

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

1

ANNAI WOMEN’S COLLEGE, PUNNAMCHATRAM, KARUR.

DEPARTMENT OF COMMERCE (CA)

(COURSE MATERIAL)

 SUBJECT : ORACLE and RDBMS(P16CA23)

 CLASS : I.M.COM (CA)

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

2

CORE COURSE – VII

ORACLE AND RDBMS

UNIT –I

 Database concepts : A relational approach – Database management Systems(DBMS)

 – RDBMS – Integrity rules – Theoretical Relational Languages – Database

Design: Data Modeling and Normalisation.

UNIT –II

Oracle 8: An overview- Personal Databases – Client/server Databases- Table

creation & modification : Data types – constraints – creating an oracle Table –

Working with tables - Data Management and retrieval.

UNIT – III

Multiple Tables: Join – Set operators – Sub-Query – Advanced Features : Objects ,

Transactions and Control – Views- Sequences – Synonyms – Index – controlling

Access – Object privileges.

UNIT – IV

PL/SQL : Programming Language Basic – History of PL/SQL – Fundamentals – Data

types – Variable Declaration – SQL and Control Structures.

UNIT – V

Cursors and Exceptions – Procedures, Functions and Packages.

Text and Reference Books :(Latest revised edition only)

1. Nilesh Shah, “Database Systems Using Oracle” , Prentice – Hall of India private Ltd.

2. Raghu Ramakrishnan & Johannes Gehrke, “Database management systems” ,

McGraw – Hill – Editions.

3. Abraham silberschatz Henry F.KorthS.Sudarshan, “Database system concepts”.

McGraw – Hill – Editions.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

3

 UNIT – I

Basic Relational DBMS Concepts:

A Relational Database management System(RDBMS) is a database management system

based on the relational model introduced by E.F Codd. In relational model, data is stored

in relations(tables) and is represented in form of tuples(rows).

RDBMS is used to manage Relational database. Relational database is a collection of organized set of

tables related to each other, and from which data can be accessed easily. Relational Database is the most

commonly used database these days.

 Data:

Data is nothing but facts and statistics stored or free flowing over a network, generally it's raw

and unprocessed. For example: When you visit any website, they might store you IP address, that is data,

in return they might add a cookie in your browser, marking you that you visited the website, that is data,

your name, it's data, your age, it's data.

Data becomes information when it is processed, turning it into something meaningful. Like,

based on the cookie data saved on user's browser, if a website can analyse that generally men of age 20-

25 visit us more, that is information, derived from the data collected.

 Database:

A Database is a collection of related data organised in a way that data can be easily accessed,

managed and updated. Database can be software based or hardware based, with one sole purpose, storing

data.

During early computer days, data was collected and stored on tapes, which were mostly write-

only, which means once data is stored on it, it can never be read again. They were slow and bulky, and

soon computer scientists realised that they needed a better solution to this problem.

Larry Ellison, the co-founder of Oracle was amongst the first few, who realised the need for a software

based Database Management System.

DBMS:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

4

A DBMS is a software that allows creation, definition and manipulation of database, allowing

users to store, process and analyse data easily. DBMS provides us with an interface or a tool, to perform

various operations like creating database, storing data in it, updating data, creating tables in the database

and a lot more.

DBMS also provides protection and security to the databases. It also maintains data consistency in case

of multiple users.

Here are some examples of popular DBMS used these days:

• MySql

• Oracle

• SQL Server

• IBM DB2

• PostgreSQL

• Amazon SimpleDB (cloud based) etc.

Characteristics of Database Management System:

A database management system has following characteristics:

1. Data stored into Tables: Data is never directly stored into the database. Data is stored into tables,

created inside the database. DBMS also allows to have relationships between tables which makes

the data more meaningful and connected. You can easily understand what type of data is stored

where by looking at all the tables created in a database.

2. Reduced Redundancy: In the modern world hard drives are very cheap, but earlier when hard drives

were too expensive, unnecessary repetition of data in database was a big problem. But DBMS

followsNormalisation which divides the data in such a way that repetition is minimum.

3. Data Consistency: On Live data, i.e. data that is being continuosly updated and added, maintaining

the consistency of data can become a challenge. But DBMS handles it all by itself.

4. Support Multiple user and Concurrent Access: DBMS allows multiple users to work on it(update,

insert, delete data) at the same time and still manages to maintain the data consistency.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

5

5. Query Language: DBMS provides users with a simple Query language, using which data can be

easily fetched, inserted, deleted and updated in a database.

6. Security: The DBMS also takes care of the security of data, protecting the data from un-authorised

access. In a typical DBMS, we can create user accounts with different access permissions, using

which we can easily secure our data by restricting user access.

7. DBMS supports transactions, which allows us to better handle and manage data integrity in real

world applications where multi-threading is extensively used.

Advantages of DBMS

• Segregation of applicaion program.

• Minimal data duplicacy or data redundancy.

• Easy retrieval of data using the Query Language.

• Reduced development time and maintainance need.

• With Cloud Datacenters, we now have Database Management Systems capable of storing almost

infinite data.

• Seamless integration into the application programming languages which makes it very easier to add

a database to almost any application or website.

Concepts of Relational Database
The terminology and structural concepts of the relational model are explained. In the picture

below there is a Car Rental database. In the database there is information about customers, cars and

car rentals. The concepts of the relational database are being drawn in the picture.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

6

Picture. The concepts of the relational database (Original designer of the database is Kai Kivimäki,

Haaga University of Applied Sciences)

Table (Relation)

 A table consists of rows and columns. Each row in the table represents a collection of

related values. Tables are used to hold information about the objects to be represented in the

database.

 In a specific table, there is data of one kind of objects (entities). In the example Car Rental

database there are four tables: Customer, Rent, CarType and Car. In the Customer table there is the

data of the customers, in the Rent table there is the data of the car rentals.

 A table is a database concept, a relation is a relational model concept.

Row (Tuple, Record)

Each row in the table represents a collection of related values of a one object (entity). There

is a data of a one customer in one row in Customer table.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

7

 A row is a database concept, a tuple is a relational model concept. A record is a little bit

outdated term for a tuple or row.

Column (Attribute)

Each column in a table holds a certain kind of data. A Column has a name that describes

the data of the column. In the Customer table there are columns e.g. firstname and surname.

A column is a database concept, an attribute is a relational model concept.

Field

A field stores the actual value of an attribute. There are broken lines to show the values of a

certain attribute that are stored in the fields.

Primary key

Primary key is the column (or set of columns) which values uniquely indenfy the row. All

primary key fields have a different value in a specific table. A table should have a primary key.

 The primary key of the table Car is the register number (Reg_No). Two cars can't have the

same register number.

Foreign key

 Foreign key is a column whose values refer to the primary key of another table.

For example in the Car table the Model_id values refer to the Model_id of the CarType table. The

car whose register number is 'ABC-111' is Ford Focus. The Cust_id in the Rent table refers to the

Customer table Cust_id. The customer number 5 who has rented a car having register number

CCE-326 is Patricia Smith.

Primary Table and Related Table

 Primary and related table definition is always between two tables which have a relationship

between them.

For example the tables Car and CarType have a relationship. The foreign key (model_id) of the

Car table refers to the CarType table primary key (model_id). The CarType table is the primary

table and the Car table is the related table.

There is also a relation between the Car and Rent tables. The Reg_no of the Rent table (foreign

key) refers to the Reg_no of the Car table (primary key). In this case the Car table is the primary

table and the Rent table is the related table.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

8

Primary table is the table whose primary key is referenced from another table's foreing key. The

table having this foreign key is a related table.

The primary table is also called a parent table and the related table is called a child table.

What is Normalization? 1NF, 2NF, 3NF & BCNF with Examples

What is Normalization?

Normalization is a database design technique which organizes tables in a manner that reduces

redundancy and dependency of data.

It divides larger tables to smaller tables and links them using relationships.

• Database Normal Forms

• 1NF Rules

• What is a KEY?

• What is Composite Key

• 2NF Rules

• Database - Foreign Key

• What are transitive functional dependencies?

• 3NF Rules

• Boyce-Codd Normal Form (BCNF)

The inventor of the relational model Edgar Codd proposed the theory of normalization with the

introduction of First Normal Form, and he continued to extend theory with Second and Third

Normal Form. Later he joined with Raymond F. Boyce to develop the theory of Boyce-Codd

Normal Form.

Database Normalization Examples -

Assume a video library maintains a database of movies rented out. Without any normalization, all

information is stored in one table as shown below.

https://www.guru99.com/database-normalization.html#9
https://www.guru99.com/database-normalization.html#2
https://www.guru99.com/database-normalization.html#3
https://www.guru99.com/database-normalization.html#4
https://www.guru99.com/database-normalization.html#10
https://www.guru99.com/database-normalization.html#5
https://www.guru99.com/database-normalization.html#6
https://www.guru99.com/database-normalization.html#7
https://www.guru99.com/database-normalization.html#8
https://www.guru99.com/images/NormalizationProcess(1).png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

9

Here you see Movies Rented column has multiple values.

Database Normal Forms

Now let's move into 1st Normal Forms

1NF (First Normal Form) Rules

• Each table cell should contain a single value.

• Each record needs to be unique.

The above table in 1NF-

1NF Example

Before we proceed let's understand a few things --

What is a KEY?

A KEY is a value used to identify a record in a table uniquely. A KEY could be a single column or

combination of multiple columns

https://www.guru99.com/images/NormalizationTable1.png
https://www.guru99.com/images/1NF.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

10

Note: Columns in a table that are NOT used to identify a record uniquely are called non-key

columns.

What is a Primary Key?

A primary is a single column value used to identify a database record

uniquely.

It has following attributes

• A primary key cannot be NULL

• A primary key value must be unique

• The primary key values should rarely be changed

• The primary key must be given a value when a new record is

inserted.

What is Composite Key?

A composite key is a primary key composed of multiple columns used to identify a record

uniquely

In our database, we have two people with the same name Robert Phil, but they live in different

places.

Hence, we require both Full Name and Address to identify a record uniquely. That is a composite

key.

Let's move into second normal form 2NF

2NF (Second Normal Form) Rules

• Rule 1- Be in 1NF

• Rule 2- Single Column Primary Key

https://www.guru99.com/images/PrimaryKey.png
https://www.guru99.com/images/CompositeKey.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

11

It is clear that we can't move forward to make our simple database in 2nd Normalization form

unless we partition the table above.

We have divided our 1NF table into two tables viz. Table 1 and Table2. Table 1 contains member

information. Table 2 contains information on movies rented.

We have introduced a new column called Membership_id which is the primary key for table 1.

Records can be uniquely identified in Table 1 using membership id

Database - Foreign Key

In Table 2, Membership_ID is the Foreign Key

Foreign Key references the primary key of another Table! It

helps connect your Tables

• A foreign key can have a different name from its

primary key

• It ensures rows in one table have corresponding rows in

another

• Unlike the Primary key, they do not have to be unique.

Most often they aren't

https://www.guru99.com/images/Table2.png
https://www.guru99.com/images/Table1.png
https://www.guru99.com/images/foreign_key_table.png
https://www.guru99.com/images/ForeignKey.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

12

• Foreign keys can be null even though primary keys can

not

Why do you need a foreign key?

Suppose, a novice inserts a record in Table B such as

You will only be able to insert values into your foreign key that exist in the unique key in the

parent table. This helps in referential integrity.

https://www.guru99.com/images/ForeignKeyRelationWithPrimary.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

13

The above problem can be overcome by declaring membership id from Table2 as foreign key of

membership id from Table1

Now, if somebody tries to insert a value in the membership id field that does not exist in the parent

table, an error will be shown!

What are transitive functional dependencies?

A transitive functional dependency is when changing a non-key column, might cause any of the

other non-key columns to change

Consider the table 1. Changing the non-key column Full Name may change Salutation.

Let's move into 3NF

3NF (Third Normal Form) Rules

• Rule 1- Be in 2NF

• Rule 2- Has no transitive functional dependencies

To move our 2NF table into 3NF, we again need to again divide our table.

https://www.guru99.com/images/WhyDataBaseIsImportant.png
https://www.guru99.com/images/transitive_functional_dependencies.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

14

3NF Example

We have again divided our tables and created a new table which stores Salutations.

There are no transitive functional dependencies, and hence our table is in 3NF

In Table 3 Salutation ID is primary key, and in Table 1 Salutation ID is foreign to primary key in

Table 3

Now our little example is at a level that cannot further be decomposed to attain higher forms of

normalization. In fact, it is already in higher normalization forms. Separate efforts for moving into

next levels of normalizing data are normally needed in complex databases. However, we will be

discussing next levels of normalizations in brief in the following.

Boyce-Codd Normal Form (BCNF)

Even when a database is in 3rd Normal Form, still there would be anomalies resulted if it has more

than one Candidate Key.

Sometimes is BCNF is also referred as 3.5 Normal Form.

https://www.guru99.com/images/2NFTable1.png
https://www.guru99.com/images/2NFTable2.png
https://www.guru99.com/images/2NFTable3.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

15

4NF (Fourth Normal Form) Rules

If no database table instance contains two or more, independent and multivalued data describing

the relevant entity, then it is in 4th Normal Form.

5NF (Fifth Normal Form) Rules

A table is in 5th Normal Form only if it is in 4NF and it cannot be decomposed into any number of

smaller tables without loss of data.

UNIT – II

Orcle 8:An Overview
Structured Query Language (SQL), is the set of commands that all programs and users must

use to access data in an Oracle database. Application programs and Oracle tools often allow users

access to the database without using SQL directly,but these applications in turn must use SQL when

executing the user ’s request.

The Oracle Client/Server Architecture

In the Oracle client/server architecture, the database application and the database are

separated into two parts: a front-end or client portion, and a back-end or server portion. The client

executes the database application that accesses database information and interacts with a user

through the keyboard, screen, and pointing device such as a mouse. The server executes the Oracle

software and handles the functions required for concurrent, shared data access to an Oracle

database.

Although the client application and Oracle can be executed on the same computer, it may

be more efficient and effective when the client portion(s) and server portion are executed by

different computers connected via a network. The following sections discuss possible variants in

the Oracle client/server architecture.

Distributed Processing
Distributed processing is the use of more than one processor to divide the processing for an

individual task. The following are examples of distributed processing in Oracle database systems:

• The client and server are located on different computers; these computers are connected via

a network.

• A single computer has more than one processor, and different processors separate the

execution of the client application from Oracle .

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

16

 The Client/Server Architecture and Distributed Processing

Benefits of the Oracle client/server architecture in a distributed processing environment include

the following:

• Client applications are not responsible for performing any data processing. Client

applications can concentrate on requesting input from users, requesting desired data from

the server, and then analyzing and presenting this data using the display capabilities of the

client workstation or the terminal (for example, using graphics or spreadsheets).

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

17

• Client applications can be designed with no dependence on the physical location of the

data. If the data is moved or distributed to other database servers, the application continues

to function with little or no modification.

• Oracle exploits the multitasking and shared-memory facilities of its underlying operating

system. As a result, it delivers the highest possible degree of concurrency, data integrity,

and performance to its client applications.

• Client workstations or terminals can be optimized for the presentation of data (for example,

by providing graphics and mouse support) and the server can be optimized for the

processing and storage of data (for example, by having large amounts of memory and disk

space).

• If necessary, Oracle can be scaled. As your system grows, you can add multiple servers to

distribute the database processing load throughout the network (horizontally scaled).

Alternatively, you can replace Oracle on a less powerful computer, such as a

microcomputer, with Oracle running on a minicomputer or mainframe, to take advantage of

a larger system's performance (vertically scaled). In either case, all data and applications

are maintained with little or no modification, since Oracle is portable between systems.

• In networked environments, shared data is stored on the servers, rather than on all

computers in the system. This makes it easier and more efficient to manage concurrent

access.

• In networked environments, inexpensive, low-end client workstations can be used to access

the remote data of the server effectively.

• In networked environments, client applications submit database requests to the server using

SQL statements. Once received, the SQL statement is processed by the server, and the

results are returned to the client application. Network traffic is kept to a minimum because

only the requests and the results are shipped over the network.

SQL Constraints

SQL Create Constraints

Constraints can be specified when the table is created with the CREATE TABLE statement, or

after the table is created with the ALTER TABLE statement.

Syntax
CREATE TABLE table_name (

 column1 datatype constraint,

 column2 datatype constraint,

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

18

 column3 datatype constraint,

);

SQL Constraints

SQL constraints are used to specify rules for the data in a table.

Constraints are used to limit the type of data that can go into a table. This ensures the accuracy and

reliability of the data in the table. If there is any violation between the constraint and the data

action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to a column, and

table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

• NOT NULL - Ensures that a column cannot have a NULL value
• UNIQUE - Ensures that all values in a column are different
• PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies each row in a table
• FOREIGN KEY - Uniquely identifies a row/record in another table
• CHECK - Ensures that all values in a column satisfies a specific condition
• DEFAULT - Sets a default value for a column when no value is specified
• INDEX - Used to create and retrieve data from the database very quickly

Oracle PL/SQL Data Types: Character, Number, Boolean, Date, LOB

What is PL/SQL Datatypes?

A data type is associated with the specific storage format and range constraints. In Oracle, each

value or constant is assigned with a data type.

Basically, it defines how the data is stored, handled and treated by Oracle during the data storage

and processing.

The main difference between PL/SQL and SQL data types is, SQL data type are limited to table

column while the PL/SQL data types are used in the PL/SQL blocks. More on this later in the

tutorial.

Following is the diagram of different Data Types in PL/SQL

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp
https://www.w3schools.com/sql/sql_create_index.asp
https://www.guru99.com/sql.html

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

19

In this tutorial, you will learn-

• CH ARACTER Data Type
• NUMBER Data Type
• BOOLEAN Data Type
• DATE Data Type
• LOB Data Type

CHARACTER Data Type:

This data type basically stores alphanumeric characters in string format.

The literal values should always be enclosed in single quotes while assigning them to

CHARACTER data type.

This character data type is further classified as follows:

• CHAR Data type (fixed string size)
• VARCHAR2 Data type (variable string size)
• VARCHAR Data type
• NCHAR (native fixed string size)
• NVARCHAR2 (native variable string size)
• LONG and LONG RAW

https://www.guru99.com/pl-sql-data-types.html#1
https://www.guru99.com/pl-sql-data-types.html#2
https://www.guru99.com/pl-sql-data-types.html#3
https://www.guru99.com/pl-sql-data-types.html#4
https://www.guru99.com/pl-sql-data-types.html#5
https://www.guru99.com/images/1/plsql_datatype.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

20

Data Type Description

CHAR

 This data type stores the string value, and the size of the string is fixed at the

time of declaring the variable.

• Oracle would be blank-padded the variable if the variable didn't occupy the
entire size that has been declared for it, Hence Oracle will allocate the memory
for declared size even if the variable didn't occupy it fully.

• The size restriction for this data type is 1-2000 bytes.
• CHAR data type is more appropriate to use where ever fixed the size of data will

be handled.

•

VARCHAR2

 This data type stores the string, but the length of the string is not fixed.

• The size restriction for this data type is 1-4000 bytes for table column size and 1-
32767 bytes for variables.

• The size is defined for each variable at the time of variable declaration.
• But Oracle will allocate memory only after the variable is defined, i.e., Oracle will

consider only the actual length of the string that is stored in a variable for
memory allocation rather than the size that has been given for a variable in the
declaration part.

• It is always good to use VARCHAR2 instead of CHAR data type to optimize the
memory usage.

•

VARCHAR

This is synonymous with the VARCHAR2 data type.

• It is always a good practice to use VARCHAR2 instead of VARCHAR to avoid
behavioral changes.

•

NCHAR

This data type is same as CHAR data type, but the character set will of the national

character set.

• This character set can be defined for the session using NLS_PARAMETERS.
• The character set can be either UTF16 or UTF8.
• The size restriction is 1-2000 bytes.

•

NVARCHAR2

This data type is same as VARCHAR2 data type, but the character set will be of the

national character set.

• This character set can be defined for the session using NLS_PARAMETERS.
• The character set can be either UTF16 or UTF8.
• The size restriction is 1-4000 bytes.

•

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

21

LONG and

LONGRAW

This data type is used to store large text or raw data up to the maximum size of 2GB.

• These are mainly used in the data dictionary.
• LONG data type is used to store character set data, while LONG RAW is used to

store data in binary format.
• LONG RAW data type accepts media objects, images, etc. whereas LONG works

only on data that can be stored using character set.

NUMBER Data Type:

This data type stores fixed or floating point numbers up to 38 digits of precision. This data type is

used to work with fields which will contain only number data. The variable can be declared either

with precision and decimal digit details or without this information. Values need not enclose

within quotes while assigning for this data type.

Syntax Explanation:

• In the above, the first declaration declares the variable 'A' is of number data type with total
precision 8 and decimal digits 2.

• The second declaration declares the variable 'B' is of number data type with total precision 8 and
no decimal digits.

• The third declaration is the most generic, declares variable 'C' is of number data type with no
restriction in precision or decimal places. It can take up to a maximum of 38 digits.

BOOLEAN Data Type:

This data type stores the logical values. It represents either TRUE or FALSE and mainly used in

conditional statements. Values need not enclose within quotes while assigning for this data type.

Var1 BOOLEAN;

Syntax Explanation:

• In the above, variable 'Var1' is declared as BOOLEAN data type. The output of the code will be
either true or false based on the condition set.

DATE Data Type:

This data type stores the values in date format, as date, month, and year. Whenever a variable is

defined with DATE data type along with the date it can hold time information and by default time

information is set to 12:00:00 if not specified. Values need to enclose within quotes while

assigning for this data type.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

22

The standard Oracle time format for input and output is 'DD-MON-YY' and it is again set at

NLS_PARAMETERS (NLS_DATE_FORMAT) at the session level.

newyear DATE:='01-JAN-2015';

current_date DATE:=SYSDATE;

Syntax Explanation:

• In the above, variable 'newyear' is declared as DATE data type and assigned the value of Jan 1st,
2015 date.

• The second declaration declares the variable current_date as DATE data type and assigned the
value with current system date.

• Both these variable holds the time information.

LOB Data Type:

This data type is mainly used to store and manipulate large blocks of unstructured data's like

images, multimedia files, etc. Oracle prefers LOB instead of the a LONG data type as it is more

flexible than the LONG data type. The below are the few main advantage of LOB over LONG data

type.

• The number of column in a table with LONG data type is limited to 1, whereas a table has no
restriction on a number of columns with LOB data type.

• The data interface tool accepts LOB data type of the table during data replication, but it omits
LONG column of the table. These LONG columns need to be replicated manually.

• The size of the LONG column is 2GB, whereas LOB can store up to 128 TB.
• Oracle is constantly improvising the LOB data type in each of their releases according to the

modern requirement, whereas LONG data type is constant and not getting many updates.

So, it is always good to use LOB data type instead of the LONG data type. Following are the

different LOB data types. They can store up to the size of 128 terabytes.

1. BLOB
2. CLOB and NCLOB
3. BFILE

Data Type Description Syntax

BLOB

This data type stores the LOB data in the binary

file format up to the maximum size of 128 TB.

This doesn't store data based on the character

set details, so that it can store the unstructured

data such as multimedia objects, images, etc.

 Binary_data BLOB;

 Syntax Explanation:

• In the above, variable
'Binary_data' is declared as a
BLOB.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

23

CLOB and

NCLOB

CLOB data type stores the LOB data into the

character set, whereas NCLOB stores the data

in the native character set. Since these data

types use character set based storage, these

cannot store the data like multimedia, images,

etc. that cannot be put into a character string.

The maximum size of these data types is 128

TB.

 Charac_data CLOB;

 Syntax Explanation:

• In the above, variable
'Charac_data' is declared as CLOB
data type.

BFILE

• BFILE are the data types that stored the
unstructured binary format data outside
the database as an operating-system file.

• The size of BFILE is to a limited operating
system, and they are read-only files and
can't be

Introduction to SQL

Structure Query Language(SQL) is a database query language used for storing and managing data

in Relational DBMS. SQL was the first commercial language introduced for E.F Codd's

Relational model of database. Today almost all RDBMS(MySql, Oracle, Infomix, Sybase, MS

Access) use SQL as the standard database query language. SQL is used to perform all types of

data operations in RDBMS.

SQL Command

SQL defines following ways to manipulate data stored in an RDBMS.

DDL: Data Definition Language

This includes changes to the structure of the table like creation of table, altering table, deleting a

table etc.

All DDL commands are auto-committed. That means it saves all the changes permanently in the

database.

Command Description

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

24

create to create new table or database

alter for alteration

truncate delete data from table

drop to drop a table

rename to rename a table

DML: Data Manipulation Language

DML commands are used for manipulating the data stored in the table and not the table itself.

DML commands are not auto-committed. It means changes are not permanent to database, they

can be rolled back.

Command Description

insert to insert a new row

update to update existing row

delete to delete a row

merge merging two rows or two tables

TCL: Transaction Control Language

These commands are to keep a check on other commands and their affect on the database. These

commands can annul changes made by other commands by rolling the data back to its original

state. It can also make any temporary change permanent.

Command Description

commit to permanently save

rollback to undo change

savepoint to save temporarily

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

25

DCL: Data Control Language

Data control language are the commands to grant and take back authority from any database user.

Command Description

grant grant permission of right

revoke take back permission.

DQL: Data Query Language

Data query language is used to fetch data from tables based on conditions that we can easily apply.

Command Description

select retrieve records from one or more table

UNIT – III

Oracle / PLSQL: Synonyms

Description

A synonym is an alternative name for objects such as tables, views, sequences, stored procedures,

and other database objects.

You generally use synonyms when you are granting access to an object from another schema and

you don't want the users to have to worry about knowing which schema owns the object.

Create Synonym (or Replace)

You may wish to create a synonym so that users do not have to prefix the table name with the

schema name when using the table in a query.

Syntax

The syntax to create a synonym in Oracle is:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema .] synonym_name

 FOR [schema .] object_name [@ dblink];

OR REPLACE

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

26

Allows you to recreate the synonym (if it already exists) without having to issue a DROP

synonym command.

PUBLIC

It means that the synonym is a public synonym and is accessible to all users. Remember

though that the user must first have the appropriate privileges to the object to use the

synonym.

schema

The appropriate schema. If this phrase is omitted, Oracle assumes that you are referring to

your own schema.

object_name

The name of the object for which you are creating the synonym. It can be one of the

following:

• table

• view

• sequence

• stored procedure

• function

• package

• materialized view

• java class schema object

• user-defined object

• synonym

Example

CREATE PUBLIC SYNONYM suppliers

FOR app.suppliers;

This first CREATE SYNONYM example demonstrates how to create a synonym called suppliers.

Now, users of other schemas can reference the table called suppliers without having to prefix the

table name with the schema named app. For example:

SELECT *

FROM suppliers;

If this synonym already existed and you wanted to redefine it, you could always use the OR

REPLACE phrase as follows:

CREATE OR REPLACE PUBLIC SYNONYM suppliers

FOR app.suppliers;

Drop synonym

Once a synonym has been created in Oracle, you might at some point need to drop the synonym.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

27

Syntax

The syntax to drop a synonym in Oracle is:

DROP [PUBLIC] SYNONYM [schema .] synonym_name [force];

PUBLIC

Allows you to drop a public synonym. If you have specified PUBLIC, then you don't

specify a schema.

force

It will force Oracle to drop the synonym even if it has dependencies. It is probably not a

good idea to use force as it can cause invalidation of Oracle objects.

Example

DROP PUBLIC SYNONYM suppliers;

This DROP statement would drop the synonym called suppliers that we defined earlier.

Oracle / PLSQL: Sequences (Autonumber)

This Oracle tutorial explains how to create and drop sequences in Oracle with syntax and

examples.

Description

In Oracle, you can create an autonumber field by using sequences. A sequence is an object in

Oracle that is used to generate a number sequence. This can be useful when you need to create a

unique number to act as a primary key.

Create Sequence

You may wish to create a sequence in Oracle to handle an autonumber field.

Syntax

The syntax to create a sequence in Oracle is:

CREATE SEQUENCE sequence_name

 MINVALUE value

 MAXVALUE value

 START WITH value

 INCREMENT BY value

 CACHE value;

sequence_name

The name of the sequence that you wish to create.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

28

Example

Let's look at an example of how to create a sequence in Oracle.

For example:

CREATE SEQUENCE supplier_seq

 MINVALUE 1

 MAXVALUE 999999999999999999999999999

 START WITH 1

 INCREMENT BY 1

 CACHE 20;

This would create a sequence object called supplier_seq. The first sequence number that it would

use is 1 and each subsequent number would increment by 1 (ie: 2,3,4,...}. It will cache up to 20

values for performance.

If you omit the MAXVALUE option, your sequence will automatically default to:

MAXVALUE 999999999999999999999999999

So you can simplify your CREATE SEQUENCE command as follows:

CREATE SEQUENCE supplier_seq

 MINVALUE 1

 START WITH 1

 INCREMENT BY 1

 CACHE 20;

Now that you've created a sequence object to simulate an autonumber field, we'll cover how to

retrieve a value from this sequence object. To retrieve the next value in the sequence order, you

need to use nextval.

Drop Sequence

Once you have created your sequence in Oracle, you might find that you need to remove it from

the database.

Syntax

The syntax to a drop a sequence in Oracle is:

DROP SEQUENCE sequence_name;

sequence_name

The name of the sequence that you wish to drop.

Example

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

29

Let's look at an example of how to drop a sequence in Oracle.

For example:

DROP SEQUENCE supplier_seq;

This example would drop the sequence called supplier_seq.

Oracle / PLSQL: Grant/Revoke Privileges

This Oracle tutorial explains how to grant and revoke privileges in Oracle with syntax and

examples.

Description

You can GRANT and REVOKE privileges on various database objects in Oracle. We'll first look

at how to grant and revoke privileges on tables and then how to grant and revoke privileges on

functions and procedures in Oracle.

Grant Privileges on Table

You can grant users various privileges to tables. These privileges can be any combination of

SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALTER, INDEX, or ALL.

Syntax

The syntax for granting privileges on a table in Oracle is:

GRANT privileges ON object TO user;

privileges

The privileges to assign. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

ALTER
Ability to perform ALTER TABLE statements to change the table

definition.

INDEX Ability to create an index on the table with the create index statement.

ALL All privileges on table.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

30

object

The name of the database object that you are granting privileges for. In the case of granting

privileges on a table, this would be the table name.

user

The name of the user that will be granted these privileges.

Example

For example, if you wanted to grant SELECT, INSERT, UPDATE, and DELETE privileges on a

table called suppliers to a user name smithj, you would run the following GRANT statement:

GRANT SELECT, INSERT, UPDATE, DELETE ON suppliers TO smithj;

You can also use the ALL keyword to indicate that you wish ALL permissions to be granted for a

user named smithj. For example:

GRANT ALL ON suppliers TO smithj;

If you wanted to grant only SELECT access on your table to all users, you could grant the

privileges to the public keyword. For example:

GRANT SELECT ON suppliers TO public;

Revoke Privileges on Table

Once you have granted privileges, you may need to revoke some or all of these privileges. To do

this, you can run a revoke command. You can revoke any combination of SELECT, INSERT,

UPDATE, DELETE, REFERENCES, ALTER, INDEX, or ALL.

Syntax

The syntax for revoking privileges on a table in Oracle is:

REVOKE privileges ON object FROM user;

privileges

The privileges to revoke. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

31

Privilege Description

ALTER
Ability to perform ALTER TABLE statements to change the table

definition.

INDEX Ability to create an index on the table with the create index statement.

ALL All privileges on table.

object

The name of the database object that you are revoking privileges for. In the case of

revoking privileges on a table, this would be the table name.

user

The name of the user that will have these privileges revoked.

Example

For example, if you wanted to revoke DELETE privileges on a table called suppliers from a user

named anderson, you would run the following REVOKE statement:

REVOKE DELETE ON suppliers FROM anderson;

If you wanted to revoke ALL privileges on a table for a user named anderson, you could use the

ALL keyword as follows:

REVOKE ALL ON suppliers FROM anderson;

If you had granted ALL privileges to public (all users) on the suppliers table and you wanted to

revoke these privileges, you could run the following REVOKE statement:

REVOKE ALL ON suppliers FROM public;

Grant Privileges on Functions/Procedures

When dealing with functions and procedures, you can grant users the ability to EXECUTE these

functions and procedures.

Syntax

The syntax for granting EXECUTE privileges on a function/procedure in Oracle is:

GRANT EXECUTE ON object TO user;

EXECUTE

The ability to compile the function/procedure. The ability to execute the function/procedure

directly.

object

The name of the database object that you are granting privileges for. In the case of granting

EXECUTE privileges on a function or procedure, this would be the function name or the

procedure name.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

32

user

The name of the user that will be granted the EXECUTE privileges.

Example

For example, if you had a function called Find_Value and you wanted to grant EXECUTE access

to the user named smithj, you would run the following GRANT statement:

GRANT EXECUTE ON Find_Value TO smithj;

If you wanted to grant ALL users the ability to EXECUTE this function, you would run the

following GRANT statement:

GRANT EXECUTE ON Find_Value TO public;

Revoke Privileges on Functions/Procedures

Once you have granted EXECUTE privileges on a function or procedure, you may need to

REVOKE these privileges from a user. To do this, you can execute a REVOKE command.

Syntax

The syntax for the revoking privileges on a function or procedure in Oracle is:

REVOKE EXECUTE ON object FROM user;

EXECUTE

The ability to compile the function/procedure. The ability to execute the function/procedure

directly.

object

The name of the database object that you are revoking privileges for. In the case of

revoking EXECUTE privileges on a function or procedure, this would be the function

name or the procedure name.

user

The name of the user that will be revoked the EXECUTE privileges.

Example

Let's look at some examples of how to revoke EXECUTE privileges on a function or procedure in

Oracle.

If you wanted to revoke EXECUTE privileges on a function called Find_Value from a user named

anderson, you would run the following REVOKE statement:

REVOKE execute ON Find_Value FROM anderson;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

33

If you had granted EXECUTE privileges to public (all users) on the function called Find_Value

and you wanted to revoke these EXECUTE privileges, you could run the following REVOKE

statement:

REVOKE EXECUTE ON Find_Value FROM public;

Oracle / PLSQL: Indexes

This Oracle tutorial explains how to create, rename and drop indexes in Oracle with syntax and

examples.

What is an Index in Oracle?

An index is a performance-tuning method of allowing faster retrieval of records. An index creates

an entry for each value that appears in the indexed columns. By default, Oracle creates B-tree

indexes.

Create an Index

Syntax

The syntax for creating an index in Oracle/PLSQL is:

CREATE [UNIQUE] INDEX index_name

 ON table_name (column1, column2, ... column_n)

 [COMPUTE STATISTICS];

UNIQUE

It indicates that the combination of values in the indexed columns must be unique.

index_name

The name to assign to the index.

table_name

The name of the table in which to create the index.

column1, column2, ... column_n

The columns to use in the index.

COMPUTE STATISTICS

It tells Oracle to collect statistics during the creation of the index. The statistics are then

used by the optimizer to choose a "plan of execution" when SQL statements are executed.

Example

CREATE INDEX supplier_idx

 ON supplier (supplier_name);

In this example, we've created an index on the supplier table called supplier_idx. It consists of only

one field - the supplier_name field.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

34

We could also create an index with more than one field as in the example below:

CREATE INDEX supplier_idx

 ON supplier (supplier_name, city);

We could also choose to collect statistics upon creation of the index as follows:

CREATE INDEX supplier_idx

 ON supplier (supplier_name, city)

 COMPUTE STATISTICS;

Create a Function-Based Index

Syntax

The syntax for creating a function-based index in Oracle/PLSQL is:

CREATE [UNIQUE] INDEX index_name

 ON table_name (function1, function2, ... function_n)

 [COMPUTE STATISTICS];

UNIQUE

It indicates that the combination of values in the indexed columns must be unique.

index_name

The name to assign to the index.

table_name

The name of the table in which to create the index.

function1, function2, ... function_n

The functions to use in the index.

COMPUTE STATISTICS

It tells Oracle to collect statistics during the creation of the index. The statistics are then

used by the optimizer to choose a "plan of execution" when SQL statements are executed.

Example

CREATE INDEX supplier_idx

 ON supplier (UPPER(supplier_name));

In this example, we've created an index based on the uppercase evaluation of the supplier_name

field.

However, to be sure that the Oracle optimizer uses this index when executing your SQL

statements, be sure that UPPER(supplier_name) does not evaluate to a NULL value. To ensure

this, add UPPER(supplier_name) IS NOT NULL to your WHERE clause as follows:

SELECT supplier_id, supplier_name, UPPER(supplier_name)

FROM supplier

WHERE UPPER(supplier_name) IS NOT NULL

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

35

ORDER BY UPPER(supplier_name);

Rename an Index

Syntax

The syntax for renaming an index in Oracle/PLSQL is:

ALTER INDEX index_name

 RENAME TO new_index_name;

index_name

The name of the index that you wish to rename.

new_index_name

The new name to assign to the index.

Example

ALTER INDEX supplier_idx

 RENAME TO supplier_index_name;

In this example, we're renaming the index called supplier_idx to supplier_index_name.

Drop an Index

Syntax

The syntax for dropping an index in Oracle/PLSQL is:

DROP INDEX index_name;

index_name

The name of the index to drop.

Example

Let's look at an example of how to drop an index in Oracle/PLSQL.

For example:

DROP INDEX supplier_idx;

In this example, we're dropping an index called supplier_idx.

Oracle / PLSQL: VIEW

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

36

This Oracle tutorial explains how to create, update, and drop Oracle VIEWS with syntax and

examples.

What is a VIEW in Oracle?

An Oracle VIEW, in essence, is a virtual table that does not physically exist. Rather, it is created

by a query joining one or more tables.

Create VIEW

Syntax

The syntax for the CREATE VIEW Statement in Oracle/PLSQL is:

CREATE VIEW view_name AS

 SELECT columns

 FROM tables

 [WHERE conditions];

view_name

The name of the Oracle VIEW that you wish to create.

WHERE conditions

Optional. The conditions that must be met for the records to be included in the VIEW.

Example

Here is an example of how to use the Oracle CREATE VIEW:

CREATE VIEW sup_orders AS

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Microsoft';

This Oracle CREATE VIEW example would create a virtual table based on the result set of the

SELECT statement. You can now query the Oracle VIEW as follows:

SELECT *

FROM sup_orders;

Update VIEW

You can modify the definition of an Oracle VIEW without dropping it by using the Oracle

CREATE OR REPLACE VIEW Statement.

Syntax

https://www.techonthenet.com/oracle/joins.php

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

37

The syntax for the CREATE OR REPLACE VIEW Statement in Oracle/PLSQL is:

CREATE OR REPLACE VIEW view_name AS

 SELECT columns

 FROM table

 WHERE conditions;

view_name

The name of the Oracle VIEW that you wish to create or replace.

Example

Here is an example of how you would use the Oracle CREATE OR REPLACE VIEW Statement:

CREATE or REPLACE VIEW sup_orders AS

 SELECT suppliers.supplier_id, orders.quantity, orders.price

 FROM suppliers

 INNER JOIN orders

 ON suppliers.supplier_id = orders.supplier_id

 WHERE suppliers.supplier_name = 'Apple';

This Oracle CREATE OR REPLACE VIEW example would update the definition of the Oracle

VIEW called sup_orders without dropping it. If the Oracle VIEW did not yet exist, the VIEW

would merely be created for the first time.

Drop VIEW

Once an Oracle VIEW has been created, you can drop it with the Oracle DROP VIEW Statement.

Syntax

The syntax for the DROP VIEW Statement in Oracle/PLSQL is:

DROP VIEW view_name;

view_name

The name of the view that you wish to drop.

Example

Here is an example of how to use the Oracle DROP VIEW Statement:

DROP VIEW sup_orders;

This Oracle DROP VIEW example would drop/delete the Oracle VIEW called sup_orders.

Oracle / PLSQL: Subqueries

This Oracle tutorial explains how to use Oracle subqueries with syntax and examples.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

38

What is a subquery in Oracle?

In Oracle, a subquery is a query within a query. You can create subqueries within your SQL

statements. These subqueries can reside in the WHERE clause, the FROM clause, or the SELECT

clause.

WHERE clause

Most often, the subquery will be found in the WHERE clause. These subqueries are also called

nested subqueries.

For example:

SELECT *

FROM all_tables tabs

WHERE tabs.table_name IN (SELECT cols.table_name

 FROM all_tab_columns cols

 WHERE cols.column_name = 'SUPPLIER_ID');

FROM clause

A subquery can also be found in the FROM clause. These are called inline views.

For example:

SELECT suppliers.name, subquery1.total_amt

FROM suppliers,

 (SELECT supplier_id, SUM(orders.amount) AS total_amt

 FROM orders

 GROUP BY supplier_id) subquery1

WHERE subquery1.supplier_id = suppliers.supplier_id;

In this example, we've created a subquery in the FROM clause as follows:

(SELECT supplier_id, SUM(orders.amount) AS total_amt

 FROM orders

 GROUP BY supplier_id) subquery1

This subquery has been aliased with the name subquery1. This will be the name used to reference

this subquery or any of its fields.

SELECT clause

A subquery can also be found in the SELECT clause.

For example:

SELECT tbls.owner, tbls.table_name,

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

39

 (SELECT COUNT(column_name) AS total_columns

 FROM all_tab_columns cols

 WHERE cols.owner = tbls.owner

 AND cols.table_name = tbls.table_name) subquery2

Oracle / PLSQL: Joins

This Oracle tutorial explains how to use JOINS (inner and outer) in Oracle with syntax, visual

illustrations, and examples.

Description

Oracle JOINS are used to retrieve data from multiple tables. An Oracle JOIN is performed

whenever two or more tables are joined in a SQL statement.

There are 4 different types of Oracle joins:

• Oracle INNER JOIN (or sometimes called simple join)

• Oracle LEFT OUTER JOIN (or sometimes called LEFT JOIN)

• Oracle RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)

• Oracle FULL OUTER JOIN (or sometimes called FULL JOIN)

So let's discuss Oracle JOIN syntax, look at visual illustrations of Oracle JOINS, and explore

Oracle JOIN examples.

INNER JOIN (simple join)

Chances are, you've already written a statement that uses an Oracle INNER JOIN. It is the most

common type of join. Oracle INNER JOINS return all rows from multiple tables where the join

condition is met.

Syntax

The syntax for the INNER JOIN in Oracle/PLSQL is:

SELECT columns

FROM table1

INNER JOIN table2

ON table1.column = table2.column;

Visual Illustration

In this visual diagram, the Oracle INNER JOIN returns the shaded area:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

40

The Oracle INNER JOIN would return the records where table1 and table2 intersect.

Example

Here is an example of an Oracle INNER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

INNER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This Oracle INNER JOIN example would return all rows from the suppliers and orders tables

where there is a matching supplier_id value in both the suppliers and orders tables.

Let's look at some data to explain how the INNER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name). It contains the

following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

10002 Microsoft

10003 NVIDIA

We have another table called orders with three fields (order_id, supplier_id, and order_date). It

contains the following data:

order_id supplier_id order_date

500125 10000 2003/05/12

500126 10001 2003/05/13

500127 10004 2003/05/14

If we run the Oracle SELECT statement (that contains an INNER JOIN) below:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

41

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

INNER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

supplier_id name order_date

10000 IBM 2003/05/12

10001 Hewlett Packard 2003/05/13

The rows for Microsoft and NVIDIA from the supplier table would be omitted, since the

supplier_id's 10002 and 10003 do not exist in both tables. The row for 500127 (order_id) from the

orders table would be omitted, since the supplier_id 10004 does not exist in the suppliers table.

LEFT OUTER JOIN

Another type of join is called an Oracle LEFT OUTER JOIN. This type of join returns all rows

from the LEFT-hand table specified in the ON condition and only those rows from the other table

where the joined fields are equal (join condition is met).

Syntax

The syntax for the Oracle LEFT OUTER JOIN is:

SELECT columns

FROM table1

LEFT [OUTER] JOIN table2

ON table1.column = table2.column;

In some databases, the LEFT OUTER JOIN keywords are replaced with LEFT JOIN.

Visual Illustration

In this visual diagram, the Oracle LEFT OUTER JOIN returns the shaded area:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

42

The Oracle LEFT OUTER JOIN would return the all records from table1 and only those records

from table2 that intersect with table1.

Example

Here is an example of an Oracle LEFT OUTER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

LEFT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This LEFT OUTER JOIN example would return all rows from the suppliers table and only those

rows from the orders table where the joined fields are equal.

If a supplier_id value in the suppliers table does not exist in the orders table, all fields in the orders

table will display as <null> in the result set.

Let's look at some data to explain how LEFT OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name). It contains the

following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

10002 Microsoft

10003 NVIDIA

We have a second table called orders with three fields (order_id, supplier_id, and order_date). It

contains the following data:

order_id supplier_id order_date

500125 10000 2003/05/12

500126 10001 2003/05/13

If we run the SELECT statement (that contains a LEFT OUTER JOIN) below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

LEFT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

43

supplier_id supplier_name order_date

10000 IBM 2003/05/12

10001 Hewlett Packard 2003/05/13

10002 Microsoft <null>

10003 NVIDIA <null>

The rows for Microsoft and NVIDIA would be included because a LEFT OUTER JOIN was used.

However, you will notice that the order_date field for those records contains a <null> value.

RIGHT OUTER JOIN

Another type of join is called an Oracle RIGHT OUTER JOIN. This type of join returns all rows

from the RIGHT-hand table specified in the ON condition and only those rows from the other

table where the joined fields are equal (join condition is met).

Syntax

The syntax for the Oracle RIGHT OUTER JOIN is:

SELECT columns

FROM table1

RIGHT [OUTER] JOIN table2

ON table1.column = table2.column;

In some databases, the RIGHT OUTER JOIN keywords are replaced with RIGHT JOIN.

Visual Illustration

In this visual diagram, the Oracle RIGHT OUTER JOIN returns the shaded area:

The Oracle RIGHT OUTER JOIN would return the all records from table2 and only those records

from table1 that intersect with table2.

Example

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

44

Here is an example of an Oracle RIGHT OUTER JOIN:

SELECT orders.order_id, orders.order_date, suppliers.supplier_name

FROM suppliers

RIGHT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This RIGHT OUTER JOIN example would return all rows from the orders table and only those

rows from the suppliers table where the joined fields are equal.

If a supplier_id value in the orders table does not exist in the suppliers table, all fields in the

suppliers table will display as <null> in the result set.

Let's look at some data to explain how RIGHT OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name). It contains the

following data:

supplier_id supplier_name

10000 Apple

10001 Google

We have a second table called orders with three fields (order_id, supplier_id, and order_date). It

contains the following data:

order_id supplier_id order_date

500125 10000 2013/08/12

500126 10001 2013/08/13

500127 10002 2013/08/14

If we run the SELECT statement (that contains a RIGHT OUTER JOIN) below:

SELECT orders.order_id, orders.order_date, suppliers.supplier_name

FROM suppliers

RIGHT OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

order_id order_date supplier_name

500125 2013/08/12 Apple

500126 2013/08/13 Google

500127 2013/08/14 <null>

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

45

The row for 500127 (order_id) would be included because a RIGHT OUTER JOIN was used.

FULL OUTER JOIN

Another type of join is called an Oracle FULL OUTER JOIN. This type of join returns all rows

from the LEFT-hand table and RIGHT-hand table with nulls in place where the join condition is

not met.

Syntax

The syntax for the Oracle FULL OUTER JOIN is:

SELECT columns

FROM table1

FULL [OUTER] JOIN table2

ON table1.column = table2.column;

In some databases, the FULL OUTER JOIN keywords are replaced with FULL JOIN.

Visual Illustration

In this visual diagram, the Oracle FULL OUTER JOIN returns the shaded area:

The Oracle FULL OUTER JOIN would return the all records from both table1 and table2.

Example

Here is an example of an Oracle FULL OUTER JOIN:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

FULL OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

This FULL OUTER JOIN example would return all rows from the suppliers table and all rows

from the orders table and whenever the join condition is not met, <nulls> would be extended to

those fields in the result set.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

46

If a supplier_id value in the suppliers table does not exist in the orders table, all fields in the orders

table will display as <null> in the result set. If a supplier_id value in the orders table does not exist

in the suppliers table, all fields in the suppliers table will display as <null> in the result set.

Let's look at some data to explain how FULL OUTER JOINS work:

We have a table called suppliers with two fields (supplier_id and supplier_name). It contains the

following data:

supplier_id supplier_name

10000 IBM

10001 Hewlett Packard

10002 Microsoft

10003 NVIDIA

We have a second table called orders with three fields (order_id, supplier_id, and order_date). It

contains the following data:

order_id supplier_id order_date

500125 10000 2013/08/12

500126 10001 2013/08/13

500127 10004 2013/08/14

If we run the SELECT statement (that contains a FULL OUTER JOIN) below:

SELECT suppliers.supplier_id, suppliers.supplier_name, orders.order_date

FROM suppliers

FULL OUTER JOIN orders

ON suppliers.supplier_id = orders.supplier_id;

Our result set would look like this:

supplier_id supplier_name order_date

10000 IBM 2013/08/12

10001 Hewlett Packard 2013/08/13

10002 Microsoft <null>

10003 NVIDIA <null>

<null> <null> 2013/08/14

The rows for Microsoft and NVIDIA would be included because a FULL OUTER JOIN was used.

However, you will notice that the order_date field for those records contains a <null> value.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

47

UNIT - IV

What is PL/SQL

 PL/SQL is a Procedural Language (PL) that extends the Structured Query Language (SQL). If

you have been programming Pascal or Ada, you will find much familiar syntax in PL/SQL.

PL/SQL Advantages

PL/SQL is a highly structured language

PL/SQL provides a very expressive syntax that makes it easy for anyone who wants to learn

PL/SQL. If you are programming in other languages, you can get familiar with PL/SQL very

quickly and understand the intent of the code without difficulty.

PL/SQL language features include the following elements:

• Variables

• Block structure, nested block structure

• Conditional and sequential statements: IF, CASE, GOTO, CONTINUE and NULL

• Loop statements: WHILE loop, FOR loop

• Exception and error handling

• Data types: string, numbers, date & timestamp, Boolean, and LOB

• Record

• Collection

• Cursor

• Procedures, functions, packages

• Object-orientation features

• Dynamic SQL and dynamic PL/SQL

PL/SQL is a portable and standard language for Oracle development

Once you develop a PL/SQL program in an Oracle Database, you can move it to the other Oracle

Databases without changes, with the assumption that the versions of Oracle database are

compatible.

PL/SQL is an embedded language

PL/SQL programs such as functions and procedures are stored in Oracle database in compiled

form. This allows applications or users to share the same functionality stored in Oracle database.

PL/SQL also allows you to define triggers that can be invoked automatically in response to

particular events in associated tables.

http://www.zentut.com/sql-tutorial/
http://www.plsqltutorial.com/plsql-variables/
http://www.plsqltutorial.com/plsql-block-structure/
http://www.plsqltutorial.com/plsql-nested-block/
http://www.plsqltutorial.com/plsql-if-statement/
http://www.plsqltutorial.com/plsql-case-statement/
http://www.plsqltutorial.com/plsql-goto/
http://www.plsqltutorial.com/plsql-while-loop/
http://www.plsqltutorial.com/plsql-for-loop/
http://www.plsqltutorial.com/plsql-exception/
http://www.plsqltutorial.com/plsql-record/
http://www.plsqltutorial.com/plsql-cursor/
http://www.plsqltutorial.com/plsql-procedure/
http://www.plsqltutorial.com/plsql-function/
http://www.plsqltutorial.com/plsql-package/

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

48

PL/SQL is a high-performance language inside Oracle Databases

Oracle adds many enhancements to the PL/SQL to make it more efficient to interact with Oracle

databases.

Fundamentals of the PL/SQL Language

 Like other programming languages, PL/SQL has a character set, reserved words, punctuation,

datatypes, and fixed syntax rules.

 Character Sets and Lexical Units

PL/SQL programs are written as lines of text using a specific set of characters:

■ Upper- and lower-case letters A .. Z and a .. z

■ Numerals 0 .. 9

■ Symbols () + – * / < > = ! ~ ^ ; : . ‘ @ % , ” # $ & _ | { } ? []

■ Tabs, spaces, and carriage returns

 PL/SQL keywords are not case-sensitive, so lower-case letters are equivalent to corresponding

upper-case letters except within string and character literals.

 A line of PL/SQL text contains groups of characters known as lexical units:

■ Delimiters (simple and compound symbols) – A delimiter is a simple or compound symbol

that has a special meaning to PL/SQL. For example, you use delimiters to represent arithmetic

operations such as addition and subtraction.

■ Identifiers(which include reserved words) – We use identifiers to name PL/SQL program

items and units, which include constants, variables, exceptions, cursors, cursor variables,

subprograms, and packages.

■ Literals – A literal is an explicit numeric, character, string, or BOOLEAN value not represented

by an identifier.

■ Comments – The PL/SQL compiler ignores comments, but you should not. Adding comments

to your program promotes readability and aids understanding. Generally, you use comments to

describe the purpose and use of each code segment. PL/SQL supports two comment styles: single-

line and multi-line.

 Declarations

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

49

You can declare variables and constants in the declarative part of any PL/SQL block, subprogram,

or package. Declarations allocate storage space for a value, specify its datatype, and name the

storage location so that you can reference it.

Some examples follow:

DECLARE

birthday DATE;

emp_count SMALLINT := 0;

 Constants – To declare a constant, put the keyword CONSTANT before the type specifier.

Example –

DECLARE

credit_limit CONSTANT REAL := 5000.00;

 Using DEFAULT

You can use the keyword DEFAULT instead of the assignment operator to initialize variables. For

example, the declaration

blood_type CHAR := 'O';

can be rewritten as follows:

blood_type CHAR DEFAULT 'O';

 Using NOT NULL –

Besides assigning an initial value, declarations can impose the NOT NULL constraint:

DECLARE

acct_id INTEGER(4) NOT NULL := 9999;

 Using the %TYPE Attribute

The %TYPE attribute provides the datatype of a variable or database column. This is particularly

useful when declaring variables that will hold database values. For example, assume there is a

column named last_name in a table named employees.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

50

To declare a variable named v_last_name that has the same datatype as column title, use dot

notation and the %TYPE attribute, as follows:

v_last_name employees.last_name%TYPE;

 Using the %ROWTYPE Attribute

The %ROWTYPE attribute provides a record type that represents a row in a table or view.

Columns in a row and corresponding fields in a record have the same names and datatypes.

However, fields in a %ROWTYPE record do not inherit constraints, such as the NOT NULL or

check constraint, or default values.

DECLARE

dept_rec departments%ROWTYPE; -- declare record variable

• Restrictions on Declarations

PL/SQL does not allow forward references. You must declare a variable or constant before

referencing it in other statements, including other declarative statements.

DECLARE

-- Multiple declarations not allowed.

-- i, j, k, l SMALLINT;

-- Instead, declare each separately.

i SMALLINT;

j SMALLINT;

-- To save space, you can declare more than one on a line.

k SMALLINT; l SMALLINT;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

51

PL/SQL Expressions and Comparisons

Expressions are constructed using operands and operators. An operand is a variable, constant,

literal, or function call that contributes a value to an expression. An example of a simple arithmetic

expression follows:

-X / 2 + 3

Unary operators such as the negation operator (-) operate on one operand; binary operators such as

the division operator (/) operate on two operands. PL/SQL has no ternary operators.

Table: Order of Operations

https://cdn.intellipaat.com/wp-content/uploads/2015/09/scope-and-visibility.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

52

Logical Operators

The logical operators AND, OR, and NOT.AND and OR are binary operators; NOT is a unary

operator.

• IS NULL Operator

The IS NULL operator returns the BOOLEAN value TRUE if its operand is null or FALSE if it is

not null. Comparisons involving nulls always yield NULL. Test whether a value is null as follows:

IF variable IS NULL THEN ...

• LIKE Operator

You use the LIKE operator to compare a character, string, or CLOB value to a pattern. Case is

significant. LIKE returns the BOOLEAN value TRUE if the patterns match or FALSE if they do

not match.

The patterns matched by LIKE can include two special-purpose characters called wildcards. An

underscore (_) matches exactly one character; a percent sign (%) matches zero or more characters.

For example, if the value of last_name is ‘JOHNSON’, the following expression is true:

last_name LIKE 'J%S_N'

• BETWEEN Operator

https://cdn.intellipaat.com/wp-content/uploads/2015/09/order-of-operations.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

53

The BETWEEN operator tests whether a value lies in a specified range or not. It means “greater

than or equal to low value and less than or equal to high value.” For example, the following

expression is false:

45 BETWEEN 38 AND 44

 IN Operator

The IN operator tests set membership. It means “equal to any member of.” The set can contain

nulls, but they are ignored. For example, the following expression tests whether a value is part of a

set of values:

letter IN ('a','b','c')

 Concatenation Operator

Double vertical bars (||) serve as the concatenation operator, which appends one string (CHAR,

VARCHAR2, CLOB, or the equivalent Unicode-enabled type) to another.

For example, the expression

'suit' || 'case'

returns the following value:

'suitcase'

BOOLEAN Expressions

BOOLEAN expressions consist of simple or complex expressions separated by relational

operators. Often, BOOLEAN expressions are connected by the logical operators AND, OR, and

NOT. A BOOLEAN expression always yields TRUE, FALSE, or NULL.

There are three kinds of BOOLEAN expressions: arithmetic, character, and date.

CASE Expressions

There are two types of expressions used in CASE statements: simple and searched. These

expressions correspond to the type of CASE statement in which they are used.

• Simple CASE expression

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

54

A simple CASE expression selects a result from one or more alternatives, and returns the result.

Although it contains a block that might stretch over several lines, it really is an expression that

forms part of a larger statement, such as an assignment or a procedure call. The CASE expression

uses a selector, an expression whose value determines which alternative to return.

• Searched CASE Expression

A searched CASE expression lets you test different conditions instead of comparing a single

expression to various values. A searched CASE expression has no selector. Each WHEN clause

contains a search condition that yields a BOOLEAN value, so you can test different variables or

multiple conditions in a single WHEN clause.

 PL/SQL Datatypes

Predefined PL/SQL Datatypes

Predefined PL/SQL datatypes are grouped into composite, LOB, reference, and scalar type

categories.

• A composite type has internal components that can be manipulated individually, such as

the elements of an array, record, or table.

• A LOB type holds values, called lob locators, that specify the location of large objects,

such as text blocks or graphic images, that are stored separately from other database data.

LOB types include BFILE, BLOB, CLOB, and NCLOB.

• A reference type holds values, called pointers, that designate other program items. These

types include REF CURSORS and REFs to object types.

• A scalar type has no internal components. It holds a single value, such as a number or

character string. The scalar types fall into four families, which store number, character,

Boolean, and date/time data. The scalar families with their datatypes are:

 1. PL/SQL Number Types

BINARY_DOUBLE, BINARY_FLOAT, BINARY_INTEGER, DEC, DECIMAL, DOUBLE

PRECISION, FLOAT, INT, INTEGER, NATURAL, NATURALN, NUMBER, NUMERIC,

PLS_INTEGER, POSITIVE, POSITIVEN, REAL, SIGNTYPE, SMALLINT

 2. PL/SQL Character and String Types and PL/SQL National Character Types

CHAR, CHARACTER, LONG, LONG RAW, NCHAR, NVARCHAR2, RAW, ROWID,

STRING, UROWID, VARCHAR, VARCHAR2 Note that the LONG and LONG RAW datatypes

are supported only for backward compatibility Information.

 3. PL/SQL Boolean Types

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

55

BOOLEAN

 4. PL/SQL Date, Time, and Interval Types

DATE, TIMESTAMP, TIMESTAMP WITH TIMEZONE, TIMESTAMP WITH LOCAL

TIMEZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND

 Converting PL/SQL Datatypes

Sometimes it is necessary to convert a value from one datatype to another. For example, to use a

DATE value in a report, you must convert it to a character string. PL/SQL supports both explicit

and implicit (automatic) datatype conversion.

• Explicit Conversion

Using explicit conversions, particularly when passing parameters to subprograms, can avoid

unexpected errors or wrong results. For example, the TO_CHAR function lets you specify the

format for a DATE value, rather than relying on language settings in the database. Including an

arithmetic expression among strings being concatenated with the || operator can produce an error

unless you put parentheses or a call to TO_CHAR around the entire arithmetic expression.

• Implicit Conversion

https://cdn.intellipaat.com/wp-content/uploads/2015/09/data-type.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

56

When it makes sense, PL/SQL can convert the data type of a value implicitly. For example, you

can pass a numeric literal to a subprogram that expects a string value, and the subprogram receives

the string representation of the number.

PL/SQL Variables

These are placeholders that store the values that can change through the PL/SQL Block.

General Syntax to declare a variable is

variable_name datatype [NOT NULL := value];

variable_name is the name of the variable.

datatype is a valid PL/SQL datatype.

NOT NULL is an optional specification on the variable.

value or DEFAULT valueis also an optional specification, where you can initialize a variable.

Each variable declaration is a separate statement and must be terminated by a semicolon.

For example, if you want to store the current salary of an employee, you can use a variable.

DECLARE

salary number (6);

* “salary” is a variable of datatype number and of length 6.

When a variable is specified as NOT NULL, you must initialize the variable when it is declared.

For example: The below example declares two variables, one of which is a not null.

DECLARE

salary number(4);

dept varchar2(10) NOT NULL := “HR Dept”;

The value of a variable can change in the execution or exception section of the PL/SQL Block. We

can assign values to variables in the two ways given below.

1) We can directly assign values to variables.

 The General Syntax is:

 variable_name:= value;

2) We can assign values to variables directly from the database columns by using a SELECT..

INTO statement. The General Syntax is:

SELECT column_name

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

57

INTO variable_name

FROM table_name

[WHERE condition];

Example: The below program will get the salary of an employee with id '1116' and display it on

the screen.

DECLARE

 var_salary number(6);

 var_emp_id number(6) = 1116;

BEGIN

 SELECT salary

 INTO var_salary

 FROM employee

 WHERE emp_id = var_emp_id;

 dbms_output.put_line(var_salary);

 dbms_output.put_line('The employee '

 || var_emp_id || ' has salary ' || var_salary);

END;

/

Scope of PS/SQL Variables

PL/SQL allows the nesting of Blocks within Blocks i.e, the Execution section of an outer block

can contain inner blocks. Therefore, a variable which is accessible to an outer Block is also

accessible to all nested inner Blocks. The variables declared in the inner blocks are not accessible

to outer blocks. Based on their declaration we can classify variables into two types.

• Local variables - These are declared in a inner block and cannot be referenced by outside

Blocks.

• Global variables - These are declared in a outer block and can be referenced by its itself

and by its inner blocks.

For Example: In the below example we are creating two variables in the outer block and assigning

thier product to the third variable created in the inner block. The variable 'var_mult' is declared in

the inner block, so cannot be accessed in the outer block i.e. it cannot be accessed after line 11.

The variables 'var_num1' and 'var_num2' can be accessed anywhere in the block.

1> DECLARE

2> var_num1 number;

3> var_num2 number;

4> BEGIN

5> var_num1 := 100;

6> var_num2 := 200;

7> DECLARE

8> var_mult number;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

58

9> BEGIN

10> var_mult := var_num1 * var_num2;

11> END;

12> END;

13> /

 PL/SQL Control Structures

PL/SQL Control Structures

Procedural computer programs use the basic control structures.

• The selection structure tests a condition, then executes one sequence of statements instead

of another, depending on whether the condition is true or false. A condition is any variable

or expression that returns a BOOLEAN value (TRUE or FALSE).

• The iteration structure executes a sequence of statements repeatedly as long as a condition

holds true.

• The sequence structure simply executes a sequence of statements in the order in which they

occur.

 Testing Conditions: IF and CASE Statements

The IF statement executes a sequence of statements depending on the value of a condition. There

are three forms of IF statements: IF-THEN, IF-THEN-ELSE, and IF-THEN-ELSIF.

https://cdn.intellipaat.com/wp-content/uploads/2015/09/control-structures.png

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

59

The CASE statement is a compact way to evaluate a single condition and choose between many

alternative actions. It makes sense to use CASE when there are three or more alternatives to choose

from.

 Using the IF-THEN Statement

The simplest form of IF statement associates a condition with a sequence ofstatements enclosed by

the keywords THEN and END IF (not ENDIF)

The sequence of statements is executed only if the condition is TRUE. If the condition is FALSE

or NULL, the IF statement does nothing. In either case, control passes to the next statement.

Example: Using a Simple IF-THEN Statement

 DECLARE

sales NUMBER(8,2) := 10100;

quota NUMBER(8,2) := 10000;

bonus NUMBER(6,2);

emp_id NUMBER(6) := 120;

BEGIN

IF sales > (quota + 200) THEN

bonus := (sales - quota)/4;

UPDATE employees SET salary = salary + bonus WHERE employee_id = emp_id;

END IF;

END;

/

 Using CASE Statements

Like the IF statement, the CASE statement selects one sequence of statements to execute.

However, to select the sequence, the CASE statement uses a selector rather than multiple Boolean

expressions. A selector is an expression whose value is used to select one of several alternatives.

Example: Using the CASE-WHEN Statement

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

60

 DECLARE

grade CHAR(1);

BEGIN

grade := 'B';

CASE grade

WHEN 'A' THEN DBMS_OUTPUT.PUT_LINE('Excellent');

WHEN 'B' THEN DBMS_OUTPUT.PUT_LINE('Very Good');

WHEN 'C' THEN DBMS_OUTPUT.PUT_LINE('Good');

WHEN 'D' THEN DBMS_OUTPUT.PUT_LINE('Fair');

WHEN 'F' THEN DBMS_OUTPUT.PUT_LINE('Poor');

ELSE DBMS_OUTPUT.PUT_LINE('No such grade');

END CASE;

END;

/

Controlling Loop Iterations: LOOP and EXIT Statements

LOOP statements execute a sequence of statements multiple times. There are three forms of LOOP

statements: LOOP, WHILE-LOOP, and FOR-LOOP.

• Using the LOOP Statement

The simplest form of LOOP statement is the basic loop, which encloses a sequence of statements

between the keywords LOOP and END LOOP, as follows:

LOOP

sequence_of_statements

END LOOP;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

61

With each iteration of the loop, the sequence of statements is executed, then control resumes at the

top of the loop. You use an EXIT statement to stop looping and prevent an infinite loop. You can

place one or more EXIT statements anywhere inside a loop, but not outside a loop. There are two

forms of EXIT statements: EXIT and

EXIT-WHEN.

• Using the EXIT Statement

The EXIT statement forces a loop to complete unconditionally. When an EXIT statement is

encountered, the loop completes immediately and control passes to the next statement.

• Using the EXIT-WHEN Statement

The EXIT-WHEN statement lets a loop complete conditionally. When the EXIT statement is

encountered, the condition in the WHEN clause is evaluated. If the condition is true, the loop

completes and control passes to the next statement after the loop.

• Labeling a PL/SQL Loop

Like PL/SQL blocks, loops can be labeled. The optional label, an undeclared identifier enclosed by

double angle brackets, must appear at the beginning of the LOOP statement. The label name can

also appear at the end of the LOOP statement. When you nest labeled loops, use ending label

names to improve readability.

• Using the WHILE-LOOP Statement

The WHILE-LOOP statement executes the statements in the loop body as long as a condition is

true:

WHILE condition LOOP

sequence_of_statements

END LOOP;

Using the FOR-LOOP Statement

Simple FOR loops iterate over a specified range of integers. The number of iterations is known

before the loop is entered. A double dot (..) serves as the range operator. The range is evaluated

when the FOR loop is first entered and is never re-evaluated. If the lower bound equals the higher

bound, the loop body is executed once.

Example: Using a Simple FOR..LOOP Statement

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

62

 DECLARE

p NUMBER := 0;

BEGIN

FOR k IN 1..500 LOOP -- calculate pi with 500 terms

p := p + (((-1) ** (k + 1)) / ((2 * k) - 1));

END LOOP;

p := 4 * p;

DBMS_OUTPUT.PUT_LINE('pi is approximately : ' || p); -- print result

END;

/

Sequential Control: GOTO and NULL Statements

The GOTO statement is seldom needed. Occasionally, it can simplify logic enough to warrant its

use. The NULL statement can improve readability by making the meaning and action of

conditional statements clear.

Overuse of GOTO statements can result in code that is hard to understand and maintain. Use

GOTO statements sparingly. For example, to branch from a deeply nested structure to an error-

handling routine, raise an exception rather than use a GOTO statement.

• Using the GOTO Statement

The GOTO statement branches to a label unconditionally. The label must be unique within its

scope and must precede an executable statement or a PL/SQL block. When executed, the GOTO

statement transfers control to the labeled statement or block. The labeled statement or block can be

down or up in the sequence of statements.

Example : Using a Simple GOTO Statement

 DECLARE

p VARCHAR2(30);

n PLS_INTEGER := 37; -- test any integer > 2 for prime

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

63

BEGIN

FOR j in 2..ROUND(SQRT(n)) LOOP

IF n MOD j = 0 THEN -- test for prime

p := ' is not a prime number'; -- not a prime number

GOTO print_now;

END IF;

END LOOP;

p := ' is a prime number';

<<print_now>>

DBMS_OUTPUT.PUT_LINE(TO_CHAR(n) || p);

END;

/

UNIT - V

PL/SQL Cursors And Exceptions :

Understand Cursors

A cursor is a mechanism by which you can assign a name to a "select statement" and manipulate

the information within that SQL statement. In other words, a cursor is a SELECT statement that is

defined within the declaration section of your PLSQL code. You will take a look at three different

syntaxes for cursors. There are two types of cursors: Implicit and Explicit.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

64

• An Implicit cursor is used for all other SQL statements. Implicit Cursors gives less

programmatic control.

• In explicit cursor the cursor name is explicitly attached to a select statement

The four PL/SQL steps necessary for explicit cursor processing are as follows:

1. Declare the cursor

2. Open the cursor

3. Fetch the results into PL/SQL variables

4. Close the cursor

Declare the cursor

To use a cursor, it must be declared first.

Syntax

Code:
CURSOR cursor_name IS SELECT_statement;

A cursor without parameters

Code:
CURSOR comp IS SELECT compid FROM company;

A cursor with parameters

Code:
CURSOR comp (mcompid IN NUMBER) IS SELECT name FROM

company WHERE compid = mcomid;

Open Cursors:

Once you have declared your cursor, the next step is to open the cursor

The basic syntax to OPEN the cursor is as follows:

Code:
OPEN cursor_name;

For example, you could open a cursor called c1 with the following command:

Code:
OPEN c1;

While opening a cursor:

• The values of the bind variables are examined

• Based on the bind variable the active set is determined

• The active set pointer is set to the first row.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

65

Following is a function that demonstrates how to use the OPEN statement:

Code:
CREATE OR REPLACE Function FindCourse

(name_in IN varchar2)

 RETURN number

IS

cnumber number;

CURSOR c1

IS

SELECT course_number from courses_tbl where course_name = name_in;

 BEGIN

open c1;

 fetch c1 into cnumber;

if c1%notfound then

 cnumber := 9999;

 end if;

close c1;

RETURN cnumber;

 END;

Fetch Cursor

The purpose of using a cursor, in most cases, is to retrieve the rows from your cursor so that some

type of operation can be performed on the data. After declaring and opening your cursor, the next

step is to FETCH the rows from your cursor.

Fetching a cursor has two forms:

Code:
FETCH cursor_name INTO list_of_variables;

Or

Code:
FETCH cursor_name INTO PL/SQL_record;

• After each FETCH, the active set pointer is increased to next row.

• Thus, each FETCH will return successive rows in the active set, until the entire set is

returned.

• The %NOTFOUND attribute is used to determine when the active set has been retrieved.

The basic syntax for a FETCH statement is:

Code:
FETCH cursor_name INTO <list of variables>;

For example, you could have a cursor defined as:

Code:
CURSOR c1 IS SELECT course_number from courses_tbl where course_name = name_in;

The command that would be used to fetch the data from this cursor is:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

66

Close Cursor

The final step of working with cursors is to close the cursor once you have finished using it.

The basic syntax to CLOSE the cursor is:

Code:
CLOSE cursor_name;

For example, you could close a cursor called c1 with the following command:

Code:
CLOSE c1;

Understanding Exceptions

What is an Exception?

• Exceptions are errors raised whenever there is any in a particular PL/SQL block. This

causes a termination in the program by Oracle. Control then is transferred to the separate

exception section of the program, if one exists, to handle the exception.

• Oracle raises ERRORS whenever any abnormal situation arises in a PL/SQL block and

performs an illegal termination of the execution of the program.

• PL/SQL traps and responds to errors using architecture of exception handler.

• Occurrence of any error in PL/SQL, whether a system error or an application error, an

exception is rose.

• This halts the processing in the current PL/SQL block's execution and control is transferred

to the separate exception section of the program, if one exists, to handle the exception.

• The control never returns to that block after you finish handling the exception. Instead,

control is passed to the enclosing block, if any.

• When an exception is raised, control passes to the exception section of the block. The

exception section consists of handlers for all the exceptions.

Code:
EXCEPTION

WHEN exception_name THEN

sequence_of_statements1;

WHEN exception_name THEN

sequence_of_statements1;

END;

Types of Exceptions:

1. Predefined Exception

2. User Defined Exception

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

67

Predefined Exceptions

Some exceptions are already defined in Oracle called the

pre-defined exception. Mostly they are generated with the

SELECT statement. They are raised implicitly at runtime.

Every exception is associated with an error code. These

exceptions are already defined in the STANDARD

package (An Oracle supplied package). Oracle Exception

Name

Oracle

Error

Explanation

DUP_VAL_ON_INDEX ORA-

00001

You tried to execute an

INSERT or UPDATE

statement that has created a

duplicate value in a field

restricted by a unique index.

TIMEOUT_ON_RESOURCE ORA-

00051

You were waiting for a

resource and you timed out.

TRANSACTION_BACKED_OUT ORA-

00061

The remote portion of a

transaction has rolled back.

INVALID_CURSOR ORA-

01001

You tried to reference a

cursor that does not yet exist.

This may have happened

because you have executed a

FETCH cursor or CLOSE

cursor before opening the

cursor.

NOT_LOGGED_ON ORA-

01012

You tried to execute a call to

Oracle before logging in.

LOGIN_DENIED ORA-

01017

You tried to log into Oracle

with an invalid username or

password combination.

NO_DATA_FOUND ORA-

01403

You tried one of the

following: 1. You executed a

SELECT INTO statement

and no rows were returned.

2. You referenced an

uninitialized row in a table.

3. You read past the end of

file with the UTL_FILE

package.

TOO_MANY_ROWS ORA-

01422

You tried to execute a

SELECT INTO statement

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

68

and more than one row was

returned.

ZERO_DIVIDE ORA-

01476

You tried to divide a number

by zero.

Exception functions:

SQLCODE: Returns the numeric value for the error code.

SQLERRM: Returns the message associated with the error number.

Example:

Code:
DECLARE

v_err_code NUMBER;

v_err_text VARCHAR2(255);

v_product_name product_dim.product_name%type;

BEGIN

SELECT product_name into v_product_name

FROM product_dim

WHERE product_id=&input_product_id;

dbms_output.put_line(v_product_name);

EXCEPTION

WHEN NO DATA FOUND THEN

v_err_code:=SQLCODE;

v_err_text:=SQLERM;

insert into errors values (v_err_code,v_err_text)

commit;

END:

User Defined Exception

Sometimes, it is necessary for programmers to name and trap their own exceptions - ones that

aren't defined already by PL/SQL. These are called Named Programmer or User-Defined

Exceptions.

The syntax for the named programmer-defined exception in a procedure is as follows:

Code:
CREATE [OR REPLACE] PROCEDURE procedure_name [(parameter [,parameter])] IS

[declaration_section]

exception_name EXCEPTION;

BEGIN executable_section

RAISE exception_name ;

EXCEPTION WHEN exception_name THEN [statements]

WHEN OTHERS THEN [statements]

END [procedure_name];

The syntax for the named programmer-defined exception in a function is:

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

69

Code:

CREATE [OR REPLACE] FUNCTION function_name [(parameter [, parameter])] RETURN

return_datatype IS | AS [declaration_section]

exception_name EXCEPTION;

BEGIN executable_section

RAISE exception_name ;

EXCEPTION WHEN exception_name THEN [statements]

WHEN OTHERS THEN [statements]

END [function_name];

Here is an example of a procedure that uses a named programmer-defined exception:

Code:

CREATE OR REPLACE PROCEDURE add_new_order (order_id_in IN NUMBER, sales_in IN

NUMBER) IS no_sales EXCEPTION;

BEGIN IF sales_in = 0 THEN RAISE no_sales;

ELSE INSERT INTO orders (order_id, total_sales) VALUES (order_id_in, sales_in

); END IF;

EXCEPTION WHEN no_sales THEN raise_application_error (-20001,'You must have

sales in order to submit the order.');

WHEN OTHERS THEN raise_application_error (-20002,'An error has occurred

inserting an order.');

END;

Syntax:

Code:
RAISE_APPLICATION_ERROR (error_number in NUMBER, error_msg in VARCHAR2);

Example:

Code:

CREATE OR REPLACE PROCEDURE sp_addproduct(

IN V_prdouct_code Varchar2(100);

IN V_prdouct_name Varchar2(100);) AS

BEGIN

UPDATE product_dim

SET product_name=V_prdouct_name

WHERE product_key=V_prdouct_code

IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,'This is not a valid product');

END IF;

COMMIT;

END sp_addproduct;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

70

Oracle / PLSQL: Procedures

This Oracle tutorial explains how to create and drop procedures in Oracle/PLSQL with syntax

and examples.

Create Procedure

Just as you can in other languages, you can create your own procedures in Oracle.

Syntax

The syntax to create a procedure in Oracle is:

CREATE [OR REPLACE] PROCEDURE procedure_name

 [(parameter [,parameter])]

IS

 [declaration_section]

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [procedure_name];

When you create a procedure or function, you may define parameters. There are three types of

parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or function. The value of the parameter
can not be overwritten by the procedure or function.

2. OUT - The parameter can not be referenced by the procedure or function, but the value of the
parameter can be overwritten by the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or function and the value of the
parameter can be overwritten by the procedure or function.

Example

Let's look at an example of how to create a procedure in Oracle.

The following is a simple example of a procedure:

CREATE OR REPLACE Procedure UpdateCourse

 (name_in IN varchar2)

IS

 cnumber number;

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

71

 cursor c1 is

 SELECT course_number

 FROM courses_tbl

 WHERE course_name = name_in;

BEGIN

 open c1;

 fetch c1 into cnumber;

 if c1%notfound then

 cnumber := 9999;

 end if;

 INSERT INTO student_courses

 (course_name,

 course_number)

 VALUES

 (name_in,

 cnumber);

 commit;

 close c1;

EXCEPTION

WHEN OTHERS THEN

 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -

ERROR- '||SQLERRM);

END;

This procedure is called UpdateCourse. It has one parameter called name_in. The procedure will

lookup the course_number based on course name. If it does not find a match, it defaults the course

number to 99999. It then inserts a new record into the student_courses table.

Drop Procedure

Once you have created your procedure in Oracle, you might find that you need to remove it from

the database.

Syntax

The syntax to a drop a procedure in Oracle is:

DROP PROCEDURE procedure_name;

procedure_name

The name of the procedure that you wish to drop.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

72

Example

Let's look at an example of how to drop a procedure in Oracle.

For example:

DROP PROCEDURE UpdateCourse;

Oracle / PLSQL: Functions

This Oracle tutorial explains how to create and drop functions in Oracle/PLSQL with syntax and

examples.

Create Function

Just as you can in other languages, you can create your own functions in Oracle.

Syntax

The syntax to create a function in Oracle is:

CREATE [OR REPLACE] FUNCTION function_name

 [(parameter [,parameter])]

 RETURN return_datatype

IS | AS

 [declaration_section]

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [function_name];

When you create a procedure or function, you may define parameters. There are three types of

parameters that can be declared:

1. IN - The parameter can be referenced by the procedure or function. The value of the parameter
can not be overwritten by the procedure or function.

2. OUT - The parameter can not be referenced by the procedure or function, but the value of the
parameter can be overwritten by the procedure or function.

3. IN OUT - The parameter can be referenced by the procedure or function and the value of the
parameter can be overwritten by the procedure or function.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

73

Example

Let's look at an example of how to create a function in Oracle.

The following is a simple example of an Oracle function:

CREATE OR REPLACE Function FindCourse

 (name_in IN varchar2)

 RETURN number

IS

 cnumber number;

 cursor c1 is

 SELECT course_number

 FROM courses_tbl

 WHERE course_name = name_in;

BEGIN

 open c1;

 fetch c1 into cnumber;

 if c1%notfound then

 cnumber := 9999;

 end if;

 close c1;

RETURN cnumber;

EXCEPTION

WHEN OTHERS THEN

 raise_application_error(-20001,'An error was encountered - '||SQLCODE||' -

ERROR- '||SQLERRM);

END;

This function is called FindCourse. It has one parameter called name_in and it returns a number.

The function will return the course number if it finds a match based on course name. Otherwise, it

returns a 99999.

You could then reference your new function in a SQL statement as follows:

SELECT course_name, FindCourse(course_name) AS course_id

FROM courses

WHERE subject = 'Mathematics';

Drop Function

Once you have created your function in Oracle, you might find that you need to remove it from the

database.

P.Indhu MCA.,M.Phil., Assistant Professor in Computer Science,

Annai Women’s College,Karur.

74

Syntax

The syntax to a drop a function in Oracle is:

DROP FUNCTION function_name;

function_name

The name of the function that you wish to drop.

For example:

DROP FUNCTION FindCourse;

This example would drop the function called FindCourse.

