Annai Women’s College

( Affiliated to Bharathidasan University, Tiruchirapalli 620 024 )
TNPL Road Punnamchatram, Karur — 639 136.

Course Book For
Post Graduate
Students
Academic Year 2021 - 2022

Subject Name: OOAD & UML

By
Asst.Prof S.Leelavathi M.Sc., M.Phil.,

Department of Computer Science



OOAD & UML
Unit |

Structured approach to system construction : SSADM/SADT - An overview of
object oriented systems development & Life cycle

Unit I
Various object oriented methodologies — Introduction to UML
Unit Il

Object oriented analysis — Use cases- Object classification, relationships,
attributes, methods

Unit IV

Object oriented design — Design axioms — Designing classes — Layering the
software design :- data access layer, User interface layer, Control/business logic
layer

Unit Vv

UML - Examples on :Behavioral models — Structural models — Architectural models
from real world problems.

TEXT BOOK:

1. Bahrami Ali, Object oriented systems development, Irwin McGrawHill, 2005
(First 4 units covered here).

2. Booch Grady, Rumbaugh James, Jacobson lvar, The Unified modeling language
— User Guide, Pearson education, 2006 (ISBN 81-7758-372-7) (Unit: -5 covered
here).



Introduction:

The various trends in S/W development give the change in the languages. In earlier days S/W
developers used Machine Languages, which deals with 0’s and 1’s [Binary Number]. S/W
developers felt it was difficult to program using binary numbers. In later stage Assembly
Language was used for a programming. Assembly Language uses mnemonics, which is better
than binary language. Then high-level language was introduced. The human understandable
English is used in the programming languages. Initial stages of high-level languages have the
procedural /structural languages. Programmers concentrate more on functions rather than data.
To overcome this object oriented programming languages was introduced. In Object Oriented
Programming the programmer concentrate or gives equal importance to functions and data. The
advantages over procedure languages are OOPS concepts.

Machine Language 0,1
!

Assembly Language ~ Mnemonics

l

High Level Language =~ Human Understandable Language

»Procedure/Structural

language

Global data
Concentrate on functions.

» Object oriented programming language
OOPS concepts. The OOPS concepts are

Data hiding

Data encapsulation
Data abstraction
Inheritance
Polymorphism
Obijects

Class

Dynamic binding
Message passing.

The detailed view of oops concepts is discussed later.



OBJECT ORIENTATION:

Object oriented methods enable us to create sets of objects that work together
synergistically to produce software that better module their problem domains than similar
systems produced by traditional techniques. The system created using object oriented methods
are easier to adapt changing requirements, easier to maintain, more robust, promote greater
design. The reasons why object orientation works

High level of abstraction.
Seamless transition among different phases of software development.

Encourage of good programming techniques.
Promotion of reusability.

High level of abstraction:

Top-down approach It supports abstraction of the function level.
Obijects oriented approach It supports abstraction at the object level.
The
object encapsulate both the data (attributes) and functions (methods), they work as a higher level
of abstraction. The development can proceed at the object level, this makes designing, coding,

testing, and maintaining the system much simpler.

Seamless transition among different phases of software development

Traditional Approach:

The software development using this approach requires different styles and
methodologies for each step of the process. So moving from one phase to another requires more
complex transistion.

Obiject-oriented approach:

We use the same language to talk about analysis, design, programming and
database design. It returns the level of complexity and reboundary, which makes clearer and
robust system development.

Encouragement of good programming technigues:

A class in an object-oriented system carefully delineates between its interface and
the implementation of that interface. The attributes and methods are encapsulated within a class
(or) held together tightly. The classes are grouped into subsystems but remain independent one
class has no impact on other classes. Object oriented approach is not a magical one to promote
perfect design (or) perfect code.



Raising the level of abstraction from function level to object level and focusing on
the real-world aspects of the system, the object oriented method tends to
Promote clearer designs.
Makes implementation easier.

Provide overall better communication.

Promotion of Reusability:

Objects are reusable because they are modeled directly out of real world. The
classes are designed generically with reuse. The object orientation adds inheritance, which is a
powerful technique that allows classes to built from each other. The only differents and
enhancements between the classes need to be designed and coded. All the previous functionality
remains and can be reused without change.

OBJECT-ORIENTED SYSTEM DEVELOPMENT

Traditional Software Development:

The S/W development is based on function and procedures.
Object-oriented software development:

It is a way to develop software by building self-contained modules or objects that
can be easily replaced, modified and reused. In an object-oriented environment, software is a
collection of discrete objects that encapsulate their data as well as the functionality to model real-
world objects. An object orientation yields important benefits to the practice of software
construction. Each object has attributes (data) and methods (function). Objects are grouped into
classes.

In object-oriented system, everything is an object and each object is responsible
for itself.

For example:

Windows applications needs windows object that can open themselves on
screen and either display something or accept input.

Windows object is responsible for things like opening, sizing, and
closing itself.

When a windows display something, that something is an object. (ex)
chart.

Chart object is responsible for maintaining its data and labels and even for
drawing itself.



Review of objects:

The object-oriented system development makes software development easier and
more natural by raising the level of abstraction to the point where applications can be
implemented. The name object was chosen because “everyone knows what is an object is . The
real question is “what do objects have to do with system development” rather that “what is an
object?”

Object:

A car is an object a real-world entity, identifiably separate from its surroundings.
A car has a well-defined set of attributes in relation to other object.

CAR  Object
|
| l
Attributes Methods
| , Color ‘ , Drive it
L, Manufacturer | Lockit
. , Cost L S Towit
—> Owner —> Carry Passenger in it
Attributes:
Data of an object.
Properties of an object.
Methods:

Procedures of an object.
or

Behaviour of an object.

The term object was for formal utilized in the similar language. The term object
means a combination or data and logic that represent some real-world entity.

When developing an object oriented applications, two basic questions arise

What objects does the application need?
What functionality should those objects have?

Programming in an object-oriented system consists of adding new kind of objects
to the system and defining how they behave. The new object classes can be built from the objects
supplied by the object-oriented system.



Object state and properties (Attributes):

Properties represent the state of an object. In an object oriented methods we want
to refer to the description of these properties rather than how they are represented in a particular
programming language.

Car

Cost
Color Attributes of car object
Make
Model

We could represent each property in several waysin a programming
languages.

For example:
Color 1. Can be declared as character to store sequence or character [ex: red, blue, ..]

2. Can declared as number to store the stock number of paint [ex: red paint, blue paint,

|
3. Can be declared as image (or) video file to refer a full color video image.

The importance of this distinction is that an object abstract state can be
independent of its physical representation.

Object Behaviour and Methods:

We can describe the set of things that an object can do on its own (or) we
can

do with it.
For example:
Consider an object car,

We can drive the car.
We can stop the car.

Each of the above statements is a description of the objects behaviour. The objects
behaviour is described in methods or procedures. A method is a function or procedures that is
defined in a class and typically can access to perform some operation. Behaviour denotes the
collection of methods that abstractly describes what an object is capable of doing. The object
which operates on the method is called receiver. Methods encapsulate the behaviour or the
object, provide interface to the object and hide any of the internal structures and states
maintained by the object. The procedures provide us the means to communicate with an object
and access it properties.




For example:

An employee object knows how to compute salary. To compute an employee
salary, all that is required is to send the compute payroll message to the employee object.

So the simplification of code simplifies application development and
maintenance.

Objects Respond to Messages:

The capability of an object’s is determined by the methods defined for it. To do an
operation, a message is sent to an object. Objects represented to messages according to the
methods defined in its class.

For example:

When we press on the brake pedal of a car, we send a stop message to the car
object. The car object knows how to respond to the stop message since brake have been designed
with specialized parts such as break pads and drums precisely respond to that message.

Brake

Car Object O

Different object can respond to the same message in different ways. The car,
motorcycle and bicycle will all respond to a stop message, but the actual operations performed
are object specific.

It is the receiver’s responsibility to respond to a message in an appropriate
manner. This gives the great deal or flexibility, since different object can respond to the same
message in different ways. This is known as polymorphism.

Obijects are grouped in classes:

The classification of objects into various classes is based its properties (states) and
behaviour (methods). Classes are used to distinguish are type of object from another. An object
is an instance of structures, behaviour and inheritance for objects. The chief rules are the class is
to define the properties and procedures and applicability to its instances.



For example:

Class Hierarchy:

Employee Class

David
John
Andrew

Align

Obijects of

class employee

An object-oriented system organizes classes into a subclass super class hierarchy.

The properties and behaviours are used as the basis for making distinctions between
classes are at the top and more specific are at the bottom of the class hierarchy. The
family car is the subclass of car. A subclass inherits all the properties and methods

defined in its super class.

Private
Omni
Bus

Inheritance:

Motor Vehicle

Super class/Subclass Hierarchy

Bus Truck Car
Govt Mini Heavy Race Family
Passenger Lorry Truck Car Car
Bus

It is the property of object-oriented systems that allow objects to be built from

other objects. Inheritance allows explicitly taking advantage of the commonality of objects when
constructing new classes. Inheritance is a relationship between classes where one class is the
parent class of another (derived) class. The derived class holds the properties and behaviour of
base class in addition to the properties and behaviour of derived class.



Vehicle

T

| Car ‘

T

Hyundai

Santro Sonata Accent

Inheritance allows reusability.
Dynamic Inheritance:

Dynamic inheritance allows objects to change and evolve over time. Since base
classes provide properties and attributes for objects, hanging base classes changes the properties
and attributes of a class.

Example:

A window objects change to icon and basic again. When we double click the
folder the contents will be displayed in a window and when close it, changes back to icon. It
involves changing a base class between a windows class and icon class.

Multiple Inheritances:

Some object-oriented systems permit a class to inherit its state (attributes) and
behaviour from more than one super class. This kind or inheritance is referred to as multiple
inheritances.

For example:

Utility vehicle inherits the attributes from the Car and Truck classes.

Vehicle

T

Truck Car Bus

Utility Vehicle



Encapsulation and Information Hiding:

Information hiding is the principle of concealing the internal data and procedures
of an object. In C++ , encapsulation protection mechanism with private, public and protected
members.

In per-class protection:

Class methods can access any objects of that class and not just the receiver.
In per-object protection:

Methods can access only the receiver.

An important factor in achieving encapsulation is the design at different classes of
objects that operate using a common protocol. This means that many objects will respond to the

message using operations tailored to its class.

A car engine is an example of encapsulation. Although engines may differ in
implementation, the interface between the driver and car is through a common protocol.

Polymorphism:
Poly “many”’
Morph  “form”

It means objects that can take on or assume many different forms. Polymorphism
means that the same operations may behave differently on different classes. Booch defines
polymorphism as the relationship of objects many different classes by some common super class.
Polymorphism allows us to write generic, reusable code more easily, because we can specify
general instructions and delegate the implementation detail to the objects involved.

Example:

In a pay roll system, manager, office worker and production worker objects all
will respond to the compute payroll message, but the actual operations performed are object
specific.

Object Relationship and associations:

Association represents the relationships between objects and classes. Associations are bi-
directional. The directions implied by the name are the forward direction and the opposite is the
inverse direction.

Can fly
Pilot > Planes
Flown by

A pilot “can fly” planes. The inverse of can fly is “is flown by . Plane “is flown by” pilot



Cardinality:

It specifies how many instances of one class may relate to a single instance of an
associated class. Cardinality constrains the number of related objects and often is
described as being “one” or “many’’.

Consumer-producer association:

A special form or association is a consumer-producer relationship, also known as
a client-server association (or) a use relationship. It can be viewed as one-way interaction. One
object requests the service or another object. The object that makes the request is the consumer
or client and the object that receives the request and provides the service is the producer (or)
server
Example:

Request for

A

Print Server Item
Printing

The consumer-producer association we have a print object that prints the
consumer object. The print producer provides the ability to print other objects.
Aggregations:

All objects, except the most basic ones, are composed of and may contain other
objects. Breaking down objects in to the objects from which they are composed is de
composition. This is possible because an objects attributes need not be simple data fields,
attributes can reference other objects. Since each object has an identity, one object can refer to
other objects. This is known as aggregation. The car object is an aggregation of other objects
such as engine, seat and wheel objects.

Engine Seat Wheel




Static and Dynamic Binding:

Determining which function has to be involved at compile time is called static
binding. Static binding optimized the calls. (Ex) function call.

The process of determining at run time which functions to involve is termed
dynamic binding. Dynamic binding occurs when polymorphic call is issued. It allows some
method invocation decision to be deferred until the information is known.

Example:

Cut operation in a edit submenu. It pass the cut operation to any object on the
desktop, each or which handles the message in its own way.

Object Persistence:

Objects have a lifetime. They are explicitly created and can exist for a period of
time that has been the duration of the process in which they were created. A file or database can
provide support for objects having a longer lifeline, longer than the duration of the process for
which they are created. This characteristic is called object persistence.

Meta-Classes:

In an object-oriented system every thing is an object, what about a class? Is a
class an object?. Yes, a class is an object. So, If it is an object, it must belong to a class, such a
class belong to a class called a meta-class (or) class or classes.

Object-Oriented Systems Development Life Cycle [OOSDLC]
Introduction:

The S/W development process that consists of Analysis, Design, implementation,
testing and refinement is to transform users needs into a software solution that satisfies those
needs. Some people view the s/w developing process as interesting but feel it has less importance
in developing s/w. Ignoring the process and plunge into the implementation and programming
phases of s/w development is much like the builder who would by pass the architect. The object
oriented approach requires a more rigorous process to do things right. We have to spend more
time on gathering requirements, developing a requirements model and an analysis model, then
turning them into the design model. We should consult a prototype of some of the key system
components shortly after the products are selected. It is used to understand how easy or difficult
it will be to implement some of the features of the system.

Software Development process:

S/W development can be viewed as a process. The development itself is a process
of change, retirement, transformation (or) addition to the existing product. It is possible to
replace one sub process with a new one, as long as the new sub process has the same interface as
the old one, to allow it to fit into the process as a whole. The object-oriented approach provides
us a set of rules for describing inheritance and specialization in a consistent way when a sub
process changes the behaviour of its parent process. The process can be divided into small,
interacting phases know as sub processes. The sub processes must be defined in such a way that



they are clearly spelled out, to allow each activity to be performed as independently of other sub
processes as possible. Each sub process must have

A description in terms of how it works
Specification of the input required for the process
Specification of the output to be produced.

The software development process can be viewed as a series of transformations, where the
output of one transformation becomes the input of the subsequent transformation.

Transformation 1 [Analysis]
Transformation 2 [Design]

Transformation 3 [Implementation]



Problem

Statements
Transformation 1

Analysis

Transformation 2
Design System
Transformation 3
Implementation Software
Detail Product

Transformation 1 [Analysis]

It translates the users’ needs into system requirements and responsibilities.
The way they use can provide insight into user requirements.

Transformation 2 [Design]

It begins with a problem statement and ends with a detailed design that can be
transformed into an operational system. This transformation includes the bulk of the software
development activity, including definition of how to build the software, its development and it’s
testing. It includes the design descriptions, the program and the testing materials.

Transformation 3 [Implementation]

It refines the detailed design into the system deployment that will satisfy the users
needs. It represents embedding the software product within its operational environment.

The software development process is the waterfall approach which starts
with deciding
what is to be done (what is the problem)



How to accomplish them
Which we do it

Test the result to see it we have satisfied the users requirements
Finally we use what we have done

Building High-Quality Software

The software process transforms the users needs via the application domain to a
software solution that satisfies those needs. High-Quality products must meet users needs and
expectations. The quality of the product should be improved prior to delivery rather than correcting
them after deliver.

To achieve high quality software we need to be able to answer the following question.
How do we determine when the system is ready for delivery?
It is now operational system that satisfies uses needs?
It is correct and operating as we thought it should?

Does it pass an evaluation process?

There are different approaches for systems testing. Blum describes a means of system evaluation in
terms of four quality measures,

Correspondence
Correctness

Verification and
Validation



What

Analysis

11
LILL®A'A"/

Design

Do It
Implementation

Test

Testing

q
w
D

Maintenance
The water fall S/W development process

Validation
< Verification >
Needs Requirements Design Software
Correctness

A
A\ 4

A
\ 4

* Correspondence measures how well the delivered system matches the needs of the operational
environment as described in the original requirements statement.

* Validation is the task of predicting correspondence. True correspondence can be determined
only after the system is in place

* Correctness measures the consistency of the product requirements with respect to the design
specification



* Verification is the exercfise fdetermirirgcorrectness.

Boehm observes that these quplity measures,|verification and validation is answering the
following questions. 4 v

Verification- Am | building the proguct rig‘wt? A 4

Validation- Am | uilding the right lproduct <

Object-Oriented Systems Development: A use-case Driven Approach:

v Y
The object-oriented S/W development Life Cycle (SDLC) consists of three

macro process.

Object-Oriented Analysis
Object-oriented Design and

Object-oriented Implementation.

Build a Use-



Case model

Object
Analysis
Validation
test
Analysis
Iteration and Reuse
Using Tools User Satisfaction Design Classes Build Object
CASE and/or OO Usability & QA Define Attributes and Dynamic
Programming Tests & Methods
Model
languages
User satisfaction
Usability test & >
l—> Build User
Implementation I
N N quality assurance
| | Interfa(Je &
test
Prototype

Design

The use-case model can be employed throughout most activities of software development.
The main advantage is that all design decisions can be traced back directly to user
requirements.

Obiject-oriented Analysis — Use case
driven Object-oriented design

Prototyping
Component-based
development Incremental

testing

Object-Oriented Analysis —Use-Case Driven:



The object-oriented analysis phase of S/W development is concerned with
determing the system requirements and identifying classes and their relationship to other
classes in the problem domain. To understand the system requirements we need to identify
the users or the actors. Who are the actors and how do they use the system, scenarios are used
to help analysis to understand the requirements. lvar Jacobson came up with the concept of
the use case, his name for scenario to describe user-computer system inter action. The object-
oriented community has adopted use case to a remarkable degree.

Scenarios are a great way of examine who does what in the interactions among
objects and what role they play. That is their inert relationship. This inter actions among the
objects roles to achieve a given goal is called collaboration.

A use-case is a typical interaction between a user and a system that captures user
goals & needs. Expressing these high-level processes and interactions it is referred to as use-case
modeling. Once the use case model is better understood and developed we should start to
identify classes and create their relationships.

The physical objects in the system also provide us important information an
objects in the system. The objects could be individuals’ organizations, machines, units of
information; pictures (or) what ever else makes up the application and makes sense in the context
of the real-world system.

For example: The object in the payroll system is as follows,

The employee, worker, supervisor, office
admin. The paycheck.

The product being made.
The process used to make the product.
The objects need to have meaning only within the context of the application domain.

Few guide lines to use in object-oriented design.
Reuse, rather than build, anew class, know the existing classes.

Design a large number of simple numbers of simple classes, rather than a small number of
complex classes.

Design methods.
Critique what we have proposed. It possible go back and refine the classes.
Prototyping:

It is important to construct a prototype of some of the key system components
shortly after the products are selected. A prototype is a version of a software product developed
in the early stages of the product’s life cycle for specific, experimental purposes. It enables to
fully understand how easy or difficult it will be to implement some of the features of the system.
It gives users a chance to comment on the usability and usefulness of the user interface design, it
can define use cases and it makes use Case modeling much easier.



Prototyping was used as a “quick and dirty” way to test the design, user interface
and so forth, something to be thrown away when the “industrial strength” version was developed.
The rapid application development (RAD) refines the prototype into the final product.

Prototypes have been categorized in various ways. The following categorized are
some of the commonly accepted prototypes.

Horizontal prototype
Vertical prototype
Analysis prototype
Domain prototype

Horizontal Prototype:

It is a simulation of the interface but contains no functionality. This has the
advantages of being very quick to implement, providing a good overall feel of the system and
allowing users to evaluate the interface on the basis of their normal, expected perception of the
system.

Vertical Prototype:

It is a subset of the system features with complete functionality. The advantage of
this method is that the few implemented functions can be tested in great depth. The prototypes
are hybrid between horizontal and vertical, the major portions of the interface are established so
the user can get the feel of the system and features having a high degree of risk are prototyped
with much more functionality.

Analysis Prototype:

It is an aid for exploring the problem domain. This class of prototype is used to
inform the user and demonstrate the proof of a concept. It is not used as the basis of development
and is discarded when it has served its purpose.

Domain Prototype:

It is an aid for the incremental development of the ultimate software solution. It
demonstrates the feasibility of the implementation and eventually will evolve into a deliverable
product.

The typical time required to produce a prototype is anywhere from a few days to
several weeks, depending on the type and function of prototype. The prototype makes the end
users and management members to ascertain that the general structure of the prototype meets the
requirements established for the overall design. The purpose of this review is

To demonstrate that the prototype has been developed according to the
specification and that the final specification is appropriate.

To collect information about errors or other problems in the system, such as user
interface problems that need to be addressed in the intermediate prototype stage



To give management and everyone connected with the project the first glimpse of
what the technology can provide.

Prototyping is a useful exercise of almost any stage of the development.
Prototyping should be done in parallel with the preparation of the functional specification. It also
results in modification to the specification.

Implementation:

Software components are built and tested in-house, using a wide range of
technologies. Computer aided software engineering (CASE) tools allow their users to rapidly
develop information systems. The main goal of CASE technology is the automation of the entire
information system’s development life cycle process using a set of integrated software tools,
such as modeling, methodology and automatic code generation. The code generated by CASE
tools is only the skeleton of an application and a lot needs to be filled in by programming by
hand.

Component-Based Development: (CBD)

CASE tools are the beginning of Component-Based Development. Component-
Based Development is an industrialized approach to the software development process.
Application development to assembly of prebuilt, pretested, reusable software components that
operate with each other: The two basic ideas of using Component-Based development.

1. The application development can be improved significantly if applications can be
assembled quickly from prefabricated software components.

2. Anincreasingly large collection of interpretable software components could be made
available to developers in both general and specified catalogs.

A CBD developer can assemble components to construct a complete software system.
The software components are the functional units of a program, building blocks offering a
collection of reusable services. The object-Oriented concept addresses analysis, design and
programming, where as component-Based development is concerned with the implementation
and system integration aspects of software development.

Rapid Application Development (RAD):
RAD is a set of tools and techniques that can be used to build application footer
than typically possible with traditional methods. The term is often conjunction with S/W

prototyping. RAD encourages the incremental development approach of “grow, do not build”
software.

Testing:

(Refer Software Engineering Book )



Design Patterns:

Design pattern is instructive information for that captures the essential structure and insight

of a successful family of proven design solutions to a recurring problem that arises within a certain
context.

Gang Of Four (GoF) [Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides]
introduced the concept of design patterns.

Characteristics of Design Patterns:

1.

2.

It solves the problem — Design patterns are not just abstract representations of theoretical
research. To be accepted as a pattern it should have some proves practical experiences.
It’s a proven concept — Patterns must have a successful history.

It describes a relationship — Patterns do not specify a single class instead it specifies more
than one classes and their relationship.

It has a human component - Good patterns make the job of the programmer easy and time
saving.

Contents of Design Pattern:

Name of the pattern is used to identify the pattern as well as an descriptive of the problem
solution in general. Easy to remember and context related names makes remembering
patterns easy.

Context of the pattern describes when and where the pattern is applicable. It also
describes the purpose of pattern and also the place where it is not applicable due to some
specific conditions.

Solution of the design pattern is describes how to build the appropriate design using this
appropriate design.

Consequences of design patterns describe the impact of choosing a particular design
pattern in a system.

Pattern Template:

okrwn

o

9.

PATTERN NAME (good and relevant names make patterns easy to remember)
INTENT (Which problem does the pattern solve)

ALSO KNOWN AS(alias names given to the pattern)
APPLICABILITY (when should this pattern be applied)
STRUCTURE(Graphical representation of the Pattern (using UML))

PARTICIPANTS(classes and objects taking part in the pattern and their relationship)
COLLABORATORS (says how objects/actors interact to achieve the goal).

CONSEQUENCES (how does they solve the problem and what are the consequ