

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 1

 Annai Women’s College

(Affiliated to Bharathidasan University, tiruchirapalli 620 024)

TNPL Road Punnamchatram, Karur – 639 1356

 By

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed.,

Department of Computer Science & Application

 PHP Scripting Language

 Unit- I

 Essentials of PHP - Operators and Flow Control - Strings and Arrays.

 Unit- II

 Creating Functions - Reading Data in Web Pages - PHP Browser - Handling

 Power.

 Unit- III

 Object-Oriented Programming –Advanced Object-Oriented Programming .

 Unit- IV

 File Handling –Working with Databases – Sessions, Cookies, and FTP

 Unit- V

 Ajax – Advanced Ajax – Drawing Images on the Server.

Text Book:

 1.The PHP Complete Reference – Steven Holzner – Tata McGraw-Hill Edition.

Reference Books:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 2

 1. Spring into PHP5 – Steven Holzer, Tata McCraw Hill Edition.

 2. Ajax Bible- Steven Holzer , Tata McCraw Hill Edition.

 Unit- I

 ESSENTIALS OF PHP

Enter PHP:

 PHP: Hypertext Preprocessor.

PHP is a server-side scripting language designed primarily for web development but also used as

a general-purpose programming language. Originally created by Rasmus Lerdorf in 1994, the

PHP reference implementation is now produced by The PHP Development Team. PHP originally stood

for Personal Home Page

Eg:

https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Web_development
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Rasmus_Lerdorf
https://en.wikipedia.org/wiki/Reference_implementation

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 3

PHP on the Internet:

 Internet service provider(ISP) quite probably already supports PHP.

Open acomand prompt for server and check on PHP that way.can open open a command command

prompt window connected to server using various utilities telnet,SSH,orSSH2

Once a command prompt open for server can check if PHP is installed with the V option ,which gives the

version ofPHP if it can be reached,I am going to use %as s generic command prompt

 %php-v

If PHP is installed and accessible the PHP version and date displayed

%php-v

Php5.2.0(cli)(build:nov 2 2006 11:57:36)

Copyright © 1997-2006 the php group

Zend engine v2.2.0,copyright©1998-2006 zend technologies

PHP on your local machine:

1. If you use localhost rather than 0.0.0.0 you may hit a connection refused error.

2. If want to make the web server accessible to any interface, use 0.0.0.0.

3. If a URI request does not specify a file, then either index.php or index.html in the given directory are

returned.

4.
<?php

// router.php

if (preg_match('/\.(?:png|jpg|jpeg|gif)$/', $_SERVER["REQUEST_URI"])) {

 return false; // serve the requested resource as-is.

} else {

 echo "<p>Welcome to PHP</p>";

}

?>

php -S 0.0.0.0:8000 router.php

... and navigate in your browser to http://localhost:8000/ and the following will be displayed:
Welcome to PHP

Creating development environment:

Access to php on aserver at this point.to actually create php scripts to need to use a text editor of sonme

kind ,PHP and save it in files with the extension

http://localhost:8000/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 4

Text editor neds to be able to save files in plan text format,that is text without any special formatting

codes.

 Going to use word pad make sure to select the save as type option text document when you save file.not

the default RTF type(rich text format). PHP use integrated development environment(IDE)to create PHP

pages

IDE available online that can handle PHP

 Komodo

 Maguma

 PHP edit

 Zend studio

Creating a first PHP page:

 This is web applications from guest books to professional database lookup applications.this first PHP

page will be a very simple one

<?php

.

Phpinfo()

.

.

?>

Running your first php page:

 Web server is running IIS windows ans navigate to browser

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 5

Mixing HTML andPHP:

The php run on the server and php generate on the some html will be displayed in browser as well

<html

<head>

<title>A Web Page</title>

</head>

<body>

<p>

<?php

 echo "This is a basic PHP document";

?>

</p>

<p>

<?

 print "PHP is fun!";

?>

</p>

<p>

<script language="php">

 $myVar = "Hello World";

echo $myVar;

</script>

</p>

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 6

</body>

</html>

Printing some text:

 Put text into php files much as HTML page,put an<h1>header and textinto apage

<html>

<body>

<h1>My first PHP page</h1>

<?php

echo "Hello Welcome!";

?>

</body>

</html>

Output:

My first PHP page

Hello Welcome!

Printing some HTML:

HTML not just simple text,that also gives the chane to make use of HTML to formate text

html>

<body>

<?php

echo "<h2>PHP is Fun!</h2>";

echo "Hello world!
";

echo "I'm about to learn PHP!
";

echo "This ", "string ", "was ", "made ", "with multiple parameters.";

?>

</body>

</html>

output:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 7

PHP is Fun!

Hello world!

I'm about to learn PHP!

This string was made with multiple parameters.

More echo power:

 Php run from command line,in fact simply by using the php command.HTML was not

interpreted as html here,it was simply printed out as plain text.\n control character ,which

php interpret as a newline character.

Eg: echo”welcome\n”;
 echo”to\n”;
 echo”php.”;

using PHP ”here “document:
 displaying text should be aware of and that using php”here”documents..a here document is

just some text inserted directly in aphp pagebetween two instances of the same token.

Command line php:
 The main focus of CLI SAPI is for developing shell applications with PHP. There are quite a few

differences between the CLI SAPI and other SAPIs which are explained in this chapter. It is worth

mentioning that CLI and CGIare different SAPIs although they do share many of the same behaviors.

The CLI SAPI is enabled by default using --enable-cli , but may be disabled using the --disable-cli option

when running ./configure.

The name, location and existence of the CLI/CGI binaries will differ depending on how PHP is installed

on your system. By default when executing make, both the CGI and CLI are built and placed

as sapi/cgi/php-cgi andsapi/cli/php respectively, in your PHP source directory. You will note that both are

named php. What happens during make install depends on your configure line. If a module SAPI is chosen

during configure, such as apxs, or the --disable-cgi option is used, the CLI is copied

to {PREFIX}/bin/php during make install otherwise the CGI is placed there. So, for example, if --with-

apxs is in your configure line then the CLI is copied to {PREFIX}/bin/phpduring make install. If you want

to override the installation of the CGI binary, use make install-cli after make install. Alternatively you can

specify --disable-cgi in your configure line.

Note: The list of command line options provided by the PHP binary can be queried at any time by running

PHP with the -h switch:

Usage: php [options] [-f] <file> [--] [args...]

 php [options] -r <code> [--] [args...]

 php [options] [-B <begin_code>] -R <code> [-E <end_code>] [--] [args...]

 php [options] [-B <begin_code>] -F <file> [-E <end_code>] [--] [args...]

 php [options] -- [args...]

 php [options] -a

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 8

 -a Run interactively

 -c <path>|<file> Look for php.ini file in this directory

 -n No php.ini file will be used

 -d foo[=bar] Define INI entry foo with value 'bar'

 -e Generate extended information for debugger/profiler

 -f <file> Parse and execute <file>.

 -h This help

 -i PHP information

 -l Syntax check only (lint)

 -m Show compiled in modules

 -r <code> Run PHP <code> without using script tags <?..?>

 -B <begin_code> Run PHP <begin_code> before processing input lines

 -R <code> Run PHP <code> for every input line

 -F <file> Parse and execute <file> for every input line

 -E <end_code> Run PHP <end_code> after processing all input lines

 -H Hide any passed arguments from external tools.

 -S <addr>:<port> Run with built-in web server.

 -t <docroot> Specify document root <docroot> for built-in web server.

 -s Output HTML syntax highlighted source.

 -v Version number

 -w Output source with stripped comments and whitespace.

 -z <file> Load Zend extension <file>.

 args... Arguments passed to script. Use -- args when first argument

 starts with - or script is read from stdin

 --ini Show configuration file names

 --rf <name> Show information about function <name>.

 --rc <name> Show information about class <name>.

 --re <name> Show information about extension <name>.

 --rz <name> Show information about Zend extension <name>.

 --ri <name> Show configuration for extension <name>.

Adding commants to PHP code:

 If you have a longer, multi-line comment, the best way to comment is with /* and */ before

and after a lengthy comment.

You can contain several lines of commenting inside a block. Here is an example:

 <?php

 echo "hello";

 /*

 Using this method

 you can create a larger block of text

 and it will all be commented out

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 9

 */

 echo " there";

 ?>

 Working with variables:

 A good understanding of how variables are stored and manipulated is essential to becoming a Hacker.

The engine attempts to cover up the complexity of the concept of a variable that can be any type by

providing a uniform and intuitive set of macros for accessing the structures various fields. As

the Hacker works through this chapter, they should become comfortable with the terminology and

concepts involved with Variables in PHP.

PHP is a dynamic, loosely typed language, that uses copy-on-write and reference counting.

To clarify what exactly is meant by the statement above: PHP is a high level language, weak typing is

implicit of the engines preference to convert, or coerce variables into the required type at execution time.

Reference counting is the means by which the engine can deduce when a variable no longer has any

references in the users code, and so is able to free the structures associated with the variable.

All variables in PHP are represented by one structure, the zval:

typedef struct _zval_struct {

 zvalue_value value; /* variable value */

 zend_uint refcount__gc; /* reference counter */

 zend_uchar type; /* value type */

 zend_uchar is_ref__gc; /* reference flag */

} zval;

Storing datav in variables:
 Rules for PHP variables:

 A variable starts with the $ sign, followed by the name of the variable

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _)

 Variable names are case-sensitive ($age and $AGE are two different variables)

 Output Variables

 The PHP echo statement is often used to output data to the screen.

The following example will show how to output text and a variable:

Example
<?php

$txt = "INDIA";

echo "I love $txt!";

?>

Output:

 I love INDIA !

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 10

Interppolating Strings:

In computer programming, string interpolation (or variable interpolation, variable substitution, or variable

expansion) is the process of evaluating a string literal containing one or more placeholders, yielding a result in

which the placeholders are replaced with their corresponding values. It is a form of simple template processing

or, in formal terms, a form of quasi-quotation (or logic substitution interpretation). String interpolation allows

easier and more intuitive string formatting and content-specification compared with string concatenation.

String interpolation is common in many programming languages which make heavy use

of string representations of data, such as Apache Groovy, Kotlin, Perl, PHP, Python, Ruby, Scala, and Swift,

and most Unix shells. Two modes of literal expression are usually offered: one with interpolation enabled, the

other without (termed raw string). Placeholders are usually represented by a bare or a

named sigil (typically $ or %), e.g. $placeholder or %123 . Expansion of the string usually occurs at run time.

Eg:

<?php

$apples = 5;
$bananas = 3;

echo "There are $apples apples and $bananas bananas.";
echo "\n"

echo "I have ${apples} apples and ${bananas} bananas.";

output :

There are 5 apples and 3 bananas.
I have 5 apples and 3 bananas.

Creating variable variables:

Sometimes it is convenient to be able to have variable variable names. That is, a variable name which can

be set and used dynamically. A normal variable is set with a statement

 such as:

<?php

$a = 'hello';

?>

A variable variable takes the value of a variable and treats that as the name of a variable. In the above

example,hello, can be used as the name of a variable by using two dollar signs.

 i.e.

<?php

$$a = 'world';

?>

Crating constants:
 To create a constant, use the define() function.

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/String_literal
https://en.wikipedia.org/wiki/Form_(document)#Placeholders
https://en.wikipedia.org/wiki/Template_processor
https://en.wikipedia.org/wiki/Quasi-quotation
https://en.wikipedia.org/wiki/Truth-value_semantics
https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Groovy_(programming_language)
https://en.wikipedia.org/wiki/Kotlin_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Swift_(programming_language)
https://en.wikipedia.org/wiki/Unix_shell
https://en.wikipedia.org/wiki/Sigil_(computer_programming)
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 11

Syntax

define(name, value, case-insensitive)

Parameters:

name: Specifies the name of the constant

value: Specifies the value of the constant

case-insensitive: Specifies whether the constant name should be case-insensitive. Default is false

The example below creates a constant with a case-sensitive name:

Example

<?php

define("GREETING", "Welcome to annai!");

echo GREETING;

?>

Output:

Welcome to annai!

Understanding php’s internal data types:

 String.

 Integer.

 Float (floating point numbers - also called double)

 Boolean.

 Array.

 Object.

 NULL.

 Resource.

PHP String

A string is a sequence of characters, like "Hello world!".
A string can be any text inside quotes. You can use single or double quotes:
Example

<?php

$x = "Hello world!";

$y = 'Hello world!';

echo $x;

echo "
";

echo $y;
?>
Output:
Hello world!
Hello world!

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 12

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and 2,147,483,647.

Rules for integers:

An integer must have at least one digit

An integer must not have a decimal point

An integer can be either positive or negative

Integers can be specified in three formats: decimal (10-based), hexadecimal (16-based - prefixed with 0x)

or octal (8-based - prefixed with 0)

In the following example $x is an integer. The PHP var_dump() function returns the data type and value:

Example

<?php

$x = 5985;

var_dump($x);

?>

Output:

int(5985)

PHP Float

A float (floating point number) is a number with a decimal point or a number in exponential form.

In the following example $x is a float. The PHP var_dump() function returns the data type and value:

Example

<?php

$x = 10.365;

var_dump($x);

?>

Output:

float(10.365)

PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.
$x = true;
$y = false;
Booleans are often used in conditional testing. You will learn more about conditional testing in a later chapter of
this tutorial.

PHP Array

An array stores multiple values in one single variable.
In the following example $cars is an array. The PHP var_dump() function returns the data type and value:
Example

<?php

$cars = array("Volvo","BMW","Toyota");
var_dump($cars);
?>
Output:
array(3) { [0]=> string(5) "Volvo" [1]=> string(3) "BMW" [2]=> string(6) "Toyota" }

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 13

PHP Object

An object is a data type which stores data and information on how to process that data.

In PHP, an object must be explicitly declared.

First we must declare a class of object. For this, we use the class keyword. A class is a structure that can

contain properties and methods:

Example

<?php

class Car {

 function Car() {

 $this->model = "VW";

 }

}

// create an object

$herbie = new Car();

// show object properties

echo $herbie->model;

?>

Output:

 VW

PHP NULL Value

Null is a special data type which can have only one value: NULL.

A variable of data type NULL is a variable that has no value assigned to it.

Tip: If a variable is created without a value, it is automatically assigned a value of NULL.

Variables can also be emptied by setting the value to NULL:

Example

<?php

$x = "Hello world!";

$x = null;

var_dump($x);

?>

Output:

NULL

PHP Resource

The special resource type is not an actual data type. It is the storing of a reference to functions and resources
external to PHP.
A common example of using the resource data type is a database call.
We will not talk about the resource type here, since it is an advanced topic.

 OPERATORS AND FLOW CONTROL

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 14

 Operators:
 Operators are symbols that tell the PHP processor to perform certain actions. For example, the addition

(+) symbol is an operator that tells PHP to add two variables or values, while the greater-than (>) symbol

is an operator that tells PHP to compare two values.

Php’s math operators:

The PHP arithmetic or math operators are used with numeric values to perform common arithmetical

operations, such as addition, subtraction, multiplication etc.

Operator Name Example Result

+ Addition $x + $y Sum of $x and $y

- Subtraction $x - $y Difference of $x and $y

* Multiplication $x * $y Product of $x and $y

/ Division $x / $y Quotient of $x and $y

% Modulus $x % $y Remainder of $x divided by $y

** Exponentiation $x ** $y Result of raising $x to the $y'th power (Introduced in

PHP 5.6)

Eg:

<html>

<body>

<?php

$x = 10;

$y = 6;

echo $x + $y;

?>

</body>

</html>

Output:

 16

Working with the assignment operators:

The basic assignment operator is "=". Your first inclination might be to think of this as "equal to". Don't. It really
means that the left operand gets set to the value of the expression on the right (that is, "gets set to").

https://www.w3schools.com/php/showphp.asp?filename=demo_oper_addition
https://www.w3schools.com/php/showphp.asp?filename=demo_oper_subtraction
https://www.w3schools.com/php/showphp.asp?filename=demo_oper_multiplication
https://www.w3schools.com/php/showphp.asp?filename=demo_oper_division
https://www.w3schools.com/php/showphp.asp?filename=demo_oper_modulus

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 15

The value of an assignment expression is the value assigned. That is, the value of "$a = 3" is 3. This allows you to
do some tricky things:
<?php

$a = ($b = 4) + 5; // $a is equal to 9 now, and $b has been set to 4.

?>
In addition to the basic assignment operator, there are "combined operators" for all of the binary arithmetic, array
union and string operators that allow you to use a value in an expression and then set its value to the result of that
expression.

Incrementing and decrementing values:

 PHP supports C-style pre- and post-increment and decrement operators. The

increment/decrement operators only affect numbers and strings. Arrays, objects and resources are not

affected. Decrementing NULL values has no effect too, but incrementing them results in 1.

Increment/decrement Operators

Example Name Effect

++$a Pre-increment Increments $a by one, then returns $a.

$a++ Post-increment Returns $a, then increments $a by one.

--$a Pre-decrement Decrements $a by one, then returns $a.

$a-- Post-decrement Returns $a, then decrements $a by one.

Here's a simple example script:

<?php

echo "<h3>Postincrement</h3>";

$a = 5;

echo "Should be 5: " . $a++ . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Preincrement</h3>";

$a = 5;

echo "Should be 6: " . ++$a . "
\n";

echo "Should be 6: " . $a . "
\n";

echo "<h3>Postdecrement</h3>";

$a = 5;

echo "Should be 5: " . $a-- . "
\n";

echo "Should be 4: " . $a . "
\n";

echo "<h3>Predecrement</h3>";

$a = 5;

echo "Should be 4: " . --$a . "
\n";

echo "Should be 4: " . $a . "
\n";

?>

http://php.net/manual/en/language.operators.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 16

The PHP string operators:

There are two string operators. The first is the concatenation operator ('.'), which returns the concatenation

of its right and left arguments. The second is the concatenating assignment operator ('.='), which appends

the argument on the right side to the argument on the left side. Please read Assignment Operators for more

information.

<?php

$a = "Hello ";

$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";

$a .= "World!"; // now $a contains "Hello World!"

?>

See also the manual sections on the String type and String functions.

The Bitwise operators:
Bitwise operators allow evaluation and manipulation of specific bits within an integer.

Bitwise Operators

Example Name Result

$a & $b And Bits that are set in both $a and $b are set.

$a | $b Or (inclusive or) Bits that are set in either $a or $b are set.

$a ^ $b Xor (exclusive or) Bits that are set in $a or $b but not both are set.

~ $a Not Bits that are set in $a are not set, and vice versa.

$a << $b Shift left Shift the bits of $a $b steps to the left (each step means "multiply by two")

$a >> $b Shift right Shift the bits of $a $b steps to the right (each step means "divide by two")

Bit shifting in PHP is arithmetic. Bits shifted off either end are discarded. Left shifts have zeros shifted in

on the right while the sign bit is shifted out on the left, meaning the sign of an operand is not preserved.

Right shifts have copies of the sign bit shifted in on the left, meaning the sign of an operand is preserved.

Use parentheses to ensure the desired precedence. For example, $a & $b == true evaluates the

equivalency then the bitwise and; while ($a & $b) == true evaluates the bitwise and then the equivalency.

If both operands for the &, | and ^ operators are strings, then the operation will be performed on the ASCII

values of the characters that make up the strings and the result will be a string. In all other cases, both

operands will beconverted to integers and the result will be an integer.

If the operand for the ~ operator is a string, the operation will be performed on the ASCII values of the

characters that make up the string and the result will be a string, otherwise the operand and the result will

be treated as integers.

Both operands and the result for the << and >> operators are always treated as integers.

?php

/*

 * Here are the examples.

 */

echo "\n--- BIT SHIFT RIGHT ON POSITIVE INTEGERS ---\n";

$val = 4;

$places = 1;

$res = $val >> $places;

p($res, $val, '>>', $places, 'copy of sign bit shifted into left side');

http://php.net/manual/en/language.types.string.php
http://php.net/manual/en/language.operators.assignment.php
http://php.net/manual/en/language.types.string.php
http://php.net/manual/en/ref.strings.php
http://php.net/manual/en/language.operators.precedence.php
http://php.net/manual/en/language.types.integer.php#language.types.integer.casting

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 17

$val = 4;

$places = 2;

$res = $val >> $places;

p($res, $val, '>>', $places);

$val = 4;

$places = 3;

$res = $val >> $places;

p($res, $val, '>>', $places, 'bits shift out right side');

$val = 4;

$places = 4;

$res = $val >> $places;

p($res, $val, '>>', $places, 'same result as above; can not shift beyond 0');

echo "\n--- BIT SHIFT RIGHT ON NEGATIVE INTEGERS ---\n";

$val = -4;

$places = 1;

$res = $val >> $places;

p($res, $val, '>>', $places, 'copy of sign bit shifted into left side');

$val = -4;

$places = 2;

$res = $val >> $places;

p($res, $val, '>>', $places, 'bits shift out right side');

$val = -4;

$places = 3;

$res = $val >> $places;

p($res, $val, '>>', $places, 'same result as above; can not shift beyond -1');

echo "\n--- BIT SHIFT LEFT ON POSITIVE INTEGERS ---\n";

$val = 4;

$places = 1;

$res = $val << $places;

p($res, $val, '<<', $places, 'zeros fill in right side');

$val = 4;

$places = (PHP_INT_SIZE * 8) - 4;

$res = $val << $places;

p($res, $val, '<<', $places);

$val = 4;

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 18

$places = (PHP_INT_SIZE * 8) - 3;

$res = $val << $places;

p($res, $val, '<<', $places, 'sign bits get shifted out');

$val = 4;

$places = (PHP_INT_SIZE * 8) - 2;

$res = $val << $places;

p($res, $val, '<<', $places, 'bits shift out left side');

echo "\n--- BIT SHIFT LEFT ON NEGATIVE INTEGERS ---\n";

$val = -4;

$places = 1;

$res = $val << $places;

p($res, $val, '<<', $places, 'zeros fill in right side');

$val = -4;

$places = (PHP_INT_SIZE * 8) - 3;

$res = $val << $places;

p($res, $val, '<<', $places);

$val = -4;

$places = (PHP_INT_SIZE * 8) - 2;

$res = $val << $places;

p($res, $val, '<<', $places, 'bits shift out left side, including sign bit');

/*

 * Ignore this bottom section,

 * it is just formatting to make output clearer.

 */

function p($res, $val, $op, $places, $note = '') {

 $format = '%0' . (PHP_INT_SIZE * 8) . "b\n";

 printf("Expression: %d = %d %s %d\n", $res, $val, $op, $places);

 echo " Decimal:\n";

 printf(" val=%d\n", $val);

 printf(" res=%d\n", $res);

 echo " Binary:\n";

 printf(' val=' . $format, $val);

 printf(' res=' . $format, $res);

 if ($note) {

 echo " NOTE: $note\n";

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 19

 }

 echo "\n";

}

?>

Output of the above example on 32 bit machines:

--- BIT SHIFT RIGHT ON POSITIVE INTEGERS ---

Expression: 2 = 4 >> 1

 Decimal:

 val=4

 res=2

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000000010

 NOTE: copy of sign bit shifted into left side

Expression: 1 = 4 >> 2

 Decimal:

 val=4

 res=1

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000000001

Expression: 0 = 4 >> 3

 Decimal:

 val=4

 res=0

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000000000

 NOTE: bits shift out right side

Expression: 0 = 4 >> 4

 Decimal:

 val=4

 res=0

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000000000

 NOTE: same result as above; can not shift beyond 0

--- BIT SHIFT RIGHT ON NEGATIVE INTEGERS ---

Expression: -2 = -4 >> 1

 Decimal:

 val=-4

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 20

 res=-2

 Binary:

 val=11111111111111111111111111111100

 res=11111111111111111111111111111110

 NOTE: copy of sign bit shifted into left side

Expression: -1 = -4 >> 2

 Decimal:

 val=-4

 res=-1

 Binary:

 val=11111111111111111111111111111100

 res=11111111111111111111111111111111

 NOTE: bits shift out right side

Expression: -1 = -4 >> 3

 Decimal:

 val=-4

 res=-1

 Binary:

 val=11111111111111111111111111111100

 res=11111111111111111111111111111111

 NOTE: same result as above; can not shift beyond -1

--- BIT SHIFT LEFT ON POSITIVE INTEGERS ---

Expression: 8 = 4 << 1

 Decimal:

 val=4

 res=8

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000001000

 NOTE: zeros fill in right side

Expression: 1073741824 = 4 << 28

 Decimal:

 val=4

 res=1073741824

 Binary:

 val=00000000000000000000000000000100

 res=01000000000000000000000000000000

Expression: -2147483648 = 4 << 29

 Decimal:

 val=4

 res=-2147483648

 Binary:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 21

 val=00000000000000000000000000000100

 res=10000000000000000000000000000000

 NOTE: sign bits get shifted out

Expression: 0 = 4 << 30

 Decimal:

 val=4

 res=0

 Binary:

 val=00000000000000000000000000000100

 res=00000000000000000000000000000000

 NOTE: bits shift out left side

--- BIT SHIFT LEFT ON NEGATIVE INTEGERS ---

Expression: -8 = -4 << 1

 Decimal:

 val=-4

 res=-8

 Binary:

 val=11111111111111111111111111111100

 res=11111111111111111111111111111000

 NOTE: zeros fill in right side

Expression: -2147483648 = -4 << 29

 Decimal:

 val=-4

 res=-2147483648

 Binary:

 val=11111111111111111111111111111100

 res=10000000000000000000000000000000

Expression: 0 = -4 << 30

 Decimal:

 val=-4

 res=0

 Binary:

 val=11111111111111111111111111111100

 res=00000000000000000000000000000000

 NOTE: bits shift out left side, including sign bit

Output of the above example on 64 bit machines:

The Execution operator:

PHP supports one execution operator: backticks (``). Note that these are not single-quotes! PHP will

attempt to execute the contents of the backticks as a shell command; the output will be returned (i.e., it

won't simply be dumped to output; it can be assigned to a variable). Use of the backtick operator is

identical to shell_exec().

http://php.net/manual/en/function.shell-exec.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 22

<?php

$output = `ls -al`;

echo "<pre>$output</pre>";

?>

The backtick operator is disabled when safe mode is enabled or shell_exec() is disabled.

Unlike some other languages, backticks have no special meaning within double-quoted strings.

See also the manual section on Program Execution functions, popen() proc_open(), and Using PHP from

the commandline.

The PHP operator precedence:

The precedence of an operator specifies how "tightly" it binds two expressions together. For example, in

the expression 1 + 5 * 3, the answer is 16 and not 18 because the multiplication ("*") operator has a

higher precedence than the addition ("+") operator. Parentheses may be used to force precedence, if

necessary. For instance: (1 + 5) * 3 evaluates to 18.

When operators have equal precedence their associativity decides how the operators are grouped. For

example "-" is left-associative, so 1 - 2 - 3 is grouped as (1 - 2) - 3 and evaluates to -4. "=" on the other

hand is right-associative, so $a = $b = $c is grouped as $a = ($b = $c).

Operators of equal precedence that are non-associative cannot be used next to each other, for example 1 <

2 > 1 is illegal in PHP. The expression 1 <= 1 == 1 on the other hand is legal, because the == operator

has lesser precedence than the <= operator.

Use of parentheses, even when not strictly necessary, can often increase readability of the code by making

grouping explicit rather than relying on the implicit operator precedence and associativity.

The following table lists the operators in order of precedence, with the highest-precedence ones at the top.

Operators on the same line have equal precedence, in which case associativity decides grouping.

Operator Precedence

Associativity Operators Additional Information

non-associative clone new clone and new

left [array()

right ** arithmetic

right ++ -- ~ (int) (float) (string) (array) (object) (bool) @ types and increment/decrement

non-associative instanceof types

right ! logical

left * / % arithmetic

left + - . arithmetic and string

left << >> bitwise

non-associative < <= > >= comparison

non-associative == != === !== <> <=> comparison

left & bitwise and references

left ^ bitwise

left | bitwise

left && logical

left || logical

right ?? comparison

http://php.net/manual/en/ini.sect.safe-mode.php#ini.safe-mode
http://php.net/manual/en/function.shell-exec.php
http://php.net/manual/en/ref.exec.php
http://php.net/manual/en/function.popen.php
http://php.net/manual/en/function.proc-open.php
http://php.net/manual/en/features.commandline.php
http://php.net/manual/en/features.commandline.php
http://php.net/manual/en/language.oop5.cloning.php
http://php.net/manual/en/language.oop5.basic.php#language.oop5.basic.new
http://php.net/manual/en/function.array.php
http://php.net/manual/en/language.operators.arithmetic.php
http://php.net/manual/en/language.types.php
http://php.net/manual/en/language.operators.increment.php
http://php.net/manual/en/language.types.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.arithmetic.php
http://php.net/manual/en/language.operators.arithmetic.php
http://php.net/manual/en/language.operators.string.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.references.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.bitwise.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.comparison.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 23

Operator Precedence

Associativity Operators Additional Information

left ? : ternary

right = += -= *= **= /= .= %= &= |= ^= <<= >>= assignment

left and logical

left xor logical

left or logical

Example :

<?php

$a = 3 * 3 % 5; // (3 * 3) % 5 = 4

// ternary operator associativity differs from C/C++

$a = true ? 0 : true ? 1 : 2; // (true ? 0 : true) ? 1 : 2 = 2

$a = 1;

$b = 2;

$a = $b += 3; // $a = ($b += 3) -> $a = 5, $b = 5

?>

Operator precedence and associativity only determine how expressions are grouped, they do not specify an

order of evaluation. PHP does not (in the general case) specify in which order an expression is evaluated

and code that assumes a specific order of evaluation should be avoided, because the behavior can change

between versions of PHP or depending on the surrounding code.

 FLOW CONTROL

Using the if statement:
The if statement executes some code if one condition is true.

Syntax

if (condition) {

 code to be executed if condition is true;

}

The example below will output "Have a good day!" if the current time (HOUR) is less than 20:

Example

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

}

?>

output:

Have a good day!

The php comparison operators:

http://php.net/manual/en/language.operators.comparison.php#language.operators.comparison.ternary
http://php.net/manual/en/language.operators.assignment.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php
http://php.net/manual/en/language.operators.logical.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 24

 Comparison operators, as their name implies, allow you to compare two values. You may also be

interested in viewing the type comparison tables, as they show examples of various type related

comparisons.

Comparison Operators

Example Name Result

$a == $b Equal TRUE if $a is equal to $b after type juggling.

$a ===

$b

Identical TRUE if $a is equal to $b, and they are of the same type.

$a != $b Not equal TRUE if $a is not equal to $b after type juggling.

$a <> $b Not equal TRUE if $a is not equal to $b after type juggling.

$a !== $b Not identical TRUE if $a is not equal to $b, or they are not of the same type.

$a < $b Less than TRUE if $a is strictly less than $b.

$a > $b Greater than TRUE if $a is strictly greater than $b.

$a <= $b Less than or equal

to

TRUE if $a is less than or equal to $b.

$a >= $b Greater than or

equal to

TRUE if $a is greater than or equal to $b.

$a <=>

$b

Spaceship An integer less than, equal to, or greater than zero when $a is respectively less than, equal to, or

greater than $b. Available as of PHP 7.

If you compare a number with a string or the comparison involves numerical strings, then each string

is converted to a number and the comparison performed numerically. These rules also apply to

the switch statement. The type conversion does not take place when the comparison is === or !== as this

involves comparing the type as well as the value.

<?php

// Arrays are compared like this with standard comparison operators

function standard_array_compare($op1, $op2)

{

 if (count($op1) < count($op2)) {

 return -1; // $op1 < $op2

 } elseif (count($op1) > count($op2)) {

 return 1; // $op1 > $op2

 }

 foreach ($op1 as $key => $val) {

 if (!array_key_exists($key, $op2)) {

 return null; // uncomparable

 } elseif ($val < $op2[$key]) {

 return -1;

 } elseif ($val > $op2[$key]) {

 return 1;

 }

 }

 return 0; // $op1 == $op2

}

?>

The Php logical operators:

http://php.net/manual/en/types.comparisons.php
http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/language.types.string.php#language.types.string.conversion
http://php.net/manual/en/control-structures.switch.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 25

Logical Operators

Example Name Result

$a and $b And TRUE if both $a and $b are TRUE.

$a or $b Or TRUE if either $a or $b is TRUE.

$a xor $b Xor TRUE if either $a or $b is TRUE, but not both.

! $a Not TRUE if $a is not TRUE.

$a && $b And TRUE if both $a and $b are TRUE.

$a || $b Or TRUE if either $a or $b is TRUE.

The reason for the two different variations of "and" and "or" operators is that they operate at different

precedences. (See Operator Precedence.)

?php

if (!isset($x)) {

 $x = 123;

}

// or

$x = isset($x) ? $x : 123;

// or

$x = isset($x) ?: 123;

?>

 The else statement:

The if....else statement executes some code if a condition is true and another code if

that condition is false.

Syntax

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

The example below will output "Have a good day!" if the current time is less than 20, and "Have a good

night!" otherwise:

Example

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

http://php.net/manual/en/language.operators.precedence.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 26

} else {

 echo "Have a good night!";

}

?>

Output:

 Have a good day!

The else if statement:

The if....elseif...else statement executes different codes for more than two conditions.

Syntax

if (condition) {

 code to be executed if this condition is true;

} elseif (condition) {

 code to be executed if this condition is true;

} else {

 code to be executed if all conditions are false;

}

The example below will output "Have a good morning!" if the current time is less than 10, and "Have a

good day!" if the current time is less than 20. Otherwise it will output "Have a good night!":

Example

<?php

$t = date("H");

if ($t < "10") {

 echo "Have a good morning!";

} elseif ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

Output:

The hour (of the server) is 04, and will give the following message:

Have a good morning!

 The ternary operator:

 When I learned how to use the ternary operator years ago, I fell in love with it. What a cool way to

simplify assignments based on a condition. If you're not sure what the ternary operator is or how it

works, you're missing out on a really cool piece of programming knowledge.

Let's start out with an example and I'll explain how it works below. I'll use PHP, but the syntax is exactly

the same for JavaScript. Let's say we want to assign one of two values to $x based on a certain condition.

Using a conditional (if/then/else), it would look like this:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 27

if($valid) {

 $x = 'yes';

} else {

 $x = 'no';

}

That should be pretty easy to read. If $valid is true set $x to yes, otherwise set it to no. But this example is

rather long for such a simple assignment. Let's do it in one line with ternary logic:

$x = $valid ? 'yes' : 'no';

This produces the same result as before, but it's much shorter. Read it out loud like this:

If x is valid set it to yes; otherwise set it to no.

It's not that intimidating once you wrap your head around it. You can even nest them if you feel like being

dangerous:

$valid = true;

$lang = 'french';

$x = $valid ? ($lang === 'french' ? 'oui' : 'yes') : ($lang === 'french' ? 'non' : 'no');

echo $x; // outputs 'oui'

Try running this script in your dev environment and playing with the values to better understand how it

works.

The switch Statement:

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n) {

 case label1:

 code to be executed if n=label1;

 break;

 case label2:

 code to be executed if n=label2;

 break;

 case label3:

 code to be executed if n=label3;

 break;

 ...

 default:

 code to be executed if n is different from all labels;

}

This is how it works: First we have a single expression n (most often a variable), that is evaluated once.

The value of the expression is then compared with the values for each case in the structure. If there is a

match, the block of code associated with that case is executed. Use break to prevent the code from running

into the next case automatically. The default statement is used if no match is found.

Example

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 28

<?php

$favcolor = "red";

switch ($favcolor) {

 case "red":

 echo "Your favorite color is red!";

 break;

 case "blue":

 echo "Your favorite color is blue!";

 break;

 case "green":

 echo "Your favorite color is green!";

 break;

 default:

 echo "Your favorite color is neither red, blue, nor green!";

}

?>

Output:

 Your favorite color is red!

Using for loops:

The for loop is used when you know in advance how many times the script should run.

Syntax
for (init counter; test counter; increment counter) {

 code to be executed;

}

Parameters:

init counter: Initialize the loop counter value

test counter: Evaluated for each loop iteration. If it evaluates to TRUE, the loop continues. If it evaluates

to FALSE, the loop ends.

increment counter: Increases the loop counter value

The example below displays the numbers from 0 to 10:

Example
<?php

for ($x = 0; $x <= 10; $x++) {

 echo "The number is: $x
";

}

?>

Output:

The number is: 0

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

The number is: 6

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 29

The number is: 7

The number is: 8

The number is: 9

The number is: 10

Using while loops:
 The while loop executes a block of code as long as the specified condition is true.

Syntax

while (condition is true) {

 code to be executed;

}

The example below first sets a variable $x to 1 ($x = 1). Then, the while loop will continue to run as long

as $x is less than, or equal to 5 ($x <= 5). $x will increase by 1 each time the loop runs ($x++):

Example

<?php

$x = 1;

while($x <= 5) {

 echo "The number is: $x
";

 $x++;

}

?>

Output:

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

Using do-while loops:

The do...while loop will always execute the block of code once, it will then check the condition, and

repeat the loop while the specified condition is true

Syntax

do {

 code to be executed;

} while (condition is true);

The example below first sets a variable $x to 1 ($x = 1). Then, the do while loop will write some output,

and then increment the variable $x with 1. Then the condition is checked (is $x less than, or equal to 5?),

and the loop will continue to run as long as $x is less than, or equal to 5:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 30

Example

<?php

$x = 1;

do {

 echo "The number is: $x
";

 $x++;

} while ($x <= 5);

?>

Output:

The number is: 1

The number is: 2

The number is: 3

The number is: 4

The number is: 5

Using the foreach loop:

The foreach loop works only on arrays, and is used to loop through each key/value pair in an array.

Syntax

foreach ($array as $value) {

 code to be executed;

}

For every loop iteration, the value of the current array element is assigned to $value and the array pointer

is moved by one, until it reaches the last array element.

The following example demonstrates a loop that will output the values of the given array ($colors):

Example
<?php

$colors = array("red", "green", "blue", "yellow");

foreach ($colors as $value) {

 echo "$value
";

}

?>

Output:

red

green

blue

yellow

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 31

Terminating loops early:
 break ends execution of the current for, foreach, while, do-while or switch structure.

break accepts an optional numeric argument which tells it how many nested enclosing structures are to be

broken out of. The default value is 1, only the immediate enclosing structure is broken out of.

<?php

$arr = array('one', 'two', 'three', 'four', 'stop', 'five');

while (list(, $val) = each($arr)) {

 if ($val == 'stop') {

 break; /* You could also write 'break 1;' here. */

 }

 echo "$val
\n";

}

Skipping iterations:
continue is used within looping structures to skip the rest of the current loop iteration and continue

execution at the condition evaluation and then the beginning of the next iteration.

Note: In PHP the switch statement is considered a looping structure for the purposes

of continue. continuebehaves like break (when no arguments are passed). If a switch is inside a

loop, continue 2 will continue with the next iteration of the outer loop.

continue accepts an optional numeric argument which tells it how many levels of enclosing loops it should

skip to the end of. The default value is 1, thus skipping to the end of the current loop.

<?php

while (list($key, $value) = each($arr)) {

 if (!($key % 2)) { // skip even members

 continue;

 }

 do_something_odd($value);

}

$i = 0;

while ($i++ < 5) {

 echo "Outer
\n";

 while (1) {

 echo "Middle
\n";

 while (1) {

 echo "Inner
\n";

 continue 3;

 }

 echo "This never gets output.
\n";

 }

 echo "Neither does this.
\n";

}

?>

PHP alternate syntax:

http://php.net/manual/en/control-structures.switch.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 32

Sometimes you wind up working on a page that switches back and forth between php and html. It can be

tricky keeping track of code or making the mistake of over using the echo function. Luckily php supports

an alternative syntax for control structures allowing you to jump in and out of php and html. Any code

(html, php, anything) nested within a conditional will only parse if the defined conditions are matched.

The end result is clean, organized, efficient code.

One of my interns once put all his html code into an array and printed each part while looping through

function calls. It worked, but it his source code was so hard to read that when I asked him to take a look at

it a few months later he couldn’t even make sense of what he wrote.

PHP's alternative control structure syntax makes it easy to identify code blocks and it’s widely used in

many popular open source projects. WordPress for example makes use of this syntax all over the place. I

you ever looked at the code inside a WordPress theme, I’m sure you’ve taken notice to this syntax. Here’s

a quick example.

?

1

2

3

4

5

6

7

8

<?php// quick example, prints hungry if sandwich is false - it isn't

$sandwich = true;

if($sandwich == false):

 echo 'I am hungry.';

else:

 echo'Thank you, that was delicious.';

endif;

?>

Anyone familiar with Visual Basic might be drawing comparisons to the syntax and noticing the end if

statement. Some might even suggest that this a counterproductive approach to clean code. PHP does this

on purpose, because now you can jump out of the language and things can become a lot cleaner, and easy

to read. So I’d sacrifice having to close an if statement with ‘endif’ any day over a complicated list of echo

commands.

STRINGS AND ARRAYS

In PHP, two types of data (strings and arrays) warrant special attention and a more complete explanation.

This chapter details how and why these special data types are employed in PHP 5 with copious examples

to get you started using these in your code.

The String Functions:

data types merit some special attention—strings and arrays. We've already seen strings at work, including

single- and double-quoted strings (recall also that double-quoted strings allow variable interpolation). PHP

also comes packed with more string power, and we're going to dig into that in this chapter—tons of

functions are built into PHP that work with strings, from sorting strings to searching them, trimming extra

spaces off of them, and getting their lengths. We'll get a handle on those functions in this chapter.

Besides strings, we're also going to get a handle on arrays in this chapter. We've seen how to store data in

simple variables, but there's more to the story here. Arrays can hold multiple data items, assigning each

one a numeric or text index (also called a key). For example, if you want to store some student test scores,

you can store them in an array, and then you can access each score in the array via a numeric index. That's

great as far as computers are concerned because you can work through all the elements in an array simply

by steadily incrementing that index, as you might do with a loop. In that way, you can use your computer

http://www.brian2000.com/php/understanding-alternative-syntax-for-control-structures-in-php/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 33

to iterate over all the elements in an array in order to print them out or find their average value, for

example.

Arrays represent the first time we're associating data items together. Up to this point, we've only worked

with simple variables, but working with arrays is fundamental to PHP for such tasks as reading the data

that users enter in web pages. We'll get the details on strings and arrays in this chapter, and I'll start with

the string functions.

PHP has plenty of built-in string functions. Table 3-1 lists a selection of them.

Table 3-1. The String Functions

Function Purpose

chr Returns a specific character, given its ASCII code

chunk_split Splits a string into smaller chunks

crypt Supports one-way string encryption (hashing)

echo Displays one or more strings

explode Splits a string on a substring

html_entity_decode Converts all HTML entities to their applicable characters

htmlentities Converts all applicable characters to HTML entities

htmlspecialchars Converts special characters to HTML entities

implode Joins array elements with a string

ltrim Strips whitespace from the beginning of a string

number_format Formats a number with grouped thousand separators

ord Returns the ASCII value of character

parse_str Parses the string into variables

print Displays a string

printf Displays a formatted string

rtrim Strips whitespace from the end of a string

setlocale Sets locale information

similar_text Calculates the similarity between two strings

sprintf Returns a formatted string

sscanf Parses input from a string according to a format

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 34

Function Purpose

str_ireplace Case-insensitive version of the str_replace function.

str_pad Pads a string with another string

str_repeat Repeats a string

str_replace Replaces all occurrences of the search string with the replacement string

str_shuffle Shuffles a string randomly

str_split Converts a string to an array

str_word_count Returns information about words used in a string

strcasecmp Binary case-insensitive string comparison

strchr Alias of the strstr function

strcmp Binary-safe string comparison

strip_tags Strips HTML and PHP tags from a string

stripos Finds position of first occurrence of a case-insensitive string

stristr Case-insensitive version of the strstr function

strlen Gets a string's length

strnatcasecmp Case-insensitive string comparisons

strnatcmp String comparisons using a "natural order" algorithm

strncasecmp Binary case-insensitive string comparison of the first n characters

strncmp Binary-safe string comparison of the first n characters

strpos Finds position of first occurrence of a string

strrchr Finds the last occurrence of a character in a string

strrev Reverses a string

strripos Finds the position of last occurrence of a case-insensitive string

strrpos Finds the position of last occurrence of a char in a string

strspn Finds the length of initial segment matching mask

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 35

Function Purpose

strstr Finds the first occurrence of a string

strtolower Converts a string to lowercase

strtoupper Converts a string to uppercase

strtr Translates certain characters

substr_compare Binary-safe (optionally case-insensitive) comparison of two strings from an offset

substr_count Counts the number of substring occurrences

substr_replace Replaces text within part of a string

substr Returns part of a string

trim Strips whitespace from the beginning and end of a string

Home > Articles > Programming > PHP

Using the String Functions:

Here's an example that puts some of the useful string functions to work:

<?php

 echo trim(" No worries."), "\n";

 echo substr("No worries.", 3, 7), "\n";

 echo "\"worries\" starts at position ", strpos("No worries.", "worries"), "\n";

 echo ucfirst("no worries."), "\n";

 echo "\"No worries.\" is ", strlen("No worries."), " characters long.\n";

 echo substr_replace("No worries.", "problems.", 3, 8), "\n";

 echo chr(65), chr(66), chr(67), "\n";

 echo strtoupper("No worries."), "\n";

?>

In this example, we're using trim to trim leading spaces from a string, substr to extract a substring from a

string, strpos to search a string for a substring, ucfirst to convert the first character of a string to

uppercase, strlen to determine a string's length, substr_replace to replace a substring with another

string, chr to convert an ASCII code to a letter (ASCII 65 = "A", ASCII 66 = "B", and so on),

and strtoupper to convert a string to uppercase

.

Converting to and from trings:

Converting between string format and other formats is a common task on the Internet because the data

passed from the browser to the server and back in text strings. To convert to a string, you can use

the (string) cast or the strval function; here's what this might look like:

http://www.informit.com/
http://www.informit.com/articles/index.aspx
http://www.informit.com/articles/index.aspx?st=60206
http://www.informit.com/articles/index.aspx?st=98717

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 36

Eg:

<?php

 $float = 1.2345;

 echo (string) $float, "\n";

 echo strval($float), "\n";

?>

A boolean TRUE value is converted to the string "1", and the FALSE value is represented as "" (empty

string). An integer or floating point number (float) is converted to a string representing the number with its

digits (including the exponent part for floating point numbers). The value NULL is always converted to an

empty string.

You can also convert a string to a number. The string will be treated as a float if it contains any of the

characters '.', 'e', or 'E'. Otherwise, it will be treated as an integer.

PHP determines the numeric value of a string from the initial part of the string. If the string starts with

numeric data, it will use that. Otherwise, the value will be 0 (zero). Valid numeric data consists of an

optional sign (+ or -), followed by one or more digits (including a decimal point if you're using it) and an

optional exponent (the exponent part is an 'e' or 'E', followed by one or more digits).

PHP will do the right thing if you start using a string in a numeric context, as when you start adding values

together. Here are some examples to make all this clearer:

Eg:

<?php

 $number = 1 + "14.5";

 echo "$number\n";

 $number = 1 + "-1.5e2";

 echo "$number\n";

 $text = "5.0";

 $number = (float) $text;

 echo $number / 2.0, "\n";

?>

Output:

And here's what you see when you run this script:

15.5

-149

2.5

Formatting text strings:

 Like many other languages, PHP features the versatile printf() and sprintf() functions that you can use

to format strings in many different ways. These functions are handy when you need convert data between

different formats — either to make it easy for people to read, or for passing to another program.

PHP features many other functions to format strings in specific ways — for example, the date() function is

ideal for formatting date strings. However, printf() and sprintf() are great for general-purpose formatting.

In this tutorial you look at how to work with printf() and sprintf() to format strings.

A simple printf() example

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 37

The easiest way to understand printf() is to look at an example. The following code displays a string

containing 2 numbers:

// Displays "Australia comprises 6 states and 10 territories"

printf("Australia comprises %d states and %d territories", 6, 10);

Notice how the first %d in the string is replaced with the first argument after the string (6), while the

second %d is replaced with the second argument (10). Here's how it works:

The first argument is always a string, and is called the format string. The format string contains regular

text, as well as some optional format specifiers (the %ds in this example).

Each format specifier begins with a % (percent) sign. It takes an additional argument after the format

string, formats the argument in a certain way, and inserts the result into the final string, which is then

displayed in the Web page.

To specify a literal percent character, write %%.

Type specifiers

The example above uses the %d format specifier. This formats an argument as a signed decimal integer.

The 'd' is known as a type specifier, and printf() supports a wide range of them. Here's a full list of type

specifiers:

b

Format the argument as a binary integer (e.g. 10010110)

c

Format the argument as a character with the argument's ASCII value

d

Format the argument as a signed decimal integer

e

Format the argument in scientific notation (e.g. 1.234e+3)

f

Format the argument as a floating-point number using the current locale settings (e.g. in France a comma

is used for the decimal point)

F

As above, but ignore the locale settings

o

Format the argument as an octal integer

s

Format the argument as a string

u

Format the argument as an unsigned decimal integer

x

Format the argument as a lowercase hexadecimal integer (e.g. 4fdf87)

X

Format the argument as an uppercase hexadecimal integer (e.g. 4FDF87)

Here's a simple example of type specifiers in action:

printf("Here's the number %s as a float (%f), a binary integer (%b), an octal integer (%o), and a hex

integer (%x).", 543.21, 543.21, 543.21, 543.21, 543.21);

This code displays:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 38

Here's the number 543.21 as a float (543.210000), a binary integer (1000011111), an octal integer (1037),

and a hex integer (21f).

Sign specifier

Ordinarily, printf() only puts a sign symbol in front of negative numbers, not positive numbers:

printf("%d", 36); // Displays "36"

printf("%d", -36); // Displays "-36"

If you'd rather printf() also put a + symbol in front of positive numbers, you can add the sign specifier, +,

before the type specifier:

printf("%+d", 36); // Displays "+36"

printf("%+d", -36); // Displays "-36"

Padding

printf() lets you pad out an argument value to a fixed width. You can use any character you like for the

padding, and you can pad to the left or the right of the value. Padding is useful for adding leading zeroes

to numbers, and for right-aligning strings.

To add padding, insert a padding specifier between the '%' character and the type specifier. A padding

specifier takes the format:

<padding character><width>

<padding character> can be a zero or a space. If you miss it out, spaces are used. If you want to pad

using a different character, write an apostrophe (') followed by the character to use.

<width> is the number of characters to pad the value out to. A positive number adds padding to the left; a

negative number adds padding to the right.

Here are some padding examples:

printf("%04d", 12); // Displays "0012"

printf("%04d", 1234); // Displays "1234"

printf("%04d", 12345); // Displays "12345"

printf("% 10s", "Hello"); // Displays " Hello"

printf("%10s", "Hello"); // Displays " Hello"

printf("%'*10s", "Hello"); // Displays "*****Hello"

printf("%'*-10s", "Hello"); // Displays "Hello*****"

Notice that, in the 3rd example, the padding specifier doesn't truncate the value to 4 characters. Padding

specifiers only add characters.

Number precision
When using the f or F type specifier to format floats, PHP defaults to a precision of 6 decimal places:

printf("%f", 123.456); // Displays "123.456000"

To specify a different precision, you can use a precision specifier. This is a dot (.) followed by the number

of decimal places to use, and it goes right before the type specifier. For example:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 39

printf("%.2f", 123.456); // Displays "123.46"

printf("%.10f", 123.456); // Displays "123.4560000000"

printf("%.0f", 123.456); // Displays "123"

If you use a padding specifier with a precision specifier then printf() pads the entire value, including the

decimal point and decimal digits, to the specified length:

printf("%08.2f", 123.456); // Displays "00123.46"

If you use a precision specifier with the s type specifier then printf()truncates the string value to the

specified number of characters:

printf("%.2s", "Hello"); // Displays "He"

Argument swapping

By default, the first format specifier in the format string is used with the first argument after the format

string, the second format specifier is used with the second argument, and so on. However, you can change

this ordering if you like.

To do this, place a number followed by a dollar ($) symbol between the %and the type specifier. For

example:

// Displays "Australia comprises 10 territories and 6 states"

printf('Australia comprises %2$d territories and %1$d states', 6, 10);

In the above example, the first format specifier is %2$d. This means: "Take the second argument after the

format string and display it as a decimal integer". The second format specifier, %1$d, reads: "Take the

first argument after the format string and display it as a decimal integer". So the arguments are used in a

different order.

In the above example, the format string is enclosed by single quotes rather than double quotes. This

prevents each dollar ($) symbol in the string from being interpreted as starting a PHP variable name. (You

can find out more about this in Creating PHP Strings.)

Storing the result in a variable

So what about sprintf()? This function is identical to printf(), except that rather than directly outputting the

result, it returns it so that you can store it in a variable (or otherwise manipulate it). This is useful if you

want to process the result before displaying it, or store it in a database. Here's an example:

$result = sprintf("Australia comprises %d states and %d territories", 6, 10);

// Displays "Australia comprises 6 states and 10 territories"

echo $result;

Building yourself some arrays:

An array stores multiple values in one single variable:

Example

https://www.elated.com/articles/creating-php-strings/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 40

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables could look

like this:

$cars1 = "Volvo";

$cars2 = "BMW";

$cars3 = "Toyota";

However, what if you want to loop through the cars and find a specific one? And what if you had not 3

cars, but 300?

The solution is to create an array!

An array can hold many values under a single name, and you can access the values by referring to an

index number.

Create an Array in PHP

In PHP, the array() function is used to create an array:

array();

In PHP, there are three types of arrays:

 Indexed arrays - Arrays with a numeric index

 Associative arrays - Arrays with named keys

 Multidimensional arrays - Arrays containing one or more arrays

PHP Indexed Arrays

There are two ways to create indexed arrays:

The index can be assigned automatically (index always starts at 0), like this:

$cars = array("Volvo", "BMW", "Toyota");

or the index can be assigned manually:

$cars[0] = "Volvo";

$cars[1] = "BMW";

$cars[2] = "Toyota";

The following example creates an indexed array named $cars, assigns three elements to it, and then prints

a text containing the array values:

Example

<?php

$cars = array("Volvo", "BMW", "Toyota");

echo "I like " . $cars[0] . ", " . $cars[1] . " and " . $cars[2] . ".";

?>

Output:

I like Volvo, BMW and Toyota.

Modifying the data in arrays:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 41

An existing array can be modified by explicitly setting values in it.

This is done by assigning values to the array, specifying the key in brackets. The key can also be omitted,

resulting in an empty pair of brackets ([]).

$arr[key] = value;

$arr[] = value;

// key may be an integer or string

// value may be any value of any type

If $arr doesn't exist yet, it will be created, so this is also an alternative way to create an array. This practice

is however discouraged because if $arr already contains some value (e.g. string from request variable)

then this value will stay in the place and [] may actually stand for string access operator. It is always better

to initialize a variable by a direct assignment.

Deleting array elements:

There are different ways to delete an array element, where some are more useful for some specific tasks than

others.

Delete one array element

If you want to delete just one array element you can use unset() or alternative array_splice().

Also if you have the value and don't know the key to delete the element you can use array_search()to get

the key.

unset() method

 that when you use unset() the array keys won't change/reindex. If you want to reindex the keys you can

use array_values() after unset() which will convert all keys to numerical enumerated keys starting from 0.

Eg:

<?php

 $array = array(0 => "a", 1 => "b", 2 => "c");

 unset($array[1]);

 //↑ Key which you want to delete

?>

Output

Array (

 [0] => a

 [2] => c

)

Handling arrays with loops:

already know you can loop over an array using a for loop and the count function, which determines how

many elements an array contains:

http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.integer.php
http://php.net/manual/en/language.types.string.php
http://php.net/manual/en/language.types.array.php
http://php.net/manual/en/language.types.string.php
http://php.net/manual/en/language.types.string.php#language.types.string.substr
https://secure.php.net/manual/en/function.unset.php
https://secure.php.net/manual/en/function.array-splice.php
http://php.net/manual/en/function.array-search.php
http://php.net/manual/en/function.unset.php
http://php.net/manual/en/function.array-values.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 42

the for loop:

<?php

 $fruits[0] = "pineapple";

 $fruits[1] = "pomegranate";

 $fruits[2] = "tangerine";

 for ($index = 0; $index < count($fruits); $index++)

{

 echo $fruits[$index], "\n";

 }

?>

Here's what you get:

pineapple

pomegranate

tangerine

the print_r function:

There's also a function for easily displaying the contents of an array, print_r:

<?php

 $fruits[0] = "pineapple";

 $fruits[1] = "pomegranate";

 $fruits[2] = "tangerine";

 print_r($fruits);

?>

Here are the results:

Array

(

 [0] => pineapple

 [1] => pomegranate

 [2] => tangerine

)

The foreach loop:

The foreach statement was specially created to loop over collections such as arrays. This statement has

two forms:

foreach (array_expression as $value) statement

foreach (array_expression as $key => $value) statement

The first form of this statement assigns a new element from the array to $value each time through the

loop. The second form places the current element's key, another name for its index, in $key and its value

in $value each time through the loop. For example, here's how you can display all the elements in an array

using foreach:

<?php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 43

 $fruits = array("pineapple", "pomegranate", "tangerine");

 foreach ($fruits as $value) {

 echo "Value: $value\n";

 }

?>

Here are the results:

Value: pineapple

Value: pomegranate

Value: tangerine

And here's how you can display both the keys and values of an array:

<?php

 $fruits = array("pineapple", "pomegranate", "tangerine");

 foreach ($fruits as $key => $value) {

 echo "Key: $key; Value: $value\n";

 }

?>

Here are the results:

Key: 0; Value: pineapple

Key: 1; Value: pomegranate

Key: 2; Value: tangerine

 The While loop:

You can even use a while loop to loop over an array if you use a new function, each . The each function is

meant to be used in loops over collections such as arrays; each time through the array, it returns the

current element's key and value and then moves to the next element. To handle a multiple-item return

value from an array, you can use the list function, which will assign the two return values from each to

separate variables.

Here's what this looks like for our $fruits array:

<?php

 $fruits = array("pineapple", "pomegranate", "tangerine");

 while (list($key, $value) = each ($fruits)) {

 echo "Key: $key; Value: $value\n";

 }

?>

Here's what you get from this script:

Key: 0; Value: pineapple

Key: 1; Value: pomegranate

Key: 2; Value: tangerine

The PHP array functions:
Just as it has many string functions, PHP also has many array functions. You can see a sample of them in

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 44

Function Name Purpose

array_chunk Splits an array into chunks

array_combine Creates an array by using one array for the keys and another for the values

array_count_values Counts the values in an array

array_diff Computes the difference of arrays

array_fill Fills an array with values

array_intersect Computes the intersection of arrays

array_key_exists Checks whether the given key or index exists in the array

array_keys Returns the keys in an array

array_merge Merges two or more arrays

array_multisort Sorts multiple or multidimensional arrays

array_pad Pads array to the specified length with a value

array_pop Pops the element off the end of an array

array_push Pushes one or more elements onto the end of array

array_rand Picks one or more random elements out of an array

array_reduce Reduces the array to a single value with a callback function

array_reverse Returns an array with elements in reverse order

array_search Searches the array for a given value and returns the corresponding key

array_shift Shifts an element off the beginning of array

array_slice Extracts a slice of the array

array_sum Calculates the sum of values in an array

array_unique Removes duplicate elements from an array

array_unshift Adds one or more elements to the beginning of an array

array_walk Calls a user-supplied function on every member of an array

array Creates an array

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 45

Function Name Purpose

asort Sorts an array and maintains index association

count Counts the elements in an array

current Returns the current element in an array

each Returns the current key and value pair from an array and advances the array cursor

in_array Checks whether a value exists in an array

key Gets a key from an associative array

krsort Sorts an array by key in reverse order

ksort Sorts an array by key

list Assigns variables as if they were an array

natcasesort Sorts an array using a case-insensitive "natural order" algorithm

natsort Sorts an array using a "natural order" algorithm

pos Alias of the current function

reset Sets the pointer of an array to its first element

rsort Sorts an array in reverse order

shuffle Shuffles an array's elements

sizeof Alias of the count function

sort Sorts an array

usort Sorts an array by values with a user-defined comparison function

Converting between strings and arrays using impload and explpoad:
strings and arrays by using the PHP implode and explode functions: implode implodes an array to a string,

and explode explodes a string into an array.

For example, say you want to put an array's contents into a string. You can use implode, passing it the text

you want to separate each element with in the output string (in this example, we use a comma) and the

array to work on:

<?php

 $vegetables[0] = "corn";

 $vegetables[1] = "broccoli";

 $vegetables[2] = "zucchini";

 $text = implode(",", $vegetables);

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 46

 echo $text;

?>

This gives you:

corn,broccoli,zucchini

There are no spaces between the items in this string, however, so we change the separator string from ","

to ", ":

$text = implode(", ", $vegetables);

The result is:

corn, broccoli, zucchini

What about exploding a string into an array? To do that, you indicate the text that you want to split the

string on, such as ", ", and pass that to explode. Here's an example:

<?php

 $text = "corn, broccoli, zucchini";

 $vegetables = explode(", ", $text);

 print_r($vegetables);

?>

And here are the results. As you can see, we exploded the string into an array correctly:

Array

(

 [0] => corn

 [1] => broccoli

 [2] => zucchini

)

Extracting Variables from Arrays:
The extract function is handy for copying the elements in arrays to variables if your array is set up with

string index values. For example, take a look at this case, where we have an array with string indexes:

$fruits["good"] = "tangerine";

$fruits["better"] = "pineapple";

$fruits["best"] = "pomegranate";

 .

 .

 .

When you call the extract function on this array, it creates variables corresponding to the string

indexes: $good, $better, and so on:

$fruits["good"] = "tangerine";

$fruits["better"] = "pineapple";

$fruits["best"] = "pomegranate";

extract($fruits);

 .

 .

 .

Take a look at how this works in Example 3-3, phpextract.php.

Example 3-3. Extracting variables from an array, phpextract.php

<HTML>

 <HEAD>

 <TITLE>Extracting variables from an array</TITLE>

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 47

 </HEAD>

 <BODY>

 <H1>Extracting variables from an array</H1>

 <?php

 $fruits["good"] = "tangerine";

 $fruits["better"] = "pineapple";

 $fruits["best"] = "pomegranate";

 extract($fruits);

 echo "\$good = $good
";

 echo "\$better = $better
";

 echo "\$best = $best
";
 ?>

 </BODY>

</HTML>

Now $good will hold "tangerine", $better will hold "pineapple", and $best will hold "pomegranate". You

can see the results in Figure 3-3.

Figure 3-3 Filling variables from an array.

You can also use the PHP list function to get data from an array like this and store it in as many variables

as you like. Here's an example:

<?php

 $vegetables[0] = "corn";

 $vegetables[1] = "broccoli";

 $vegetables[2] = "zucchini";

 list($first, $second) = $vegetables;
 echo $first, "\n";

 echo $second;

?>

And here is the result:

corn

broccoli

Can you go the opposite way and copy variables into an array? Sure, just use the compact function. You

pass this function the names of variables (with the $), and compact finds those variables and stores them

all in an array:

<?php

 $first_name = "Cary";

 $last_name = "Grant";

 $role = "Actor";

 $subarray = array("first_name", "last_name");

 $resultarray = compact("role", $subarray);

?>

javascript:popUp('/content/images/chap3_0131498622/elementLinks/03fig03.gif')
javascript:popUp('/content/images/chap3_0131498622/elementLinks/03fig03.gif')
javascript:popUp('/content/images/chap3_0131498622/elementLinks/03fig03.gif')

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 48

Sorting Arrays:

PHP offers all kinds of ways to sort the data in arrays, starting with the simple sort function, which you

use on arrays with numeric indexes. In the following example, we create an array, display it, sort it, and

then display it again:

<?php

 $fruits[0] = "tangerine";

 $fruits[1] = "pineapple";

 $fruits[2] = "pomegranate";

 print_r($fruits);

 sort($fruits);

 print_r($fruits);

?>

Here are the results—as you can see, the new array is in sorted order; note also that the elements have

been given new numeric indexes:

Array

(

 [0] => tangerine

 [1] => pineapple

 [2] => pomegranate

)

Array

(

 [0] => pineapple

 [1] => pomegranate

 [2] => tangerine

)

You can sort an array in reverse order if you use rsort instead:

<?php

 $fruits[0] = "tangerine";

 $fruits[1] = "pineapple";

 $fruits[2] = "pomegranate";

 print_r($fruits);

 rsort($fruits);

 print_r($fruits);

?>

Here's what you get:

Array

(

 [0] => tangerine

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 49

 [1] => pineapple

 [2] => pomegranate

)

Array

(

 [0] => tangerine

 [1] => pomegranate

 [2] => pineapple

)

What if you have an array that uses text keys? Unfortunately, if you use sort or rsort, the keys are replaced

by numbers. If you want to retain the keys, use asort instead, as in this example:

<?php

 $fruits["good"] = "tangerine";

 $fruits["better"] = "pineapple";

 $fruits["best"] = "pomegranate";

 print_r($fruits);

 asort($fruits);

 print_r($fruits);
?>

Here are the results:

Array

(

 [good] => tangerine

 [better] => pineapple

 [best] => pomegranate

)

Array

(

 [better] => pineapple

 [best] => pomegranate

 [good] => tangerine

)

Using php’s array operators:

This is a Comprehensive PHP array operators tutorial from w3resource.com

List of array operators

Name Example Result

Union $x + $y Union of $x and $y. The + operator appends elements of remaining keys from the right-

sided array to the left-handed, but duplicated keys are not overwritten.

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 50

Equality $x == $y TRUE if $x and $y have the same key/value pairs.

Identity $x ===

$y

TRUE if $x and $y have the same key/value pairs in the same order and of the same

types.

Inequality $x != $y TRUE if $x is not equal to $y.

Inequality $x <> $y TRUE if $x is not equal to $y.

Non-

identity

$x !== $y TRUE if $x is not identical to $y.

Example : array equality (==) and identity(===) operators
In the following example equality operator returns true as the two arrays have same key/value pairs

whereas identity operator returns false as the key/value of the comparing arrays are same but not in same

order.

view plaincopy to clipboardprint?

<?php

$a = array("1" => "apple", "0" => "banana");

$b = array("banana", "apple");

var_dump($a == $b);

var_dump($a === $b);

?>

bool(true) bool(false)

comparing arrays to each other:

it seems that every PHP function I read about for comparing arrays (array_diff(), array_intersect(), etc)

compares for the existence of array elements.

Given two multidimensional arrays with identical structure, how would you list the differences in values?

Example

Array 1

[User1] => Array ([public] => 1

 [private] => 1

 [secret] => 1

)

[User2] => Array ([public] => 1

 [private] => 0

 [secret] => 0

)

Array 2

[User1] => Array ([public] => 1

 [private] => 0

 [secret] => 1

)

[User2] => Array ([public] => 1

 [private] => 0

 [secret] => 0

https://www.w3resource.com/php/operators/array-operators.php
https://www.w3resource.com/php/operators/array-operators.php
https://www.w3resource.com/php/operators/array-operators.php
https://www.w3resource.com/php/operators/array-operators.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 51

)

Difference

[User1] => Array ([public] => 1

 [private] => 0 //this value is different

 [secret] => 1

)

So my result would be - "Of all the users, User1 has changed, and the difference is that private is 0 instead

of 1."

Using multidimensional arrays in loops:

Array elements in PHP can hold values of any type, such as numbers, strings and objects. They can also

hold other arrays, which means you can create multidimensional, or nested, arrays.

In this tutorial you learn how to create multidimensional arrays, how to access elements in a

multidimensional array, and how to loop through multidimensional arrays.

How to create a multidimensional array

You create a multidimensional array using the array() construct, much like creating a regular array. The

difference is that each element in the array you create is itself an array.

For example:

$myArray = array(

 array(value1, value2, value3),

 array(value4, value5, value6),

 array(value7, value8, value9)

);
Example
<?php

echo $cars[0][0].": In stock: ".$cars[0][1].", sold: ".$cars[0][2].".
";

echo $cars[1][0].": In stock: ".$cars[1][1].", sold: ".$cars[1][2].".
";

echo $cars[2][0].": In stock: ".$cars[2][1].", sold: ".$cars[2][2].".
";

echo $cars[3][0].": In stock: ".$cars[3][1].", sold: ".$cars[3][2].".
";
?>
Volvo: In stock: 22, sold: 18.
BMW: In stock: 15, sold: 13.
Saab: In stock: 5, sold: 2.
Land Rover: In stock: 17, sold: 15.

Moving through arrays:

an array element to a new position in the array and resequence the indexes so that there are no gaps in the sequence.

It doesnt need to work with associative arrays. Anyone got ideas for this one?

$a = array(0=>'a', 1=>'c', 2=>'d', 3=>'b', 4=>'e');
print_r(moveElement(3,1))

//should output [0=>'a', 1=>'b', 2=>'c', 3=>'d', 4=>'e']

https://www.elated.com/articles/creating-php-arrays/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 52

Merging and Splitting Arrays:

You can also cut up and merge arrays when needed. For example, say you have a three-item array of

various fruits and want to get a subarray consisting of the last two items. You can do this with

the array_slice function, passing it the array you want to get a section of, the offset at which to start, and

the length of the array you want to create:

<?php

 $fruits["good"] = "tangerine";

 $fruits["better"] = "pineapple";

 $fruits["best"] = "pomegranate";

 $subarray = array_slice($fruits, 1, 2);
 foreach ($subarray as $value) {

 echo "Fruit: $value\n";

 }

?>

Here are the results:

Fruit: pineapple

Fruit: pomegranate

If offset is negative, the sequence will be measured from the end of the array. If length is negative, the

sequence will stop that many elements from the end of the array.

If you don't give the length of the subarray you want, you'll get all the elements to the end (or the

beginning, if you're going in the opposite direction) of the array.

You can also merge two or more arrays with array_merge:

<?php

 $fruits = array("pineapple", "pomegranate", "tangerine");

 $vegetables = array("corn", "broccoli", "zucchini");

 $produce = array_merge($fruits, $vegetables);

 foreach ($produce as $value) {

 echo "Produce item: $value\n";

 }

?>

And here's what you get (see also "Using the Array Operators" in this chapter):

Produce item: pineapple

Produce item: pomegranate

Produce item: tangerine

Produce item: corn

Produce item: broccoli

Produce item: zucchini

Other array function:

avigating Within an Array: each(), current(), reset(), end(), next(), pos(), and prev()

We mentioned previously that every array has an internal pointer that points to the current element in the

array. You indirectly used this pointer earlier when using the each() function, but you can directly use and

manipulate this pointer.

If you create a new array, the current pointer is initialized to point to the first element in the array.

Calling current($array_name) returns the first element.

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 53

Calling either next() or each() advances the pointer forward one element. Calling each($array_name

) returns the current element before advancing the pointer. The function next()behaves slightly

differently: Calling next($array_name) advances the pointer and then returns the new current element.

You have already seen that reset() returns the pointer to the first element in the array. Similarly,

calling end($array_name) sends the pointer to the end of the array. The first and last elements in the array

are returned by reset() and end(), respectively.

To move through an array in reverse order, you could use end() and prev(). The prev() function is the

opposite of next(). It moves the current pointer back one and then returns the new current element.

For example, the following code displays an array in reverse order:

$value = end ($array);

while ($value)

{

 echo "$value
";

 $value = prev($array);

}

For example, you can declare $array like this:

$array = array(1, 2, 3);

In this case, the output would appear in a browser as follows:

3

2

1

Unit- II

CREATING FUNCTIONS

Creating functions in php:

PHP has a lot of built-in functions, addressing almost every need. More importantly, though, it has the

capability for you to define and use your own functions for whatever purpose. The syntax for making your

own function is

function function_name () {

 // Function code.

}

The name of your function can be any combination of letters, numbers, and the underscore, but it must

begin with either a letter or the underscore. The main restriction is that you cannot use an existing function

name for your function (print, echo, isset, and so on).

In PHP, as I mentioned in the first chapter, function names are case-insensitive (unlike variable names), so

you could call that function using function_name() or FUNCTION_NAME() or function_Name(), etc.

The code within the function can do nearly anything, from generating HTML to performing calculations.

In this chapter, I'll demonstrate many different uses.

To create your own function

Create a new PHP document in your text editor

<?php # Script 3.7 - dateform.php

$page_title = 'Calendar Form';

include ('./includes/header.html');

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 54

passing functions some data:

information can be passed to functions through arguments. An argument is just like a variable.

Arguments are specified after the function name, inside the parentheses. You can add as many arguments

as you want, just separate them with a comma.

The following example has a function with one argument ($fname). When the familyName() function is

called, we also pass along a name (e.g. Jani), and the name is used inside the function, which outputs

several different first names, but an equal last name:

Example
<?php

function familyName($fname) {

 echo "$fname Refsnes.
";

}

familyName("Jani");

familyName("Hege");

familyName("Stale");

familyName("Kai Jim");

familyName("Borge");

Output:

Jani Refsnes.

Hege Refsnes.

Stale Refsnes.

Kai Jim Refsnes.

Borge Refsnes.

passing arrays to functions:

to learn how to pass arrays through a function, so that I can get around PHP's inability to return multiple

values.

function foo($array)

{

 $array[3]=$array[0]+$array[1]+$array[2];

 return $array;

}

$waffles[0]=1;

$waffles[1]=2;

$waffles[2]=3;

foo($waffles);

echo $waffles[3];

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 55

passing by reference:

pass a variable by reference to a function so the function can modify the variable. The syntax is as

follows:

<?php

function foo(&$var)

{

 $var++;

}

$a=5;

foo($a);

// $a is 6 here

?>

 There is no reference sign on a function call - only on function definitions. Function definitions alone are

enough to correctly pass the argument by reference. As of PHP 5.3.0, you will get a warning saying that

"call-time pass-by-reference" is deprecated when you use & in foo(&$a);. And as of PHP 5.4.0, call-time

pass-by-reference was removed, so using it will raise a fatal error.

The following things can be passed by reference:

Variables, i.e. foo($a)

New statements, i.e. foo(new foobar())

References returned from functions, i.e.:

<?php

function foo(&$var)

{

 $var++;

}

function &bar()

{

 $a = 5;

 return $a;

}

foo(bar());

?>

See more about returning by reference.

No other expressions should be passed by reference, as the result is undefined. For example, the following

examples of passing by reference are invalid:

<?php

function foo(&$var)

{

 $var++;

}

function bar() // Note the missing &

{

 $a = 5;

 return $a;

}

foo(bar()); // Produces fatal error as of PHP 5.0.5, strict standards notice

http://php.net/manual/en/language.references.return.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 56

 // as of PHP 5.1.1, and notice as of PHP 7.0.0

foo($a = 5); // Expression, not variable

foo(5); // Produces fatal error

?>

Using default arguments:

The default value must be a constant expression, not (for example) a variable, a class member or a

function call.

Note that when using default arguments, any defaults should be on the right side of any non-default

arguments; otherwise, things will not work as expected. Consider the following code snippet:

Example #5 Incorrect usage of default function arguments

<?php

function makeyogurt($type = "acidophilus", $flavour)

{

 return "Making a bowl of $type $flavour.\n";

}

echo makeyogurt("raspberry"); // won't work as expected

?>

The above example will output:

Warning: Missing argument 2 in call to makeyogurt() in

/usr/local/etc/httpd/htdocs/phptest/functest.html on line 41

Making a bowl of raspberry .

Passing variable numbers of argument:

arguments in an array, you might be interested by the call_user_func_arrayfunction.

If the number of arguments you want to pass depends on the length of an array, it probably means you can

pack them into an array themselves -- and use that one for the second parameter of call_user_func_array.

Elements of that array you pass will then be received by your function as distinct parameters.

For instance, if you have this function :

function test() {

 var_dump(func_num_args());

 var_dump(func_get_args());

}

You can pack your parameters into an array, like this :

$params = array(

 10,

 'glop',

 'test',

);

And, then, call the function :

call_user_func_array('test', $params);

This code will the output :

int 3

http://php.net/call_user_func_array

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 57

array

 0 => int 10

 1 => string 'glop' (length=4)

 2 => string 'test' (length=4)

Returning data from functions:

Values are returned by using the optional return statement. Any type may be returned, including arrays

and objects. This causes the function to end its execution immediately and pass control back to the line

from which it was called. See return for more information.

Note:

If the return is omitted the value NULL will be returned.

Use of return
Example #1 Use of return

<?php

function square($num)

{

 return $num * $num;

}

echo square(4); // outputs '16'.

?>

Returning arrays:

In PHP you can return one and only one value from your user functions, but you are able to make that

single value an array, thereby allowing you to return many values.

This following code shows how easy it is:

<?php

 function dofoo() {

 $array["a"] = "Foo";

 $array["b"] = "Bar";

 $array["c"] = "Baz";

 return $array;

 }

 $foo = dofoo();

?>

Without returning an array, the only other way to pass data back to the calling script is by accepting

parameters by reference and changing them inside the function. Passing arrays by reference like this is

generally preferred as it is less of a hack, and also frees up your return value for some a true/false to check

whether the function was successful.

Returning lists:

list — Assign variables as if they were an array

http://php.net/manual/en/function.return.php
http://php.net/manual/en/function.return.php
http://php.net/manual/en/function.return.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 58

Description ¶
array list (mixed $var1 [, mixed $...])

Like array(), this is not really a function, but a language construct. list() is used to assign a list of variables

in one operatio

Returning reference:

Returning by reference is useful when you want to use a function to find to which variable a reference

should be bound. Do not use return-by-reference to increase performance. The engine will automatically

optimize this on its own. Only return references when you have a valid technical reason to do so. To return

references, use this syntax:

<?php

class foo {

 public $value = 42;

 public function &getValue() {

 return $this->value;

 }

}

$obj = new foo;

$myValue = &$obj->getValue(); // $myValue is a reference to $obj->value, which is 42.

$obj->value = 2;

echo $myValue; // prints the new value of $obj->value, i.e. 2.

?>

In this example, the property of the object returned by the getValue function would be set, not the copy, as

it would be without using reference syntax.

 Introducing variable scope in php:

Scope can be defined as the range of availability a variable has to the program in which it is declared. PHP
variables can be one of four scope types:

 1. Local variables
 2. Global variables
 3. Static variables
4. Function parameters

1. Local variables :

A variable declared within a PHP function is local and can only be accessed within that function. (the variable
has local scope): The script above will not produce any output because the echo statement refers to the local
scope variable $a, which has not been assigned a value within this scope. You can have local variables with the
same name in different functions, because local variables are only recognized by the function in which they
are declared. Local variables are deleted as soon as the function is completed.

2. Global variables :
Global scope refers to any variable that is defined outside of any function. Global variables can be accessed
from any part of the script that is not inside a function. To access a global variable from within a function, use
the global keyword: The script above will output 15. PHP also stores all global variables in an array called

http://php.net/manual/en/function.list.php#refsect1-function.list-description
http://php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://php.net/manual/en/function.array.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 59

$GLOBALS[index]. Its index is the name of the variable. This array is also accessible from within functions and
can be used to update global variables directly. The example above can be rewritten as this

3. Static variables:
 When a function is completed, all of its variables are normally deleted. However, sometimes you want a local
variable to not be deleted. To do this, use the static keyword when you first declare the variable: static
$rememberMe; Then, each time the function is called, that variable will still have the information it contained
from the last time the function was called. Note: The variable is still local to the function

 4. Function parameters:
 A parameter is a local variable whose value is passed to the function by the calling code. Parameters are
declared in a parameter list as part of the function declaration: function myTest($para1,$para2,...) { //
function code } Parameters are also called arguments.

Accessing global data:
<?PHP
 class A {
 function Show(){
 echo "ciao";
 }
 }

 $a = new A();
 $b = new B();

 class B {
 function __construct() {
 $a->Show();
 }
 }
?>
With a bit of surprise I cannot access the globally defined $a variable from within the class and I get a Undefined
variable exception

Working with a staic variable:

The final type of variable scoping that I discuss is known as static. In contrast to the variables declared as

function parameters, which are destroyed on the function's exit, a static variable will not lose its value

when the function exits and will still hold that value should the function be called again.

You can declare a variable to be static simply by placing the keyword STATIC in front of the variable

name.

<?php

 function keep_track() {

 STATIC $count = 0;

 $count++;

 print $count;

 print "
";

 }

 keep_track();

 keep_track();

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 60

 keep_track();

?>

This will produce the following result −

1

2

3

PHP conditional functions:

When a function is defined in a conditional manner such as the two examples shown. Its definition must be
processed prior to being called.
Example #2 Conditional functions
<?php

$makefoo = true;

/* We can't call foo() from here
 since it doesn't exist yet,
 but we can call bar() */

bar();

if ($makefoo) {
 function foo()
 {
 echo "I don't exist until program execution reaches me.\n";
 }
}

/* Now we can safely call foo()
 since $makefoo evaluated to true */

if ($makefoo) foo();

function bar()
{
 echo "I exist immediately upon program start.\n";
}

?>

PHP variable functions:

PHP supports the concept of variable functions. This means that if a variable name has parentheses

appended to it, PHP will look for a function with the same name as whatever the variable evaluates to, and

will attempt to execute it. Among other things, this can be used to implement callbacks, function tables,

and so forth.

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 61

Variable functions won't work with language constructs such

as echo, print, unset(), isset(), empty(), include,require and the like. Utilize wrapper functions to make use

of any of these constructs as variable functions.

Example #1 Variable function example

<?php

function foo() {

 echo "In foo()
\n";

}

function bar($arg = '')

{

 echo "In bar(); argument was '$arg'.
\n";

}

// This is a wrapper function around echo

function echoit($string)

{

 echo $string;

}

$func = 'foo';

$func(); // This calls foo()

$func = 'bar';

$func('test'); // This calls bar()

$func = 'echoit';

$func('test'); // This calls echoit()

?>

Nesting functions:

When you define a function within another function it does not exist until the parent function is executed.

Once the parent function has been executed, the nested function is defined and as with any function,

accessible from anywhere within the current document. If you have nested functions in your code, you can

only execute the outer function once. Repeated calls will try to redeclare the inner functions, which will

generate an error.

Eg:

<?php

function outer($msg) {

 function inner($msg) {

 echo 'inner: '.$msg.' ';

 }

 echo 'outer: '.$msg.' ';

 inner($msg);

}

inner('test1'); // Fatal error: Call to undefined function inner()

http://php.net/manual/en/function.echo.php
http://php.net/manual/en/function.print.php
http://php.net/manual/en/function.unset.php
http://php.net/manual/en/function.isset.php
http://php.net/manual/en/function.empty.php
http://php.net/manual/en/function.include.php
http://php.net/manual/en/function.require.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 62

outer('test2'); // outer: test2 inner: test2

inner('test3'); // inner: test3

outer('test4'); // Fatal error: Cannot redeclare inner()

created include file:

The include (or require) statement takes all the text/code/markup that exists in the specified file and copies

it into the file that uses the include statement.

Including files is very useful when you want to include the same PHP, HTML, or text on multiple pages of

a website.

Include files can make sites easier to manage. For example, you can create a piece of content such as a

page banner, site information block, or menu that you want to include on multiple pages in your site.

When you want to change the content, you can make the change in a single file, and the change will be

reflected on every page in which the include file appears.

A PHP include statement is a code block that pulls content from an external file into a web page. The

following is an example of a PHP include statement:

<?php include('pageBanner.php'); ?>

There are two basic PHP include functions: include() and require(). Both behave in the same way, but

return different errors. An include() function, if not parsed correctly, will continue processing the rest of

the page and display a warning in the page where the included file should appear. If a require() function

refers to a missing file, the function will stop processing the page and display an error page in the browser.

For more information about include() and require(), see PHP Include Files on the W3 Schools website.

The include_once() and require_once() functions specify that an include file be used only once in a page.

If two include() functions refer to the same include file, only the first include() function will display in

the browser. For more information, see include_ and require_once on the PHP.NET website.

Microsoft Expression Web supports using four different file types as include files: HTML, INC, PHP, and

TXT files. In addition, you can also create nested include files. For example, you can create an include file

which contains a reference to another include file.

To insert an include() function into a web page

On the Insert menu, click PHP, and then click one of the following include() functions:

Include Includes the file each time it is referenced in the page.

Include_once Includes the file the first time it is referenced in the page.

Require Requires that the file be processed before the page is returned, and includes the file each time it

is referenced in the page.

Require_once Requires that the file be processed before the page is returned, and includes the file the

first time it is referenced in the page.

In the Select a PHP page dialog box, select the file that you want to include, and then click Open.

Returning errors from functions:

Values are returned by using the optional return statement. Any type may be returned, including arrays

and objects. This causes the function to end its execution immediately and pass control back to the line

from which it was called. See return for more information.

Note:

If the return is omitted the value NULL will be returned.

Use of return
Example #1 Use of return

http://go.microsoft.com/fwlink/?LinkId=95111
http://go.microsoft.com/fwlink/?LinkId=104842
http://go.microsoft.com/fwlink/?LinkId=104843
http://php.net/manual/en/function.return.php
http://php.net/manual/en/function.return.php
http://php.net/manual/en/function.return.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 63

<?php

function square($num)

{

 return $num * $num;

}

echo square(4); // outputs '16'.

?>

A function can not return multiple values, but similar results can be obtained by returning an array.

 READING DATA IN WEB PAGES

When the user fills out the form above and clicks the submit button, the form data is sent for processing to

a PHP file named "welcome.php". The form data is sent with the HTTP POST method.

Setting up web pages to communicate with PHP:

The HTML form we will be working at in these chapters, contains various input fields: required and

optional text fields, radio buttons, and a submit button:

The validation rules for the form above are as follows:

Field Validation Rules

Name Required. + Must only contain letters and whitespace

E-mail Required. + Must contain a valid email address (with @ and .)

Website Optional. If present, it must contain a valid URL

Comment Optional. Multi-line input field (textarea)

Gender Required. Must select one

Handling Text Fields:

The name, email, and website fields are text input elements, and the comment field is a

textarea. The HTML code looks like this:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 64

Name: <input type="text" name="name">

E-mail: <input type="text" name="email">

Website: <input type="text" name="website">

Comment: <textarea name="comment" rows="5" cols="40"></textarea>

Handling Text Areas:

When the user fills out the form above and clicks the submit button, the form data is sent for processing to

a PHP file named "welcome.php". The form data is sent with the HTTP POST method.

To display the submitted data you could simply echo all the variables. The "welcome.php" looks like this:

<html>

<body>

Welcome <?php echo $_POST["name"]; ?>

Your email address is: <?php echo $_POST["email"]; ?>

</body>

</html>

Handling check boxes:

Checkboxes are a little unwieldy from a data standpoint. Part of this is that there are essentially two

different ways to think about their functionality. Frequently, a set of checkboxes represents a single

question which the user can answer by selecting any number of possible answers. They are, importantly,

not exclusive of each other. (If you want the user to only be able to pick a single option, use radio boxes or

the <select> element.)

<form> <p>Check all the languages you have proficiency in.</p> <input type="checkbox" id="HTML"

value="HTML"><label for="HTML"> HTML</label>
 <input type="checkbox" id="CSS"

value="CSS"><label for="CSS"> CSS</label>
 <input type="checkbox" id="JS" value="JS"><label

for="JS"> JS</label>
 <input type="checkbox" id="PHP" value="PHP"><label for="PHP">

PHP</label>
 <input type="checkbox" id="Ruby" value="Ruby"><label for="Ruby">

Ruby</label>
 <input type="checkbox" id="INTERCAL" value="INTERCAL"><label

for="INTERCAL"> INTERCAL</label>
 </form>

Top of Form

Check all the languages you have proficiency in.

HTML

CSS

Bottom of Form

Read more: https://html.com/input-type-checkbox/#ixzz4yaHoKVfD

Handling Radio Buttons:

The gender fields are radio buttons and the HTML code looks like this:

https://html.com/input-type-radio/
https://html.com/tags/select/
https://html.com/input-type-checkbox/#ixzz4yaHoKVfD

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 65

Gender:

<input type="radio" name="gender" value="female">Female

<input type="radio" name="gender" value="male">Male

Handling list boxes:

List Box - Single Select

<p>List Box - Single Select

<select name="listbox" size="3">

<option value="Option 1" selected>Option 1</option>

<option value="Option 2">Option 2</option>

<option value="Option 3">Option 3</option>

<option value="Option 4">Option 4</option>

<option value="Option 5">Option 5</option>

</select>

</p>

This form is processed by the listbox.php script. You can see the code for this script as follows:

ListBox.php

 1:<html>

 2:<head>

 3:<title>List Box Form Data</title>

 4:</head>

 5:<body>

 6:<h3>List Box Form Data</h3>

 7:<p>Form data passed from the form</p>

 8: <?php

 9: echo "<p>select: " . $_POST['select']."</p>\n";

 10: echo "<p>listbox: " . $_POST['listbox'] . "</p>\n";

 11: $values = $_POST['listmultiple'];

 12: echo "<p>listmultiple: ";

 13: foreach ($values as $a){

 14: echo $a;

 15: }

 16: echo "</p>\n";

 17: ?>

 18:</body>

 19:</html>

 20:

Handling password controls:

This is in continuation of the tutorial on making a membership based web site. Please see the previous

page PHP registration form for more details.

The login form

https://www.abbeyworkshop.com/howto/lamp/php-listbox/listbox.php.txt
http://form.guide/php-form/php-registration-form.html

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 66

Here is the HTML code for the login form.

view source

print?

1 <form id='login' action='login.php' method='post' accept-charset='UTF-8'>

2 <fieldset >

3 <legend>Login</legend>

4 <input type='hidden' name='submitted' id='submitted' value='1'/>

5

6 <label for='username' >UserName*:</label>

7 <input type='text' name='username' id='username' maxlength="50" />

8

9 <label for='password' >Password*:</label>

10 <input type='password' name='password' id='password' maxlength="50" />

11

12 <input type='submit' name='Submit' value='Submit' />

13

14 </fieldset>

15 </form>

function Login()

2 {

3 if(empty($_POST['username']))

4 {

5 $this->HandleError("UserName is empty!");

6 return false;

7 }

8

9 if(empty($_POST['password']))

10 {

11 $this->HandleError("Password is empty!");

http://form.guide/php-form/php-login-form.html#viewSource
http://form.guide/php-form/php-login-form.html#printSource
http://form.guide/php-form/php-login-form.html#printSource

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 67

12 return false;

13 }

14

15 $username = trim($_POST['username']);

16 $password = trim($_POST['password']);

17

18 if(!$this->CheckLoginInDB($username,$password))

19 {

20 return false;

21 }

22

23 session_start();

24

25 $_SESSION[$this->GetLoginSessionVar()] = $username;

26

27 return true;

28 }

In order to identify a user as authorized, we are going to check the database for his combination of

username/password, and if a correct combination was entered, we set a session variable.

Handling hidden controls:

For hidden fields, can i use a field of the type

<input type="hidden" name="field_name" value="<?php print $var; ?>"/>

and retrieve it after the GET / POST method as $_GET['field_name'] / $_POST['field_name'] ?

Handling image maps:
want to add some interactivity to your images, you may consider using image maps. With image maps,

you can define multiple clickable regions on a single graphic. To define clickable regions on a single

image, set up hotspots within a single image. A hotspot is a defined area on an image that acts as a

hypertext link. The hotspots are defined through the use of image maps. Image maps list the coordinates

that define the boundaries of the hotspots (or the regions that act as hypertext links) on an image.

The whole idea behind using image maps is to link one image to multiple destinations. In how to insert

graphics page, we discuss how to link one image to just one destination. On this page, you will learn how

to create image maps or multiple hyperlinks on a single image. There are two types of image maps:

 server-side image maps

 client-side image maps

 Server-side image maps

In a server-side image map, the server controls the image map. A server is a computer that store web

pages and serves those pages when a client requests a page. When we use a server-side image map, we

define the coordinates of the hotspots in a server-side script. Whenever a user clicks on a hotspot on

http://www.scriptingmaster.com/html/inserting-graphics.asp
http://www.scriptingmaster.com/html/inserting-graphics.asp
http://www.scriptingmaster.com/asp/client-server-model.asp
http://www.scriptingmaster.com/asp/server-side-scripting.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 68

an inline image, the appropriate coordinates are sent back to the server to activate the appropriate

hyperlink. One of the main drawbacks of using server-side image map is that server-side image maps can

be slow to operate. This is so because every time a user clicks on an inline image map, that information

has to be sent to the server and then the server has to process that request.

Client-side image maps

In a client-side image map, the image map is defined in an HTML file and that is processed by the

browser locally. Because client-side image maps are processed locally, they tend to be more responsive

than server-side image maps. Thus client-side image maps can be tested using a local computer; whereas,

to test the server-side image maps, you’ll need a server. To show you how to create image maps, we will

use client-side image maps so you can easily test without using a sever!

There are two easy steps to create an image map:

define image map hotspots

use the image map

Defining image map hotspots

To create image an image map, you need coordinates of the points corresponding to the hotspot

boundaries. In other words, you will define an area, by using coordinates, for each hyperlink that you want

on an inline image. To find coordinates for a specific area for an image, you will need a special program

that shows you coordinates. As an example, Macromedia’s Dreamweaver 2004 allows you to create image

maps by letting you draw the areas on an image. For each area you draw, the program will write the

appropriate coordinates in your web page code file.

For our example, we will show you the coordinates for each area that we want to define on an inline

image. The general syntax for an image map tag is:

<map name="mapName">

<area shape="areaShape" coords="coordinates" href="URL">

</map>

So an image map is defined with the <map> tag. The name attribute inside the <map> tag gives a name to

the image map. To be able to use an image map, we must assign a name to an image map. Within the

<map> tag, we use the <area> tag to specify the areas of the image that will act as hotspots. We can

include as many <area> tags within the <map> tag we choose. Each of the <area> tag will act as a

seperate hyperlink.

The <area> tag has three attributes:

shape – refers to the type of shape you want for the hotspot. You have three choices for the

shape: rect, circle, and poly.

coords – refers to the coordinates for the location of a hotspot. The value for this attibute depend on the

type of shape you want. The coordinates are expressed as a point’s distance in pixels from the left and the

top edges of an inline image. The coordinates (0,0) refers to a point where the image starts to get

displayed. For instance, the coordinates (31,9) refer to a point that is 31 pixels from the left edge and 9

pixels down from the top on an inline image.

href – refers to the URL of the hypertext link that the hotspot points to.

Access these pages to learn how to create

 rectangular hotspot

 circular hotspot

 polygonal hotspot

Creating a rectangular hotspot

the upper-left corner coordinates are (6, 4) and the lower-right corner coordinates are (93, 38). The

coordinates (6, 4) refer to a point on the image that is 6 pixels to the right and 4 pixels down from the top

of the image. The coordinates (93, 38) refer to a point on the image that is 93 pixels to the right and 38

pixels down from the top of the image. Figure 1 shows where the image starts (coordinates (0, 0)), the

http://www.scriptingmaster.com/html/inserting-graphics.asp
http://www.scriptingmaster.com/html/creating-rectangular-hotspot.asp
http://www.scriptingmaster.com/html/creating-circular-hotspot.asp
http://www.scriptingmaster.com/html/creating-polygonal-hotspot.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 69

upper-left corner of the hotspot (coordinates (6, 4)), the lower-right corner of the hotspot (coordinates (93,

38)).

The following shows the HTML code to create the rectangular hotspot:

<map name="ScriptHTML">

<area shape="rect" coords="6,4,93,38" href="HTML-introduction.asp">

</map>

Finally, to add the image map to our web page, we need to use the ScriptHTML image map we defined

above. To use an image map, simply add the usemap attribute to the image map graphic. For instance,

<img src="http://www.scriptingmaster/images/html/script-

html.GIF"usemap="#ScriptHTML" alt="Learn to script HTML">

Handling file uploads:
First, ensure that PHP is configured to allow file uploads.

In your "php.ini" file, search for the file_uploads directive, and set it to On:

file_uploads = On

Create The HTML Form
Next, create an HTML form that allow users to choose the image file they want to upload:

<!DOCTYPE html>

<html>

<body>

<form action="upload.php" method="post" enctype="multipart/form-data">

 Select image to upload:

 <input type="file" name="fileToUpload" id="fileToUpload">

 <input type="submit" value="Upload Image" name="submit">

</form>

</body>

</html>

Some rules to follow for the HTML form above:

Make sure that the form uses method="post"

The form also needs the following attribute: enctype="multipart/form-data". It specifies which content-

type to use when submitting the form

Without the requirements above, the file upload will not work.

Other things to notice:

The type="file" attribute of the <input> tag shows the input field as a file-select control, with a "Browse"

button next to the input control

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 70

 Handling buttons:

Processing form data in PHP is significantly simpler than most other Web programming languages. This

simplicity and ease of use makes it possible to do some fairly complex things with forms, including

handling multiple submit buttons in the same form.

Processing form data in PHP is significantly simpler than most other Web programming languages. This

simplicity and ease of use makes it possible to do some fairly complex things with forms, including

handling multiple submit buttons in the same form.

 'll begin with a simple example—a single form with a single submit button—to ensure you are clear on

the basics and to provide a base for the more-complex example. Here is a form:

<html><head>Single-button form</head>

<body>

<form action="processor.php" method="post"> Enter a number: <input type="text" name="number"

size="3">

<input type="submit" name="submit"> </form>

To show the values in the input fields after the user hits the submit button, we add a little PHP script

inside the value attribute of the following input fields: name, email, and website. In the comment textarea

field, we put the script between the <textarea> and </textarea> tags. The little script outputs the value of

the $name, $email, $website, and $comment variables.

Then, we also need to show which radio button that was checked. For this, we must manipulate the

checked attribute (not the value attribute for radio buttons):

Name: <input type="text" name="name" value="<?php echo $name;?>">

E-mail: <input type="text" name="email" value="<?php echo $email;?>">

Website: <input type="text" name="website" value="<?php echo $website;?>">

Comment: <textarea name="comment" rows="5" cols="40"><?php echo $comment;?></textarea>

Gender:

<input type="radio" name="gender"

<?php if (isset($gender) && $gender=="female") echo "checked";?>

value="female">Female

<input type="radio" name="gender"

<?php if (isset($gender) && $gender=="male") echo "checked";?>

value="male">Male

PHP - Complete Form Example
Here is the complete code for the PHP Form Validation Example:

Example

</body>

</html>

And here is the processor.php script that gets invoked on submission:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 71

<?php

// check for submission

// retrieve value from posted data

if ($_POST['submit'])

{

 echo "You entered the number " . $_POST['number']; }

?>

When a form is submitted to a PHP script, PHP automatically creates a special $_POST or $_GET

associative array, depending on which method of submission was used (I'll assume POST throughout this

tutorial). Values entered into the form input fields are automatically converted to key-value pairs in this

array and can then be accessed using regular array notation.

Pay special attention to how the submit button is handled in the above script. When the form is submitted,

the submit button itself becomes an element in the $_POST array, with a key corresponding to its "name".

This is clearly visible by adding the line:

print_r($_POST);

PHP Form Validation Example

* required field.

Top of Form

Name: *

E-mail: *

Website:

Comment:

Gender: Female Male *

Submit

Bottom of Form

Your Input:

Output:

PHP Form Validation Example

* required field.

Top of Form

Name: *

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 72

E-mail: *

Website:

Comment:

Gender: Female Male *

Submit

Bottom of Form

Your Input:

 PHP BROWSER-HANDLING POWER

Using php’s server variables:

PHP 4 >= 4.1.0, PHP 5, PHP 7)

$_SERVER -- $HTTP_SERVER_VARS [removed] — Server and execution environment information

Description ¶

$_SERVER is an array containing information such as headers, paths, and script locations. The entries in

this array are created by the web server. There is no guarantee that every web server will provide any of

these; servers may omit some, or provide others not listed here. That said, a large number of these

variables are accounted for in the » CGI/1.1 specification, so you should be able to expect those.

Using HTTP headers:

 'HTTP_ACCEPT'

Contents of the Accept: header from the current request, if there is one.

 'HTTP_ACCEPT_CHARSET'

Contents of the Accept-Charset: header from the current request, if there is one. Example: 'iso-8859-

1,*,utf-8'.

 'HTTP_ACCEPT_ENCODING'

Contents of the Accept-Encoding: header from the current request, if there is one. Example: 'gzip'.

 'HTTP_ACCEPT_LANGUAGE'

Contents of the Accept-Language: header from the current request, if there is one. Example: 'en'.

 'HTTP_CONNECTION'

http://php.net/manual/en/reserved.variables.server.php#refsect1-reserved.variables.server-description
http://www.faqs.org/rfcs/rfc3875

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 73

Contents of the Connection: header from the current request, if there is one. Example: 'Keep-Alive'.

 'HTTP_HOST'

Contents of the Host: header from the current request, if there is one.

 'HTTP_REFERER'

The address of the page (if any) which referred the user agent to the current page. This is set by the user

agent. Not all user agents will set this, and some provide the ability to modify HTTP_REFERER as a

feature. In short, it cannot really be trusted.

 'HTTP_USER_AGENT'

Contents of the User-Agent: header from the current request, if there is one. This is a string denoting the

user agent being which is accessing the page. A typical example is: Mozilla/4.5 [en] (X11; U; Linux 2.2.9

i586). Among other things, you can use this value with get_browser() to tailor your page's output to the

capabilities of the user agent.

Getting the user’s browser type:
Look up the browscap.ini file and return the capabilities of the browser:

<?php

echo $_SERVER['HTTP_USER_AGENT'];

$browser = get_browser();

print_r($browser);

?>

Output:

Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.2988.0

Safari/537.36

Redirecting browsers with HTTP headers:

 PHP/4.4.0 and Content-Type: text/html that were returned when we finally got to the homepage. PHP

was designed from the beginning to output HTML (the 'H' in PHP stands for 'Hypertext'), and the first

time a script generates output (e.g. by using echo), PHP automatically includes those headers for you. This

is very convenient, but also contributes to the confusion many PHP beginners have regarding headers —

in more 'bare bones' languages like Perl that were not originally designed for the web, sending output

without including your own headers produces the dreaded '500 Internal Server Error', so Perl web

programmers have no choice but to learn about headers immediately.

The header() function sends HTTP response headers; nothing more, nothing less.

Using this function, you can make your scripts send headers of your choosing to the browser, and create

some very useful and dynamic results. However, the first thing you need to know about

the header()function is that you have to use it before PHP has sent any output (and therefore its default

headers).

I doubt there is a PHP programmer in the world who has never seen an error that looks like

Warning: Cannot modify header information - headers already sent by.....

As we said above, the response headers are separated from the content by a blank line. This means you

can only send them once, and if your script has any output (even a blank line or space before your

opening <?php tag), PHP does so without asking you. For example, consider the script below, which

seems logical enough:

http://php.net/manual/en/function.get-browser.php
http://www.php.net/manual/function.header.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 74

Welcome to my website!

<?php

 if($test){

 echo "You're in!";

 }

 else{

 header('Location: http://www.mysite.com/someotherpage.php');

 }

?>

Dumping aform’s data all at once:

(PHP 4, PHP 5, PHP 7)

var_dump — Dumps information about a variable

Description ¶

void var_dump (mixed $expression [, mixed $...])

This function displays structured information about one or more expressions that includes its type and

value. Arrays and objects are explored recursively with values indented to show structure.

All public, private and protected properties of objects will be returned in the output unless the object

implements a __debugInfo() method (implemented in PHP 5.6.0).

Handling form data with custom arrays:

hen a form is submitted to a PHP script, the information from that form is automatically made available to

the script. There are few ways to access this information, for example:

Example #1 A simple HTML form

<form action="foo.php" method="post">

 Name: <input type="text" name="username" />

 Email: <input type="text" name="email" />

 <input type="submit" name="submit" value="Submit me!" />

</form>

As of PHP 5.4.0, there are only two ways to access data from your HTML forms.

 Putting it all in one page:

I know that the way most people treat multiple forms on one page is to have each form post to another

PHP file where the form is validated, its information is entered into a database or an email is sent off. So

you usually have something like this:

<form name="contactform" method="post" action="sendmail.php"> blah blah blah </form> <form

name="mailinglist" method="post" action="join.php"> blah blah blah </form>

That work great, but why would you create all those extra files when you can just have the form post to

the same file and create multiple functions to process your multiple forms.

The solution is very simple and super efficient.

Now lets put some PHP code before the

http://php.net/manual/en/function.var-dump.php#refsect1-function.var-dump-description
http://php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://php.net/manual/en/language.oop5.magic.php#language.oop5.magic.debuginfo

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 75

 <head> tag to have different processes for each form.

<?php

 if (!empty($_POST['mailing-submit']))

 { //do something here; }

if (!empty($_POST['contact-submit']))

 { //do something here; }

 ?>

Performing data validation:

The first thing we will do is to pass all variables through PHP's htmlspecialchars() function.

When we use the htmlspecialchars() function; then if a user tries to submit the following in a text field:

<script>location.href('http://www.hacked.com')</script>

- this would not be executed, because it would be saved as HTML escaped code, like this:

<script>location.href('http://www.hacked.com')</script>

The code is now safe to be displayed on a page or inside an e-mail.

We will also do two more things when the user submits the form:

Strip unnecessary characters (extra space, tab, newline) from the user input data (with the PHP trim()

function)

Remove backslashes (\) from the user input data (with the PHP stripslashes() function)

The next step is to create a function that will do all the checking for us (which is much more convenient

than writing the same code over and over again).

We will name the function test_input().

Now, we can check each $_POST variable with the test_input() function, and the script looks like this:

Example
<?php

// define variables and set to empty values

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $name = test_input($_POST["name"]);

 $email = test_input($_POST["email"]);

 $website = test_input($_POST["website"]);

 $comment = test_input($_POST["comment"]);

 $gender = test_input($_POST["gender"]);

}

function test_input($data) {

 $data = trim($data);

 $data = stripslashes($data);

 $data = htmlspecialchars($data);

 return $data;

}

?>

Output:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 76

PHP Form Validation Example

Top of Form

Name:

E-mail:

Website:

Comment:

Gender: Female Male

Submit

Bottom of Form

Your Input:

Requiring numbers:

(PHP 4, PHP 5, PHP 7)

is_numeric — Finds whether a variable is a number or a numeric string

Description ¶
bool is_numeric (mixed $var)

Finds whether the given variable is numeric. Numeric strings consist of optional sign, any number of

digits, optional decimal part and optional exponential part. Thus +0123.45e6 is a valid numeric value.

Hexadecimal (e.g.0xf4c3b00c) and binary (e.g. 0b10100111001) notation is not allowed.

Parameters ¶

var
The variable being evaluated.

Return Values ¶
Returns TRUE if var is a number or a numeric string, FALSE otherwise.

Examples ¶
Example #1 is_numeric() examples

<?php

$tests = array(

 "42",

 1337,

 0x539,

 02471,

 0b10100111001,

 1337e0,

 "not numeric",

http://php.net/manual/en/function.is-numeric.php#refsect1-function.is-numeric-description
http://php.net/manual/en/language.pseudo-types.php#language.types.mixed
http://php.net/manual/en/function.is-numeric.php#refsect1-function.is-numeric-parameters
http://php.net/manual/en/function.is-numeric.php#refsect1-function.is-numeric-returnvalues
http://php.net/manual/en/function.is-numeric.php#refsect1-function.is-numeric-examples

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 77

 array(),

 9.1,

 null

);

foreach ($tests as $element) {

 if (is_numeric($element)) {

 echo var_export($element, true) . " is numeric", PHP_EOL;

 } else {

 echo var_export($element, true) . " is NOT numeric", PHP_EOL;

 }

}

?>

The above example will output:

'42' is numeric

1337 is numeric

1337 is numeric

1337 is numeric

1337 is numeric

1337 is numeric

'not numeric' is NOT numeric

array () is NOT numeric

9.0999999999999996447286321199499070644378662109375 is numeric

NULL is NOT numeric

Requiring text:

Write applications that require the user to enter text ,or even specific text.

<html>

<body>

<div class="menu">

<?php include 'menu.php';?>

</div>

<h1>Welcome to my home page!</h1>

<p>Some text.</p>

<p>Some more text.</p>

</body>

</html>

Persisting user data:
In this context, data persistence is taken to mean any data that is intended to survive the current request.

The memory management within the engine is very focused on request bound allocations, but this is not

always practical or appropriate. Persistent memory is sometimes required in order to satisfy requirements

of external libraries, it can also be useful while Hacking.

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 78

A common use of persistent memory is to enable persistent SQL server connections, though this practice

is frowned upon, it is none the less the most common use of this feature.

Note: All of the following functions take the additional persistent parameter, should this be false, the

engine will use its regular allocators (emalloc) and the memory should not be considered persistent.

Where memory is allocated as persistent, system allocators are invoked, under most circumstances they

are still not able to return NULL pointers just as the Main memory APIs.

Persistent memory APIs

Prototype Description

void *pemalloc(size_t size, zend_bool

persistent)

Allocate size bytes of memory.

void *pecalloc(size_t nmemb, size_t size,

zend_bool persistent)

Allocate a buffer for nmemb elements of size bytes and

makes sure it is initialized with zeros.

void *perealloc(void *ptr, size_t size,

zend_bool persistent)

Resize the buffer ptr, which was allocated using emalloc to

hold sizebytes of memory.

void pefree(void *ptr, zend_bool persistent) Free the buffer pointed by ptr. The buffer had to be allocated

by pemalloc.

void *safe_pemalloc(size_t nmemb, size_t

size, size_t offset, zend_bool persistent)

Allocate a buffer for holding nmemb blocks of

each size bytes and an additional offset bytes. This is similar

to pemalloc(nmemb * size + offset) but adds a special

protection against overflows.

char *pestrdup(const char *s, zend_bool

persistent)

Allocate a buffer that can hold the NULL-terminated

string s and copy the s into that buffer.

char *pestrndup(const char *s, unsigned int

length, zend_bool persistent)

Similar to pestrdup while the length of the NULL-terminated

string is already known.

Client-side data validation:

Is it better to validate form of our website both client and server side. Both have their own advantages.

In client side validation we use JavaScript so it’s faster than the server side validation but sometimes when

JavaScript disabled on browser then JavaScript doesn’t work then server side validation will work.

Create below mentioned table in your database.

create table user (id int primary key auto_increment, name varchar(50), email varchar(50), gender

varchar(1), phone varchar(10), address varchar(50))

Program 40: Working with form validation (client and server side).

File 1. connect.php :
<?php

$con = mysql_connect(“localhost”,”root”,””);

mysql_select_db(“mydb”,$con);

?>

File 2. register.js : Used for client side validation.

function validate() {

var frm = document.getElementById(“frmRegister”);

var err = “”;

var errDiv = document.getElementById(“msg”);

var name = frm.txtName.value;

if(name.trim() == “”) {

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 79

err = “*name is required.
”;

}

var email = frm.txtEmail.value;

var expEmail = /^(([^<>()[\]\\.,;:\s@\”]+(\.[^<>()[\]\\.,;:\s@\”]+)*)|(\”.+\”))@((\[[0-9]{1,3}\.[0-

9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\])|(([a-zA-Z\-0-9]+\.)+[a-zA-Z]{2,}))$/;

if(email.trim()==””) {

err = err+”*email is required.
”;

}

else if(!expEmail.test(email)) {

err = err+”*Invalid email
”;

}

var password = frm.txtPassword.value;

if(password.trim()==””) {

err = err+”*Password required.
”;

}

else if(password.length < 4) { err = err+"*Password should be minimun 4 characters.
"; } var

confPassword = frm.txtConfPassword.value; if(confPassword!=password) { err = err+"*Password and

confirm password should be same.
"; } var phone = frm.txtPhone.value; var expPhone = /^\d*$/;

if(phone!="" && !expPhone.test(phone)) { err = err+"*Phone should be in integer.
"; }

if(err.trim()!="") { errDiv.innerHTML = err; return false; } else { return true; } }

handling HTML tags in user input:

PHP and HTML interact a lot: PHP can generate HTML, and HTML can pass information to PHP. Before

reading these faqs, it's important you learn how to retrieve variables from external sources. The manual

page on this topic includes many examples as well.

What encoding/decoding do I need when I pass a value through a form/URL?

I'm trying to use an <input type="image"> tag, but the $foo.x and $foo.y variables aren't available.

$_GET['foo.x'] isn't existing either. Where are they?

How do I create arrays in a HTML <form>?

How do I get all the results from a select multiple HTML tag?

How can I pass a variable from Javascript to PHP?

What encoding/decoding do I need when I pass a value through a form/URL?

There are several stages for which encoding is important. Assuming that you have a string $data, which

contains the string you want to pass on in a non-encoded way, these are the relevant stages:

HTML interpretation. In order to specify a random string, you must include it in double quotes,

andhtmlspecialchars() the whole value.

URL: A URL consists of several parts. If you want your data to be interpreted as one item,

you mustencode it with urlencode().

Example #1 A hidden HTML form element

<?php

 echo '<input type="hidden" value="' . htmlspecialchars($data) . '" />'."\n";

?>

Note: It is wrong to urlencode() $data, because it's the browsers responsibility to urlencode() the data. All

popular browsers do that correctly. Note that this will happen regardless of the method (i.e., GET or

POST). You'll only notice this in case of GET request though, because POST requests are usually hidden.

Example #2 Data to be edited by the user

http://php.net/manual/en/language.variables.external.php
http://php.net/manual/en/faq.html.php#faq.html.encoding
http://php.net/manual/en/faq.html.php#faq.html.form-image
http://php.net/manual/en/faq.html.php#faq.html.form-image
http://php.net/manual/en/faq.html.php#faq.html.arrays
http://php.net/manual/en/faq.html.php#faq.html.select-multiple
http://php.net/manual/en/faq.html.php#faq.html.javascript-variable
http://php.net/manual/en/language.types.string.php
http://php.net/manual/en/function.htmlspecialchars.php
http://php.net/manual/en/function.urlencode.php
http://php.net/manual/en/function.urlencode.php
http://php.net/manual/en/function.urlencode.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 80

<?php

 echo "<textarea name='mydata'>\n";

 echo htmlspecialchars($data)."\n";

 echo "</textarea>";

?>

 Unit- III

 OBJECT-ORIENTED PROGRAMMING

Object Oriented Concepts:

Before we go in detail, lets define important terms related to Object Oriented Programming.

 Class − This is a programmer-defined data type, which includes local functions as well as local

data. You can think of a class as a template for making many instances of the same kind (or class)

of object.

 Object − An individual instance of the data structure defined by a class. You define a class once

and then make many objects that belong to it. Objects are also known as instance.

 Member Variable − These are the variables defined inside a class. This data will be invisible to

the outside of the class and can be accessed via member functions. These variables are called

attribute of the object once an object is created.

 Member function − These are the function defined inside a class and are used to access object

data.

 Inheritance − When a class is defined by inheriting existing function of a parent class then it is

called inheritance. Here child class will inherit all or few member functions and variables of a

parent class.

 Parent class − A class that is inherited from by another class. This is also called a base class or

super class.

 Child Class − A class that inherits from another class. This is also called a subclass or derived

class.

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 81

 Polymorphism − This is an object oriented concept where same function can be used for different

purposes. For example function name will remain same but it make take different number of

arguments and can do different task.

 Overloading − a type of polymorphism in which some or all of operators have different

implementations depending on the types of their arguments. Similarly functions can also be

overloaded with different implementation.

 Data Abstraction − Any representation of data in which the implementation details are hidden

(abstracted).

 Encapsulation − refers to a concept where we encapsulate all the data and member functions

together to form an object.

 Constructor − refers to a special type of function which will be called automatically whenever

there is an object formation from a class.

 Destructor − refers to a special type of function which will be called automatically whenever an

object is deleted or goes out of scope.

Defining PHP Classes

The general form for defining a new class in PHP is as follows –

<?php

 class phpClass {

 var $var1;

 var $var2 = "constant string";

 function myfunc ($arg1, $arg2) {

 [..]

 }

 [..]

 }

?>

Here is the description of each line −

The special form class, followed by the name of the class that you want to define.

A set of braces enclosing any number of variable declarations and function definitions.

Variable declarations start with the special form var, which is followed by a conventional $ variable name;

they may also have an initial assignment to a constant value.

Function definitions look much like standalone PHP functions but are local to the class and will be used to

set and access object data.

Example

Here is an example which defines a class of Books type −

<?php

 class Books {

 /* Member variables */

 var $price;

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 82

 var $title;

 /* Member functions */

 function setPrice($par){

 $this->price = $par;

 }

 function getPrice(){

 echo $this->price ."
";

 }

 function setTitle($par){

 $this->title = $par;

 }

 function getTitle(){

 echo $this->title ."
";

 }

 }

?>

The variable $this is a special variable and it refers to the same object ie. itself.

Creating Objects in PHP:

Once you defined your class, then you can create as many objects as you like of that class type. Following

is an example of how to create object using new operator.

Eg:

$physics = new Books;

$maths = new Books;

$chemistry = new Books;

Here we have created three objects and these objects are independent of each other and they will have

their existence separately. Next we will see how to access member function and process

member variables:

Calling Member Functions

After creating your objects, you will be able to call member functions related to that object. One member

function will be able to process member variable of related object only.

Following example shows how to set title and prices for the three books by calling member functions.

$physics->setTitle("Physics for High School");

$chemistry->setTitle("Advanced Chemistry");

$maths->setTitle("Algebra");

$physics->setPrice(10);

$chemistry->setPrice(15);

$maths->setPrice(7);

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 83

Now you call another member functions to get the values set by in above example −

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

Physics for High School

Advanced Chemistry

Algebra

10

15

7

Constructor Functions:

Constructor Functions are special type of functions which are called automatically whenever an object is

created. So we take full advantage of this behaviour, by initializing many things through constructor

functions.

PHP provides a special function called __construct() to define a constructor. You can pass as many as

arguments you like into the constructor function

.

Following example will create one constructor for Books class and it will initialize price and title for the

book at the time of object creation.

function __construct($par1, $par2) {

 $this->title = $par1;

 $this->price = $par2;

}

Now we don't need to call set function separately to set price and title. We can initialize these two member

variables at the time of object creation only. Check following example below −

$physics = new Books("Physics for High School", 10);

$maths = new Books ("Advanced Chemistry", 15);

$chemistry = new Books ("Algebra", 7);

/* Get those set values */

$physics->getTitle();

$chemistry->getTitle();

$maths->getTitle();

$physics->getPrice();

$chemistry->getPrice();

$maths->getPrice();

This will produce the following result −

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 84

 Physics for High School

 Advanced Chemistry

 Algebra

 10

 15

 7

Destructor:

Like a constructor function you can define a destructor function using function __destruct(). You can

release all the resources with-in a destructor.

Inheritance

PHP class definitions can optionally inherit from a parent class definition by using the extends

clause. The syntax is as follows −

class Child extends Parent {

 <definition body>

}

The effect of inheritance is that the child class (or subclass or derived class) has the following

characteristics −

Automatically has all the member variable declarations of the parent class.

Automatically has all the same member functions as the parent, which (by default) will work the same

way as those functions do in the parent.

Following example inherit Books class and adds more functionality based on the requirement.

class Novel extends Books {

 var $publisher;

 function setPublisher($par){

 $this->publisher = $par;

 }

 function getPublisher(){

 echo $this->publisher. "
";

 }

}

Now apart from inherited functions, class Novel keeps two additional member functions.

Function Overriding:

Function definitions in child classes override definitions with the same name in parent classes. In a child

class, we can modify the definition of a function inherited from parent class.

In the following example getPrice and getTitle functions are overridden to return some values.

function getPrice() {

 echo $this->price . "
";

 return $this->price;

}

function getTitle(){

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 85

 echo $this->title . "
";

 return $this->title;

}

Function overloading:

Overloading is defining functions that have similar signatures, yet have different

parameters. Overriding is only pertinent to derived classes, where the parent class has defined a method

and the derived class wishes to override that method.

In PHP, you can only overload methods using the magic method __call.

An example of overriding:

<?php

class Foo {

 function myFoo() {

 return "Foo";

 }

}

class Bar extends Foo {

 function myFoo() {

 return "Bar";

 }

}

$foo = new Foo;

$bar = new Bar;

echo($foo->myFoo()); //"Foo"

echo($bar->myFoo()); //"Bar"

?>

Autoloading classes:

Many developers writing object-oriented applications create one PHP source file per class definition. One

of the biggest annoyances is having to write a long list of needed includes at the beginning of each script

(one for each class)

this is no longer necessary. The spl_autoload_register() function registers any number of autoloaders,

enabling for classes and interfaces to be automatically loaded if they are currently not defined. By

registering autoloaders, PHP is given a last chance to load the class or interface before it fails with an

error.

Although the __autoload() function can also be used for autoloading classes and interfaces, it's preferred

to use the spl_autoload_register() function. This is because it is a more flexible alternative (enabling for

any number of autoloaders to be specified in the application, such as in third party libraries). For this

reason, using __autoload() is discouraged and it may be deprecated in the future.

exceptions thrown in the __autoload() function could not be caught in the catch block and would result in

a fatal error. From PHP 5.3 and upwards, this is possible provided that if a custom exception is thrown,

http://php.net/manual/en/language.oop5.overloading.php
http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.autoload.php
http://php.net/manual/en/function.spl-autoload-register.php
http://php.net/manual/en/function.autoload.php
http://php.net/manual/en/function.autoload.php
http://php.net/manual/en/language.exceptions.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 86

then the custom exception class is available. The __autoload() function may be used recursively to

autoload the custom exception class

Autoloading is not available if using PHP in CLI interactive mode.

If the class name is used e.g. in call_user_func() then it can contain some dangerous characters such as ../.

It is recommended to not use the user-input in such functions or at least verify the input in __autoload().

Example #1 Autoload example

This example attempts to load the classes MyClass1 and MyClass2 from the

files MyClass1.php and MyClass2.phprespectively.

<?php

spl_autoload_register(function ($class_name) {

 include $class_name . '.php';

});

$obj = new MyClass1();

$obj2 = new MyClass2();

?>

Public Members:

Unless you specify otherwise, properties and methods of a class are public. That is to say, they may be

accessed in three possible situations −

From outside the class in which it is declared

From within the class in which it is declared

From within another class that implements the class in which it is declared

Till now we have seen all members as public members. If you wish to limit the accessibility of the

members of a class then you define class members as private or protected.

Private members:

By designating a member private, you limit its accessibility to the class in which it is declared. The private

member cannot be referred to from classes that inherit the class in which it is declared and cannot be

accessed from outside the class.

A class member can be made private by using private keyword infront of the member.

class MyClass {

 private $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

http://php.net/manual/en/function.autoload.php
http://php.net/manual/en/features.commandline.php
http://php.net/manual/en/function.call-user-func.php
http://php.net/manual/en/function.autoload.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 87

 private function myPrivateFunction() {

 return("I'm not visible outside!");

 }

}

When MyClass class is inherited by another class using extends, myPublicFunction() will be visible, as

will $driver. The extending class will not have any awareness of or access to myPrivateFunction and $car,

because they are declared private.

Protected members:

A protected property or method is accessible in the class in which it is declared, as well as in classes that

extend that class. Protected members are not available outside of those two kinds of classes. A class

member can be made protected by using protected keyword in front of the member.

Here is different version of MyClass −

class MyClass {

 protected $car = "skoda";

 $driver = "SRK";

 function __construct($par) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

 function myPublicFunction() {

 return("I'm visible!");

 }

 protected function myPrivateFunction() {

 return("I'm visible in child class!");

 }

}

 ADVANCED OBJECT ORIENTED PROGRAMMING

Creating static methods :

 When create static methods ,call the method without having to first create an object of that class.static

methods are class methods .

Eg:

class test

{

private static $no_of_call = 0;

public function __construct()

{

self::$no_of_call = self::$no_of_call + 1;

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 88

echo "No of time object of the class created is: ". self::$no_of_call;

}

}

$objT = new test(); // Prints No of time object of the class created is 1

$objT2 = new test(); //Prints No of time object of the class created is 2

passing data to static method:

n PHP is it possible to do something like this:

myFunction(MyClass::staticMethod);

so that 'myFunction' will have a reference to the static method and be able to call it. When I try it, I get an

error of "Undefined class constant" (PHP 5.3) so I guess it isn't directly possible, but is there a way to do

something similar? The closest I've managed so far is pass the "function" as a string and use

call_user_func().

using properties in static methods:

Sometimes, it is useful if we can access methods and properties in the context of a class rather than an

object. To do this, you can use static keyword.

To add a static method to a class, you use the static keyword as follows:

1

2

3

public static function static_method(){

 // method implementation

}

You can put the static keyword before or after the method’s visibility. However, by convention, the

visibility is declared first.

To add a static property to a class, you also use the static keyword as the following syntax:

1 private static $static_property;

The static methods and static properties are not linked to any particular object of the class but the class

itself.

To call a static method outside the class, you use the :: operator as follows:

1 MyClass::static_method();

To access a public static property outside the class, you also use the :: operator:

1 MyClass::$static_property;

However to access static methods and static properties from within an instance of the class, you

use self instead of $this as follows:

1

2

3

4

5

6

<?php

class MyClass{

 private static $static_property;

 public static function static_method(){

 //...

http://www.zentut.com/php-tutorial/php-objects-and-classes/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 89

7

8

9

10

11

12

13

 }

 public function method(){

 self::$static_property;

 self::static_method();

 }

}

Static members and inheritance:

In PHP, if a static attribute is defined in the parent class, it cannot be overridden in a child class. But I'm wondering
if there's any way around this.
I'm trying to write a wrapper for someone else's (somewhat clunky) function. The function in question can be
applied to lots of different data types but requires different flags and options for each. But 99% of the time, a
default for each type would suffice.
It would be nice if this could be done with inheritance, without having to write new functions each time. For
example:
class Foo {

 public static $default = 'DEFAULT';

 public static function doSomething ($param = FALSE) {

 $param = ($param === FALSE) ? self::$default : $param;

 return $param;

 }

}

class Bar extends Foo {

 public static $default = 'NEW DEFAULT FOR CHILD CLASS';

}

echo Foo::doSomething() . "\n";

// echoes 'DEFAULT'

echo Bar::doSomething() . "\n";

supporting object iteration:

 public function current()

 public function key()

 public function next()

 public function valid()

 public function rewind()

the foreach iterated through all of the visible properties that could be accessed.

To take it a step further, the Iterator interface may be implemented. This allows the object to dictate how it will
be iterated and what values will be available on each iteration.
Example #2 Object Iteration implementing Iterator

http://php.net/manual/en/control-structures.foreach.php
http://php.net/manual/en/language.oop5.visibility.php
http://php.net/manual/en/class.iterator.php
http://php.net/manual/en/language.oop5.interfaces.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 90

<?php
class MyIterator implements Iterator

{
 private $var = array();

 public function __construct($array)
 {

 if (is_array($array)) {
 $this->var = $array;

 }
 }

 public function rewind()
 {

 echo "rewinding\n";
 reset($this->var);

 }

 public function current()
 {

 $var = current($this->var);
 echo "current: $var\n";

 return $var;
 }

 public function key()

 {
 $var = key($this->var);

 echo "key: $var\n";
 return $var;

 }

 public function next()
 {

 $var = next($this->var);
 echo "next: $var\n";

 return $var;
 }

 public function valid()

 {
 $key = key($this->var);

 $var = ($key !== NULL && $key !== FALSE);
 echo "valid: $var\n";

 return $var;
 }

}

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 91

$values = array(1,2,3);
$it = new MyIterator($values);

foreach ($it as $a => $b) {
 print "$a: $b\n";

}
?>

Comparing objects:

When using the comparison operator (==), object variables are compared in a simple manner, namely: Two object
instances are equal if they have the same attributes and values (values are compared with ==), and are instances
of the same class.
When using the identity operator (===), object variables are identical if and only if they refer to the same instance
of the same class.
An example will clarify these rules.
Example #1 Example of object comparison in PHP 5
<?php
function bool2str($bool)
{
 if ($bool === false) {
 return 'FALSE';
 } else {
 return 'TRUE';
 }
}

function compareObjects(&$o1, &$o2)
{
 echo 'o1 == o2 : ' . bool2str($o1 == $o2) . "\n";
 echo 'o1 != o2 : ' . bool2str($o1 != $o2) . "\n";
 echo 'o1 === o2 : ' . bool2str($o1 === $o2) . "\n";
 echo 'o1 !== o2 : ' . bool2str($o1 !== $o2) . "\n";
}

class Flag
{
 public $flag;

 function __construct($flag = true) {
 $this->flag = $flag;
 }
}

class OtherFlag
{
 public $flag;

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 92

 function __construct($flag = true) {
 $this->flag = $flag;
 }
}

$o = new Flag();
$p = new Flag();
$q = $o;
$r = new OtherFlag();

echo "Two instances of the same class\n";
compareObjects($o, $p);

echo "\nTwo references to the same instance\n";
compareObjects($o, $q);

echo "\nInstances of two different classes\n";
compareObjects($o, $r);
?>

Interfaces:

Interfaces are defined to provide a common function names to the implementers. Different implementors

can implement those interfaces according to their requirements. You can say, interfaces are skeletons

which are implemented by developers.

As of PHP5, it is possible to define an interface, like this −

interface Mail {

 public function sendMail();

}

Then, if another class implemented that interface, like this −

class Report implements Mail {

 // sendMail() Definition goes here

}

Constants:
A constant is somewhat like a variable, in that it holds a value, but is really more like a function because a

constant is immutable. Once you declare a constant, it does not change.

Declaring one constant is easy, as is done in this version of MyClass −

class MyClass {

 const requiredMargin = 1.7;

 function __construct($incomingValue) {

 // Statements here run every time

 // an instance of the class

 // is created.

 }

}

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 93

In this class, requiredMargin is a constant. It is declared with the keyword const, and under no

circumstances can it be changed to anything other than 1.7. Note that the constant's name does not have a

leading $, as variable names do.

Abstract Classes:
An abstract class is one that cannot be instantiated, only inherited. You declare an abstract class with the

keyword abstract, like this −

When inheriting from an abstract class, all methods marked abstract in the parent's class declaration must

be defined by the child; additionally, these methods must be defined with the same visibility.

abstract class MyAbstractClass {

 abstract function myAbstractFunction() {

 }

}

Note that function definitions inside an abstract class must also be preceded by the keyword abstract. It is

not legal to have abstract function definitions inside a non-abstract class.

Static Keyword:

Declaring class members or methods as static makes them accessible without needing an instantiation of

the class. A member declared as static can not be accessed with an instantiated class object (though a static

method can).

Try out following example −

<?php

 class Foo {

 public static $my_static = 'foo';

 public function staticValue() {

 return self::$my_static;

 }

 }

 print Foo::$my_static . "\n";

 $foo = new Foo();

 print $foo->staticValue() . "\n";

?>

Final Keyword:

PHP 5 introduces the final keyword, which prevents child classes from overriding a method by prefixing

the definition with final. If the class itself is being defined final then it cannot be extended.

Following example results in Fatal error: Cannot override final method BaseClass::moreTesting()

<?php

 class BaseClass {

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 94

 public function test() {

 echo "BaseClass::test() called
";

 }

 final public function moreTesting() {

 echo "BaseClass::moreTesting() called
";

 }

 }

 class ChildClass extends BaseClass {

 public function moreTesting() {

 echo "ChildClass::moreTesting() called
";

 }

 }

?>

Calling parent constructors

Instead of writing an entirely new constructor for the subclass, let's write it by calling the parent's

constructor explicitly and then doing whatever is necessary in addition for instantiation of the subclass.

Here's a simple example −

class Name {

 var $_firstName;

 var $_lastName;

 function Name($first_name, $last_name) {

 $this->_firstName = $first_name;

 $this->_lastName = $last_name;

 }

 function toString() {

 return($this->_lastName .", " .$this->_firstName);

 }

}

class NameSub1 extends Name {

 var $_middleInitial;

 function NameSub1($first_name, $middle_initial, $last_name) {

 Name::Name($first_name, $last_name);

 $this->_middleInitial = $middle_initial;

 }

 function toString() {

 return(Name::toString() . " " . $this->_middleInitial);

 }

}

In this example, we have a parent class (Name), which has a two-argument constructor, and a subclass

(NameSub1), which has a three-argument constructor. The constructor of NameSub1 functions by calling

its parent constructor explicitly using the :: syntax (passing two of its arguments along) and then setting an

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 95

additional field. Similarly, NameSub1 defines its non constructor toString() function in terms of the parent

function that it overrides.

 Cloning object:

creating a copy of an object with fully replicated properties is not always the wanted behavior. A good

example of the need for copy constructors, is if you have an object which represents a GTK window and

the object holds the resource of this GTK window, when you create a duplicate you might want to create a

new window with the same properties and have the new object hold the resource of the new window.

Another example is if your object holds a reference to another object which it uses and when you replicate

the parent object you want to create a new instance of this other object so that the replica has its own

separate copy.

An object copy is created by using the clone keyword (which calls the object's __clone() method if

possible). An object's __clone() method cannot be called directly.

$copy_of_object = clone $object;

When an object is cloned, PHP 5 will perform a shallow copy of all of the object's properties. Any

properties that are references to other variables will remain references.

void __clone (void)

Once the cloning is complete, if a __clone() method is defined, then the newly created

object's __clone() method will be called, to allow any necessary properties that need to be changed.

Example #1 Cloning an object

<?php

class SubObject

{

 static $instances = 0;

 public $instance;

 public function __construct() {

 $this->instance = ++self::$instances;

 }

 public function __clone() {

 $this->instance = ++self::$instances;

 }

}

class MyCloneable

{

 public $object1;

 public $object2;

 function __clone()

 {

 // Force a copy of this->object, otherwise

 // it will point to same object.

 $this->object1 = clone $this->object1;

 }

}

http://php.net/manual/en/language.oop5.cloning.php#object.clone
http://php.net/manual/en/language.oop5.cloning.php#object.clone
http://php.net/manual/en/language.oop5.cloning.php#object.clone
http://php.net/manual/en/language.oop5.cloning.php#object.clone

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 96

$obj = new MyCloneable();

$obj->object1 = new SubObject();

$obj->object2 = new SubObject();

$obj2 = clone $obj;

print("Original Object:\n");

print_r($obj);

print("Cloned Object:\n");

print_r($obj2);

?>

Reflection:

he ReflectionClass class reports information about a class.

Reflector {

/* Methods */

public static string export (void)

public string __toString (void)

}

 Unit- IV

 FILE HANDLING

PHP has several functions for creating, reading, uploading, and editing files.

The file may be opened in one of the following modes:

r Open a file for read only. File pointer starts at the beginning of the file

w Open a file for write only. Erases the contents of the file or creates a new file if it doesn't exist. File pointer

starts at the beginning of the file

a Open a file for write only. The existing data in file is preserved. File pointer starts at the end of the file.

Creates a new file if the file doesn't exist

x Creates a new file for write only. Returns FALSE and an error if file already exists

r

+

Open a file for read/write. File pointer starts at the beginning of the file

http://php.net/manual/en/reflector.export.php
http://php.net/manual/en/reflector.tostring.php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 97

w

+

Open a file for read/write. Erases the contents of the file or creates a new file if it doesn't exist. File pointer

starts at the beginning of the file

a

+

Open a file for read/write. The existing data in file is preserved. File pointer starts at the end of the file.

Creates a new file if the file doesn't exist

x

+

Creates a new file for read/write. Returns FALSE and an error if file already exists

Opening files using fopen:

A better method to open files is with the fopen() function. This function gives you more options than the

readfile() function.

We will use the text file, "webdictionary.txt", during the lessons:

AJAX = Asynchronous JavaScript and XML

CSS = Cascading Style Sheets

HTML = Hyper Text Markup Language

PHP = PHP Hypertext Preprocessor

SQL = Structured Query Language

SVG = Scalable Vector Graphics

XML = EXtensible Markup Language

The first parameter of fopen() contains the name of the file to be opened and the second parameter

specifies in which mode the file should be opened. The following example also generates a message if the

fopen() function is unable to open the specified file:

Example
<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

echo fread($myfile,filesize("webdictionary.txt"));

fclose($myfile);

?>

Output:

AJAX = Asynchronous JavaScript and XML CSS = Cascading Style Sheets HTML = Hyper Text Markup

Language PHP = PHP Hypertext Preprocessor SQL = Structured Query Language SVG = Scalable Vector

Graphics XML = EXtensible Markup Language

PHP Read File - fread():

The fread() function reads from an open file.

The first parameter of fread() contains the name of the file to read from and the second parameter specifies

the maximum number of bytes to read.

The following PHP code reads the "webdictionary.txt" file to the end:

fread($myfile,filesize("webdictionary.txt"));

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 98

PHP Check End-Of-File - feof():

The feof() function checks if the "end-of-file" (EOF) has been reached.

The feof() function is useful for looping through data of unknown length.

The example below reads the "webdictionary.txt" file line by line, until end-of-file is reached:

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

// Output one line until end-of-file

while(!feof($myfile)) {

 echo fgets($myfile) . "
";

}

fclose($myfile);

?>

Output:

AJAX = Asynchronous JavaScript and XML

CSS = Cascading Style Sheets

HTML = Hyper Text Markup Language

PHP = PHP Hypertext Preprocessor

SQL = Structured Query Language

SVG = Scalable Vector Graphics

XML = EXtensible Markup Language

PHP Read Single Character - fgetc():

The fgetc() function is used to read a single character from a file.

The example below reads the "webdictionary.txt" file character by character, until end-of-file is reached:

Example

<?php

$myfile = fopen("webdictionary.txt", "r") or die("Unable to open file!");

// Output one character until end-of-file

while(!feof($myfile)) {

 echo fgetc($myfile);

}

fclose($myfile);

?>

Output:

AJAX = Asynchronous JavaScript and XML CSS = Cascading Style Sheets HTML = Hyper Text Markup

Language PHP = PHP Hypertext Preprocessor SQL = Structured Query Language SVG = Scalable Vector

Graphics XML = EXtensible Markup Language

PHP Close File - fclose():

The fclose() function is used to close an open file.

It's a good programming practice to close all files after you have finished with them. You don't want an

open file running around on your server taking up resources!

The fclose() requires the name of the file (or a variable that holds the filename) we want to close:

<?php

$myfile = fopen("webdictionary.txt", "r");

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 99

// some code to be executed....

fclose($myfile);

?>

PHP Write to File - fwrite():

The fwrite() function is used to write to a file.

The first parameter of fwrite() contains the name of the file to write to and the second parameter is the

string to be written.

The example below writes a couple of names into a new file called "newfile.txt":

Example

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");

$txt = "John Doe\n";

fwrite($myfile, $txt);

$txt = "Jane Doe\n";

fwrite($myfile, $txt);

fclose($myfile);

?>

PHP Overwriting:

Now that "newfile.txt" contains some data we can show what happens when we open an existing file for

writing. All the existing data will be ERASED and we start with an empty file.

In the example below we open our existing file "newfile.txt", and write some new data into it:

Example

<?php

$myfile = fopen("newfile.txt", "w") or die("Unable to open file!");

$txt = "Mickey Mouse\n";

fwrite($myfile, $txt);

$txt = "Minnie Mouse\n";

fwrite($myfile, $txt);

fclose($myfile);

?>

Configure The "php.ini" File:

First, ensure that PHP is configured to allow file uploads.

In your "php.ini" file, search for the file_uploads directive, and set it to On:

file_uploads = On

Check if File Already Exists:

Now we can add some restrictions.

First, we will check if the file already exists in the "uploads" folder. If it does, an error message is

displayed, and $uploadOk is set to 0:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 100

// Check if file already exists

if (file_exists($target_file)) {

 echo "Sorry, file already exists.";

 $uploadOk = 0;

}

 WORKING WITH DATABASES

Databases are useful for storing information categorically. A company may have a

database with the following tables:

 Employees
 Products
 Customers

 Orders

What is a batabase?

 MySQL is a database system used on the web
 MySQL is a database system that runs on a server
 MySQL is ideal for both small and large applications
 MySQL is very fast, reliable, and easy to use
 MySQL uses standard SQL
 MySQL compiles on a number of platforms

 MySQL is free to download and use
 MySQL is developed, distributed, and supported by Oracle Corporation

 MySQL is named after co-founder Monty Widenius's daughter: My

The data in a MySQL database are stored in tables. A table is a collection of related

data, and it consists of columns and rows.

Some essential SQL:

A query is a question or a request.

We can query a database for specific information and have a recordset returned.

Look at the following query (using standard SQL):

SELECT LastName FROM Employees

The query above selects all the data in the "LastName" column from the "Employees"

table.

To learn more about SQL, please visit our SQL tutorial.

https://www.w3schools.com/sql/default.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 101

Creating amysql database:

A database consists of one or more tables.

You will need special CREATE privileges to create or to delete a MySQL database.

The CREATE DATABASE statement is used to create a database in MySQL.

The following examples create a database named "myDB":

Example (MySQLi Object-oriented)
<?php

$servername = "localhost";

$username = "username";

$password = "password";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// Create database

$sql = "CREATE DATABASE myDB";

if ($conn->query($sql) === TRUE) {

 echo "Database created successfully";

} else {

 echo "Error creating database: " . $conn->error;

}

$conn->close();

?>

Creating a new table:

The CREATE TABLE statement is used to create a table in MySQL.

We will create a table named "MyGuests", with five columns: "id", "firstname", "lastname", "email" and

"reg_date":

CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP

)

The data type specifies what type of data the column can hold. For a complete reference of all the

available data types, go to our Data Types reference.

 After the data type, you can specify other optional attributes for each column:

 NOT NULL - Each row must contain a value for that column, null values are not allowed

 DEFAULT value - Set a default value that is added when no other value is passed

https://www.w3schools.com/sql/sql_datatypes.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 102

 UNSIGNED - Used for number types, limits the stored data to positive numbers and zero

 AUTO INCREMENT - MySQL automatically increases the value of the field by 1 each time a

new record is added

 PRIMARY KEY - Used to uniquely identify the rows in a table. The column with PRIMARY

KEY setting is often an ID number, and is often used with AUTO_INCREMENT

Each table should have a primary key column (in this case: the "id" column). Its value must be unique for

each record in the table.

Putting data into the new database:

After a database and a table have been created, we can start adding data in them.

Here are some syntax rules to follow:

The SQL query must be quoted in PHP

String values inside the SQL query must be quoted

Numeric values must not be quoted

The word NULL must not be quoted

The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

To learn more about SQL, please visit our SQL tutorial.

In the previous chapter we created an empty table named "MyGuests" with five columns: "id",

"firstname", "lastname", "email" and "reg_date". Now, let us fill the table with data.

Accessing the database in php:

he sqlsrv_connect function is used to establish a connection to the server. The code shown here (from

the Example Application in the product documentation) establishes a connection to the local server and

specifies the AdventureWorks database as the database in use:

 $serverName = "(local)";

$connectionOptions = array("Database"=>"AdventureWorks");

/* Connect using Windows Authentication. */

$conn = sqlsrv_connect($serverName, $connectionOptions);

if($conn === false)

 { die(FormatErrors(sqlsrv_errors())); }

By default, the sqlsrv_connect function uses Windows Authentication to establish a connection. In most

scenarios, this means that the Web server's process identity or thread identity (if the Web server is using

impersonation) is used to connect to the server, not an end-user's identity.

The sqlsrv_connect function accepts two parameters: $serverName and $connectionOptions (optional).

· $serverName – This required parameter is used to specify the name of the server to which you want

to connect. In the code above, a connection is established to the local server. This parameter can also be

use to specify a SQL Server instance or a port number. For example:

$serverName = "myServer\instanceName";

https://www.w3schools.com/sql/default.asp
https://msdn.microsoft.com/en-us/library/cc296161.aspx
http://go.microsoft.com/fwlink/?LinkId=124498

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 103

Connecting to the database server:

Before you can get content out of your MySQL database, you must know how to establish a connection to

MySQL from inside a PHP script. To perform basic queries from within MySQL is very easy. This article

will show you how to get up and running.

Let's get started. The first thing to do is connect to the database.The function to connect to MySQL is

called mysql_connect. This function returns a resource which is a pointer to the database connection. It's

also called a database handle, and we'll use it in later functions. Don't forget to replace your connection

details.

<?php

$username = "your_name";

$password = "your_password";

$hostname = "localhost";

//connection to the database

$dbhandle = mysql_connect($hostname, $username, $password)

 or die("Unable to connect to MySQL");

echo "Connected to MySQL
";

?>

All going well, you should see "Connected to MySQL" when you run this script. If you can't connect to

the server, make sure your password, username and hostname are correct.

Once you've connected, you're going to want to select a database to work with. Let's assume the database

is called 'examples'. To start working in this database, you'll need the mysql_select_db() function:

<?php

//select a database to work with

$selected = mysql_select_db("examples",$dbhandle)

 or die("Could not select examples");

?>

Now that you're connected, let's try and run some queries. The function used to perform queries is named -

mysql_query(). The function returns a resource that contains the results of the query, called the result set.

To examine the result we're going to use the mysql_fetch_array function, which returns the results row by

row. In the case of a query that doesn't return results, the resource that the function returns is simply a

value true or false.

A convenient way to access all the rows is with a while loop. Let's add the code to our script:

<?php

//execute the SQL query and return records

$result = mysql_query("SELECT id, model, year FROM cars");

//fetch tha data from the database

while ($row = mysql_fetch_array($result)) {

 echo "ID:".$row{'id'}." Name:".$row{'model'}."

 ".$row{'year'}."
";

}

?>

Finally, we close the connection. Although this isn't strictly speaking necessary, PHP will automatically

close the connection when the script ends, you should get into the habit of closing what you open.

<?php

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 104

Open a new connection to the MySQL server:

<?php

$con = mysqli_connect("localhost","my_user","my_password","my_db");

// Check connection

if (mysqli_connect_errno())

 {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

 }

?>

Reading the table:

To read records from a database, the technique is usually to loop round and find the ones you want. To

specify which records you want, you use something called SQL. This stands for Structured Query

Language. This is a natural, non-coding language that uses words like SELECT and WHERE. At it's

simplest level, it's fairly straightforward. But the more complex the database, the more trickier the SQL is.

We'll start with something simple though.

What we want to do, now that we have a connection to our database, is to read all the records from our

address book, and print them out to the page. Here's some new code, added to the PHP script you already

have. The new lines are in blue:

<?PHP

require '../configure.php'

$db_handle = mysqli_connect(DB_SERVER, DB_USER, DB_PASS);

$database = "addressbook";

$db_found = mysqli_select_db($db_handle, $database);

if ($db_found) {

$SQL = "SELECT * FROM tbl_address_book";

$result = mysqli_query($db_handle, $SQL);

while ($db_field = mysqli_fetch_assoc($result)) {

print $db_field['ID'] . "
";

print $db_field['First_Name'] . "
";

print $db_field['Surname'] . "
";

print $db_field['Address'] . "
";

}

}

else {

print "Database NOT Found ";

}

mysqli_close($db_handle);

?>

//close the connection

mysql_close($dbhandle);

?>

Connecting to the database:

http://www.homeandlearn.co.uk/php/php13p1.html
http://www.homeandlearn.co.uk/php/php13p1.html

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 105

Before we go through the new code to see what's happening, run your script. You should find that the

address you added in a previous section is printed out. (We only have one record at the moment.)

1

Test

Name

12 Test Street

The first line in the new code is this:

$SQL = "SELECT * FROM tbl_address_book";

The $SQL is just a normal variable. But we're putting into it a long string. This is a SQL statement. Here's

a brief run down on SQL.

Inserting new data items into a database:

After a database and a table have been created, we can start adding data in them.

Here are some syntax rules to follow:

The SQL query must be quoted in PHP

String values inside the SQL query must be quoted

Numeric values must not be quoted

The word NULL must not be quoted

The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

To learn more about SQL, please visit our SQL tutorial.

In the previous chapter we created an empty table named "MyGuests" with five columns: "id",

"firstname", "lastname", "email" and "reg_date". Now, let us fill the table with data.

If a column is AUTO_INCREMENT (like the "id" column) or TIMESTAMP (like the "reg_date"

column), it is no need to be specified in the SQL query; MySQL will automatically add the value.

The following examples add a new record to the "MyGuests" table:

Eg:

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('John', 'Doe', 'john@example.com')";

http://www.homeandlearn.co.uk/php/php12p4.html
https://www.w3schools.com/sql/default.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 106

if ($conn->query($sql) === TRUE) {

 echo "New record created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

Deleting records:

The DELETE statement is used to delete records from a table:

DELETE FROM table_name

WHERE some_column = some_value

Notice the WHERE clause in the DELETE syntax: The WHERE clause specifies which record or

records that should be deleted. If you omit the WHERE clause, all records will be deleted!

To learn more about SQL, please visit our SQL tutorial.

Let's look at the "MyGuests" table:

id firstname lastname Email reg_date

1 John Doe john@example.com 2014-10-22 14:26:15

2 Mary Moe mary@example.com 2014-10-23 10:22:30

3 Julie Dooley julie@example.com 2014-10-26 10:48:23

Creating a new table:

The CREATE TABLE statement is used to create a table in MySQL.

We will create a table named "MyGuests", with five columns: "id", "firstname", "lastname", "email" and

"reg_date":

CREATE TABLE MyGuests (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP

)

Updating databases:

The UPDATE statement is used to update existing records in a table:

https://www.w3schools.com/sql/default.asp
mailto:john@example.com
mailto:julie@example.com

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 107

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Sorting data:
MySQL provides a LIMIT clause that is used to specify the number of records to return.

The LIMIT clause makes it easy to code multi page results or pagination with SQL, and is very useful on

large tables. Returning a large number of records can impact on performance.

Assume we wish to select all records from 1 - 30 (inclusive) from a table called "Orders". The SQL query

would then look like this:

$sql = "SELECT * FROM Orders LIMIT 30";

When the SQL query above is run, it will return the first 30 records.

What if we want to select records 16 - 25 (inclusive)?

Mysql also provides a way to handle this: by using OFFSET.

The SQL query below says "return only 10 records, start on record 16 (OFFSET 15)":

$sql = "SELECT * FROM Orders LIMIT 10 OFFSET 15";

You could also use a shorter syntax to achieve the same result:

$sql = "SELECT * FROM Orders LIMIT 15, 10";

id firstname lastname Email reg_date

1 John Doe john@example.com 2014-10-22 14:26:15

2 Mary Moe mary@example.com 2014-10-23 10:22:30

The following examples update the record with id=2 in the "MyGuests" table:

Example (MySQLi Object-oriented)
<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "UPDATE MyGuests SET lastname='Doe' WHERE id=2";

if ($conn->query($sql) === TRUE) {

mailto:john@example.com
mailto:mary@example.com

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 108

 echo "Record updated successfully";

} else {

 echo "Error updating record: " . $conn->error;

}

$conn->close();

?>

 COOKIES

A cookie is often used to identify a user. A cookie is a small file that the server embeds
on the user's computer. Each time the same computer requests a page with a browser,

it will send the cookie too. With PHP, you can both create and retrieve cookie values.

Setting a cookie:
 A cookie is created with the setcookie() function.

Syntax

setcookie(name, value, expire, path, domain, secure, httponly);

Only the name parameter is required. All other parameters are optional.

Reading acookie:
creates a cookie named "user" with the value "John Doe". The cookie will expire after 30 days (86400 *

30). The "/" means that the cookie is available in entire website (otherwise, select the directory you

prefer).

We then retrieve the value of the cookie "user" (using the global variable $_COOKIE). We also use the

isset() function to find out if the cookie is set:

Example

<?php

$cookie_name = "user";

$cookie_value = "John Doe";

setcookie($cookie_name, $cookie_value, time() + (86400 * 30), "/"); // 86400 = 1 day

?>

<html>

<body>

<?php

if(!isset($_COOKIE[$cookie_name])) {

 echo "Cookie named '" . $cookie_name . "' is not set!";

} else {

 echo "Cookie '" . $cookie_name . "' is set!
";

 echo "Value is: " . $_COOKIE[$cookie_name];

}

?>

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 109

</body>

</html>

Output:

Cookie named 'user' is not set!

Setting cookies expiration:

The following example creates a small script that checks whether cookies are enabled. First, try to create a

test cookie with the setcookie() function, then count the $_COOKIE array variable:

Example

<?php

setcookie("test_cookie", "test", time() + 3600, '/');

?>

<html>

<body>

<?php

if(count($_COOKIE) > 0) {

 echo "Cookies are enabled.";

} else {

 echo "Cookies are disabled.";

}

?>

</body>

</html>

Output:

Cookies are enabled.

Delete cookies:

To delete a cookie, use the setcookie() function with an expiration date in the past

Example
<?php
// set the expiration date to one hour ago

setcookie("user", "", time() - 3600);
?>
<html>
<body>

<?php

echo "Cookie 'user' is deleted.";
?>

</body>
</html>

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 110

Output:

Cookie 'user' is deleted.

 FTP(file transfor protocol)

The FTP functions give client access to file servers through the File Transfer Protocol (FTP).

The FTP functions are used to open, login and close connections, as well as upload, download, rename,

delete, and get information on files from file servers. Not all of the FTP functions will work with every

server or return the same results. The FTP functions became available with PHP

If you only wish to read from or write to a file on an FTP server, consider using the ftp:// wrapper with the

Filesystem functions which provide a simpler and more intuitive interface.

Working with FTP:

Function Description

ftp_alloc() Allocates space for a file to be uploaded to the FTP server

ftp_cdup() Changes to the parent directory on the FTP server

ftp_chdir() Changes the current directory on the FTP server

ftp_chmod() Sets permissions on a file via FTP

ftp_close() Closes an FTP connection

ftp_connect() Opens an FTP connection

ftp_delete() Deletes a file on the FTP server

ftp_exec() Executes a command on the FTP server

ftp_fget() Downloads a file from the FTP server and saves it into an open local file

ftp_fput() Uploads from an open file and saves it to a file on the FTP server

ftp_get_option() Returns runtime options of the FTP connection

ftp_get() Downloads a file from the FTP server

ftp_login() Logs in to the FTP connection

ftp_mdtm() Returns the last modified time of a specified file

ftp_mkdir() Creates a new directory on the FTP server

https://www.w3schools.com/php/func_ftp_alloc.asp
https://www.w3schools.com/php/func_ftp_cdup.asp
https://www.w3schools.com/php/func_ftp_chdir.asp
https://www.w3schools.com/php/func_ftp_chmod.asp
https://www.w3schools.com/php/func_ftp_close.asp
https://www.w3schools.com/php/func_ftp_connect.asp
https://www.w3schools.com/php/func_ftp_delete.asp
https://www.w3schools.com/php/func_ftp_exec.asp
https://www.w3schools.com/php/func_ftp_fget.asp
https://www.w3schools.com/php/func_ftp_fput.asp
https://www.w3schools.com/php/func_ftp_get_option.asp
https://www.w3schools.com/php/func_ftp_get.asp
https://www.w3schools.com/php/func_ftp_login.asp
https://www.w3schools.com/php/func_ftp_mdtm.asp
https://www.w3schools.com/php/func_ftp_mkdir.asp

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 111

ftp_nb_continue() Continues retrieving/sending a file (non-blocking)

ftp_nb_fget() Downloads a file from the FTP server and saves it into an open file (non-

blocking)

ftp_nb_fput() Uploads from an open file and saves it to a file on the FTP server (non-blocking)

ftp_nb_get() Downloads a file from the FTP server (non-blocking)

ftp_nb_put() Uploads a file to the FTP server (non-blocking)

ftp_nlist() Returns a list of files in the specified directory on the FTP server

ftp_pasv() Turns passive mode on or off

ftp_put() Uploads a file to the FTP server

ftp_pwd() Returns the current directory name

ftp_quit() An alias of ftp_close()

ftp_raw() Sends a raw command to the FTP server

ftp_rawlist() Returns a list of files with file information from a specified directory

ftp_rename() Renames a file or directory on the FTP server

ftp_rmdir() Deletes an empty directory on the FTP server

ftp_set_option() Sets runtime options for the FTP connection

ftp_site() Sends an FTP SITE command to the FTP server

ftp_size() Returns the size of the specified file

ftp_ssl_connect() Opens a secure SSL-FTP connection

ftp_systype() Returns the system type identifier of the FTP server

Downloading files with FTP:

ftp_fget — Downloads a file from the FTP server and saves to an open file

Description ¶
bool ftp_fget (resource $ftp_stream , resource $handle , string $remote_file , int $mode [, int$resumepos

= 0])

ftp_fget() retrieves remote_file from the FTP server, and writes it to the given file pointer.

https://www.w3schools.com/php/func_ftp_nb_continue.asp
https://www.w3schools.com/php/func_ftp_nb_fget.asp
https://www.w3schools.com/php/func_ftp_nb_fput.asp
https://www.w3schools.com/php/func_ftp_nb_get.asp
https://www.w3schools.com/php/func_ftp_nb_put.asp
https://www.w3schools.com/php/func_ftp_nlist.asp
https://www.w3schools.com/php/func_ftp_pasv.asp
https://www.w3schools.com/php/func_ftp_put.asp
https://www.w3schools.com/php/func_ftp_pwd.asp
https://www.w3schools.com/php/func_ftp_quit.asp
https://www.w3schools.com/php/func_ftp_close.asp
https://www.w3schools.com/php/func_ftp_raw.asp
https://www.w3schools.com/php/func_ftp_rawlist.asp
https://www.w3schools.com/php/func_ftp_rename.asp
https://www.w3schools.com/php/func_ftp_rmdir.asp
https://www.w3schools.com/php/func_ftp_set_option.asp
https://www.w3schools.com/php/func_ftp_site.asp
https://www.w3schools.com/php/func_ftp_size.asp
https://www.w3schools.com/php/func_ftp_ssl_connect.asp
https://www.w3schools.com/php/func_ftp_systype.asp
http://php.net/manual/en/function.ftp-fget.php#refsect1-function.ftp-fget-description

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 112

Parameters ¶

ftp_stream

The link identifier of the FTP connection.

handle

An open file pointer in which we store the data.

remote_file

The remote file path.

mode

The transfer mode. Must be either FTP_ASCII or FTP_BINARY.

resumepos

The position in the remote file to start downloading from.

Return Values ¶

Returns TRUE on success or FALSE on failure.

Uploading file with FTP:
The ftp_put() function uploads a file to the FTP server.

Syntax

ftp_put(ftp_connection,remote_file,local_file,mode,startpos);

Example

Upload local file to a file on the FTP server:

<?php

// connect and login to FTP server

$ftp_server = "ftp.example.com";

$ftp_conn = ftp_connect($ftp_server) or die("Could not connect to $ftp_server");

$login = ftp_login($ftp_conn, $ftp_username, $ftp_userpass);

$file = "localfile.txt";

// upload file

if (ftp_put($ftp_conn, "serverfile.txt", $file, FTP_ASCII))

 {

 echo "Successfully uploaded $file.";

 }

else

 {

 echo "Error uploading $file.";

 }

// close connection

ftp_close($ftp_conn);

?>

Deleting a file with FTP:
The ftp_delete() function deletes a file on the FTP server.

http://php.net/manual/en/function.ftp-fget.php#refsect1-function.ftp-fget-parameters
http://php.net/manual/en/function.ftp-fget.php#refsect1-function.ftp-fget-returnvalues

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 113

Syntax

ftp_delete(ftp_connection,file);

creating and removing directories with ftp:

The ftp_rmdir() function deletes a directory on the FTP server.

Syntax
ftp_rmdir(ftp_connection,dir);
eg:

Delete a directory on FTP server:
<?php
// connect and login to FTP server
$ftp_server = "ftp.example.com";
$ftp_conn = ftp_connect($ftp_server) or die("Could not connect to $ftp_server");
$login = ftp_login($ftp_conn, $ftp_username, $ftp_userpass);

$dir = "php/";

// try to delete $dir
if (ftp_rmdir($ftp_conn, $dir))
 {
 echo "Directory $dir deleted";
 }
else
 {
 echo "Problem deleting $dir";
 }

// close connection
ftp_close($ftp_conn);
?>

Sending E-mail:

The mail() function allows you to send emails directly from a script.
The mail() function allows you to send emails directly from a script.
Syntax

mail(to,subject,message,headers,parameters);

Parameter Description

to Required. Specifies the receiver / receivers of the email

subject Required. Specifies the subject of the email. Note: This parameter cannot contain any newline
characters

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 114

message Required. Defines the message to be sent. Each line should be separated with a LF (\n). Lines should
not exceed 70 characters.

Windows note: If a full stop is found on the beginning of a line in the message, it might be removed.
To solve this problem, replace the full stop with a double dot:
<?php
$txt = str_replace("\n.", "\n..", $txt);
?>

headers Optional. Specifies additional headers, like From, Cc, and Bcc. The additional headers should be
separated with a CRLF (\r\n).

Note: When sending an email, it must contain a From header. This can be set with this parameter or
in the php.ini file.

parameters Optional. Specifies an additional parameter to the sendmail program (the one defined in the
sendmail_path configuration setting). (i.e. this can be used to set the envelope sender address when
using sendmail with the -f sendmail option)

<?php
$to = "somebody@example.com, somebodyelse@example.com";
$subject = "HTML email";

$message = "
<html>
<head>
<title>HTML email</title>
</head>
<body>
<p>This email contains HTML Tags!</p>
<table>
<tr>
<th>Firstname</th>
<th>Lastname</th>
</tr>
<tr>
<td>John</td>
<td>Doe</td>
</tr>
</table>
</body>
</html>
";

// Always set content-type when sending HTML email
$headers = "MIME-Version: 1.0" . "\r\n";
$headers .= "Content-type:text/html;charset=UTF-8" . "\r\n";

// More headers
$headers .= 'From: <webmaster@example.com>' . "\r\n";
$headers .= 'Cc: myboss@example.com' . "\r\n";

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 115

mail($to,$subject,$message,$headers);
?>

Sending advanced E-mail:
The simplest way to send an email with PHP is to send a text email. In the example below we first declare

the variables — recipient's email address, subject line and message body — then we pass these variables

to the mail() function to send the email.

Example

Download
<?php

$to = 'maryjane@email.com';

$subject = 'Marriage Proposal';

$message = 'Hi Jane, will you marry me?';

$from = 'peterparker@email.com';

// Sending email

if(mail($to, $subject, $message)){

 echo 'Your mail has been sent successfully.';

} else{

 echo 'Unable to send email. Please try again.';

}

?>

Adding attachments to email:

Sending Email with Attachment

The last variation that we will consider is email with attachments. To send an email with attachment we

need to use the multipart/mixed MIME type that specifies that mixed types will be included in the

email. Moreover, we want to use multipart/alternative MIME type to send both plain-text and HTML

version of the email. Have a look at the example:

<?php

//define the receiver of the email

$to = 'youraddress@example.com';

//define the subject of the email

$subject = 'Test email with attachment';

//create a boundary string. It must be unique

//so we use the MD5 algorithm to generate a random hash

$random_hash = md5(date('r', time()));

//define the headers we want passed. Note that they are separated with \r\n

$headers = "From: webmaster@example.com\r\nReply-To: webmaster@example.com";

//add boundary string and mime type specification

$headers .= "\r\nContent-Type: multipart/mixed; boundary=\"PHP-mixed-".$random_hash."\"";

//read the atachment file contents into a string,

//encode it with MIME base64,

//and split it into smaller chunks

$attachment = chunk_split(base64_encode(file_get_contents('attachment.zip')));

//define the body of the message.

ob_start(); //Turn on output buffering

?>

--PHP-mixed-<?php echo $random_hash; ?>

https://www.tutorialrepublic.com/examples/bin/download-source.php?topic=php&file=send-text-email

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 116

Content-Type: multipart/alternative; boundary="PHP-alt-<?php echo $random_hash; ?>"

--PHP-alt-<?php echo $random_hash; ?>

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: 7bit

Hello World!!!

This is simple text email message.

--PHP-alt-<?php echo $random_hash; ?>

Content-Type: text/html; charset="iso-8859-1"

Content-Transfer-Encoding: 7bit

<h2>Hello World!</h2>

<p>This is something with HTML formatting.</p>

--PHP-alt-<?php echo $random_hash; ?>--

--PHP-mixed-<?php echo $random_hash; ?>

Content-Type: application/zip; name="attachment.zip"

Content-Transfer-Encoding: base64

Content-Disposition: attachment

<?php echo $attachment; ?>

--PHP-mixed-<?php echo $random_hash; ?>--

<?php

//copy current buffer contents into $message variable and delete current output buffer

$message = ob_get_clean();

//send the email

$mail_sent = @mail($to, $subject, $message, $headers);

//if the message is sent successfully print "Mail sent". Otherwise print "Mail failed"

echo $mail_sent ? "Mail sent" : "Mail failed";

?>

As you can see, sending an email with attachment is easy to accomplish. In the preceding example we

have multipart/mixed MIME type, and inside it we have multipart/alternative MIME type that specifies

two versions of the email. To include an attachment to our message, we read the data from the specified

file into a string, encode it with base64, split it in smaller chunks to make sure that it matches the MIME

specifications and then include it as an attachment.

 SESSIONS
A session is a way to store information (in variables) to be used across multiple pages.

Unlike a cookie, the information is not stored on the users computer.

What is a PHP Session?

When you work with an application, you open it, do some changes, and then you close it. This is much

like a Session. The computer knows who you are. It knows when you start the application and when you

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 117

end. But on the internet there is one problem: the web server does not know who you are or what you do,

because the HTTP address doesn't maintain state.

Session variables solve this problem by storing user information to be used across multiple pages (e.g.

username, favorite color, etc). By default, session variables last until the user closes the browser.

So; Session variables hold information about one single user, and are available to all pages in one

application.

Tip: If you need a permanent storage, you may want to store the data in a database.

Start a PHP Session(or) Sorting data in sessions:

A session is started with the session_start() function.

Session variables are set with the PHP global variable: $_SESSION.

Now, let's create a new page called "demo_session1.php". In this page, we start a new PHP session and set

some session variables:

Example

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>

</body>

</html>

Output:

Session variables are set.

Writing a hit counter using sessions:
Creating the Hit Counter

 getData() retrieves the current view counts from the database. If there isn't any data, it sets this data

to zero.

 isNewVisitor() determines whether the visitor has already visited our website in their current

session

 visit() increments the total hit counter, and increments the unique visitor counter if the user has not

visited the website in their current session.

Create a new file called "HitCounter.php". This file will contain a class you can include in other PHP

scripts when you want it to log a hit.

https://www.w3schools.com/php/php_mysql_intro.asp
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-4.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-4.png

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 118

2

Stub out the HitCounter class. Create local class members to hold your credentials and the database

connection info.

3

Write the constructor. In the constructor, you should establish the database connection and initialize the

hit counts at zero.

4

Write the public functions. These methods can be called from any other script that instantiates the

HitCounter class.

Add a method for processing views. This method gets called on every page load that should be counted

towards a hit.

Add a getter for the total views. This will get called in places where you want to show the total view

count.

Add a getter for the unique hits. You'll call this where you want to show the unique view count.

https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-5.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-5.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-6.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-6.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-7.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-7.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-5.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-6.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-7.png

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 119

5

Fill in the remaining helper methods. These methods do the brunt of the work for the hit counter.

They're marked private so that they can only be used internally.

getData() retrieves the current view counts from the database. If there isn't any data, it sets this data to

zero.

isNewVisitor() determines whether the visitor has already visited our website in their current session

visit() increments the total hit counter, and increments the unique visitor counter if the user has not visited

the website in their current session.

Part3

Using the Hit Counter

Create a new file to use your hit counter. This should be an actual page you intend the visitor to see. If

you already have a website, this should be the front facing PHP script (usually index.php). Basically, any

PHP file that is accessible from the web and you want to use to update the counter.

https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-8.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-8.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-9.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-9.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-10.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-8.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-9.png

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 120

2

Include the file containing the HitCounter class. It's recommended to use require_once over include.

Unit-V

AJAX

Getting started with ajax:

AJAX = Asynchronous JavaScript and XML.

AJAX is a technique for creating fast and dynamic web pages.

AJAX allows web pages to be updated asynchronously by exchanging small amounts of data with the

server behind the scenes. This means that it is possible to update parts of a web page, without reloading

the whole page.

Classic web pages, (which do not use AJAX) must reload the entire page if the content should change.

Examples of applications using AJAX: Google Maps, Gmail, Youtube, and Facebook tabs.

How AJAX Works

https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-10.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-10.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-11.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-11.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-10.png
https://www.wikihow.com/Make-a-PHP-Hit-Counter#/Image:Make-a-PHP-Hit-Counter-Step-11.png

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 121

Writing Ajax:

Creating the XMLHttp request object:

First, check if the input field is empty (str.length == 0). If it is, clear the content of the txtHint placeholder

and exit the function.

However, if the input field is not empty, do the following:

Create an XMLHttpRequest object

Create the function to be executed when the server response is ready

Send the request off to a PHP file (gethint.php) on the server

Notice that q parameter is added to the url (gethint.php?q="+str)

And the str variable holds the content of the input field

Example
<html>

<head>

<script>

function showHint(str) {

 if (str.length == 0) {

 document.getElementById("txtHint").innerHTML = "";

 return;

 } else {

 var xmlhttp = new XMLHttpRequest();

 xmlhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 document.getElementById("txtHint").innerHTML = this.responseText;

 }

 };

 xmlhttp.open("GET", "gethint.php?q=" + str, true);

 xmlhttp.send();

 }

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 122

}

</script>

</head>

<body>

<p>Start typing a name in the input field below:</p>

<form>

First name: <input type="text" onkeyup="showHint(this.value)">

</form>

<p>Suggestions: </p>

</body>

</html>

Start typing a name in the input field below:

First name:

Suggestions:

Opening the XMLHttp request object:

When a user selects an RSS-feed in the dropdown list above, a function called "showRSS()" is executed.

The function is triggered by the "onchange" event:

<html>

<head>

<script>

function showRSS(str) {

 if (str.length==0) {

 document.getElementById("rssOutput").innerHTML="";

 return;

 }

 if (window.XMLHttpRequest) {

 // code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 } else { // code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 xmlhttp.onreadystatechange=function() {

 if (this.readyState==4 && this.status==200) {

 document.getElementById("rssOutput").innerHTML=this.responseText;

 }

 }

 xmlhttp.open("GET","getrss.php?q="+str,true);

 xmlhttp.send();

}

</script>

</head>

<body>

<form>

<select onchange="showRSS(this.value)">

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 123

<option value="">Select an RSS-feed:</option>

<option value="Google">Google News</option>

<option value="NBC">NBC News</option>

</select>

</form>

<div id="rssOutput">RSS-feed will be listed here...</div>

</body>

</html>

handling downloaded data:

In this tutorial you'll learn how to collect user inputs submitted through a form using the PHP superglobal

variables $_GET, $_POST and $_REQUEST.

Creating a Simple Contact Form

In this tutorial we are going to create a simple HMTL contact form that allows users to enter their

comment and feedback then displays it to the browser using PHP.

Open up your favorite code editor and create a new PHP file. Now type the following code and save this

file as "contact-form.php" in the root directory of your project.

Example

Download

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Contact Form</title>

</head>

<body>

 <h2>Contact Us</h2>

 <p>Please fill in this form and send us.</p>

 <form action="process-form.php" method="post">

 <p>

 <label for="inputName">Name:[*]</label>

 <input type="text" name="name" id="inputName">

 </p>

 <p>

 <label for="inputEmail">Email:[*]</label>

 <input type="text" name="email" id="inputEmail">

 </p>

 <p>

 <label for="inputSubject">Subject:</label>

 <input type="text" name="subject" id="inputSubject">

 </p>

 <p>

 <label for="inputComment">Message:[*]</label>

 <textarea name="message" id="inputComment" rows="5" cols="30"></textarea>

 </p>

 <input type="submit" value="Submit">

https://www.tutorialrepublic.com/examples/bin/download-source.php?topic=php&file=contact-form

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 124

 <input type="reset" value="Reset">

 </form>

</body>

</html>

Explanation of code

Notice that there are two attributes within the opening <form> tag:

The action attribute references a PHP file "process-form.php" that receives the data entered into the form

when user submit it by pressing the submit button.

The method attribute tells the browser to send the form data through POST method.

Rest of the elements inside the form are basic form controls to receive user inputs. To learn more about

HTML form elements please check out the HTML Forms tutorial.

Starting download:

To access the value of a particular form field, you can use the following superglobal variables. These

variables are available in all scopes throughout a script.

Superglobal Description

$_GET Contains a list of all the field names and values sent by a form using the get method

(i.e. via the URL parameters).

$_POST Contains a list of all the field names and values sent by a form using the post

method (data will not visible in the URL).

$_REQUEST Contains the values of both the $_GET and $_POST variables as well as the values

of the $_COOKIE superglobal variable.

When a user submit the above contact form through clicking the submit button, the form data is sent to the

"process-form.php" file on the server for processing. It simply captures the information submitted by the

user and displays it to browser.

The PHP code of "process-form.php" file will look something like this:

Example

Download

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Contact Form</title>

</head>

<body>

 <h1>Thank You</h1>

 <p>Here is the information you have submitted:</p>

 Name: <?php echo $_POST["name"]?>

 Email: <?php echo $_POST["email"]?>

 Subject: <?php echo $_POST["subject"]?>

 Message: <?php echo $_POST["message"]?>

</body>

https://www.tutorialrepublic.com/php-tutorial/php-get-and-post.php#post-method
https://www.tutorialrepublic.com/html-tutorial/html-forms.php
https://www.tutorialrepublic.com/examples/bin/download-source.php?topic=php&file=process-form

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 125

</html>

The PHP code above is quite simple. Since the form data is sent through the post method, you can retrieve

the value of a particular form field by passing its name to the $_POST superglobal array, and displays

each field value using echo() statement.

In real world you cannot trust the user inputs; you must implement some sort of validation to filter the user

inputs before using them. In the next chapter you will learn how sanitize and validate this contact form

data and send it through the email using PHP.

Ajax with some php:

To clearly illustrate how easy it is to access information from a database using Ajax and PHP, we are

going to build MySQL queries on the fly and display the results on "ajax.html". But before we proceed,

lets do ground work. Create a table using the following command.

CREATE TABLE `ajax_example` (

 `name` varchar(50) NOT NULL,

 `age` int(11) NOT NULL,

 `sex` varchar(1) NOT NULL,

 `wpm` int(11) NOT NULL,

 PRIMARY KEY (`name`)

)

Now dump the following data into this table using the following SQL statements.

INSERT INTO `ajax_example` VALUES ('Jerry', 120, 'm', 20);

INSERT INTO `ajax_example` VALUES ('Regis', 75, 'm', 44);

INSERT INTO `ajax_example` VALUES ('Frank', 45, 'm', 87);

INSERT INTO `ajax_example` VALUES ('Jill', 22, 'f', 72);

INSERT INTO `ajax_example` VALUES ('Tracy', 27, 'f', 0);

INSERT INTO `ajax_example` VALUES ('Julie', 35, 'f', 90);

Handling XML:

The XMLHttpRequest Object has a built in XML Parser.

The responseText property returns the response as a string.

The responseXML property returns the response as an XML DOM object.

If you want to use the response as an XML DOM object, you can use the responseXML property.

Example
Request the file cd_catalog.xml and use the response as an XML DOM object:

xmlDoc = xmlhttp.responseXML;

txt = "";

x = xmlDoc.getElementsByTagName("ARTIST");

for (i = 0; i < x.length; i++) {

 txt += x[i].childNodes[0].nodeValue + "
";

}

document.getElementById("demo").innerHTML = txt;

Handling XML with PHP:

The PHP simplexml_load_file() function is used to read XML data from a file.

Assume we have an XML file called "note.xml", that looks like this:

https://www.w3schools.com/xml/xml_http.asp
https://www.w3schools.com/xml/cd_catalog.xml
https://www.w3schools.com/php/note.xml

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 126

<?xml version="1.0" encoding="UTF-8"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

The example below shows how to use the simplexml_load_file() function to read XML data from a file:

Example
<?php

$xml=simplexml_load_file("note.xml") or die("Error: Cannot create object");

print_r($xml);

?>

Output:

SimpleXMLElement Object ([to] => Tove [from] => Jani [heading] => Reminder [body] => Don't forget

me this weekend!)

 Advanced ajax

There’s no doubt that AJAX is a powerful and user-enhancing group of technologies, but its many

possibilities still aren’t widely known. In this article, we’ll take a look at how easy it can be to create an

extremely powerful data transfer between the server and the client-side AJAX engine, using JavaScript

Object Notation (JSON) and the JSON parser. We’ll explore how to create a group of objects (often

referred to as a package in other languages), how to serialize the objects as JSON to be sent to the server,

and how to deserialize server-side JSON as client-side JavaScript objects.

This article assumes that you understand JavaScript and how to create a basic AJAX engine, make

requests, and receive responses from the server via AJAX. To learn more about these topics, see my

article "How To Use AJAX." To follow along with the examples, you’ll need to download the source

files. (You can also view a live sample.)

Handling concurrent ajax:

This article uses an AJAX engine that I created in order to abstract our AJAX requests and help us to

share AJAX engine code between different applications. In order to use this engine, we simply import

three JavaScript files and make requests to an object named AjaxUpdater. The engine will handle the rest,

including delegating the response to the callback method specified in the request. Here’s an example of

how we would make requests with this engine as well as import the associated files:

<script type="text/javascript" src="javascript/model/Ajax.js"></script>

<script type="text/javascript" src="javascript/model/HTTP.js"></script>

<script type="text/javascript" src="javascript/model/AjaxUpdater.js"></script>

<script type="text/javascript">

 document.load = AjaxUpdater.Update(’GET’, URL, callback);

</script>

Java script inner functions:

JavaScript is often misunderstood, with a bad reputation from the silly graphic effects of the past.

JavaScript is truly a powerful language, especially when combined with AJAX and the server side of an

http://www.json.org/js.html
http://www.json.org/js.html
http://www.informit.com/articles/article.asp?p=425820
http://www.krishadlock.com/clients/informit/AdvancedAjaxJSON/AdvancedAjaxJSON.zip
http://www.krishadlock.com/clients/informit/AdvancedAjaxJSON/AdvancedAjaxJSON.zip
http://www.krishadlock.com/clients/informit/AdvancedAjaxJSON/

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 127

application, but even on the client side JavaScript can accomplish much more than you would probably

expect. Object-oriented JavaScript is one example, enabling us to create objects, extend intrinsic objects,

and even create packages for our objects for easier management.

For this example, we’ll create three objects: Auto, Car, and Wheel. Each is a very simple object, but will

be used to show how to create a basic package.

The Auto object is declared as a new object:

var Auto = new Object();

The Auto object doesn’t actually end here, though; it’s used as the parent of the Car object. Therefore, the

Car object is a property of the Auto object, but separated into another file for easier management. (This

concept is used in other object-oriented languages, but JavaScript isn’t often thought of in these terms.)

Here’s the code for the Car object:

Auto.Car = new Object();

Auto.Car.color = "#fff";

Auto.Car.setColor = function(_color)

{

 Auto.Car.color = _color;

}

Auto.Car.setColor("#333");

As you can see, the Car object is a child of the Auto object—a classic case of object hierarchy. This object

has a property named color and a method to set it. We’re setting the color to gray, overwriting the default

white. Keep this fact in mind until we serialize the object.

The next object, Wheel, is a child object of Car:

Auto.Car.Wheel = new Object();

Auto.Car.Wheel.color = "#000";

Wheel is a basic object, but it shows another layer to the object hierarchy. This object has one property

called color, with a default value of black.

Downloading images using ajax:

AJAX was initially designed to be used with text data (JSON/HTML/XML) and that is why this

requirement of downloading images using AJAX were never fulfilled.

But with HTML5, XHR2 has been introduced which allows us to get ArrayBuffer in ajax response and

this is something which can be used to download image.

There are two approaches that could be taken.

Download the image, create a blob object and use it as src in img.

Download the image, and create data url and use it as src in img.

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState==4 && xhr.status==200) {

 var blob = new Blob([xhr.response], {

 type: xhr.getResponseHeader("Content-Type")

 });

 var imgUrl = window.URL.createObjectURL(blob);

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 128

 document.getElementById("img").src = imgUrl;

 }

 }

 xhr.responseType = "arraybuffer";

 xhr.open("GET","Hacker.jpg",truexhr.send();

xhr.send();

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState==4 && xhr.status==200) {

 document.getElementById("img").src = "data:"+xhr.getResponseHeader("Content-

Type")+";base64," + btoa(String.fromCharCode.apply(null, new Uint8Array(xhr.response)));

 }

 }

 xhr.responseType = "arraybuffer";

 xhr.open("GET","Hacker.jpg",truexhr.send();

xhr.send();

downloading javascript with ajax:
I have a javascript app that sends ajax POST requests to a certain URL. Response might be a JSON string

or it might be a file (as an attachment). I can easily detect Content-Type and Content-Disposition in my

ajax call, but once I detect that the response contains a file, how do I offer the client to download it? I've

read a number of similar threads here but none of them provide the answer I'm looking for.

Please, please, please do not post answers suggesting that I shouldn't use ajax for this or that I should

redirect the browser, because none of this is an option. Using a plain HTML form is also not an option.

What I do need is to show a download dialog to the client. Can this be done and how?

EDIT:

Apparently, this cannot be done, but there is a simple workaround, as suggested by the accepted answer.

For anyone who comes across this issue in the future, here's how I solved it:

$.ajax({

 type: "POST",

 url: url,

 data: params,

 success: function(response, status, request) {

 var disp = request.getResponseHeader('Content-Disposition');

 if (disp && disp.search('attachment') != -1) {

 var form = $('<form method="POST" action="' + url + '">');

 $.each(params, function(k, v) {

 form.append($('<input type="hidden" name="' + k +

 '" value="' + v + '">'));

 });

 $('body').append(form);

 form.submit();

 }

 }

});

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 129

So basically, just generate a HTML form with the same params that were used in AJAX request and

submit it.

connecting to google suggest:
Among famous Ajax applications, there are a few that stand out, such as Google Suggest

(www.google.com/webhp?complete=1&hl=en). It is shown in Figure 4.6.

Figure 4.6: Google Suggest

When you enter a partial search term, as shown in the figure, Google Suggest connects, using Ajax, to the

Google servers and finds possible matches to your partial search term and displays them-no page refresh

needed. Clicking a hyperlink in the drop-down list opens the corresponding search page in Google.

You can create a search page yourself that connects to Google Suggest, and download JavaScript from

Google Suggest to do so. You can see this example at work in Figure 4.7.

Figure 4.7: Connecting to Google Suggest with a custom page

So how can you connect to Google Suggest? Say that you’ve stored the partial search term in a variable

named searchTerm. You could then connect to Google Suggest at:

 http://www.google.com/complete/search?hl=en&js=true&qu=" + searchTerm;

How does Google Suggest communicate with you? It sends back JavaScript code that calls a function

named sendRPCDone. Here are the parameters passed to that function:

 sendRPCDone(unusedVariable, searchTerm, arrayTerm, arrayResults, unusedArray)

So what does the JavaScript call you get back from Google Suggest actually look like? If you’re searching

for ajax, this is the kind of JavaScript you’ll get back from Google:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 130

 sendRPCDone(frameElement, "ajax", new Array("ajax", "ajax amsterdam", "ajax fc", "ajax ontario",

"ajax grips", "ajax football club", "ajax public library", "ajax football", "ajax soccer", "ajax pickering

transit"), new Array("3,840,000 results", "502,000 results", "710,000 results", "275,000 results", "8,860

results", "573,000 results", "40,500 results", "454,000 results", "437,000 results", "10,700 results"), new

Array(""));

You take it from there, writing your own sendRPCDone function that displays the results sent back to you

from Google Suggest.

It’s time to create google.html. The action starts when the user enters a search term in the search text field,

which has the ID textField:

 <body> <H1>Connecting to Google Suggest</H1> Search for <input id = "textField" type = "text"

name = "textField" onkeyup = "connectGoogleSuggest(event)"> <div id =

"targetDiv"><div></div></div> </body>

Note how this works. Every time a key goes up, the onkeyup event attribute calls a function

named connectGoogleSuggest, which means that you can watch what users type as they type it. Every

time the user types a key, the connectGoogleSuggest function is called:

 function connectGoogleSuggest(keyEvent) { . . . }

You can start the connectGoogleSuggest function by creating an object that corresponds to the input text

field that the user has been typing into:

 function connectGoogleSuggest(keyEvent) { var input = document.getElementById("textField"); .

. . }

Next, you can check whether that text field contains any text, and if not, you can clear the

target <div> element, which displays the drop-down list of items from Google Suggest:

 function connectGoogleSuggest(keyEvent) { var input = document.getElementById("textField"); if

(input.value) { . . . } else { var targetDiv = document.getElementById("targetDiv");
targetDiv.innerHTML = "<div></div>"; } }

If, on the other hand, the input text field does contain text, you can pass that text on to

the getData function to connect to Google Suggest and get suggestions. You pass a relative

URL, google.php?qu= and the search term, to getData like this:

 function connectGoogleSuggest(keyEvent) { var input = document.getElementById("textField"); if

(input.value) { getData("google.php?qu=" + input.value); } else { var targetDiv =

document.getElementById("targetDiv"); targetDiv.innerHTML = "<div></div>"; } }

The getData function creates an XMLHttpRequest object in the usual way:

 function getData(dataSource) { var XMLHttpRequestObject = false; if

(window.XMLHttpRequest) { XMLHttpRequestObject = new XMLHttpRequest(); } else if

(window.ActiveXObject) { XMLHttpRequestObject = new
ActiveXObject("Microsoft.XMLHTTP"); } . . . } }

and then connects to the relative URL passed to it, which is google.php?qu= and the search term:

 function getData(dataSource) { var XMLHttpRequestObject = false; if (window.XMLHttpRequest) {

XMLHttpRequestObject = new XMLHttpRequest(); } else if (window.ActiveXObject) {

XMLHttpRequestObject = new ActiveXObject("Microsoft.XMLHTTP"); }

if(XMLHttpRequestObject) { XMLHttpRequestObject.open("GET", dataSource);

XMLHttpRequestObject.onreadystatechange = function() { . . . }

XMLHttpRequestObject.send(null); } }

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 131

 DRAWING IMAGES ON THE SERVER

Creating and Drawing Images:

For now, let's start with the simplest possible GD example is a script that generates a black filled square. The code

works with any version of GD that supports the PNG image format.

A black square on a white background (black.php)
<?php
 $im = ImageCreate(200,200);
 $white = ImageColorAllocate($im,0xFF,0xFF,0xFF);
 $black = ImageColorAllocate($im,0x00,0x00,0x00);
 ImageFilledRectangle($im,50,50,150,150,$black);
 header('Content-Type: image/png');
 ImagePNG($im);
?>
To see the result, simply point your browser at the black.php PHP page. To embed this image in a web

page, use:

Creating an image:

The first thing the code does is to call the imagecreate() function with the dimensions of the image,

namely its width and height in that order. This function returns a resource identifier for the image which

we save in $my_img. The identifier is needed for all our operations on the image.

If the function fails for some reason, it will return FALSE. If you want your code to be robust, you should

test for this. The demo code above doesn't do any error checking, since it will clutter the example, making

it harder to understand.

Since the output of my example script is the image itself, I send an "image/png" content type header to the

browser telling it that what follows are the bytes of a PNG image. The function imagepng() is then called

to generate the necessary image from my $my_img image identifer. Since I called imagepng()without a

second parameter, the function automatically sends its output to the browser. If you prefer to save your

image, don't call the header() function to output the header, and call imagepng() with the filename of the

image for its second parameter, like the following:

imagepng($my_img, "my_new_image.png");

Your image does not have to be a PNG image. You can use imagegif() or imagejpeg() to create GIF and

JPG images respectively. You should of course send the correct content type header for the type of image

you are creating. For example, a jpeg image should have a content type of "image/jpeg" while a gif image

"image/gif". Note though that GIF support may or may not necessarily be compiled into the version of the

GD library your web host is using, so if you're not sure, use one of the other file formats.

 imagecreatefromgif (string $filename)

 imagecreatefromjpeg (string $filename)

 imagecreatefrompng (string $filename)

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 132

For example, if you created a GIF file called "mytemplate.gif", the function can be called as follows:

$myimage = imagecreatefromgif ("mytemplate.gif");

Like the basic imagecreate() function, these functions return FALSE if they fail to load the image for any

reason.

Drawing lines:
Before we begin drawing on our image, there are two functions that we should consider, for added variety.

1. Line color can be modified using the imagecolorallocate() function, which we learned about before. It

should be stored in a variable to be used later.

2. Line thickness can be modified using the imagesetthickness() function, which requires two parameters:

imagesetthickness(image, thickness)

The imageline() function itself requires 6 parameters. The syntax is: imageline(image, x1, y1, x2, y2,

color)

 image = Refers to the Image Resource That the Line Will Be Applied to

 x1 = x-coordinate For First Point

 y1 = y-coordinate For First Point

 x2 = x-coordinate For Second Point

 y2 = y-coordinate For Second Point

 color = Refers to the Line Color Identifier Created With imagecolorallocate()

<?php

 header('Content-type: image/png');

 $png_image = imagecreate(150, 150);

 imagecolorallocate($png_image, 15, 142, 210);

 $black = imagecolorallocate($png_image, 0, 0, 0);

 imageline($png_image, 0, 0, 150, 150, $black);

 imagepng($png_image);

 imagedestroy($png_image);

?>

Drawing rectangles:
Draw a line, rectangle, or polygon. You also want to be able to control if the rectangle or polygon is open

or filled in. For example, you want to be able to draw bar charts or create graphs of stock quotes.

To draw a line, use ImageLine():

ImageLine($image, $x1, $y1, $x2, $y2, $color);

To draw an open rectangle, use ImageRectangle():

ImageRectangle($image, $x1, $y1, $x2, $y2, $color);

To draw a solid rectangle, use ImageFilledRectangle() :

ImageFilledRectangle($image, $x1, $y1, $x2, $y2, $color);

Drawing arcs:

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 133

To draw an arc, use ImageArc():

ImageArc($image, $x, $y, $width, $height, $start, $end, $color);

Drawing Polygons:

To draw an open polygon, use ImagePolygon():

$points = array($x1, $y1, $x2, $y2, $x3, $y3);

ImagePolygon($image, $points, count($points)/2, $color);

To draw a filled polygon, use ImageFilledPolygon():

$points = array($x1, $y1, $x2, $y2, $x3, $y3);

ImageFilledPolygon($image, $points, count($points)/2, $color);

Drawing individual pixels:
set individual pixels using the imagesetpixel method

 imagesetpixel(resource image, int x, int y, int color)

As you'd expect, this function draws a pixel at x, y in image image of color color. When you're drawing

graphics, working pixel-by-pixel is usually too slow. But you can generally get away with drawing

extensive pixel graphics on the server because the extra few seconds usually aren't noticedthe Internet is

slow enough anyway.

For example, say you wanted to draw a dotted line, which you can do with imagesetpixel. You can use

a for loop, as here, where we're drawing one pixel and then skipping three pixels before drawing the next

pixel:

 $image_height = 100; $image_width = 300; $image = imagecreate($image_width, $image_height);

$back_color = imagecolorallocate($image, 200, 200, 200); $drawing_color = imagecolorallocate($image,

0, 0, 0); for($loop_index = 20; $loop_index < 280; $loop_index += 3){ . . . }

Tilling images:

They all have the same width (120px) and differing heights.

This is what I have:

$finalbg = null;

for($i=0; $i<7; $i++) {

 $addbg = imagecreatefromjpeg('images/left/'.$url[$drawn]);

 $addsize = imagesy($addbg);

 if($finalbg != null) $basesize = imagesy($finalbg); else $basesize = 0;

 $newsize = $addsize+$basesize;

 $newbg = imagecreatetruecolor(120, $newsize);

 if($finalbg != null) imagecopy($newbg, $finalbg, 0, 0, 0, 0, 120, $basesize);

 imagecopy($newbg, $addbg, 0, $basesize, 0, 0, 120, $addsize);

Asst.Prof S.Sasikala., MCA., M.Phil.,B.Ed., Page 134

 $finalbg = $newbg;

}

header("Content-type: image/jpeg");

imagejpeg($finalbg);

The sizes are outputting correctly, but it keeps telling the image contains errors, and I have no idea why

:(Same thing if I try to output addbg or newbg.

Copying images:

bool copy (string $source , string $dest [, resource $context])

Makes a copy of the file source to dest.

If you wish to move a file, use the rename() function.

http://php.net/manual/en/function.rename.php

	My first PHP page
	PHP is Fun!
	PHP String
	PHP Integer
	PHP Float
	PHP Boolean
	PHP Array
	PHP Object
	PHP NULL Value
	PHP Resource
	Operators:
	Syntax

	The switch Statement:

	Delete one array element
	Extracting Variables from Arrays:
	Sorting Arrays:
	Merging and Splitting Arrays:
	Handling Text Fields:
	Handling Radio Buttons:
	PHP Read File - fread():
	PHP Check End-Of-File - feof():
	PHP Read Single Character - fgetc():
	PHP Close File - fclose():
	PHP Write to File - fwrite():
	PHP Overwriting:
	Example

	Configure The "php.ini" File:
	Check if File Already Exists:
	DRAWING IMAGES ON THE SERVER
	Creating and Drawing Images:
	Drawing Polygons:

