{ 
 cout<<"Basic Type to ==> Class Type Conversion..."<<endl; 
 hrs=t/60; 
 min=t%60; 
} 
 
void Time::display() 
{ 
 cout<<hrs<< ": Hours(s)" <<endl; 
 cout<<min<< " Minutes" <<endl; 
} 
void main() 
{ 
 clrscr(); 
  int duration; 
 cout<<"Enter time duration in minutes";  
        cin>>duration; 
  
 Time t1=duration; 
         t1.display(); 
 getch(); 
} 
 

UNIT-III 

 

INHERITANCE: EXTENDING CLASSES (Types of Inheritance) 

✓ The mechanism of deriving a new class from an old one is called 

inheritance (or derivation).  

✓ The old class is referred to as the base class and the new one is 

called the derived class or subclass. 

✓ Inheritance promotes the reusability of data and functions. 

Defining Derived Classes: 

A derived class can he defined by specifying its relationship 

with the base class in addition to its own details. The general form of 

defining a derived class is: 

 

✓ The colon indicates that the derived-class-name is derived from the 

base-class-name.  

✓ The visibility-mode is optional and, if present, may be either 

private or public. The default visibility-mode is private.  

✓ Visibility mode specifies whether the features of the base class are 

privately derived or publicly derived. 

Examples: 

class ABC: private XYZ   //Private derivation 

{ 

members of ABC 

}; 

 

class ABC: public XYZ //Public derivation 

{ 

members of ABC 

class derived-class-name : visibility-mode base-class-name 

{ 

..... // 

·····// members of derived class 

.. .. // 

 }; 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 25 

}; 

class ABC: XYZ     //Private derivation by default 

{ 

  members of ABC 

  };   

✓ When a base class is privately inherited by a derived class, 'public 

members' of the base class become 'private members' of the 

derived class and therefore the public members of the base class 

can only be accessed by the member functions of the derived class. 

They are inaccessible to the objects of the derived class.  

✓ A public member of a class can be accessed by its own objects 

using the dot operator.    

✓ When the base class is publicly inherited, 'public members' of the 

base class become •public members' of the derived class and 

therefore they are accessible to the objects of the derived class.  

✓ In both the cases, the private members are not inherited and 

therefore, the private members of a base class will never become 

the members of its derived class. 

✓ Types: 

➢ Single inheritance 

➢ Multilevel inheritance 

➢ Multiple inheritance 

➢ Hierarchical inheritance 

➢ Hybrid inheritance 

 

 

Single Inheritance: 

✓ A derived class with only one base class is called single 

inheritance. 

 

Example: 

/***************************************** 

#include<iostream.h> 

#include<conio.h> 

class A 

{ 

   int a; 

public: 

   void get_a() 

   { 

     cout<<"\n Enter a number "; 

     cin>>a; 

   } 

   int put_a()                         

   { 

     cout<<"\n a="<<a; 

     return(a); 

   } 

}; 

class B: public A 

{ 

   int b; 

public: 

   void get_b() 

   { 

     cout<<"\n Enter a number "; 

OUTPUT 
 
 Enter a number  
 2 
 Enter a number  
 4 
  
 b=4 
 a=2 
 a+b=6 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 26 

     cin>>b; 

   } 

   void put_b() 

   { 

     cout<<"\n b="<<b; 

     cout<<"\n a+b="<<b+put_a(); 

   } 

}; 

void main() 

{ 

B bobj; 

bobj.get_a(); 

bobj.get_b(); 

bobj.put_b(); 

} 

****************************************/ 

Multiple Inheritance: 

✓ A class is derived from several base classes is called multiple 

inheritance.  

 

The syntax of a derived class with multiple base classes is as 

follows: 

 
where, vi1ibilily may be either public, private or protected. The 

base classes are separated by commas. 

Example: 

/*************************************** 

#include<iostream.h> 

#include<conio.h> 

class A 

{ 

   int a; 

public: 

   void get_a() 

   { 

     cout<<"\n Enter a number "; 

     cin>>a; 

   } 

   void put_a() 

   { 

     cout<<"\n a="<<a; 

   } 

}; 

class B: public A 

{ 

   int b; 

public: 

   void get_b() 

   { 

OUTPUT 
 
 Enter a number  

 1 

 Enter a number  

 2 

 Enter a number  

 3 

 a=1 

 b=2 

 c=3 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 27 

     cout<<"\n Enter a number "; 

     cin>>b; 

   } 

   void put_b() 

   { 

     cout<<"\n b="<<b; 

   } 

}; 

class C: public B 

{ 

   int c; 

public: 

   void get_c() 

   { 

     cout<<"\n Enter a number "; 

     cin>>c; 

   } 

   void put_c() 

   { 

     cout<<"\n c="<<c; 

   } 

}; 

void main() 

{ 

C cobj; 

cobj.get_a(); 

cobj.get_b(); 

cobj.get_c(); 

cobj.put_a(); 

cobj.put_b(); 

cobj.put_c(); 

} 

******************************************/ 

Multilevel Inheritance: 

✓ The mechanism of deriving a class from another 'derived class is 

known as multilevel inheritance. 

 

 

✓ The class A serves as a base class for the derived class B, which in 

turn serves as a base class for the derived class C.  

✓ The class B is known as intermediate base class since it provides a 

link for the inheritance between A and C. The chain ABC is known 

as inheritance path. 

 

 

 

 

Example: 

/*************************************** 

#include<iostream.h> 

#include<conio.h> 

class A 

{ 

   int a; 

public: 

   void get_a() 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 28 

   { 

     cout<<"\n Enter a number "; 

     cin>>a; 

   } 

   void put_a() 

   { 

     cout<<"\n a="<<a; 

   } 

}; 

 

class B: public A 

{ 

   int b; 

public: 

   void get_b() 

   { 

     cout<<"\n Enter a number "; 

     cin>>b; 

   } 

   void put_b() 

   { 

     cout<<"\n b="<<b; 

   } 

}; 

class C: public B 

{ 

   int c; 

public: 

   void get_c() 

   { 

     cout<<"\n Enter a number "; 

     cin>>c; 

   } 

   void put_c() 

   { 

     cout<<"\n c="<<c; 

   } 

}; 

void main() 

{ 

C cobj; 

cobj.get_a(); 

cobj.get_b(); 

cobj.get_c(); 

cobj.put_a(); 

cobj.put_b(); 

cobj.put_c(); 

} 

************************************/ 

Hierarchical Inheritance: 

✓ More than one classes derived from one class. This process is 

known as hierarchical inheritance.  

 

Hybrid Inheritance: 

✓ The inheritance in which the derivation of a class involves more 

than one form of any inheritance is called hybrid inheritance.  

✓ Basically C++ hybrid inheritance is combination of two or more 

types of inheritance. It can also be called multi path inheritance. 

OUTPUT 

 

 Enter a number  

 1 

 Enter a number  

 2 

 Enter a number  

 3 

 a=1 

 b=2 

 c=3 

http://www.trytoprogram.com/cplusplus-programming/inheritance/


M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 29 

 

 

************** 

 

TOKEN: 

 The smallest individual units in a program are called tokens. 

The tokens are: 

6. Keywords 

7. Identifiers 

8. Constants 

9. Strings 

10. Operators 

A C++ program is written using these tokens, white spaces, and the 

syntax of the language. 

 

❖ KEYWORDS: 

Keywords are reserved words and they have predefined meaning. 

They can’t be used as user-defined program elements. 

 Ex: class, while, switch 

 

 

❖ IDENTIFIERS AND CONSTANTS: 

• Identifier refers to the name of a variable, a function, an array, 

or a class. 

• Naming rules: 

◦ Only alphabetic characters, digits and underscores are 

permitted.  

◦ The first letter must be an alphabet or an underscore. 

◦ Uppercase and lowercase letters are distinct. 

◦ Keywords cannot be used as an identifier. 

◦ There is no limit on the length.  

◦ White spaces are not allowed. 

• Ex:    

◦ name, first_name, name_1, _123 are valid 

identifiers. 

◦ amount$, 12a, first name are invalid identifiers. 

• Constants refer to fixed values that do not change during the 

execution of a program. 

◦ Constants do not have memory locations. 

◦ Ex: 123, 12.34, “C++”, '\0' 
 

❖ STRING: 

o A string is a sequence of characters. 

o In C++, character array is used to store a string. 

o Ex:  "Welcome" 

 

❖ OPERATOR: 

       An operator is a symbol which is used to perform the given 

mathematical operations. 

Ex:    +, -, *, <, ! 

 

OPERATORS IN C++ 

◆ C++ has a rich set of operators.  

◆ All C operators are valid in C++ also.  

◆ In addition, C++ introduces some new operators. They are: 

◦ << - Insertion operator (input) 

◦ >> - Extraction operator (output) 

◦ ::  - Scope resolution operator 

◦ ::* - Pointer-to-member declarator 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 30 

◦ ->* - Pointer-to-member operator 

◦ .* - Pointer-to-member operator 

◦ delete - Memory release operator 

◦ endl - Line feed operator 

◦ new - Memory allocation operator 

◦ setw - Field width operator 
➢ Scope Resolution Operator: 

• C++ is a block-structured language. 

• The same variable name can be used to have different 

meanings in different blocks.  

• The scope of the variable extends from the point of its 

declaration till the end of the block containing the 

declaration.  

• A variable declared inside a block is said to be local to that 

block.   

• If same variable name is used in both the inner block and 

the outer block, the inner block hides the variable in the 

outer block. 

• To resolve this problem C++ allows us to use the scope 

resolution operator (::). 

• A major application of the scope resolution operator is in 

the classes to identify the class to which a member function 

belongs. 

/******************************** 

// Scope resolution operator - Example 

#include<iostream.h> 

#include<conio.h> 

int a=10; 

void main() 

{ 

   int a=100; 

   cout<<"\n a="<<a;  //Access local variable a 

   cout<<"\n ::a="<< ::a;  //Access global variable a 

} 

**********************************/ 

Member Dereferencing Operators: 

              C++ permits us to access the class members through pointers.  

C++ provides a set of three pointer-to-member operators. 

◦ ::* - To declare a pointer to a member of a class. 

◦ ->* - To access a member using a pointer to the object and 

a pointer to that member. 

◦ .* - To access a member using object name and a pointer to 

that member 
Memory Management Operators 

   The new operator can be used to create objects of any type. It takes 

the following general form: 

 

 

 

 

  Here pointer-variable is a pointer of type data-type. The new operator 

allocates sufficient memory to bold a data object of type data-type and 

returns the address of the object.  

Example: 

 p = new int ; 

 q = new fl oat ; 

 

When a data object is no longer needed. it is destroyed to 

release the memory space for reuse. The delete operator is used to 

delete the allocated space. The general form is: 

 

 

 

Example: 

 delete p; 

 delete q; 

MANIPULATORS: 

• Manipulators are operators that are used to format the data display. 

The most commonly used manipulators are endl and setw. 

OUPUT 

a=100 

::a=10 

 

         pointer-variable=new data-type; 

delete pointer-variable; 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 31 

• The endl manipulator, when used in an output statement causes a 

Linefeed to be inserted. 

• It has the same effect as using the newline character "\n". For 

example, the statement 

  cout << "m = " << m << end l; 

• The setw manipulator is used to set a common field width for the 

data. 

Example: 

     cout<< setw(S)<<sum<<endl; 

 

TYPE CAST OPERATOR:  

C++ permits explicit type conversion or variables or 

expressions using the type cast operator. 

 

(type-name) expression // C notation 

type-name (expression) // C++ notation 

 

Examples: 

  average = sum/(float)i; // C notation 

  average = sum/float(i); // C++notation 

 

************** 

                              

EXPRESSIONS AND THEIR TYPES 

• An expression is a combination of operators, constants and 

variables arranged as per the rules of the language.  

• It may also include function calls which return values.  

• An expression may consist of one or more operands, and zero or 

more operators to produce a value. 

 

Types: 

    •   Constant expressions 

    •   Integral expressions 

    •    Float expressions 

    •   Pointer expressions 

    •   Relational expressions 

    •   Logical expressions 

    •   Bitwise expressions 

An expression may also use combinations of the above expressions. 

Such expressions are known as compound expressions. 

 

Constant Expressions: 

Constant Expressions consist of only constant va1ues. 

Examples: 
 

    15 

    20 + 5 / 2.O 

    'x' 

 

Integral Expressions: 

Integral Expressions are those which produce results after 

implementing all the automatic and explicit type conversions. 

Examples: 

m 

     m * n - S 

     m * ' x' 

     5 + int(2.0) 

where m and n are integer variables. 

 

Float Expressions: 

Float Expressions are those which, after all conversions, 

produce floating-point results. 

Examples: 

      x + y 

     x * y / 10 

     5 * float(10) 

     10.75 

where x and y are floating-point variables. 

 

Pointer Expressions: 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 32 

Pointer Expressions produce address values. Examples: 

 

&m 

     ptr 

     ptr + l 

where m is a variable and ptr is a pointer. 

 

Relational Expressions: 

Relational Expressions yield results of type bool which takes a 

value true or false. Examples: 

 

x<= y 

a+b = = c+d 

m+n > 100 

                Relational expressions are also known as Boolean 

expressions. 

 

Logical Expressions: 

Logical Expressions combine two or more relationa1 

expressions and produces bool type results.  

Examples: 

 

     a>b && x = = 10    

     x = = 10 || y = = 5 

 

Bitwise Expressions: 

Bitwise Expressions are used to manipulate data at bit level. 

They are basically used for testing or shifting bits.  

Examples: 

        x << 3 // Shift three bit position to left 

        y >>1   //  Shift one bit position to right 

 

  Shift operators are often used for multiplication and division 

by powers of two. 

 

Special Assignment Expressions: 

Chained Assignment 

      x={y=10) ; 

          or 

     x=y=10; 

 

   First 10 is assigned toy and then to x. 

 

   A chained statement can not be used to initialize variables at 

the time of declaration. For instance, the statement 

     float a = b = 12.34;    // Wrong 

 

Embedded Assignment 

   x = (y = 50) + 10 ; 

 

Compound Assignment 

 C++ supports a compound assignment operator. 

 

Example: 

     x = x + 10; 

may be written as 

         x += 10; 

The operator += is known as compound assignment operator or 

short-hand assignment operator.  

The general form of the compound assignment operator is: 

 

      

 

 

************** 

 

VIRTUAL BASE CLASSES: 

 

variable1 op= variable2; 

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 33 

 Consider a situation where all the three kinds of inheritance, 

namely, multilevel, multiple and hierarchical inheritance, are involved. 

 This is illustrated in Fig. 8.12.  

 The 'child' has two direct base classes 'parent1' and 'parent2' 

which themselves have a common base class 'grandparent'. 

 The 'child' inherits the traits of 'grandparent.' via two separate 

paths. It can also inherit directly as shown by the broken line.  

 The 'grandparent' is sometimes referred to as indirect base 

class. 

 All the public and protected members of 'grandparentt' are 

inherited into 'child' twice, first via 'parent1' and again via 'parent2'. 

 This means, 'child' would have duplicate sets of the members 

inherited from 'grandparent'. This introduces ambiguity and should be 

avoided. 

    The duplication of inherited members due to these multiple 

paths can be avoided by making the common base class (ancestor 

class) as virtual base class while declaring the direct or intermediate 

base classes as shown below: 

 

  

 

Example: 

  class A  //grandparent 

  { 

  .......... 

  .......... 

  }; 

  class B1: virtual public A //parent 1 

  { 

  .......... 

  .......... 

  }; 

  class B2 : public virtual A //parent 2 

  { 

  .......... 

  .......... 

  }; 

  class C : public B1, public B2 //child 

  { 

  .......... 

  .......... 

  }; 

When a class is made a virtual base class, C++ takes necessary 

care to see that only one copy of that classis inherited, regardless of 

how many inheritance paths exist between the virtual base class and a 

derived class. 

The keywords virtual and public may be used in either order. 

Example: 

/* *************************** 

#include<iostream.h> 

#include<conio.h> 

class student { 

    int rno; 

public: 

    void getnumber() { 

        cout << "Enter Roll No:"; 

        cin>>rno; 

    } 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 34 

 

    void putnumber() { 

        cout << "\n\n\tRoll No:" << rno << "\n"; 

    } 

}; 

 

class test : virtual public student { 

public: 

    int part1, part2; 

 

    void getmarks() { 

        cout << "Enter Marks\n"; 

        cout << "Part1:"; 

        cin>>part1; 

        cout << "Part2:"; 

        cin>>part2; 

    } 

 

    void putmarks() { 

        cout << "\tMarks Obtained\n"; 

        cout << "\n\tPart1:" << part1; 

        cout << "\n\tPart2:" << part2; 

    } 

}; 

 

class sports : public virtual student { 

public: 

    int score; 

 

    void getscore() { 

        cout << "Enter Sports Score:"; 

        cin>>score; 

    } 

 

    void putscore() { 

        cout << "\n\tSports Score is:" << score; 

    } 

}; 

 

class result : public test, public sports { 

    int total; 

public: 

 

    void display() { 

        total = part1 + part2 + score; 

        putnumber(); 

        putmarks(); 

        putscore(); 

        cout << "\n\tTotal Score:" << total; 

    } 

}; 

 

void main() { 

    result obj; 

    clrscr(); 

    obj.getnumber(); 

    obj.getmarks(); 

    obj.getscore(); 

    obj.display(); 

    getch(); 

} 

 

 

 

 

 

 

 

ABSTRACT CLASSES 

 An abstract class is one that is not used to create objects.  

OUTPUT 

Enter Roll No: 200 
 
Enter Marks 
 
Part1: 90 
Part2: 80 
Enter Sports Score: 80 
 
Roll No: 200 
Marks Obtained 
Part1: 90 
Part2: 80 
Sports Score is: 80 
Total Score is: 250 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 35 

An abstract class is designed only to act as a base class (to be inherited 

by other classes). 

 

************* 

 

BASIC DATA TYPES: 

Data types in C++ can be classified under various categories as shown 

below: 

 
• C++ compilers support all the built-in (also known as basic or 

fundamental) 

data types.  

• The basic data types may have several modifiers 

.  

• The modifiers are signed, unsigned, 

 long, and short may be applied to character and integer basic 

data types.  

 

Basic Data Types: 

• char - character data type. Used to store a single character.  

Size - 1 byte. 

• int - integer data type. Used to store whole numbers.             

Size - 2 bytes. 

• float - floating-point data type. Used to store real numbers.      

Size - 4 bytes. 

• double - double data type. Used to store double precision 

floating-point number. Size - 8 bytes. 

• void - The void data type is used to  

◦ to specify the return type of of a function when it is not 

returning any value. 

◦ to indicate empty argument list to a function. 

▪ Example: void func(void); 

◦ Used to declare a generic pointers. A generic pointer can be 

assigned a pointer value of any basic data type. 

▪ Example: 

int *ip; 

void *gp; 

gp=ip; 

 

User-Defined Data Types: 

• Structures and Classes 

: structure is a collection of related data item.  

 

◦ Ex: 
struct person 

{ 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 36 

   char name[20]; 

   char place[20]; 

}; 

◦ Class is a collection of objects. A class is a way to bind the 

data and its associated functions together. It is similar to 

structure. But it contains the methods that operate on those 

data members. 
Ex: 

class person 

{ 

    private: 

               char name[20]; 

   char place[20]; 

     public: 

      void getinfo(); 

      void dispinfo() 

  };  

• Type definition: typedef is used to define another user defined  

data type. Then the new data type is used to declare variables 

of the new type.  

◦ Ex: typedef int mark; 

◦ mark tamil, english, major, allied; 

• Enumerated Data Type: 

 An enumerated data type is another user-defined type which 

provides a way for attaching 

 names to numbers, thereby increasing comprehensibility or the 

code. 

• Tho enum keyword 

 automatically enumerates a list of words by assigning 

them values 0,1,.2. and so on. 

  

• This facility provides an alternative means for creating 

symbolic constants.  

• Examples: 

 

     enum shape {circle. square, triangle) ; 

 

     enum colour (red, blue. green. yellow); 

By using these names, new variables can be declared: 

   shape ellipse; 

    colour background; 

 

Derived Data Types: 

➢ Arrays: An array is a collection of data items of same type that 

share a common name. 

◦ Example: int a[20]; 
➢ Functions: Function is a group of statements that together 

perform a task. 

◦ Example: int fact(int); 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 37 

➢ Pointers: Pointer is a variable that contains the address of 

another variable. 

◦ Example: int a,*p; 
          p=&a; 

➢ Reference: A reference variable provides an alias for a 

predefined variable. 

◦ Example: 
int total; 

int & sum=total; // sum is a reference variable. 

******************* 

 

POLYMORPHISM: 

• Polymorphism means 'one name, multiple forms'.  Same 

function is used for many purposes.  

• In function overloading an object is bound to its function call at 

compile time. This is called compile time polymorphism. It is 

also known as early binding or static binding or static linking. 

• In function overriding, the linking of function call to its 

definition is done at run time. This is called dynamic binding. 

It is also known as late binding. The virtual function is used to 

achieve the run time polymorphism. 

 

POINTERS: 

• Pointer is a variable that contains the address of another 

variable. 

• Declaring and initializing pointers: 

data-type *ptr-variable; 

• A variable must be initialized before using it in a program. 

Example: 

      int a,*p; 

p=&a; 

• The & (address of operator) is used to retrieve the address of a 

variable. 

• Pointer Expressions and Pointer Arithmetic 

C++ allows pointers to perform the following arithmetic 

 operations: 

◦ A pointer can be incremented(++) (or) decremented (- -)  

◦ Any integer can be added to or subtracted from a pointer  

◦ Tne pointer can be subtracted from another 

  Example: 

      int a[6]; 

      int *aptr; 

      aptr=&a[0]; 

      aptr++       
this Pointer: 

• this pointer is used to represent the current object that invokes 

a member function. 

• this is a pointer that points to the object for which this function 

was called.  

• This unique pointer is automatically passed to a member 

function when it is called.  

• The Pointer this acts as an implicit argument to all the member 

functions.  

Example: 

    class ABC 

    {     

            int a; 

   ..................... 

..................... 

     }; 

The private variable 'a ' can be used directly inside a member function, 

like 

    a = 123; 

  It can be also written as: 

          this -> a=123; 

 

VIRTUAL FUNCTIONS: 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 38 

• A virtual function a member function which is declared within 

base class and is re-defined (overridden) by derived class. 

• Virtual functions ensure that the correct function is called for 

an object, regardless of the type of reference used for function 

call. 

• They are mainly used to achieve runtime polymorphism. 

• Functions are declared with a virtual keyword in base class. 

• The resolving of function call is done at run-time. 

• Rules for virtual functions: 

◦ The virtual functions must be members of some class. 
[ 

◦ They cannot be static members.  

◦ They accessed by using object pointers.  

◦ A virtual function can be a friend of another class.  

◦ A virtual function in a base class must be defined, even 

though it may not be used. 

◦ The prototypes of the base class version of a virtual 

function and all the derived class versions must be 

identical.  

◦ We cannot have virtual constructors, but we can have 

virtual destructors.  

◦ If a virtual function is defined in the base class, it need not 

be necessarily redefined in the derived class. In such cases, 

calls will invoke the base function. 

 
Pure Virtual Functions: 

         The function inside the base class is seldom used for performing 

any task. It only serves as a placeholder. Such functions are called 

"do-nothing" functions. 

 A "do-nothing" function may be defined as follows: 

 

virtual void display() = 0; 

   Such functions are called pure virtual functions. A pure virtual 

function is a function declared in a base class that has no definition 

relative to the base class.  

 
class Shape { 

   protected: 

      int width, height; 

 

   public: 

      Shape(int a = 0, int b = 0) { 

         width = a; 

         height = b; 

      } 

       

      // pure virtual function 

      virtual int area() = 0; 

}; 

 

STANDARD TEMPLATE LIBRARY: (STL) 

• A set of general-purpose templatized classes and functions 

used as a standard approach for storing and processing of data. 

The collection of these generic classes and functions is called 

the Standard Template Library. 

• Components of STL: 

◦ The STL contains several components: 

▪ Containers 

▪ Algorithms 

▪ Iterators 
 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 39 

 

• A container is an object that actually stores data. It is a way 

data is organized in  memory.  

• An algorithm is a procedure that is used to process the data 

contained in the containers.  

• An iterator is an object that points to an element in a container.  

Containers: 

• Containers are objects that hold data. 

• The STL defines ten containers which are grouped into three 

categories. 

 

• Sequence Containers: Sequence containers store elements in a 

linear sequence. Each element is related to other elements by 

its position along the line. 

◦ The STL provides three types of sequence containers: 

▪ Vector: It is a dynamic array. 

▪ List: It is a bidirectional linear list. 

▪ Deque: A double-ended queue. 

• Associative Containers: Associative containers are designed 

to support direct access to elements using keys. They are not 

sequential. 

◦ The STL provides four types of associative containers: 

▪ Set: An associative container for storing unique sets. 

▪ Multiset: An associative container for storing non-

unique sets. 

Both set and multiset can store a number of items and provide 

operations for manipulating item using the values as the keys. 

▪ Map: An associative container for storing unique 

key/value pairs. Each key is associated with only one 

value. 

▪ Multimap: An associative container for storing 

key/value pairs in which one key may be associated 

with more than one value. 

• Derived Containers: These are also known as container 

adaptors. They are: stack, queue and priority_queue. 

◦ Stack: A standard stack. Last-in-First-Out (LIFO) 

◦ Queue: A standard queue. First-In-First-Out (FIFO) 

◦ Priority-queue: A priority queue. The first element out is 

always the highest priority elements. 
Algorithms: 

 Algorithms are functions that can be used generally across a 

variety of containers for processing their contents. 

 STL provides more than sixty standard algorithms. 

 STL algorithms can be classified as: 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 40 

• Retrieve or nonmutating algorithms 

• Mutating algorithms 

• Sorting algorithms 

• Set algorithms 

• Relational algorithms 

Iterators: 

  Iterators behave like pointers and are used to access container 

elements. 

  They are often used to traverse from one element to another, a 

process known as iterating through the container. 

Types: 

• Input  

• Output 

• Forward 

• Bidirectional 

• Random 

 The input and output iterators are used to traverse in a 

container. 

 The forward iterator supports all operations of input and output 

iterators and also retains its position in the container. 

 A bidirectional iterator provides the ability to move in the 

backward direction in the container. 

 A random access iterator combines the functionality of a 

bidirectional iterator with an ability to jump to an arbitrary location. 

 

************** 

STEPS IN OBJECT-ORIENTED ANALYSIS: 

Object-oriented analysis provides a simple, powerful, mechanism for 

identifying objects, the building blocks of the software to be 

developed. 

The analysis is basically concerned with the decomposition of a 

problem into its component parts and establishing a logical model to 

describe the system function. 

The object-oriented analysis (OOA) approach consists of the following 

steps: 

1. Understanding the problem. 

2. Drawing the specifications of requirements of the user and the 

software 

3. Identifying the objects and their attributes. 

4. Identifying the services that each object is expected to provide. 

5. Establishing inter-connections between the objects in terms of 

services required and services rendered. 

 
 

Problem Understanding: The first step in the analysis process is to 

understand the problem of the user. The problem statement should be 

refined and redefined. 

This will enable the software engineers to have a highly focused 

attention on the solution of the problem. 

 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 41 

Requirements Specification: Based on the user requirements, the 

specifications for the software should be drawn. The developer should 

state clearly 

• What outputs are required? 

• What processes are involved to produce these outputs? 

• What inputs are necessary? 

• What resources are required? 

 

Identification of Objects: Objects can be identified in terms of the 

real-world objects as well as the abstract objects. The application may 

be analyzed by using one of the following two approaches. 

• Data flow diagram (DFD): 

o The application can be represented in the form of a data 

flow diagram indicating how the data moves from one 

point to another in the system. It is also known as data 

flow graph or a bubble chart. 

• Textual analysis (TA): 

o This approach is based on the textual description of the 

problem or proposed solution. The nouns are good 

indicators of the objects. The names can further be 

classified as proper nouns, common nouns, and mass or 

abstract nouns. 

 

The fundamentals of data flow diagram is shown below: 

 
Identification of Services: Once the objects in the solution space have 

been identified, the next step is to identify a set of services that each 

object should offer. 

 

Establishing Interconnections: This step identifies the services that 

objects provide and receive. The information flow diagram (IFD) or an 

entity-relationship (ER) diagram may be used to enlist the information. 

 

STEPS IN OBJECT ORIENTED DESIGN: 

 The object oriented design (OOD) approach may involve the 

following steps: 

1. Review of objects created in the analysis phase. 

2. Specification of class dependencies. 

3. Organization of class hierarchies. 

4. Design of classes. 

5. Design of member functions 

6. Design of driver program 

 

Review of Problem Space Objects: 

 The main objective of this review exercise is to refine the 

objects in terms of their attributes and operations and to identify other 

objects that are solution specific. 

 

Class Dependencies: 

 Analysis of relationships between the classes is central to the 

structure of a system. It is important to identify appropriate classes to 

represent the objects in the solution space and establish their 

relationships. 

 The major relationships that are important in the context of 

design are: 

1. Inheritance relationships 

2. Containment relationships 

3. Use relationships 

 

• Inheritance relationship is the highest relationship that can be 

represented in C++. It is a powerful way of representing a 

hierarchical relationship directly.  



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 42 

• Containment relationship means the use of an object of a 

class as a member of another class. This is an alternative and 

complimentary technique to use the class inheritance.  

• Use relationship gives information such as the various classes 

a class uses and the way it uses them. 

o Ex: 

▪ A reads a member of B 

▪ A calls to member of C 

 

 

 

 

Organization of Class Hierarchies: 

 Organization of the class hierarchies involves identification of 

common attributes and functions among a group of related classes and 

then combining them to form a new class. The new class will serve as 

the super class and the others as subordinate classes. 

 

Design of Classes: 

 We have identified classes, their attributes, and set of 

operations required by the concept a class is representing. The 

important issue is to decide what functions are to be provided. For a 

class to be useful, it must contain the following functions, in addition 

to the service functions. 

1. Class management functions 

a. How an object is created? 

b. How an object is destroyed? 

2. Class implementation functions. 

What operations are performed on the data type of the class? 

3. Class access functions. 

How do we get information about the internal variables of the 

class? 

4. Class utility functions. 

How do we handle errors? 

 

Design of Member functions: 

1. Classes and objects 

2. Data members 

3. interfaces 

4. dependencies 

5. class hierarchy 

 
Design of the Driver Program: 

 The driver program is mainly responsible for: 

1. receiving data values from the user 

2. creating objects from the class definitions 

3. arranging communication between the objects as a 

sequence of messages for invoking the member 

functions 

4. displaying output results in the form required by the 

user 

MANIPULATING STRINGS: 

 A string is a sequence of characters. 

 The string class is very large and including many constructors, 

member functions and operations. 

Constructors: 

 String( ); //For creating an empty string 

 String(const char *str); // For creating string object from a null-

terminated string 

 String(const string & str); // For creating a string object from 

other string object. 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 43 

 

INPUT OUTPUT STREAMS: 

C++ I/O occurs in streams, which are sequences of bytes. If 

bytes flow from a device likes a keyboard, a disk drive, or a network 

connection etc. to main memory, this is called input operation and if 

bytes flow from main memory to a device likes a display screen, a 

printer, a disk drive, or a network connection, etc., this is 

called output operation. 

 

I/O Library Header Files 

There are following header files important to C++ programs 

<iostream> This file defines the cin, cout, cerr and clog objects, 

which correspond to the standard input stream, the standard output 

stream, the un-buffered standard error stream and the buffered 

standard error stream, respectively. 

 

<iomanip> This file declares services useful for performing 

formatted I/O with so-called parameterized stream manipulators, such 

as setw and setprecision. 

<fstream> This file declares services for user-controlled file 

processing. We will discuss about it in detail in File and Stream 

related chapter. 

 

The Standard Output Stream (cout) 

The predefined object cout is an instance of ostream class. The cout 

object is said to be "connected to" the standard output device, which 

usually is the display screen. The cout is used in conjunction with the 

stream insertion operator, which is written as << which are two less 

than signs as shown in the following example. 

 

#include <iostream> 

using namespace std; 

int main() { 

   char str[] = "Hello C++"; 

   cout << "Value of str is : " << str << endl; 

} 

 

The Standard Input Stream (cin) 

The predefined object cin is an instance of istream class. The cin 

object is said to be attached to the standard input device, which usually 

is the keyboard. The cin is used in conjunction with the stream 

extraction operator, which is written as >> which are two greater than 

signs as shown in the following example. 

#include <iostream> 

  

using namespace std; 

  

int main() { 

   char name[50]; 

  

   cout << "Please enter your name: "; 

   cin >> name; 

   cout << "Your name is: " << name << endl; 

  

} 

The Standard Error Stream (cerr) 

The predefined object cerr is an instance of ostream class. The cerr 

object is said to be attached to the standard error device, which is also 

a display screen but the object cerr is un-buffered and each stream 

insertion to cerr causes its output to appear immediately. 

The cerr is also used in conjunction with the stream insertion operator 

as shown in the following example. 

#include <iostream> 

  

using namespace std; 

  

int main() { 

   char str[] = "Unable to read...."; 

  

   cerr << "Error message : " << str << endl; 



M. Priya MCA., M.Phil., Asst. Professor                                                                                                              PROGRAMMING IN C++   

 44 

} 

 

C++ EXCEPTION HANDLING 

An exception is a problem that arises during the execution of a 

program. A C++ exception is a response to an exceptional 

circumstance that arises while a program is running, such as an attempt 

to divide by zero. 

Exceptions provide a way to transfer control from one part of a 

program to another. C++ exception handling is built upon three 

keywords: try, catch, and throw. 

• throw − A program throws an exception when a problem 

shows up. This is done using a throw keyword. 

• catch − A program catches an exception with an exception 

handler at the place in a program where you want to handle the 

problem. The catch keyword indicates the catching of an 

exception. 

• try − A try block identifies a block of code for which particular 

exceptions will be activated. It's followed by one or more catch 

blocks. 

Assuming a block will raise an exception, a method catches an 

exception using a combination of the try and catch keywords. A 

try/catch block is placed around the code that might generate an 

exception. Code within a try/catch block is referred to as protected 

code, and the syntax for using try/catch as follows − 

try { 

   // protected code 

} catch( ExceptionName e1 ) { 

   // catch block 

} catch( ExceptionName e2 ) { 

   // catch block 

} catch( ExceptionName eN ) { 

   // catch block 

} 

You can list down multiple catch statements to catch different type of 

exceptions in case your try block raises more than one exception in 

different situations. 

 

******************** 

 


