
P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 1

VISUAL PROGRAMMING

(COURSE MATERIAL)

II-B.COM(COMPUTER APPLICATION)

SUB CODE:16CCCCA8

.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 2

CORE COURSE –VIII

VISUAL PROGRAMMING

Objective

To enable the students to know about the visual programming and its applications

UNIT-I:

Introduction to Visual Basic, Integrated development environment features – Forums –
Controls – Events – Methods – Properties - Uses of Property Window – Code Window (Code
Behind File) – Variable declaration.

UNIT-II:

Scope of Variables – Constant – Array – Loops in Visual Basic: For … Next, While,

Do…While - Select statements: if…end if - if…else if…end if - Select…Case End Case -

UNIT-III:

Standard Controls: Form - Text Box – Command Button – Label Box – Check Box – Frame
Control – Combo Box – List Box – Radio Button - Image Control - Picture Box – Timer.

UNIT-IV:

File System – Drive, DirList, File List Box – Introduction to Built-in-Active X control tool
bar – Tree view – Menu Editor – Command dialog control – Rich Text Box.

UNIT-V:

Introduction to Database – MS Access – Data Grid (Accessing Data Base data) – Open data
base connectivity – Introduction to Dot Net: IDE – Execution Procedures – CLR – CTS.

Text and Reference Books (Latest revised edition only)

1. Mastering Visual Basic 6 – BPB Publications, New Delhi.

2. Mohammed Azam, Programming with Visual basic 6.0 – Vikas Publishing House.

3. Test Your Vb.Net Skills: Language Elements Part 1 Paperback – 1 Dec 2000
by Yashavant P. Kanetkar (Author), Asang Dani, BPB Publications, New Delhi.

VERIFIED BY VERIFIED BY

PRINCIPAL HEAD OF THE DEPARTMENT

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 3

UNIT – I

Introduction to Visual Basic :
In this chapter we begin learning about the fundamentals of programming and Visual

Basic .NET. First we examine the two elements that are required by every practical

Visual Basic program: the screens and instructions seen by the user, and the ―behind the

scenes‖ processing that is done by the program. We then present the basic design win-

dows that you must be familiar with to produce such programs. Finally, we show you

how to use these design windows to create the visual user interface, or GUI, and then add

processing instructions.

What is Visual Basic?

Visual Basic is a third-generation event-driven programming language first released by Microsoft

in 1991. It evolved from the earlier DOS version called BASIC. BASIC means Beginners' All-

purpose Symbolic Instruction Code. Since then Microsoft has released many versions of Visual Basic,

from Visual Basic 1.0 to the final version Visual Basic 6.0. Visual Basic is a user-friendly programming

language designed for beginners, and it enables anyone to develop GUI window applications easily. What

is Visual Basic?

In 2002, Microsoft released Visual Basic.NET(VB.NET) to replace Visual Basic 6.

Thereafter, Microsoft declared VB6 a legacy programming language in 2008. Fortunately,

Microsoft still provides some form of support for VB6. VB.NET is a fully object-oriented

programming language implemented in the .NET Framework. It was created to cater for the

development of the web as well as mobile applications. However, many developers still favor

Visual Basic 6.0 over its successor Visual Basic.NET.

The Visual Basic 6 Integrated Development Environment

Before you can write programs in VB 6, you need to install Visual Basic 6 compiler on

your computer. You can purchase a copy of Microsoft Visual Basic 6.0 Learning Edition or

Microsoft Visual Basic Professional Edition from Amazon.com, both are vb6 compilers.

Besides, you can also buy it from eBay at Microsoft Visual Basic 6.0 6 Professional PRO MSDN

Library Manual Service Pack. If you have already installed Microsoft Office in your PC or

laptop, you can also use the built-in Visual Basic Application in Excel to start creating Visual

Basic programs without having to spend extra cash to buy the VB6 compiler.

You can also install VB6 on Windows 10 but you need to follow certain steps otherwise

the installation will fail. First, you need to run setup as administrator. Next, you need to use

custom installation. Clear the checkbox for Data Access. If you don't, set up will hang at the end

of the installation. Finally, click next and wait for the installation to complete. For complete

instructions, please follow this link Install VB6 on Windows 10

http://www.amazon.com/gp/product/B00002SFK8/ref%3Das_li_qf_sp_asin_tl?ie=UTF8&tag=liewvoonkiong&linkCode=as2&camp=1789&creative=9325&creativeASIN=B00002SFK8
https://www.amazon.com/Microsoft-Visual-Basic-6-0-Professional/dp/B00B1T9T0G/ref%3Dpd_sim_sbs_65_4?ie=UTF8&psc=1&refRID=87MRHN3DWNBV1YHCHYTA
https://www.ebay.com/itm/Microsoft-Visual-Basic-6-0-6-Professional-PRO-MSDN-Library-Manual-Service-Pack-/322782055958?epid=1901581590&hash=item4b274f4e16%3Ag%3AdPQAAOSw3utY7~52
https://www.ebay.com/itm/Microsoft-Visual-Basic-6-0-6-Professional-PRO-MSDN-Library-Manual-Service-Pack-/322782055958?epid=1901581590&hash=item4b274f4e16%3Ag%3AdPQAAOSw3utY7~52
http://excelvbatutor.com/
http://www.fortypoundhead.com/showcontent.asp?artid=23993

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 4

You can choose to either start a new project, open an existing project or select a list of

recently opened programs. A project is a collection of files that make up your application. There

are various types of applications that we could create, however, we shall concentrate on creating

Standard EXE programs (EXE means executable). Before you begin, you must think of an

application that preferably have commercial ,educational or recreational value. Next, click on the

Standard EXE icon to go into the actual Visual Basic 6 programming environment.

When you start a new Visual Basic 6 Standard EXE project, you will be presented with

the Visual Basic 6 Integrated Development Environment (IDE). The Visual Basic 6 Integrated

Programming Environment is shown in Figure 1.2. It consists of the toolbox, the form, the

project explorer and the properties window.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 5

VBProgramming Environment

The Form is the primary building block of a Visual Basic 6 application. A Visual Basic 6

application can actually comprise many forms, but we shall focus on developing an application

with one form first. We will learn how to develop applications with multiple forms later. Before

you proceed to build the application, it is a good practice to save the project first. You can save

the project by selecting Save Project from the File menu, assign a name to your project and save

it in a certain folder. You shall now proceed to learn Visual Basic programming from the next

lesson onwards.

Integrated Development Environment Features:

The Visual Basic integrated development environment (IDE) consists of the following elements.

Menu Bar:

Displays the commands you use to work with Visual Basic. Besides the standard File,

Edit, View, Window, and Help menus, menus are provided to access functions specific to

programming such as Project, Format, or Debug.

Context Menus:

Contain shortcuts to frequently performed actions. To open a context menu, click the

right mouse button on the object you're using. The specific list of shortcuts available from

context menus depends on the part of the environment where you click the right mouse button.

For example, the context menu displayed when you right click on the Toolbox lets you display

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 6

the Components dialog box, hide the Toolbox, dock or undock the Toolbox, or add a custom tab

to the Toolbox.

Toolbars:

Provide quick access to commonly used commands in the programming environment.

You click a button on the toolbar once to carry out the action represented by that button. By

default, the Standard toolbar is displayed when you start Visual Basic. Additional toolbars for

editing, form design, and debugging can be toggled on or off from the Toolbars command on the

View menu.

Toolbars can be docked beneath the menu bar or can "float" if you select the vertical bar on the

left edge and drag it away from the menu bar.

Toolbox:

Provides a set of tools that you use at design time to place controls on a form. In addition

to the default toolbox layout, you can create your own custom layouts by selecting Add Tab from

the context menu and adding controls to the resulting tab.

Project Explorer Window:

Lists the forms and modules in your current project. A project is the collection of files

you use to build an application.

Lists the property settings for the selected form or control. A property is a characteristic of an

object, such as size, caption, or color.

Object Browser:

Lists objects available for use in your project and gives you a quick way to navigate

through your code. You can use the Object Browser to explore objects in Visual Basic and other

applications, see what methods and properties are available for those objects, and paste code

procedures into your application.

Form Designer:

Serves as a window that you customize to design the interface of your application. You

add controls, graphics, and pictures to a form to create the look you want. Each form in your

application has its own form designer window.

Code Editor Window:

Serves as an editor for entering application code. A separate code editor window is

created for each form or code module in your application.

Form Layout Window:

The Form Layout window (Figure 2.2) allows you to position the forms in your application using

a small graphical representation of the screen.

The Form Layout window

Immediate, Locals, and Watch Windows

These additional windows are provided for use in debugging your application. They are only

available when you are running your application within the IDE.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 7

The Control Properties:

Before writing an event procedure for the control to response to an event, you have to set

certain properties for the control to determine its appearance and how will it work with the event

procedure. You can set the properties of the controls in the properties window or at runtime.

It is a typical properties window for a form. In the properties window, the item appears at

the top part is the object currently selected. At the bottom part, the items listed in the left column

represent the names of various properties associated with the selected object while the items

listed in the right column represent the states of the properties. Properties can be set by

highlighting the items in the right column then change them by typing or selecting the options

available.

For example, in order to change the caption, just highlight Form1 under the name Caption

and change it to other names. You may also alter the appearance of the form by setting it to 3D

or flat, change its foreground and background color, change the font type and font size, enable or

disable, minimize and maximize buttons and more.

Properties Window

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 8

You can also change the properties at runtime to give special effects such as change of

color, shape, animation effect and so on. Example 3.1 show the code that will change the form

color to red every time the form is loaded. VB uses the hexadecimal system to represent the

color. You can check the color codes in the properties windows which are showing up under

ForeColor and BackColor .

Example : Program to change background color

This example changes the background colour of the form using the BackColor property.

Private Sub Form_Load()

Form1.Show

Form1.BackColor = &H000000FF&

End Sub

Example 3.2: Program to change shape

This example is to change the control's Shape using the Shape property. This code will change

the shape to a circle at runtime.

Private Sub Form_Load()

Shape1.Shape = 3

End Sub

We are not going into the details on how to set the properties yet. However, we would like to

stress a few important points about setting up the properties.

• You should set the Caption Property of a control clearly so that a user knows what to do

with that command.

• Use a meaningful name for the Name Property because it is easier to write and read the

event procedure and easier to debug or modify the programs later.

• One more important property is whether to make the control enabled or not.

• Finally, you must also considering making the control visible or invisible at runtime, or

when should it become visible or invisible.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 9

Controls

The TextBox:

Toolbox

The text box is the standard control for accepting input from the user as well as to display

the output. It can handle string (text) and numeric data but not images or pictures. A string

entered into a text box can be converted to a numeric data by using the function Val(text). The

following example illustrates a simple program that processes the input from the user.

Example :

In this program, two text boxes are inserted into the form together with a few labels. The

two text boxes are used to accept inputs from the user and one of the labels will be used to

display the sum of two numbers that are entered into the two text boxes. Besides, a command

button is also programmed to calculate the sum of the two numbers using the plus operator. The

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 10

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 11

program use creates a variable sum to accept the summation of values from text box 1 and text

box 2.The procedure to calculate and to display the output on the label is shown below.

Private Sub Command1_Click()

'To add the values in TextBox1 and TextBox2

Sum = Val(Text1.Text) +Val(Text2.Text)

'To display the answer on label 1

Label1.Caption = Sum

End Sub

The output is shown

The Label:

Figure 3.3

The label is a very useful control for Visual Basic, as it is not only used to provide

instructions and guides to the users, it can also be used to display outputs. One of its most

important properties is Caption. Using the syntax Label.Caption, it can display text and

numeric data . You can change its caption in the properties window and also at runtime.

The Command Button:

The command button is one of the most important controls as it is used to execute

commands. It displays an illusion that the button is pressed when the user click on it. The most

common event associated with the command button is the Click event, and the syntax for the

procedure is

Private Sub Command1_Click ()

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 12

Statements

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 13

End Sub

A Simple Password Cracker

In this program, we want to crack a secret passoword entered by the user. In the design

phase, insert a command button and change its name to cmd_ShowPass. Next, insert a TextBox

and rename it as TxtPassword and delete Text1 from the Text property. Besides that, set its

PasswordChr to *. Now, enter the following code in the code window.

Private Sub cmd_ShowPass_Click()

Dim yourpassword As String

yourpassword = Txt_Password.Text

MsgBox ("Your password is: " & yourpassword)

End Sub

Run the program and enter a password, then click on the Show Password button to reveal the

password.

The Password Cracker

You can also reveal the password by setting the PasswordChr property back to normal mode, as

follows:

Private Sub cmd_ShowPass_Click()

Dim yourpassword As String

Txt_Password.PasswordChar = ""

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 14

The PictureBox

The Picture Box is one of the controls that is used to handle graphics. You can load a picture at

design phase by clicking on the picture item in the properties window and select the picture from

the selected folder. You can also load the picture at runtime using theLoadPicture method. For

example, the statement will load the picture grape.gif into the picture box.

Picture1.Picture=LoadPicture ("C:\VBprogram\Images\grape.gif")

Example : Loading Picture

In this program, insert a command button and a picture box. Enter the following code:

Private Sub cmd_LoadPic_Click()

MyPicture.Picture = LoadPicture("C:\Users\admin.DESKTOP-G1G4HEK\Documents\My

Websites\vbtutor\vb6\images\uranus.jpg")

End Sub

* You must ensure the path to access the picture is correct. Besides that, the image in the picture

box is not resizable.

The Picture Viewer

The Image Control

The Image Control is another control that handles images and pictures. It functions

almost identically to the pictureBox. However, there is one major difference, the image in an

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 15

Image Box is stretchable, which means it can be resized. This feature is not available in the

PictureBox. Similar to the Picture Box, it can also use the LoadPicture method to load the

picture. For example, the statement loads the picture grape.gif into the image box.

Image1.Picture=LoadPicture ("C:\VBprogram\Images\grape.gif")

Example: Loading Image

In this program, we insert a command button and an image control into the form. Besides that,

we set the image Strech property to true. Next, enter te following code:

Private Sub cmd_LoadImg_Click()

MyImage.Picture = LoadPicture("C:\Users\admin.DESKTOP-G1G4HEK\Documents\My

Websites\vbtutor\vb6\images\uranus.jpg")

End Sub

The Image Viewer

The ListBox

The function of the ListBox is to present a list of items where the user can click and

select the items from the list. In order to add items to the list, we can use the AddItem method.

For example, if you wish to add a number of items to list box 1, you can key in the following

statements

Example :

Private Sub Form_Load ()

List1.AddItem ―Lesson1‖

List1.AddItem ―Lesson2‖

List1.AddItem ―Lesson3‖

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 16

List1.AddItem ―Lesson4‖

End Sub

The Output

The ListBox

The items in the list box can be identified by the ListIndex property, the value of the

ListIndex for the first item is 0, the second item has a ListIndex 1, and the third item has a

ListIndex 2 and so on

The ComboBox

The function of the Combo Box is also to present a list of items where the user can click and

select the items from the list. However, the user needs to click on the small arrowhead on the

right of the combo box to see the items which are presented in a drop-down list. In order to add

items to the list, you can also use the AddItem method. For example, if you wish to add a

number of items to Combo box 1, you can key in the following statements

Example :

Private Sub Form_Load ()

Combo1.AddItem "Item1"

Combo1.AddItem "Item2"

Combo1.AddItem "Item3"

Combo1.AddItem "Item4"

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 17

The Output

The ListBox

The CheckBox

The Check Box control lets the user selects or unselects an option. When the Check Box

is checked, its value is set to 1 and when it is unchecked, the value is set to 0. You can include

the statements Check1.Value=1 to mark the Check Box and Check1.Value=0 to unmark the

Check Box, as well as use them to initiate certain actions. For example, the program in Example

3.4 will show which items are selected in a message box.

Example :

Private Sub Cmd_OK_Click()

If Check1.Value = 1 And Check2.Value = 0 And Check3.Value = 0 Then

MsgBox "Apple is selected"

ElseIf Check2.Value = 1 And Check1.Value = 0 And Check3.Value = 0 Then

MsgBox "Orange is selected"

ElseIf Check3.Value = 1 And Check1.Value = 0 And Check2.Value = 0 Then

MsgBox "Orange is selected"

ElseIf Check2.Value = 1 And Check1.Value = 1 And Check3.Value = 0 Then

MsgBox "Apple and Orange are selected"

ElseIf Check3.Value = 1 And Check1.Value = 1 And Check2.Value = 0 Then

MsgBox "Apple and Pear are selected"

ElseIf Check2.Value = 1 And Check3.Value = 1 And Check1.Value = 0 Then

MsgBox "Orange and Pear are selected"

Else

MsgBox "All are selected"

End If

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 18

The Output

The ListBox

The OptionButton

The OptionButton control also lets the user selects one of the choices. However, two or

more Option buttons must work together because as one of the option buttons is selected, the

other Option button will be unselected. In fact, only one Option Box can be selected at one time.

When an option box is selected, its value is set to ―True‖ and when it is unselected; its value is

set to ―False‖.

Example:

In this example, we want to change the background color of the form according to the

selected option. We insert three option buttons and change their captions to "Red

Background","Blue Background" and "Green Background" respectively. Next, insert a command

button and change its name to cmd_SetColor and its caption to "Set Background Color". Now,

click on the command button and enter the following code in the code window:

Private Sub cmd_SetColor_Click()

If Option1.Value = True Then

Form1.BackColor = vbRed

ElseIf Option2.Value = True Then

Form1.BackColor = vbBlue

Else

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 19

Form1.BackColor = vbGreen

End If

End Sub

Run the program, select an option and click the "Set Background Color" produces the output, as

shown ,

The Shape Control

In the following example, the shape control is placed in the form together with six

OptionButtons. To determine the shape of the shape control, we use the shape property. The

property values of the shape control are 0, 1, and 2,3,4,5 which will make it appear as a

rectangle, a square, an oval shape, a circle, a rounded rectangle and a rounded square

respectively.

Example :

In this example, we insert six option buttons. It is better to make the option buttons into a

control array as they perform similar action, i.e to change shape. In order to create a control

array, click on the first option button, rename it as MyOption. Next, click on the option button

and select copy then paste. After clicking the paste button, a popup dialog (Figure 3.11)will ask

you whether you wish to create a control array, select yes. The control array can be accessed via

its index value, MyOtion(Index. In addition, we also insert a shape control.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 20

Now, enter the code in the code window. We use the If..Then..Else program structure to

determine which option button is selected by the user.

Private Sub MyOption_Click(Index As Integer)

If Index = 0 Then

MyShape.Shape = 0

ElseIf Index = 1 Then

MyShape.Shape = 1

ElseIf Index = 2 Then

MyShape.Shape = 2

ElseIf Index = 3 Then

MyShape.Shape = 3

ElseIf Index = 4 Then

MyShape.Shape = 4

ElseIf Index = 5 Then

MyShape.Shape = 5

End If

End Sub

Run the program and you can change the shape of the shape control by clicking one of the option

buttons. The output

The DriveListBox

The DriveListBox is for displaying a list of drives available in your computer. When you

place this control into the form and run the program, you will be able to select different drives

from your computer as shown in Figure 3.13

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 21

The Drive List Box

The DirListBox

The DirListBox means the Directory List Box. It is for displaying a list of directories or folders

in a selected drive. When you place this control into the form and run the program, you will be

able to select different directories from a selected drive in your computer as shown .

The DirListBox

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 22

The FileListBox

Events are basically a user action like key press, clicks, mouse movements, etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all

are examples of events. An event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

• Mouse events

• Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the

various mouse events related with a Control class:

• MouseDown - it occurs when a mouse button is pressed

• MouseEnter - it occurs when the mouse pointer enters the control

• MouseHover - it occurs when the mouse pointer hovers over the control

• MouseLeave - it occurs when the mouse pointer leaves the control

• MouseMove - it occurs when the mouse pointer moves over the control

• MouseUp - it occurs when the mouse pointer is over the control and the mouse button is

released

• MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of typeMouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties:

• Buttons - indicates the mouse button pressed

• Clicks - indicates the number of clicks

• Delta - indicates the number of detents the mouse wheel rotated

• X - indicates the x-coordinate of mouse click

• Y - indicates the y-coordinate of mouse click

Example

Following is an example, which shows how to handle mouse events. Take the following steps:

• Add three labels, three text boxes and a button control in the form.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 23

• Change the text properties of the labels to - Customer ID, Name and Address,

respectively.

• Change the name properties of the text boxes to txtID, txtName and txtAddress,

respectively.

• Change the text property of the button to 'Submit'.

• Add the following code in the code editor window:

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspont.com"

End Sub

Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_

Handles txtID.MouseEnter

'code for handling mouse enter on ID textbox

txtID.BackColor = Color.CornflowerBlue

txtID.ForeColor = Color.White

End Sub

Private Sub txtID_MouseLeave(sender As Object, e As EventArgs) _

Handles txtID.MouseLeave

'code for handling mouse leave on ID textbox

txtID.BackColor = Color.White

txtID.ForeColor = Color.Blue

End Sub

Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _

Handles txtName.MouseEnter

'code for handling mouse enter on Name textbox

txtName.BackColor = Color.CornflowerBlue

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 24

txtName.ForeColor = Color.White

End Sub

Private Sub txtName_MouseLeave(sender As Object, e As EventArgs) _

Handles txtName.MouseLeave

'code for handling mouse leave on Name textbox

txtName.BackColor = Color.White

txtName.ForeColor = Color.Blue

End Sub

Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _

Handles txtAddress.MouseEnter

'code for handling mouse enter on Address textbox

txtAddress.BackColor = Color.CornflowerBlue

txtAddress.ForeColor = Color.White

End Sub

Private Sub txtAddress_MouseLeave(sender As Object, e As EventArgs) _

Handles txtAddress.MouseLeave

'code for handling mouse leave on Address textbox

txtAddress.BackColor = Color.White

txtAddress.ForeColor = Color.Blue

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) _

Handles Button1.Click

MsgBox("Thank you " & txtName.Text & ", for your kind cooperation")

End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 25

Try to enter text in the text boxes and check the mouse events:

Events:

Following are the various keyboard events related with a Control class:

• KeyDown - occurs when a key is pressed down and the control has focus

• KeyPress - occurs when a key is pressed and the control has focus

• KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of typeKeyEventArgs.

This object has the following properties:

• Alt - it indicates whether the ALT key is pressed/p>

• Control - it indicates whether the CTRL key is pressed

• Handled - it indicates whether the event is handled

• KeyCode - stores the keyboard code for the event

• KeyData - stores the keyboard data for the event

• KeyValue - stores the keyboard value for the event

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 26

• Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

• Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of typeKeyEventArgs.

This object has the following properties:

• Handled - indicates if the KeyPress event is handled

• KeyChar - stores the character corresponding to the key pressed

Example

Let us continue with the previous example to show how to handle keyboard events. The code

will verify that the user enters some numbers for his customer ID and age.

• Add a label with text Property as 'Age' and add a corresponding text box named txtAge.

• Add the following codes for handling the KeyUP events of the text box txtID.

• Add the following codes for handling the KeyUP events of the text box txtID.

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

• Private Sub txtID_KeyUP(sender As Object, e As KeyEventArgs) _

• Handles txtID.KeyUp

• If (Not Char.IsNumber(ChrW(e.KeyCode))) Then

• MessageBox.Show("Enter numbers for your Customer ID")

• txtID.Text = " "

• End If

• End Sub

• Private Sub txtAge_KeyUP(sender As Object, e As KeyEventArgs) _

• Handles txtAge.KeyUp

• If (Not Char.IsNumber(ChrW(e.keyCode))) Then

• MessageBox.Show("Enter numbers for age")

• txtAge.Text = " "

• End If

• End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 27

If you leave the text for age or ID as blank or enter some non-numeric data, it gives a warning

message box and clears the respective text:

Methods:

A method is a built-in function that works with an object. A method has no meaning

without its object. But this is very important to note that a method is not a special thing in VB6

but this is just a function, a block of code, which is associated with an object. The method causes

the object to perform a specific task. See the following examples:

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 28

Example:

 Form1.Hide

The Hide method hides the form Form1 without unloading from memory. So a method

performs an action for a particular object.

Example:

The Cls method clears the object, generally the form and PictureBox object. In the above code,

the method Cls is written without any object. But I said before that it has no meaning without an

object. This is because, in this example, Cls means Form1.Cls.

When you're coding in the form module, you can omit the form name while invoking a form's

method.

In the above code, SetFocus is a method that moves the focus to TextBox. Here also the method

causes the object to do something. There are so many methods in Visual Basic.

Print

The Print method prints something on the object, generally on form and PictureBox.

Example:

Here Picture1 is the PictureBox control.

Move

The Move method moves an object.

Syntax:

Object.Move Left, [Top], [Width], [Height]

The parameters enclosed in square brackets "[]" are always optional. Do not type the

brackets in your code.

'In Form1

Cls

Text1.SetFocus

Form1.Print "Your text here"

'Or,

Print "Your text here"

Picture1.print "Your text here"

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 29

Example:

 Form1.Move 20, 50, 2000, 2000

ZOrder

VB controls are overlapped, the ZOrder method sets the position of the control. You can

position the control in front of or behind other controls. To position the control in front of other

controls, simply write the method without any argument. To position it behind other controls,

pass 1 as an argument.

Example:

Cls

The Cls method clears the form or PictureBox. But it does not mean that it will clear anything

on the form or PictureBox. The Cls method clears the contents that are created or drawn by the

graphic methods such as Print, Circle etc.

Example:

Here Picture1 is the PictureBox. This program will not print anything as Cls method is executed

after printing a text.

Show

The Show method is generally used with multiple forms. It shows an object, a form.

Example:

Refresh

The Refresh method repaints or redraws an object completely. You can immediately update the

content of a control using the Refresh method.

Text1.ZOrder 1 'moves it behind other controls

Text1.ZOrder 'moves it to the front

Print "hello"

Picture1.Print "welcome"

Picture1.Cls

Form1.Cls 'or Cls

Form2.Show

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 30

Common Properties in VB6

Back Color and Fore Color

The Back Color property sets the background color of an object while the ForeColor property

changes the foreground color used to display text.

You can set these properties either from Properties Window or you may wish to set in run-time.

Example:

When you click on command1 button, the code in the Click event procedure is executed.

On execution, the background color of the label will be red and label's text color will be blue.

'vbRed' and 'vbBlue' are the color constants.

Another example:

The color can also be expressed in hexadecimal code.

Example:

Private Sub cmdChangeColor_Click()

Label1.BackColor = vbRed

Label1.ForeColor = vbBlue

End Sub

Private Sub cmdChangeColor_Click()

Label1.BackColor = vbRed

Label1.ForeColor = vbBlue

Form1.BackColor = vbGreen

Text1.BackColor = vbBlack

Text1.ForeColor = vbYellow

Frame1.BackColor = vbWhite

End Sub

Private Sub cmdChangeColor_Click()

Label1.BackColor = &HFF&

Label1.ForeColor = &HC00000

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 31

In this case, you have to copy the hexadecimal code from Properties Window.

Font

You can set the font property from the Properties Window. See the below example to set

property in run time.

Example:

The above block of code can be written in the following way too.

Caption:

It sets the text displayed in the object's title bar or on the object.

Example:

'Caption' property of form sets the form's title text. The text to be displayed on label is set.

Text:

It sets the text in a TextBox.

Example:

Text1.Text = "New program"

Private Sub cmdChangeFont_Click()

Text1.FontSize = 16

Text1.FontBold = True

Text1.FontItalic = True

Text1.Font = "Tahoma"

End Sub

Private Sub cmdChangeFont_Click()

Text1.Font.Size = 16

Text1.Font.Bold = True

Text1.Font.Italic = True

Text1.Font.Name = "Tahoma"

End Sub

Private Sub cmdSetTitle_Click()

Form1.Caption = "New Program"

Label1.Caption = "Hello"

Frame1.Caption = "New frame"

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 32

Here the text string is assigned to Text1.Text.

The Left, Top, Width and Height properties:

1. The Left Property sets the distance between the internal left edge of an object and the left edge

of its container.

2. The Top Property sets the distance between the internal top edge of an object and the top edge

of its container.

3. The Width Property sets the width of an object.

4. The Height Property sets the height of an object.

Example:

Container:

Moves an object into another container. You don't see it in the Properties Window, it is a run-

time only property.

In this case, you need to start with the 'Set' keyword.

Example:

The command1 control will be moved into frame1.

Visible

Determines whether an object is visible or hidden.

Example:

Private Sub cmdChange_Click()

Form1.Left = 12000

Form1.Top = 7000

Form1.Height = 10000

Form1.Width = 12000

End Sub

Set Command1.Container = Frame1

Label1.Visible = False

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 33

Enabled

Determines whether an object can respond to user generated events.

Example:

Text1.enabled=False

MousePointer and MouseIcon:

The MousePointer property sets the type of mouse pointer over an object. The values of

MousePointer property are

0- Default

1- Arrow

2- Cross

3- I-Beam

4- Icon

5- Size etc.

TabIndex and TabStop

The TabStop property indicates whether the user can use the TAB key to give the focus to an

object. You can give focus to the objects pressing the TAB key in the daily use software

applications.

The TabIndex property sets the tab order of an object.

Example:

When you press the TAB key, the focus will be given on Command3 first, then on Command2

and at last on Command1.

Movable

Determines whether an object is movable.

Command3.TabIndex = 0

Command2.TabIndex = 1

Command1.TabIndex = 2

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 34

Locked

Determines whether an object e.g TextBox can be edited.

Tag

Stores any extra data for your program that is used in the code.

Control Box

Indicates whether a control-menu box is displayed on the form at run time. If this property is set

to False, the Close Button, Minimize Button and Maximize Button are not shown on the form.

ShowInTaskBar

Determines whether the form appears in the windows taskbar.

StartUpPosition

Specifies the position of the form when it first appears.

Icon

Sets the icon displayed when the form is minimized at run time.

Label and TextBox Controls

Some basic properties of Label and TextBox control in Visual Basic 6 are explained in this

lesson.

Properties:

Properties of label

• Appearance: Sets whether or not a label is painted with 3D effects.

• BackStyle: Sets whether the background of the label is transparent or opaque.

• Caption: Sets the text to be displayed.

Properties of TextBox

• Enabled: Determines whether the TextBox can respond to user-generated events.

• Locked: Determines whether the TextBox can be edited. You can prevent the user from

changing the content of the TextBox.

• MultiLine: Indicates whether it can accept multiple lines of text.

• Alignment: Aligns the text to left justify, right justify or center.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 35

• MaxLength: Sets the maximum number of characters that can be entered. If you want to

set a limit on the number of characters that the user can enter, you can do it very easily with the

MaxLength property.

• PasswordChar: This property is useful for a password program. For example, if u enter

'*' as a value to this property, whatever character you type in, it will be shown as '*'.

• ScrollBars: Says whether the TextBox has a scroll bar.

• ToolTipText: Sets the text displayed when the mouse is paused over the control.

Run-Time properties of TextBox

Run-time properties are not visible in the Properties Window. You need to write code to

set run-time properties.

SelStart: Sets the position of the blinking cursor that appears in the TextBox Control. When the

cursor is at the beginning of the text, the value of SelStart is 0. When its at the end of the text, it

returns Len(text1.text). 'Len' is a string function that returns the length of the text or the number

of characters in the text. Set SelStart property to move the cursor in the TextBox.

Example:

Output:

SelLength: Sets the number of characters that has been selected or highlighted.

Example:

Private Sub Form_Load()

Text1.Text = "Visual"

Text1.SelLength = 3

End Sub

Private Sub Form_Load()

Text1.Text = "Visual"

Text1.SelStart = 3

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 36

Output:

Properties of CommandButton

Cancel: Indicates whether a command button is the cancel button on the form. That means, if

you press ESC key from keyboard, the CommandButton will be fired if the 'Cancel' property is

set to true.

Default: Indicates whether a command button is the default button on the form. That means, if

you press ENTER key from keyboard, the CommandButton will be fired if the 'Default' property

is set to true.

SelText: Sets or returns the text that is currently selected or highlighted.

Example:

Output:

Private Sub Form_Load()

Text1.Text = "Visual"

Text1.SelLength = 3

Text1.Text = Text1.SelText

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 37

MouseIcon: Sets a custom mouse icon.

MousePointer: Sets the type of mouse pointer that will be shown when the mouse pointer is

over the button.

Picture: Sets an image to be displayed when the 'style' property is set to 1.

Run-time property of CommandButton

Value: The value property sets or returns the state of the control. That means , value is true if the

CommandButton is pressed. This property is useful for programmatically clicking a button.

Set the Name properties to cmdButton1 and cmdButton2. The default Name properties are

Command1 and Command2.

Example:

Private Sub cmdButton1_Click()

Print "Hello"

End Sub

Private Sub cmdButton2_Click()

cmdButton1.Value = True

End Sub

When you click on Button2, Button1 is clicked programmatically , then it prints "Hello".

Properties Window and Code Window:

This window allows us to change some of the properties associated with an object at

design time.

Displays all the properties of the object (relating to the active project, userforms or control) that

can be changed at design time.

(Shift + Tab) - jumps to the object field list

(Ctrl + Shift + X) - jumps to the first property whose name begins with the letter X

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 38

Note that some of these properties are read only and cannot be changed and others can

only be changed at run-time.

When a code module is selected in the Project Explorer window the only associated property is

the name of the code module.

However when a userform or another object is selected then a list of properties will be displayed.

Lists the design-time properties for selected objects and their current settings. You can change

these properties at design time. When you select multiple controls, the Properties window

contains a list of the properties common to all the selected controls.

WINDOW ELEMENTS:

Object Box

Lists the currently selected object. Only objects from the active form are visible. If you

select multiple objects, the properties common to the objects and their settings, based on the first

object selected, appear on the Properties List tabs.

Properties List Tabs :

Alphabetic Tab - Alphabetically lists all properties for the selected object that can be

changed at design time, as well as their current settings. You can change the property setting by

selecting the property name and typing or selecting the new setting.

Categorized Tab - Lists all properties for the selected object by category. For example,

BackColor, Caption, and ForeColor are in the Appearance category. You can collapse the list so

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 39

that you see the categories or you can expand a category to see the properties. When you expand

or collapse the list, you see a plus (+) icon or minus (-) icon to the left of the category name.

Use the Code window to write, display, and edit Visual Basic code. You can open as

many Code windows as you have modules, so you can easily view the code in different forms

or modules, and copy and paste between them.

You can open a Code window from:

• The Project window, by selecting a form or module, and choosing

the View Code button.

• A UserForm window, by double-clicking a control or form, choosing Code from

the View menu, or pressing F7.

You can drag selected text to:

• A different location in the current Code window.

• Another Code window.

• The Immediate and Watch windows.

• The Recycle Bin.

Window Elements

Object Box

Displays the name of the selected object. Click the arrow to the right of the list box to display a

list of all objects associated with the form.
Procedures/Events Box

Lists all the events recognized by Visual Basic for a form or control displayed in the

Object box. When you select an event, the event procedure associated with that event name is

displayed in the Code window.

All the procedures in a module appear in a single, scrollable list that is sorted

alphabetically by name. Selecting a procedure using the drop down list boxes at the top of

the Code window moves the cursor to the first line of code in the procedure you select.

https://msdn.microsoft.com/en-us/library/ee440546(v%3Doffice.12).aspx
https://msdn.microsoft.com/en-us/library/ee440546(v%3Doffice.12).aspx

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 40

Split Bar

Dragging this bar down, splits the Code window into two horizontal panes, each of which

scrolls separately. You can then view different parts of your code at the same time. The

information that appears in the Object box and Procedures/Events box applies to the code in the

pane that has the focus. Dragging the bar to the top or the bottom of the window or double-

clicking the bar closes a pane.

Margin Indicator Bar

A gray area on the left side of the Code window where margin indicators are displayed.
 Procedure View Icon

Displays the selected procedure. Only one procedure at a time is displayed in

the Code window.
 Full Module View Icon

Displays the entire code in the module.

Variable Declaration:
A variable is nothing but a name given to a storage area that our programs can manipulate.

Each variable in VB.Net has a specific type, which determines the size and layout of the variable's

memory; the range of values that can be stored within that memory; and the set of operations that

can be applied to the variable.

Type Example

Integral types SByte, Byte, Short, UShort, Integer, UInteger,

Long, ULong and Char

Floating point types Single and Double

Decimal types Decimal

Boolean types True or False values, as assigned

Date types Date

VB.Net also allows defining other value types of variable like Enum and reference types

of variables like Class. We will discuss date types and Classes in subsequent chapters.

Variable Declaration in VB.Net

The Dim statement is used for variable declaration and storage allocation for one or more

variables. The Dim statement is used at module, class, structure, procedure or block level.

Syntax for variable declaration in VB.Net is:

https://msdn.microsoft.com/en-us/library/ee440546(v%3Doffice.12).aspx
https://msdn.microsoft.com/en-us/library/ee440546(v%3Doffice.12).aspx

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 41

Where,

• attributelist is a list of attributes that apply to the variable. Optional.

• accessmodifier defines the access levels of the variables, it has values as - Public,

Protected, Friend, Protected Friend and Private. Optional.

• Shared declares a shared variable, which is not associated with any specific instance of a

class or structure, rather available to all the instances of the class or structure. Optional.

• Shadows indicate that the variable re-declares and hides an identically named element, or

set of overloaded elements, in a base class. Optional.

• Static indicates that the variable will retain its value, even when the after termination of

the procedure in which it is declared. Optional.

• ReadOnly means the variable can be read, but not written. Optional.

• WithEvents specifies that the variable is used to respond to events raised by the instance

assigned to the variable. Optional.

• Variablelist provides the list of variables declared.

Each variable in the variable list has the following syntax and parts:

Where,

• variablename: is the name of the variable

• boundslist: optional. It provides list of bounds of each dimension of an array variable.

• New: optional. It creates a new instance of the class when the Dim statement runs.

• datatype: Required if Option Strict is On. It specifies the data type of the variable.

• initializer: Optional if New is not specified. Expression that is evaluated and assigned to

the variable when it is created.

Some valid variable declarations along with their definition are shown here:

[< attributelist>] [accessmodifier] [[Shared] [Shadows] | [Static]]

[ReadOnly] Dim [WithEvents] variablelist

variablename[([boundslist])] [As [New] datatype] [= initializer]

Dim StudentID As Integer

Dim StudentName As String

Dim Salary As Double

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 42

Variable Initialization in VB

Variables are initialized (assigned a value) with an equal sign followed by a constant

expression. The general form of initialization is:

for example,

You can initialize a variable at the time of declaration as follows:

Example

Try the following example which makes use of various types of variables:

Dim count1, count2 As Integer

Dim status As Boolean

Dim exitButton As New System.Windows.Forms.Button

Dim lastTime, nextTime As Date

variable_name = value;

Dim pi As Double

pi = 3.14159

Dim StudentID As Integer = 100

Dim StudentName As String = "Bill Smith"

Module variablesNdataypes

Sub Main()

Dim a As Short

Dim b As Integer

Dim c As Double

a = 10

b = 20

c = a + b

Console.WriteLine("a = {0}, b = {1}, c = {2}", a, b, c)

Console.ReadLine()

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 43

When the above code is compiled and executed, it produces the following result:

Accepting Values from User

The Console class in the System namespace provides a function ReadLine for accepting input

from the user and store it into a variable. For example,

The following example demonstrates it:

When the above code is compiled and executed, it produces the following result (assume the

user inputs Hello World):

Lvalues and Rvalues

There are two kinds of expressions:

• lvalue : An expression that is an lvalue may appear as either the left-hand or right-hand

side of an assignment.

• rvalue : An expression that is an rvalue may appear on the right- but not left-hand side

of an assignment.

End Module

a = 10, b = 20, c = 30

Dim message As String

message = Console.ReadLine

Module variablesNdataypes

Sub Main()

Dim message As String

Console.Write("Enter message: ")

message = Console.ReadLine

Console.WriteLine()

Console.WriteLine("Your Message: {0}", message)

Console.ReadLine()

End Sub

End Module

Enter message: Hello World

Your Message: Hello World

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 44

Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals

are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a

valid statement:

But following is not a valid statement and would generate compile-time error:

Scope of Variables:

UNIT-II

The scope of a declared element is the set of all code that can refer to it without

qualifying its name or making it available . An element can have scope at one of the following

levels:

Level Description

Block scope Available only within the code block in which it is declared

Procedure

scope

Available to all code within the procedure in which it is

declared

Module scope Available to all code within the module, class, or structure in

which it is declared

Namespace

scope

Available to all code in the namespace in which it is declared

These levels of scope progress from the narrowest (block) to the widest (namespace),

where narrowest scope means the smallest set of code that can refer to the element without

qualification. For more information, see "Levels of Scope" on this page.

Specifying Scope and Defining Variables

You specify the scope of an element when you declare it. The scope can depend on the following

factors:

Dim g As Integer = 20

20 = g

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 45

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 46

• The region (block, procedure, module, class, or structure) in which you declare the element

• The namespace containing the element's declaration

• The access level you declare for the element

Use care when you define variables with the same name but different scope, because doing so

can lead to unexpected results.

Levels of Scope

A programming element is available throughout the region in which you declare it. All code in

the same region can refer to the element without qualifying its name.

Block Scope

A block is a set of statements enclosed within initiating and terminating declaration statements,

such as the following:

and

[] and

and

and

and End With With

End While While

End Try Try

End SyncLock and SyncLock

End Select and Select

End If and If

Each For

Loop Do

Next

If you declare a variable within a block, you can use it only within that block. In the following

example, the scope of the integer variable is the block between and End If , and you can

no longer refer to when execution passes out of the block.

If n < 1291 Then

Dim cube As Integer

cube = n ^ 3

End If

cube

If cube

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 47

Private

Dim

Procedure Scope:

An element declared within a procedure is not available outside that procedure. Only the

procedure that contains the declaration can use it. Variables at this level are also known as local

variables. You declare them with the Dim Statement, with or without the Static keyword.

Procedure and block scope are closely related. If you declare a variable inside a

procedure but outside any block within that procedure, you can think of the variable as having

block scope, where the block is the entire procedure.

Module Scope

For convenience, the single term module level applies equally to modules, classes, and

structures. You can declare elements at this level by placing the declaration statement outside of

any procedure or block but within the module, class, or structure.

When you make a declaration at the module level, the access level you choose determines

the scope. The namespace that contains the module, class, or structure also affects the scope.

Elements for which you declare Private access level are available to every procedure in

that module, but not to any code in a different module. The statement at module level

defaults to if you do not use any access level keywords. However, you can make the

scope and access level more obvious by using the keyword in the statement.

Minimizing Scope

In general, when declaring any variable or constant, it is good programming practice to make the

scope as narrow as possible (block scope is the narrowest). This helps conserve memory and

minimizes the chances of your code erroneously referring to the wrong variable. Similarly, you

should declare a variable to be Static only when it is necessary to preserve its value between

procedure calls.

Constant:

The constants refer to fixed values that the program may not alter during its execution.

These fixed values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating

constant, a character constant, or a string literal. There are also enumeration constants as well.

Dim Private

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/dim-statement
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/static
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/private
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/modifiers/static

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 48

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 49

The constants are treated just like regular variables except that their values cannot be modified

after their definition.

An enumeration is a set of named integer constants.

Declaring Constants

In VB constants are declared using the Const statement. The Const statement is used at

module, class, structure, procedure, or block level for use in place of literal values.

The syntax for the Const statement is:

Where,

• attributelist: specifies the list of attributes applied to the constants; you can provide

multiple attributes separated by commas. Optional.

• accessmodifier: specifies which code can access these constants. Optional. Values can be

either of the: Public, Protected, Friend, Protected Friend, or Private.

• Shadows: this makes the constant hide a programming element of identical name in a

base class. Optional.

• Constantlist: gives the list of names of constants declared. Required.

Where, each constant name has the following syntax and parts:

• constantname: specifies the name of the constant

• datatype: specifies the data type of the constant

• initializer: specifies the value assigned to the constant

For example,

Example

The following example demonstrates declaration and use of a constant value:

[< attributelist>] [accessmodifier] [Shadows]

Const constantlist

constantname [As datatype] = initializer

'The following statements declare constants.'

Const maxval As Long = 4999

Public Const message As String = "HELLO"

Private Const piValue As Double = 3.1415

Module constantsNenum

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 50

When the above code is compiled and executed, it produces the following result:

Print and Display Constants in VB

VB provides the following print and display constants:

Constant Description

vbCrLf Carriage return/linefeed character combination.

vbCr Carriage return character.

vbLf Linefeed character.

vbNewLine Newline character.

vbNullChar Null character.

vbNullString Not the same as a zero-length string (""); used for

calling external procedures.

vbObjectError Error number. User-defined error numbers should be

greater than this value. For example:

Sub Main()

Const PI = 3.14149

Dim radius, area As Single

radius = 7

area = PI * radius * radius

Console.WriteLine("Area = " & Str(area))

Console.ReadKey()

End Sub

End Module

Area = 153.933

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 51

 Err.Raise(Number) = vbObjectError + 1000

vbTab Tab character.

vbBack Backspace character.

Declaring Enumerations

An enumerated type is declared using the Enum statement. The Enum statement declares

an enumeration and defines the values of its members. The Enum statement can be used at the

module, class, structure, procedure, or block level.

The syntax for the Enum statement is as follows:

Where,

• attributelist: refers to the list of attributes applied to the variable. Optional.

• asscessmodifier: specifies which code can access these enumerations. Optional. Values

can be either of the: Public, Protected, Friend or Private.

• Shadows: this makes the enumeration hide a programming element of identical name in

a base class. Optional.

• enumerationname: name of the enumeration. Required

• datatype: specifies the data type of the enumeration and all its members.

• memberlist: specifies the list of member constants being declared in this statement.

Required.

Each member in the memberlist has the following syntax and parts:

Where,

• name: specifies the name of the member. Required.

• initializer: value assigned to the enumeration member. Optional.

For example,

[< attributelist >] [accessmodifier] [Shadows]

Enum enumerationname [As datatype]

memberlist

End Enum

[< attribute list>] member name [= initializer]

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 52

Example

The following example demonstrates declaration and use of the Enum variableColors:

Enum Colors

red = 1

orange = 2

yellow = 3

green = 4

azure = 5

blue = 6

violet = 7

End Enum

Module constantsNenum

Enum Colors

red = 1

orange = 2

yellow = 3

green = 4

azure = 5

blue = 6

violet = 7

End Enum

Sub Main()

Console.WriteLine("The Color Red is : " & Colors.red)

Console.WriteLine("The Color Yellow is : " & Colors.yellow)

Console.WriteLine("The Color Blue is : " & Colors.blue)

Console.WriteLine("The Color Green is : " & Colors.green)

Console.ReadKey()

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 53

When the above code is compiled and executed, it produces the following result:

Arrays:

An array stores a fixed-size sequential collection of elements of the same type. An array

is used to store a collection of data, but it is often more useful to think of an array as a collection

of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Creating Arrays in VB

To declare an array in VB.Net, you use the Dim statement. For example,

You can also initialize the array elements while declaring the array. For example,

End Sub

End Module

The Color Red is: 1

The Color Yellow is: 3

The Color Blue is: 6

The Color Green is: 4

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", _

"Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 54

The elements in an array can be stored and accessed by using the index of the array. The

following program demonstrates this:

When the above code is compiled and executed, it produces the following result:

Module arrayApl

Sub Main()

Dim n(10) As Integer ' n is an array of 11 integers '

Dim i, j As Integer

' initialize elements of array n '

For i = 0 To 10

n(i) = i + 100 ' set element at location i to i + 100

Next i

' output each array element's value '

For j = 0 To 10

Console.WriteLine("Element({0}) = {1}", j, n(j))

Next j

Console.ReadKey()

End Sub

End Module

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 55

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need

of the program. You can declare a dynamic array using the ReDimstatement.

Syntax for ReDim statement:

Where,

• The Preserve keyword helps to preserve the data in an existing array, when you resize it.

• arrayname is the name of the array to re-dimension.

• subscripts specifies the new dimension.

Element(10) = 110

ReDim [Preserve] arrayname(subscripts)

Module arrayApl

Sub Main()

Dim marks() As Integer

ReDim marks(2)

marks(0) = 85

marks(1) = 75

marks(2) = 90

ReDim Preserve marks(10)

marks(3) = 80

marks(4) = 76

marks(5) = 92

marks(6) = 99

marks(7) = 79

marks(8) = 75

For i = 0 To 10

Console.WriteLine(i & vbTab & marks(i))

Next i

Console.ReadKey()

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 56

When the above code is compiled and executed, it produces the following result:

0 85

1 75

2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

Multi-Dimensional Arrays

VB allows multidimensional arrays. Multidimensional arrays are also called rectangular

arrays.

You can declare a 2-dimensional array of strings as:

or, a 3-dimensional array of Integer variables:

The following program demonstrates creating and using a 2-dimensional array:

End Sub

End Module

Dim twoDStringArray(10, 20) As String

Dim threeDIntArray(10, 10, 10) As Integer

Module arrayApl

Sub Main()

' an array with 5 rows and 2 columns

Dim a(,) As Integer = {{0, 0}, {1, 2}, {2, 4}, {3, 6}, {4, 8}}

Dim i, j As Integer

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 57

When the above code is compiled and executed, it produces the following result:

The Array Class

The Array class is the base class for all the arrays in VB.Net. It is defined in the System

namespace. The Array class provides various properties and methods to work with arrays.

Properties of the Array Class

The following table provides some of the most commonly used properties of

the Array class:

S.N Property Name & Description

' output each array element's value '

For i = 0 To 4

For j = 0 To 1

Console.WriteLine("a[{0},{1}] = {2}", i, j, a(i, j))

Next j

Next i

Console.ReadKey()

End Sub

End Module

a[0,0]: 0

a[0,1]: 0

a[1,0]: 1

a[1,1]: 2

a[2,0]: 2

a[2,1]: 4

a[3,0]: 3

a[3,1]: 6

a[4,0]: 4

a[4,1]: 8

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 58

1 IsFixedSize

Gets a value indicating whether the Array has a fixed size.

2 IsReadOnly

Gets a value indicating whether the Array is read-only.

3 Length

Gets a 32-bit integer that represents the total number of elements

in all the dimensions of the Array.

4 LongLength

Gets a 64-bit integer that represents the total number of elements

in all the dimensions of the Array.

5 Rank

Gets the rank (number of dimensions) of the Array.

Methods of the Array Class

The following table provides some of the most commonly used methods of theArray class:

S.N Method Name & Description

1 Public Shared Sub Clear (array As Array, index As Integer,

length As Integer)

Sets a range of elements in the Array to zero, to false, or to null,

depending on the element type.

2 Public Shared Sub Copy (sourceArray As Array,

destinationArray As Array, length As Integer)

Copies a range of elements from an Array starting at the first

element and pastes them into another Array starting at the first

element. The length is specified as a 32-bit integer.

3 Public Sub CopyTo (array As Array, index As Integer)

Copies all the elements of the current one-dimensional Array to

the specified one-dimensional Array starting at the specified

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 59

destination Array index. The index is specified as a 32-bit integer.

4 Public Function GetLength (dimension As Integer) As Integer

Gets a 32-bit integer that represents the number of elements in the

specified dimension of the Array.

5 Public Function GetLongLength (dimension As Integer) As

Long

Gets a 64-bit integer that represents the number of elements in the

specified dimension of the Array.

6 Public Function GetLowerBound (dimension As Integer) As

Integer

Gets the lower bound of the specified dimension in the Array.

7 Public Function GetType As Type

Gets the Type of the current instance (Inherited from Object).

8 Public Function GetUpperBound (dimension As Integer) As

Integer

Gets the upper bound of the specified dimension in the Array.

9 Public Function GetValue (index As Integer) As Object

Gets the value at the specified position in the one-dimensional

Array. The index is specified as a 32-bit integer.

10 Public Shared Function IndexOf (array As Array,value As

Object) As Integer

Searches for the specified object and returns the index of the first

occurrence within the entire one-dimensional Array.

11 Public Shared Sub Reverse (array As Array)

Reverses the sequence of the elements in the entire one-

dimensional Array.

12 Public Sub SetValue (value As Object, index As Integer)

Sets a value to the element at the specified position in the one-

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 60

dimensional Array. The index is specified as a 32-bit integer.

13 Public Shared Sub Sort (array As Array)

Sorts the elements in an entire one-dimensional Array using the

IComparable implementation of each element of the Array.

14 Public Overridable Function ToString As String

Returns a string that represents the current object (Inherited from

Object).

For complete list of Array class properties and methods, please consult Microsoft

documentation.

Example:

The following program demonstrates use of some of the methods of the Array class:

Module arrayApl

Sub Main()

Dim list As Integer() = {34, 72, 13, 44, 25, 30, 10}

Dim temp As Integer() = list

Dim i As Integer

Console.Write("Original Array: ")

For Each i In list

Console.Write("{0} ", i)

Next i

Console.WriteLine()

' reverse the array

Array.Reverse(temp)

Console.Write("Reversed Array: ")

For Each i In temp

Console.Write("{0} ", i)

Next i

Console.WriteLine()

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 61

When the above code is compiled and executed, it produces the following result:

Loops in Visual Basic:

There may be a situation when you need to execute a block of code several number of

times. In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming languages:

'sort the array

Array.Sort(list)

Console.Write("Sorted Array: ")

For Each i In list

Console.Write("{0} ", i)

Next i

Console.WriteLine()

Console.ReadKey()

End Sub

End Module

Original Array: 34 72 13 44 25 30 10

Reversed Array: 10 30 25 44 13 72 34

Sorted Array: 10 13 25 30 34 44 72

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 62

VB provides following types of loops to handle looping requirements. Click the following links

to check their details.

Loop Type Description

Do Loop It repeats the enclosed block of statements while

a Boolean condition is True or until the condition

becomes True. It could be terminated at any time

with the Exit Do statement.

For...Next It repeats a group of statements a specified

number of times and a loop index counts the

number of loop iterations as the loop executes.

For Each...Next It repeats a group of statements for each element

in a collection. This loop is used for accessing

and manipulating all elements in an array or a

VB.Net collection.

While... End While It executes a series of statements as long as a

given condition is True.

https://www.tutorialspoint.com/vb.net/vb.net_do_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_fornext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_foreachnext_loops.htm
https://www.tutorialspoint.com/vb.net/vb.net_while_loops.htm

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 63

With... End With It is not exactly a looping construct. It executes a

series of statements that repeatedly refer to a

single object or structure.

Nested loops You can use one or more loops inside any another

While, For or Do loop.

An object is a type of user interface element you create on a Visual Basic form by using a

toolbox control. In fact, in Visual Basic, the form itself is an object. Every Visual Basic control

consists of three important elements:

• Properties which describe the object,

• Methods cause an object to do something and

• Events are what happens when an object does something.

Control Properties

All the Visual Basic Objects can be moved, resized or customized by setting their properties. A

property is a value or characteristic held by a Visual Basic object, such as Caption or Fore Color.

Properties can be set at design time by using the Properties window or at run time by

using statements in the program code.

Where

• Object is the name of the object you're customizing.

• Property is the characteristic you want to change.

• Value is the new property setting.

For example,

You can set any of the form properties using Properties Window. Most of the properties

can be set or read during application execution. You can refer to Microsoft documentation for a

complete list of properties associated with different controls and restrictions applied to them.

Control Methods

A method is a procedure created as a member of a class and they cause an object to do

something. Methods are used to access or manipulate the characteristics of an object or a variable.

There are mainly two categories of methods you will use in your classes:

Object. Property = Value

Form1.Caption = "Hello"

https://www.tutorialspoint.com/vb.net/vb.net_with_statement.htm
https://www.tutorialspoint.com/vb.net/vb.net_nested_loops.htm

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 64

• If you are using a control such as one of those provided by the Toolbox, you can call any

of its public methods. The requirements of such a method depend on the class being used.

• If none of the existing methods can perform your desired task, you can add a method to a

class.

For example, the MessageBox control has a method named Show, which is called in the code

snippet below:

Control Events

An event is a signal that informs an application that something important has occurred.

For example, when a user clicks a control on a form, the form can raise a Click event and call a

procedure that handles the event. There are various types of events associated with a Form like

click, double click, close, load, resize, etc.

Following is the default structure of a form Load event handler subroutine. You can see

this code by double clicking the code which will give you a complete list of the all events

associated with Form control:

Here, Handles MyBase.Load indicates that Form1_Load() subroutine

handlesLoad event. Similar way, you can check stub code for click, double click. If you want to

initialize some variables like properties, etc., then you will keep such code inside Form1_Load()

subroutine. Here, important point to note is the name of the event handler, which is by default

Form1_Load, but you can change this name based on your naming convention you use in your

application programming.

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles Button1.Click

MessageBox.Show("Hello, World")

End Sub

End Class

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

'event handler code goes here

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 65

UNIT - III

Using Visual Basic's Standard Controls

1.Using the Text Box Control

The text box control is used to display information entered by the user at run time, or

assigned to the Text property of the control at design or run time.

The text box control:

In general, the text box control should be used for editable text, although you can make it

read-only by setting its Locked property to True. Text boxes also allow you to display multiple

lines, to wrap text to the size of the control, and to add basic formatting.

The Text Property:

Text entered into the text box control is contained in the Text property. By default, you

can enter up to 2048 characters in a text box. If you set the MultiLine property of the control to

True, you can enter up to 32K of text.

Formatting Text:

When text exceeds the boundaries of the control, you can allow the control to

automatically wrap text by setting the MultiLine property to True and add scroll bars by setting

the ScrollBars property to add either a horizontal or vertical scroll bar, or both. Automatic text

wrapping will be unavailable, however, if you add a horizontal scroll bar because the horizontal

edit area is increased by the presence of the scroll bar.

When the MultiLine property is set to True, you can also adjust the alignment of the text

to either Left Justify, Center, or Right Justify. The text is left-justified by default. If the

MultiLine property is False, setting the Alignment property has no effect.

Selecting Text:

You can control the insertion point and selection behavior in a text box with the SelStart,

SelLength and SelText properties.

Creating a Password Text Box:

A password box is a text box that allows a user to type in his or her password while

displaying placeholder characters, such as asterisks. Visual Basic provides two text box

properties, PasswordChar and MaxLength, which make it easy to create a password text box.

PasswordChar specifies the character displayed in the text box. For example, if you want

asterisks displayed in the password box, you specify * for the PasswordChar property in the

Properties window. Regardless of what character a user types in the text box, an asterisk is

displayed, as shown in Figure 7.45.

Password example

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 66

With MaxLength, you determine how many characters can be typed in the text box. After

MaxLength is exceeded, the system emits a beep and the text box does not accept any further

characters.

Canceling Keystrokes in a Text Box:

You can use the KeyPress event to restrict or transform characters as they are typed. The

KeyPress event uses one argument, keyascii. This argument is an integer that represents the

numeric (ASCII) equivalent of the character typed in the text box.

The next example demonstrates how to cancel keystrokes as they are typed. If the character

typed is not within the specified range, the procedure cancels it by setting KeyAscii to 0. The

text box for this example is named txtEnterNums, and the procedure prevents the text box from

receiving any characters other than digits. Compare KeyAscii directly to the numeric (Asc)

values of various characters.

Private Sub txtEnterNums_KeyPress (KeyAscii As Integer)

If KeyAscii < Asc("0") Or KeyAscii > Asc("9") Then

KeyAscii = 0 ' Cancel the character.

Beep ' Sound error signal.

End If

End Sub

Creating a Read-Only Text Box

You can use the Locked property to prevent users from editing text box contents. Set the

Locked property to True to allow users to scroll and highlight text in a text box without allowing

changes. With the Locked property set to True, a Copy command will work in a text box, but Cut

and Paste commands will not. The Locked property only affects user interaction at run time.

You can still change text box contents programmatically at run time by changing the Text

property of the text box.

Printing Quotation Marks in a String:

Sometimes quotation marks (" ") appear in a string of text.

She said, "You deserve a treat!"

Because strings assigned to a variable or property are surrounded by quotation marks (" "), you

must insert an additional set of quotation marks for each set to display in a string. Visual Basic

interprets two quotation marks in a row as an embedded quotation mark.

For example, to create the preceding string, use the following code:

Text1.Text = "She said, ""You deserve a treat!"" "

To achieve the same effect, you can use the ASCII character (34) for a quotation mark:

Text1.Text = "She said, " & Chr(34) + "You deserve a treat!" & Chr(34)

2. Using the Command Button Control

The command button control is used to begin, interrupt, or end a process. When clicked,

it invokes a command that has been written into its Click event procedure.

The command button control

Most Visual Basic applications have command buttons that allow the user to simply click

them to perform actions. When the user chooses the button, it not only carries out the appropriate

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 67

action, it also looks as if it's being pushed in and released and is therefore sometimes referred to

as a push button.

Adding a Command Button to a Form

You will likely use one or more command buttons in your application. To add command

buttons to a form, draw them on as you would any other control. Command buttons can be sized

with the mouse or by setting their Height and Width properties.

Setting the Caption:

To change the text displayed on the command button, use the Caption property. At design

time, you can set this property by selecting it from the control's Properties window. When you

set the Caption property at design time, the button text will be updated dynamically.

You can set the Caption property up to 255 total characters. If your caption exceeds the width of

the command button, it will wrap to the next line. However, it will be clipped if the control

cannot accommodate its overall height.

You can change the font displayed on the command button by setting its Font property.

Creating Keyboard Shortcuts:

You can use the Caption property to create access key shortcuts for your command

buttons by adding an ampersand (&) before the letter you want to use as the access key. For

example, to create an access key for the caption "Print" you add an ampersand before the letter

"P": "&Print". At run time, the letter "P" will be underlined and the user can select the command

button by simultaneously pressing ALT+P.

Specifying the Default and Cancel Properties:

On each form, you can select a command button to be the default command button —

that is, whenever the user presses the ENTER key the command button is clicked regardless of

which other control on the form has the focus. To specify a command button as default set the

Default property to True.

You can also specify a default cancel button. When the Cancel property of a command

button is set to True, it will be clicked whenever the user presses the ESC key, regardless of

which other control on the form has the focus.

Selecting the Command Button:

A command button can be selected at run time by using the mouse or keyboard in the

following ways:

• Use a mouse to click the button.

• Move the focus to the button by pressing the TAB key, and then choose the button by

pressing the SPACEBAR or ENTER.

• Press an access key (ALT+ the underlined letter) for a command button.

• If the command button is the default command button for the form, pressing ENTER

chooses the button, even if you change the focus to a different control.

• If the command button is the default Cancel button for the form, then pressing ESC

chooses the button, even if you change the focus to another control.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 68

The Value Property:

Whenever the command button is selected, its Value property is set to True and the Click

event is triggered. False (default) indicates the button isn't chosen. You can use the Value

property in code to trigger the command button's Click event. For example:

cmdClose.Value = True

The Click Event

When clicked, the command button's Click event is triggered and the code you've written

in the Click event procedure is invoked.

Clicking a command button control also generates the MouseDown and MouseUp events.

If you intend to attach event procedures for these related events, be sure that their actions don't

conflict. The order in which these three events occur varies from control to control. In the

command button control, these events occur in this order: MouseDown, Click, MouseUp.

DriveListBox, DirListBox and FileListBox Controls

To work with the file system, the DriveListBox, DirListBox and FileListBox are used

together that will access the files stored in the secondary memory of your computer. The

DriveListBox shows all the drives on your computer, the DirListBox displays all the sub-

directories of a given directory, and the FileListBox shows the files in a particular directory.

Most of the properties, events and methods are same as the ListBox and ComboBox

controls. So the common things have not been explained in this section.

Selected Items

The Drive, Path and FileName properties return the selected item in the DriveListBox,

DirListBox and FileListBox respectively. The Drive property returns the selected disk drive from

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 69

your computer.

Setting the Drive

Example:

Output:

Working with the three list boxes together

When the user selects a drive, this change should be reflected in DirListBox and when the

user selects a directory, this change should be reflected in the FileListBox. Write the following

code for that.

Example:

Showing the selected file name

To show only the selected file name, write the following code.

Private Sub Form_Load()

Drive1.Drive = "G"

End Sub

Private Sub Dir1_Change()

File1.Path = Dir1.Path

End Sub

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

Example: This program will show only the name of the selected file.

Private Sub cmdShowFileName_Click()

Print File1.FileName

End Sub

Private Sub Dir1_Change()

File1.Path = Dir1.Path

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 70

Output: The output will vary from computer to computer.

The Pattern property of FileListBox

The Pattern property sets which files to be shown in the list. The default value is *.* (all

files). You can specify which types of files to be shown. To enter multiple specifications, use

semicolon as a separator. You can set the Pattern in run-time also.

Example:

Showing the complete file path with file name

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

File1.Pattern = "*.bmp;*.ico;*.wmf;*.gif;*.jpg"

Example:

Private Sub cmdShowFileName_Click()

f = File1.Path

If Right(f, 1) <> "\" Then

f = File1.Path + "\"

End If

Print f + File1.FileName

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 71

Output: The output will vary from computer to computer.

Three of the controls on the ToolBox let you access the computer’s file system. They are

DriveListBox, DirListBox and FileListBox controls .

The Drive ListBox is used to display a list of drives available in your computer.When you

place this control into the form and run the program,you will be able to select different drive

from your computer.

The DirListBox is Directory ListBox is used to display the list of directories or folder in a

selected drive.When you place this control into the form and run the program,you will be able to

select different directories from a selected drive in your computer.

Using VB File System Controls:

VB provides three native toolbox controls for working with the file system:

the DriveListBox, DirListBox, and FileListBox. You can use these controls independently, or

in concert with one another to navigate the file system.

Private Sub Drive1_Change()

Dir1.Path = Drive1.Drive

End Sub

Private Sub Dir1_Change()

File1.Path = Dir1.Path

End Sub

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 72

The DriveListBox control is a specialized drop-down list that displays a list of all the

valid drives on the user's system. The most important property of the DriveListBox is

theDrive property, which is set when the user selects an entry from the drop-down list or when

you assign a drive string (such as "C:") to the Drive property in code. You can also read the

Drive property to see which drive has been selected.

To make a DirListBox display the directories of the currently selected drive, you would

set the Path property of the DirListBox control to the Drive property of the DriveListBox

control in the Change event of the DriveListBox, as in the following statement:

Dir1.Path = Drive1.Drive

The DirListBox control displays a hierarchical list of the user's disk directories and

subdirectories and automatically reacts to mouse clicks to allow the user to navigate among

them. To synchronize the path selected in the DirListBox with a FileListBox, assign

the Path property of the DirListBox to the Path property of the FileListBox in theChange event

of the DirListBox, as in the following statement:

File1.Path = Dir1.Path

The FileListBox control lists files in the directory specified by its Path property. You can

display all the files in the current directory, or you can use the Pattern property to show only

certain types of files.

Similar to the standard ListBox and ComboBox controls, you can reference

the List, ListCount, and ListIndex properties to access items in a DriveListBox, DirListBox, or

FileListBox control. In addition, the FileListBox has a MultiSelect property which may be set to

allow multiple file selection.

Sample Program Overview
The sample program is a "Text File Viewer". The sample program uses the

DriveListBox, DirListBox, and FileListBox to allow the user to navigate his or her file system.

When the user selects a file that the program deems to be a "plain text" file, and that file is not

"too large", the contents of that file is displayed in a multi-line, scrollable textbox.

In the screen-shot below, the user has navigated to the directory "C:\Program

Files\CesarFTP" and selected the file "tests.txt" from that directory. The content of "tests.txt" is

displayed in the multi-line textbox:

ActiveX Controls :
One of the most exciting feature of Visual Basic is the ActiveX.It is the technology

developed by Microsoft that defines a communication standard between applications.The

ActiveX control exist as separate files with a .ocx file name extension. These include controls

that are available in all editions of Visual Basic and those that are available only in the

Professional and Enterprise editions (such as Listview, Toolbar, Animation, and Tabbed Dialog).

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 73

Adding Built-in ActiveX Controls to the Toolbox:
1. From the Project Menu, choose Components.you can also right click on toolbox.A popup

menu is open select components.

2. A component dialogbox is open .Select the Microsoft windows common controls 6.0(SP6).

3. Then click on apply button .you can see some other components like Listview,

Toolbar, Animation, and Tabbed Dialog show on your toolbox. Click on close button.Use this

conrol as you want

To build an ActiveX control from scratch and compile it so that it is usable as a command

button or a listbox is in other projects, you write the ActiveX Control and then compile it to an

OCX file. The ocx file contains only the user controls that were part of the VB project you built

it from and no extra stuff like forms or full programs

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 74

List of Built-in ActiveX Contorls:
Visual basic 6.0 offers us many built -in activex Controls of which a few are listed and briefly

explained below.

ActiveX controls

ActiveX controls can be used on worksheet forms, with or without the use of VBA code,

and on VBA UserForms. In general, use ActiveX controls when you need more flexible design

requirements than those provided by Form controls. ActiveX controls have extensive properties

that you can use to customize their appearance, behavior, fonts, and other characteristics.

You can also control different events that occur when an ActiveX control is interacted

with. For example, you can perform different actions, depending on which choice a user selects

from a list box control, or you can query a database to refill a combo box with items when a user

clicks a button. You can also write macros that respond to events associated with ActiveX

controls. When a user of the form interacts with the control, your VBA code then runs to process

any events that occur for that control.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 75

Your computer also contains many ActiveX controls that were installed by Excel and

other programs, such as Calendar Control 12.0 and Windows Media Player.

However, ActiveX controls cannot be added to chart sheets from the user interface or to

XLM macro sheets. You also cannot assign a macro to run directly from an ActiveX control the

same way you can from a Form control.

Treeview Control

TreeView control is used to display hierarchical tree like information such as a

directory hierarchy. The top level in a tree view are root nodes that can be expanded

or collapsed if the nodes have child nodes.

The user can expand the TreeNode by clicking the plus sign (+) button, if one is

displayed next to the TreeNode, or you can expand the TreeNode by calling the

Important: Not all ActiveX controls can be used directly on worksheets; some can be used only

on Visual Basic for Applications (VBA) UserForms. If you try to add any one of these particular

ActiveX controls to a worksheet, Excel displays the message "Cannot insert object."

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 76

TreeNode.Expand method. When a parent node is expanded, its child nodes are visible. You can

also navigate through tree views with various properties: FirstNode, LastNode, NextNode,

PrevNode, NextVisibleNode, PrevVisibleNode.

The fullpath method of treeview control provides the path from root node to the selected node.

TreeView1.SelectedNode.FullPath

Tree nodes can optionally display check boxes. To display the check boxes, set the CheckBoxes

property of the TreeView to true.

TreeView1.CheckBoxes = True

The following Vb.Net program shows a simple demonstration of treeview control

The TreeView control display a hirearchical display node object.Each node consist of label

,optional bitmap.You use this control to display the information in hierarchical tree.

The TreeView control is designed to display data that is hierarchical in nature, such as

organization trees, the entries in an index, the files and directories on a disk.

Uses of TreeView

▪ To create an organization tree that can be manipulated by the user.

▪ To create a tree that shows at least two or more levels of a database.

Tree Trems

Node: A node can be best thought of as a branch on our tree. Each node represents 1 item. A

node can hold any number of sub nodes.

Sibling: A sibling is another node that exists on the same branch as the referring node.

Children: Children are sub-nodes of the current node. Sometimes called Child nodes.

Parent: A parent node is the node ―up‖ from your current node. All nodes except the root node

have a parent node.

Tree View Creation:

In a Windows application a tree view is primarily a control like any other. To use it in your

application, you can click the TreeView button in the Toolbox and click a form or other control in

your application. This is equivalent to programmatically declaring a variable of typeTreeView, using

the new operator to instantiate it and adding it to its container's list of controls through a call to

the Controls.Add()method. Here is an example:

Imports System.Drawing

Imports System.Windows.Forms

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 77

Module Exercise

Public Class Starter

Inherits Form

Private tvwCountries As TreeView

Dim components As System.ComponentModel.Container

Public Sub New()

InitializeComponent()

End Sub

Public Sub InitializeComponent()

Text = "Countries Statistics"

Size = New Size(242, 280)

tvwCountries = New TreeView()

tvwCountries.Location = New Point(12, 12)

tvwCountries.Width = 210

tvwCountries.Height = 230

Controls.Add(tvwCountries)

End Sub

End Class

Function Main() As Integer

Dim frmStart As Starter = New Starter

Application.Run(frmStart)

Return 0

End Function

End Module

MENU EDITOR

Menus are features that are available in nearly all programs nowadays . Making menus is very easy

in Visual Basic using the menu editor . To start the menu editor you go to Tools | Menu Editor. The

menu editor now appears , here is what is displayed on screen.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 78

Caption : this is the name that the user will see.

Name : this is the name that the programmer uses , we use the mnu prefix for all

menu items(mnuFile).

Shortcut : this assigns a shortcut to a menu item this is a combination of keys which access a menu

item for example Ctrl + c is commonly used for copy

Checked : this allows the programmer to place a check beside a menu item , this is unchecked by

default.

Enabled : This specifies whether the menu item is accessible to the user , if this is checked the menu

item is grayed out and inaccessible.

Visible: this determines whether the menu item is visible if this is not checked then the menu item will

not appear at run time.

WindowList : determines whether the menu item applies to an MDI document (Word and Excel are

examples of MDI applications).

HelpContextID : this matches a help description if you have any in your program.

Index : this specifies a menus index in a control array.

You will also have noticed the arrows these are used to manipulate manu items the up and down

arrows move the menu items up and down the list and the left / right arrows are used to indent the

http://www.programmershelp.co.uk/menueditor.php
http://www.blogger.com/blogger.g?blogID=985356780226964381
http://www.blogger.com/blogger.g?blogID=985356780226964381
http://www.blogger.com/blogger.g?blogID=985356780226964381
http://www.programmershelp.co.uk/menueditor.php

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 79

menu items.

MENU EDITOR

Preface

In other programming systems, you write code to generate menus in forms. If you don't write it

directly, the programming system will write it for you. Not so in Visual Basic.

When you create a menu in Visual Basic, no sign of it will ever appear in your code. That's why the

Menu Editor is your only way of creating, editing, and removing menus in your forms. If you don't

know how to use it, you're pretty much doomed from the get-go.

Getting Started

First of all, start Visual Basic and add a new project. When

you've started it, go looking in the toolbar for the third icon

on the left. When you press it, the Menu Editor should

appear.

The Editor Window

The first thing you'll see is an empty list and

a lot of text fields and drop-down lists. It can

be quite confusing, and it's not obvious how

you design the menus.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 80

Creating Menu Items

Let's start with explaining the basic

properties of a menu item:

Caption The text that appears in the menu
bar

Name The name of the menu item, just
like the name of a textbox or label

Index If the menu is part of a control
array, this is the array index

Your basic menu item would look like the

ones in Figure 1: The Caption follows basic

naming in Windows, and the names have the

standardmnu preface.

From this picture, you also see how the

menus will look in the list. The principle of

designing menus is rather backwards,

considering all the other things you can do

with Visual Basic:

Each menu item has its own line in the big

list. To tell Visual Basic that one menu item

should be a child of (that is, be sorted under) another menu item, you indent it. The two buttons with

arrows pointing left and right serve that purpose -- unindent and indent (left and right).

The three dots in front of New, Open, and Save tell Visual Basic that these menu items are to be

placed in the File menu.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 81

In Visual Basic, the & in front of a character tells Visual Basic that Alt+[the character] will be a hot

key for that item. The same applies to menus, except that you don't press Alt. Hot keys are only in

effect when the menu has been pulled down and has focus.

Short-cuts are the key combinations you press to active a menu item when the menu does not have

focus. The three most commonly used short-cuts are Ctrl-C, Ctrl-X, and Ctrl-V. These are typically

bound to Copy, Cut, and Paste, but you can bind them to any of your menu items if you choose.

If you want to set the short-cut key for a menu item, you have the options listed in the Shortcut: list.

Other Properties of a Menu Item

As we said earlier, there are a lot of confusing items in the Menu Editor, and the help file doesn't do

much to help. These are the other menu item properties you'll be using:

HelpContextId If you have made a help file for your application, you will know that a help
context id is a unique identifier assigned to each "chapter" in the help file. This

context id will let you assign one chapter to each menu item, so that the correct

help text will be displayed when the user presses F1

NegotiatePosition 0 points to Microsoft for enlightening help texts. I still haven't found out which

When you're done adding items to the File

menu, it's time to press the unindent button

to go back to the "top" level. If you want a

new menu, f. ex. an Edit menu, you would

repeat the procedure of inserting lines and

indenting them to the correct level. See

Figure 2 for an example.

Short-cuts and hot keys

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 82

effect this property has on a menu

Checked Menu items can be checked or unchecked (you know, the little check mark beside
them). This property lets you check or uncheck them.

Enabled If this is checked, the menu item will look normal and be clickable. If it isn't
checked, the menu item is grayed out and isn't clickable.

Visible Same as Enabled, but will hide the menu item instead of graying it out

WindowList If this item is checked, all open forms will be added as children of this menu item.

The active form will be checked, and if you click the name of a form, it will

become the active form. Used in MDI applications.

Using the Common Dialog Control

The common dialog control provides a standard set of dialog boxes for operations such as

opening and saving files, setting print options, and selecting colors and fonts. The control also

has the ability to display Help by running the Windows Help engine.

The common dialog control

The common dialog control provides an interface between Visual Basic and the

procedures in the Microsoft Windows dynamic-link library Commdlg.dll. To create a dialog box

using this control, Commdlg.dll must be in your Microsoft Windows \System directory.

You use the common dialog control in your application by adding it to a form and setting its

properties. The dialog displayed by the control is determined by the methods of the control. At

run time, a dialog box is displayed or the Help engine is executed when the appropriate method

is invoked; at design time, the common dialog control is displayed as an icon on a form. This

icon can't be sized.

The common dialog control allows you to display these commonly used dialog boxes:

• Open

• Save As

• Color

• Font

• Print

To use the common dialog control

1. If you haven't already done so, add the common dialog control to the toolbox by

selecting Components from the Project menu. Locate and select the control in

the Controls tabbed dialog, then click the OK button.

2. On the toolbox, click the CommonDialog control and draw it on a form.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 83

When you draw a common dialog control on a form, it automatically resizes itself. Like

the timer control, the common dialog control is invisible at run time.

3. At run time, use the appropriate method, as listed in the following table, to display the

desired dialog.

Method

Dialog displayed

ShowOpen

Open

ShowSave

Save As

ShowColor

Color

ShowFont

Font

ShowPrinter

Print

ShowHelp

Invokes Windows

Help

RichTextBox Control

The RichTextBox control allows the user to enter and edit text while also providing more

advanced formatting features than the conventional TextBox control.

The RichTextBox control provides a number of properties you can use to apply

formatting to any portion of text within the control. To change the formatting of text, it must first

be selected. Only selected text can be assigned character and paragraph formatting. Using these

properties, you can make text bold or italic, change the color, and create superscripts and

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 84

subscripts. You can also adjust paragraph formatting by setting both left and right indents, as

well as hanging indents.

The RichTextBox control opens and saves files in both the RTF format and regular

ASCII text format. You can use methods of the control (LoadFile and SaveFile) to directly read

and write files, or use properties of the control such as SelRTF and TextRTF in conjunction

with Visual Basic's file input/output statements.

The RichTextBox control supports object embedding by using the OLEObjects

collection. Each object inserted into the control is represented by an OLEObject object. This

allows you to create documents with the control that contain other documents or objects. For

example, you can create a document that has an embedded Microsoft Excel spreadsheet or a

Microsoft Word document or any other OLE object registered on your system. To insert objects

into the RichTextBox control, you simply drag a file (from the Windows 95 Explorer for

example), or a highlighted portion of a file used in another application (such as Microsoft Word),

and drop the contents directly onto the control.

The RichTextBox control supports both clipboard and OLE drag/drop of OLE objects.

When an object is pasted in from the clipboard, it is inserted at the current insertion point. When

an object is dragged and dropped into the control, the insertion point will track the mouse cursor

until the mouse button is released, causing the object to be inserted. This behavior is the same as

Microsoft Word.To print all or part of the text in a RichTextBox control use the SelPrint

method.

Because the RichTextBox is a data-bound control, you can bind it with a Data control to

a Binary or Memo field in a Microsoft Access database or a similar large capacity field in other

databases (such as a TEXT data type field in SQL Server).

The RichTextBox control supports almost all of the properties, events and methods used

with the standard TextBox control, such as MaxLength, MultiLine, ScrollBars, SelLength,

SelStart, and SelText. Applications that already use TextBox controls can easily be adapted to

make use of RichTextBox controls. However, the RichTextBox control doesn't have the same

64K character capacity limit of the conventional TextBox control.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 85

For example, the following code sets the selection's color to black and makes its font bold.

1RichTextBox1.SelectionColor = Color.Black

2RichTextBox1.SelectionFont = New Font(RichTextBox1.Font, FontStyle.Bold)

UNIT-V:

Working with Databases

Introduction to Database

Every day we come across all types of information or data such as names, addresses,

money, date, stock quotes, statistics and more. If you are in business or working as a

professional, you have to handle even more data. For example, a doctor needs to keep track of

patients’ information such as names, addresses, phone numbers as well as blood pressure

readings, blood sugar readings, surgical history, medicines prescribed in the past and more. On

the other hand, businesses usually have a large amount of data pertaining to products and

customers. All these data need to be organized into a database. The database can then be used to

perform MIS functions such as data mining and big data analytics.

In the past, people usually deal with data manually like using cards and folders. However,

in present-day fast paced global environment and Information age, it is no longer feasible to

manage data manually. Most data are now managed using computer-based database management

systems. Computer-based Database management systems can handle data much faster and more

efficient than human beings do. With the advent of the network and the Internet technologies,

data can now be managed locally and remotely.Companies usually invest heavily in database

management systems in order to run the organizations efficiently and effectively.

Creating a Database Application

A database management system typically deals with storing, modifying, and extracting

information from a database. It can also add, edit and delete records from the database. However,

a DBMS can be very difficult to handle by ordinary people or businessmen who have no

technological backgrounds. Fortunately, we can create user-friendly database applications to

handle the aforementioned jobs with the DBMS running in the background. One of the best

programs that can create such database application is none other than Visual Basic 2013.

To begin building the database project in Visual Basic 2012, launch Visual Basic 2012. You

can name your project as Database Project 1 or whatever name you wish to call it. Next, change

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 86

the default form’s Text property to Contacts as we will be building a database of a contact list.

There are a few objects in ADO.NET that are required to build the database. There are:

• SqlConnection– to connect to a data source in SQL Server

• DataTable -to store data for navigation and manipulation

• DataAdapter– to populate a DataReader

The aforementioned objects belong to the System.Data and the System.Xml namespace.

Therefore, we need to reference them in the beginning before we can work with them. To

reference the ADO.NET object, choose project from the menu then select Database Project 1

properties to display the project properties. Next click the References tab to show the active

references for the project,

Under imported namespaces, make sure system.data, System.Data.Sqlclient is selected,

otherwise, check them. Having done that you need to click the Save All button on the toolbar and

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 87

then return to the Visual Basic 2013 IDE.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 88

Introduction to Access programming

When you create a new database, you typically begin by creating several database objects

such as tables, forms, and reports. Eventually, you reach a point where you have to add some

programming to automate certain processes and tie your database objects together.

Use the Command Button Wizard to perform common programming tasks
If you are adding a command button to a form, the Command Button Wizard can help

you get started with programming. The wizard helps you create a command button that performs

a specific task. In an Access (.accdb) file, the wizard creates a macro that is embedded in

the OnClick property of the command button. In an .mdb or .adp file, the wizard creates VBA

code, because embedded macros are not available in those file formats. In either case, you can

then modify or enhance the macro or VBA code to better suit your needs.

1. In the Navigation Pane, right-click the form to which you want to add the command button, and

then click Design View.

2. On the Design tab, click the down arrow to display the Controls gallery, and then ensure

that Use Control Wizards is selected.

3. On the Design tab, in the Controls gallery, click Button.

4. In the form design grid, click where you want the command button to be placed.

The Command Button Wizard starts.

5. On the first page of the wizard, click each category in the Categories list to see which actions

the wizard can program the command button to perform. In the Actions list, select the action that

you want, and then click Next.

6. Click either the Text option or the Picture option, depending on whether you want text or a

picture to be displayed on the command button.

o If you want text to be displayed, you can edit the text in the box next to the Text option.

o If you want a picture to be displayed, the wizard suggests a picture in the list. If you want to

select a different picture, select the Show All Pictures check box to display a list of all the

command button pictures that Access provides, or click Browse to select a picture that is stored
elsewhere.

Click Next.

7. Enter a meaningful name for the command button. This is an optional step, and this name is not

displayed on the command button. However, it is a good idea to enter a meaningful name so that

when you need to refer to the command button later (for example, if you are setting the tab order

for controls on your form), it will be much easier to differentiate between the command buttons.

If the command button closes the form, for example, you might name it cmdClose or

CommandClose.

8. Click Finish.

Access places the command button on the form.

9. If you want to see what the wizard "programmed" for you, follow these optional steps:

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 89

a. If the property sheet is not already displayed, press F4 to display it.

b. Click the Event tab in the property sheet.

c. In the On Click property box, click the Build button .

Access starts the Macro Builder and displays the macro that the wizard created. You can

edit the macro if you want (for more information about how to edit a macro, see the

section Understand macros). When you are finished, on the Design tab, in the Close group,

click Close to close the Macro Builder. If Access prompts you to save the changes and update the

property, click Yes to save the changes or No to reject the changes.

On the Design tab, in the Views group, click View, and then click Form View. Click the

new command button to confirm that it works as you expected.

Using DataGrid Control

In the previous lesson, we use textboxes or labels to display data by connecting them to a

database via Microsoft ADO data Control 6.0. The textbox is not the only control that can

display data from a database, many other controls in Visual Basic can display data. One of them

is the DataGrid control. DataGrid control can be used to display the entire table of a recordset

of a database. It allows users to view and edit data.

DataGrid control is not the default item in the Visual Basic control toolbox, you have to

add it from the VB6 components. To add the DataGrid control, click on the Project on the menu

bar and select components to access the dialog box that displays all the available VB6

components, as shown in the diagram below. Select Microsoft DataGrid Control 6.0 by

clicking the checkbox beside this item. Before you exit the dialog box, you also need to select

the Microsoft ADO data control so that you are able to access the database. Last, click on the

OK button to exit the dialog box. Now you should be able to see that the DataGrid control and

the ADO data control are added to the toolbox. The next step is to drag the DataGrid control and

the ADO data control into the form.

The components dialog box is shown below:

https://support.office.com/en-us/article/introduction-to-access-programming-92eb616b-3204-4121-9277-70649e33be4f#bmlearnaboutmacros

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 90

The Components Dialog Box

The Design Interface

Before you proceed , you need to create a database file using Microsoft Access. Here we

create a database file to store the information of books and we named the table book. Having

created the table, enter a few records, as shown in Figure 26.3 below:

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 91

Next, you need to connect the database to the ADO data control. To do that, right click on

the ADO data control and select the ADODCproperties, the following dialog box will appear.

Next click on the Build button and the Data Link Properties dialog box will appear . In

this dialog box, select the database file you have created, in my case, the file name

is books.mdb. Press test connection to see whether the connection is successful. If the

connection is successful, click OK to return to the ADODC property pages dialog box. At the

ADODC property pages dialog box, click on the Recordsource tab and select 2-adCmdTable

under command type and select book as the table name, then click OK.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 92

Finally you need to display the data in the DataGrid control. To accomplish this, go to the

properties window and set the DataSource property of the DataGrid to Adodc1. You can also

permit the user to add and edit your records by setting the AllowUpdate property to True. If you

set this property to false, the user cannot edit the records. Now run the program and the runtime

interface.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 93

Data Access Objects

Declaring a Data Bound Control

A data bound control connects a data control in Visual Basic to a database table or query.

Data controls are visual objects that are said to be data-aware. Data controls may include check

boxes, images, labels, picture boxes, and text boxes (see figure A). Visual Basic's data controls

allow users to access stored database records. The data control establishes a link between the

database and other controls in the interface, in a process called binding. When a control is bound,

it displays database field contents when the Data control is present.

Required property settings for the Data control include the DatabaseName property

which specifies the complete path to the database , and the RecordSource property, which

indicates the table to use from the database . The DataSource property (specifies the name of the

Data control to which it is bound) and the DataField property (specifies the name of a field in

the database to which the control is linked) should be set for all form controls that access

database information (Cashman, VB 4).

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 94

Accessing Data Using Visual Basic

The figure below is a roadmap of data access technologies found in Visual Basic. The

figure features "hot" zones, which you can click to find out more information about any

particular set of data, access tools or technologies.

Microsoft Visual Data Tools

Using Visual Basic 6.0 you can create components that encapsulate every step in a data

access system. Beginning with the data source, Microsoft Visual Data Tools (accessible through

the Data View window) give you the ability to view and manipulate tables, views, stored

procedures, and database schemas on SQL Server and Oracle systems.

Middle Tier Components and Microsoft Transaction Server

The power of Visual Basic is also leveraged to create the middle tier components in your

application, as you make your own ActiveX DLLs and EXEs. Visual Basic now includes

enhancements that tailor applications to work with Microsoft Transaction Server.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 95

ActiveX Data Objects (ADO)

The bridge between the data providers and data consumers is through data sources

created using Microsoft ActiveX Data Objects (ADO), which is the primary method in Visual

Basic to access data in any data source, both relational and non-relational. For backward

compatibility and project maintenance, Remote Data Objects (RDO) and Data Access Objects

(DAO) are still supported.

Data Sources and Data Controls

On the client side, several new data sources are available, including the Data

Environment, a graphical designer that allows you to quickly create ADO Connections and

Commands to access your data. The Data Environment designer provides a dynamic

programmatic interface to the data access objects in your project. In addition, the Data

Environment provides advanced data shaping services — the ability to create hierarchies of

related data, aggregates, and automatic groupings, all without code.

The new ADO Data control is similar to the intrinsic data control and Remote Data

control, except that it uses ADO to access data. You can now use an ADO Recordset as a data

source for your controls and objects in Visual Basic.

In Visual Basic you can now create your own data sources either as user controls or

classes, to encapsulate business rules or proprietary data structures. The class module now

features the DataSourceBehavior property and the GetDataMember event, which allow you to

configure a class as a data source.

Dynamic Data Binding

The ability to dynamically bind a data source to a data consumer is now possible in

Visual Basic. At run time, you can now set the DataSource property of a data consumer (such as

the DataGrid control) to a data source (such as the ADO Data control). This capability,

unavailable in previous versions of Visual Basic, allows you to create applications, which can

access a multitude of data sources.

Presenting Data to the End User

Visual Basic offers a variety of rich ways to present data to your end users. ADO/OLE DB-

based versions of all the data bound controls are included in Visual Basic:

• The DataList and DataCombo controls are the ADO/OLE DB equivalents of DBList and

DBCombo controls.

• The DataGrid is the successor to DBGrid.

• The Chart control is now data bound.

• A new version of the FlexGrid control, called the Hierarchical FlexGrid, supports the

hierarchical abilities of the Data Environment.

• The new DataRepeater control functions as a scrolling container of data bound user

controls where each control views a single record.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 96

The Data Report is a new ActiveX designer that creates reports from any data source,

including the Data Environment. With the Data Report designer, formatted reports can be viewed

online, printed, or exported to text or HTML pages.

Data Formatting and Data Validation

The new DataFormat object allows you to display data with custom formatting, but write

it back to the database in the native format. For example, you can now display dates in the format

appropriate to a country, while the actual data is stored in a date format. Data is formatted

coming out of the source, and unformatted going back in. You can also do custom formatting and

perform additional checks using the Format and Unformat events.

Data validation is also enhanced using the CausesValidation property with the Validate

event. By setting the CausesValidation property to True, the Validate event for the previous

control in the tab order will occur. Thus, by programming the Validate event, you can prevent a

control from losing focus until the information it contains has been validated.

Language Features

New data-related enhancements to the Visual Basic language include the ability to pass

User-defined Types (UDTs) and arrays across processes. You can now define a UDT and pass it

as a parameter to another process, such as an ActiveX EXE or DLL.

DHTML and Data Access

Using Visual Basic, you can create complete web applications for data access. All of the

data tools and technologies can also be used in DHTML pages, and on web server (IIS)

applications.

OPEN DATABASE CONNECTIVITY (ODBC)
The main proponent and supplier of ODBC programming support is Microsoft, but

ODBC is based on and closely aligned with The Open Group standard Structured Query

Language (SQL) Call-Level Interface (CLI). The Open Group is sponsored by many major

vendors, including Oracle, IBM and Hewlett Packard Enterprise, and this consortium develops

and manufactures The Open Group Architecture Framework (TOGAF). In addition to CLI

specifications from The Open Group, ODBC also aligns with the ISO/IEC for database APIs.

Microsoft database programming object sets:

• Data Access Objects (DAO),

• Remote Data Objects (RDO), and

• ActiveX Data Objects (ADO).

DAO:

When Visual Basic first started working with databases, it used the Microsoft Jet database

engine, which is what Microsoft Access uses. To support the Jet database engine, Microsoft added

the data control to Visual Basic, and you can use that control to open Jet database (.mdb) files.

Microsoft also added a set of Data Access Objects (DAO) to Visual Basic:

• DBEngine—The Jet database engine

• Workspace—An area can hold one or more databases

• Database—A collection of tables

• TableDef—The definition of a table

• QueryDef—The definition of a query

• Recordset—The set of records that make up the result of a query

• Field—A column in a table

http://searchoracle.techtarget.com/definition/The-Open-Group
http://searchsqlserver.techtarget.com/definition/SQL
http://searchmicroservices.techtarget.com/definition/The-Open-Group-Architecture-Framework-TOGAF
http://searchdatacenter.techtarget.com/definition/ISO
http://whatis.techtarget.com/definition/International-Electrotechnical-Commission-IEC

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 97

• Index—An ordered list of records

• Relation—Stored information about the specific relationship between tables

The Data Control

The Data control gives you access to databases without any programming. You can set a

few properties of the control and use regular controls such as textboxes to display the values of the

fields in the database.

The data control’s Database and Recordset properties refer to those Database and Recordset

objects, and you can manipulate the data using those properties.

RDO:

Remote Data Objects (RDO) connects to databases using ODBC. You set up ODBC

connections to databases using the ODBC item in the Windows Control Panel, and then use one

of those connections with the RDO objects. The Remote Data Objects are designed in parallel with

the Data Access Objects; for example, the database engine is rdoEngine instead of DBEngine,

Recordsets have become rdoResultsets, TableDefs became rdoTables, Workspaces became

rdoEnvironments, Field objects became rdoColumn objects, and so on. Although the names have

changed, the command set is very similar to DAO.

The Remote Data Control

Like the data control, the remote data control gives you access to a database and displays

data in bound controls. Unlike the data control, however, you use the remote data control to access

ODBC data sources.

In fact, the remote data control behaves like the data control in most respects, with some

differences; for example, you can treat the remote data control’s SQL property like the data

control’s RecordSource property, but it cannot accept the name of a table by itself unless you

populate the rdoTables collection first.

ADO:

Microsoft’s latest set of data access objects are the ActiveX Data Objects (ADO). These

objects let you access data in a database server through any OLE DB provider. Here are the

ADOs:

• Connection

• Command

• Parameter

• Recordset

• Field

• Erro

• Collection

• Event

The ADO Data Control

The ADO data control is similar to the data control and the remote data control. The ADO

data control is designed to create a connection to a database using Microsoft ActiveX Data Objects

(ADO). At design time, you create a connection by setting

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 98

the ConnectionString property to a valid connection string, then set the RecordSource property

to a statement appropriate to the database manager.

Introduction:

Visual Basic .NET is an Object-Oriented programming language designed by Microsoft.

With the word ―Basic‖ being in the name of the language, you can already see that this is a

language for beginners. Although the language is aimed at noobs and novices, you should not

underestimate the power of the language itself. There are people who criticize VB.NET because

of the simplicity of the syntax, but VB.NET has the ability to create very powerful and

sophisticated applications. VB.NET is a great place to start because of how easy and straight

forward it is. The syntax is easy and you will not find yourself writing hundreds of lines of code

as there are many shortcuts that make coding so much easier in this language.

If you have had any experience in computer programming, you should understand what a

syntax is and the purpose of it. If not, let’s take a look at the VB.NET syntax. The purpose of

typing code is to instruct the application what to do. It’s not as easy as typing ―Hey application,

multiply 5 by 8″ but it’s pretty darn close! If you wanted to tell your application to show a

Message Box telling you that HowToStartProgramming.com is awesome, this would be the code

you would use:

Visual Basic .NET (VB.NET or VB .NET)

Visual Basic .NET (VB.NET or VB .NET) is a version of Microsoft's Visual Basic that

was designed, as part of the company's .NET product group, to make Web servicesapplications

easier to develop. According to Microsoft, VB .NET was reengineered, rather than released as

VB 6.0 with added features, to facilitate making fundamental changes to the

language. VB.NET is the first fully object-oriented programming (OOP) version of Visual Basic,

and as such, supports OOP concepts such as abstraction, inheritance, polymorphism, and

aggregation.

Getting to know the IDE - Visual Basic .NET

Visual Basic applications and how to use the IDE to debug your programs. Visual Studio

IDE is extremely customizable which means that you can move, hide, or modify the menus,

toolbars, and windows. You can create your own toolbars and then dock, undock, or
rearrange them. Finally you can change the behavior of the built-in text editors and much more.

MessageBox.Show("HowToStartProgramming.com is awesome")

http://en.wikipedia.org/wiki/Object-oriented_programming
http://searchwindevelopment.techtarget.com/definition/Visual-Basic
http://searchwindevelopment.techtarget.com/definition/NET
http://searchsoa.techtarget.com/definition/Web-services
http://searchwindevelopment.techtarget.com/answer/How-I-connect-to-an-Excel-spreadsheet-and-search-for-a-value-using-VBNET
http://searchsoa.techtarget.com/definition/object-oriented-programming
http://searchcio-midmarket.techtarget.com/definition/abstraction
http://searchcio-midmarket.techtarget.com/definition/inheritance
http://searchcio-midmarket.techtarget.com/definition/polymorphism

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 99

However as beginner you should probably not customize the IDE's basic menus and toolbars too

much because it will only cause confusion later.

1. The New Project dialog lets you start a new project.

Use the Project Types tree view on the left to select the project category that you want. After that

select a specific project type on the right (as you see we have selected the Windows Forms

Application project type). Finally set the location (default is My Documents), enter a name for

the new project and click OK to create the project.

2. The Toolbox window displays tools that you could use with the currently active document.

These tools are available when you are editing an item that can contain objects such as controls

and components. By the way, these tools are grouped into sections callif you right-click a certain

tab and select one of the commands in the context menu.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 100

3. The Properties window allows you to view and modify the properties of the form and of the

controls that it contains.

On our screenshot you may see the Properties window displaying properties for a Button control

named ButtonLogin. You can see in the figure that the Text property of this control is "Login"

and that's what the button displays to the user.

In addition please note the drop-down list at the top of the window. Well that list holds the

names of all of the controls on the form. To select a certain control, you can either click it on the

Designer or select it from this drop-down list.

The small icons below the dropdown determine what items are displayed in the window and how

they are arranged. For example if you click the leftmost button, the window lists

properties grouped by category and if you click the second icon that holds the letters A and Z,

the window lists the control's properties alphabetically.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 101

4. The Solution Explorer lets you manage the files associated with the current solution. For

example, in the Figure below, you could select LoginForm.vb in the Solution Explorer and then

click the View Code button (the third icon from the right at the top of the Solution Explorer) to

open the form's code editor.

You can also right-click an object in the Solution Explorer to get a list of appropriate commands

for that object. This window makes it easier to find a command by right-clicking an object

related to whatever you want to do than it is to wander through the menus.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 102

5. The Error List window shows errors and warnings in the current project. For example, if the

code contains invalid character, this list will say so. It's extremly useful as it clearly tells you

the type of the error(s) showing a full description, file name, line and everything else that helps

you easily find and fix the error. If you don't see the Error List it is probably hidden. You can

display it by selecting the appropriate item in the View menu.

6. The Output window displays compilation results and output printed by the application.

Usually an application interacts with the user through its forms and dialog boxes, but it can

display information here, usually to help you debug the code. The Output window also shows

informational messages generated by the IDE. For example, when you compile an application,

the IDE sends messages here to tell you what it is doing and whether it succeeded.

7. The Windows Forms Designer allows you to design forms for typical Windows applications.

It lets you add, size, and move controls on a form using your mouse. Together with the

Properties window, it lets you view and modify control properties, and create event handlers

to interact with the controls.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 103

8. You use the Visual Basic Code Editor to write a code that responds to control events.

The most obvious feature of the code editor is that it lets you type code, but the code editor is far

more than a simple text editor such as Notepad.

It provides many features to make writing correct Visual Basic code much easier. For example

you can create an event handler within the code editor. The upper left part of the code editor

displays a drop-down listing all the controls.

If you select a control from the list, you can then pick an event for that control from a second

dropdown in the code editor's upper right. If you select an event, the code editor generates a

corresponding empty event handler for you.

To make referring to the code lines easier, code editor may display line numbers too.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 104

The Common Language Runtime (CLR)

As introduced in the preceding section, C# applications are compiled to IL, which is

executed by the CLR. This section highlights several features of the CLR. You'll also see how

the CLR manages your application during execution.

Why Is the CLR Important?

In many traditional execution environments of the past, programmers needed to perform

a lot of the low-level work (plumbing) that applications needed to support. For example, you had

to build custom security systems, implement error handling, and manage memory.

The degree to which these services were supported on different language platforms varied

considerably. Visual Basic (VB) programmers had built-in memory management and an error-

handling system, but they didn't always have easy access to all the features of COM+, which

opened up more sophisticated security and transaction processing. C++ programmers have full

access to COM+ and exception handling, but memory management is a totally manual process.

In a later section, you learn about how .NET supports multiple languages, but knowing just a

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 105

little about a couple of popular languages and a couple of the many challenges they must

overcome can help you to understand why the CLR is such a benefit for a C# developer.

The CLR solves many problems of the past by offering a feature-rich set of plumbing

services that all languages can use. The features described in the next section further highlight

the value of the CLR.

CLR Features

This section describes, more specifically, what the CLR does for you. Table 1.1

summarizes CLR features with descriptions and chapter references (if applicable) in this book

where you can find more detailed information.

Table 1.1. CLR Features

Feature Description

.NET Framework Class

Library support

Contains built-in types and libraries to manage assemblies, memory,

security, threading, and other runtime system support

Debugging Facilities for making it easier to debug code. (Chapter 7)

Exception management Allows you to write code to create and handle exceptions. (Chapter

11)

Execution management Manages the execution of code

Garbage collection Automatic memory management and garbage collection (Chapter

15)

Interop Backward-compatibility with COM and Win32 code. (Chapter 41)

Just-In-Time (JIT)

compilation

An efficiency feature for ensuring that the CLR only compiles code

just before it executes

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 106

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 107

Feature Description

Security Traditional role-based security support, in addition to Code Access

Security (CAS) (Chapter 44)

Thread management Allows you to run multiple threads of execution (Chapter 39)

Type loading Finds and loads assemblies and types

Type safety

 Ensures references match compatible types, which is very useful for

reliable and secure code (Chapter 4)

In addition to the descriptions provided in Table 1.1, the following sections expand upon a few

of the CLR features. These features are included in the CLR execution process.

CommonTypeSystem (CTS)

It describes set of data types that can be used in different .Net languages in common. (i.e),

CTS ensures that objects written in different .Net languages can interact with each other. For

Communicating between programs written in any .NET complaint language, the types have tobe

 compatible on the basic level.

The common type system supports two general categories of types:

Valuetypes:

Value types directly contain their data, and instances of value types are either allocated on the

stack or allocated inline in a structure. Value types can be built-in (implemented by the runtime),

 user-defined,orenumerations.

Referencetypes:

Reference types store a reference to the value's memory address, and are allocated on the heap.

Reference types can be self-describing types, pointer types, or interface types. The type of a

reference type can be determined from values of self-describing types. Self-describing types are

further split into arrays and class types. The class types are user-defined classes, boxed value types,

and delegates.

CTS:

The Common Type System (CTS) standardizes the data types of all programming languages

using .NET under the umbrella of .NET to a common data type for easy and smooth

communication among these .NET languages.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 108

How CTS converts the data type to a common data type

To implement or see how CTS is converting the data type to a common data type, for

example, when we declare an int type data type in C# and VB.Net then they are converted to

int32. In other words, now both will have a common data type that provides flexible

communication between these two languages.

Let's take a live example using a Double data type and we will see how .NET helps to make the

data types of C# and VB.NET common to each other for easy communication.

Live Example

We will create a new Visual Basic (Console Application) project.

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 109

Now we will add one more project of Visual C# (Console Application).

Now to see how CTS is helping with the data types of the programming languages and providing

a common environment we will declare a Double data type (*note you can user other variables

for your reference) variable in both the C# program.cs and Module1.vb.

C# Data type Declaration

P.INDHU MCA.,M.Phil., ASST. PROFESSOR,ANNAI WOMEN’S COLLEGE,KARUR.

Page 110

Visual Basic Data type Declaration

Now start debugging both of these Console Applications. Once you are done with

Debugging the application, we will now use an important tool provided with Visual Studio

Called

