Prepared by

D.KALPANA M.Sc., M.Phil., B.Ed.

ASSISTANT PROFESSOR

ARPUTHA COLLEGE OF ARTS AND SCIENCE VAMBAN

DEPARTMENT OF PHYSICS

NUCLEAR PHYSICS-16SCCPH8

UNIT-V

ELEMENTARY PARTICLES

CLASSIFICATIONS OF ELEMENTARY PARTICLES:

There are three types:

BARYONS (Heavy Particles): Every baryon has an antiparticel

- Proton
- Neutron
- Lambda
- Sigma
- **❖** Xi
- Omega

Lambda, Xi, Omega is HYPERONS. Every Baryon has an antibaryons. +1 is assigned baryon. -1 is assigned for anti baryons.

MESONS: Are particles of strong interaction

- Pion
- Kaon
- Eta

The rest mass of these particles varies between about $250m_e$ and $1000m_e$. The mesons are the agents of interaction between particles inside the nucleus. Baryons and mesons are jointly called HADRONS.

LEPTONS: This group contains

- Photon
- Neutrino
- Electron
- Muon

PARTICLES AND ANTI PARTICLES:

- Electron Positron
- Proton -antiproton
- Neutron-antineutron
- Neutrino- antineutrino

FUNDAMENTAL INTERACTIONS:

Four basic interactions are summarised below

1. Strong interaction:

- ❖ A familiar example of strong interaction is nuclear forces.
- It is independent of electric charge
- ❖ Range is about 10⁻¹⁵m
- ❖ Time interval is about 10⁻²³s

2. Electromagnetic Interaction:

- It operate on all charges
- It is charge dependent
- The range is infinite
- Interaction through photons
- Example electron- positron pair from gamma rays

3. Weak interactions:

- ❖ Time interval is about 10⁻¹⁰s.
- Range is less than 10⁻¹⁷m
- Characteristic time about 10⁻¹⁰s
- It is responsible for decay of strange and non-strange particles and for non leptonic of strange particles.

4. Gravitational Interactions:

- Weakest type of interactions
- It has infinite range
- Intermediate through gravitons
- Weak forces affect every particles other than photon.

PIONS AND MUONS:

Pi mesons are particles with mass intermediate between that of an electron and a proton. To explain the short range of internucleonic force, the pion considered as a quantum of this force.

It was predicted by Yukawa. Subsequently it was discovered by Powell and coworkers.

Its(π^0) mass is about 135Mev/ c^2 or about 250 times the electron mass with integral spin. Charged pions have mass of 140 Mev/ c^2 . All pions strongly interacted with matter.

$$p+p \longrightarrow p+p+\pi^{0}$$
 $p+p \longrightarrow p+p+\pi^{-1}$
 $p+p \longrightarrow p+n+\pi^{+}$

Muons like a charged pions, are also elementary particles with mass intermediate between that of an electron and a proton. It has a mass only 106 Mev/c^2 and does not interact strongly with matter. Its spin ½. Muons are electrically charged either

positively or negatively and it carry one unit of charge. They are unstable particles and emit electrons. Muons also discovered in cosmic radiation.

K-MESONS OR KOANS:

❖ While working with a counter controlled cloud chamber in a string magnetic field, with a lead sheet interposed along the diameter of the chamber ,Rochester and Butler observed a paired of track of oppositely charged pions originating apparently at a common point. It was not a case of collision process producing the pair, for then a host of other particles would have originated in the lead plate. The event was

Attributed to spontaneous disintegration of a neutral particle that left no track in the chamber and the particle was termed as K⁰ meson.

The disintegration was represented as

$$K^0 \longrightarrow \pi^+ + \pi^{-1}$$

★ K mesons are charged positively and negatively K⁺ and K⁻ that decay into three charged pions.

$$K^{+}$$
 π^{+} π^{+} π^{-1}

$$K^{-}$$
 π^{-1} + π^{+} + π^{-1}

- ❖ All K decays assigned to single group of mesons are called K mesons or Kaons. Both charged and neutral. Masses being 975 m_efork⁰ and 966 m_e for K⁺ and K⁻.
- ❖ The mean life of Kaon sabout10⁻¹⁰to 10⁻⁸ s.
- It is the characteristic of the weak interaction decays.

- Kaons are known as the strange particles
- All Kaons have zero spin, they are bosons.
- * Kaons available in giant accelerators.

PIONS OR π - MESONS:

- ❖ Discovered by 1947 →in the cosmic rays.
- Exist the three state $\rightarrow \pi^+, \pi^-$, and π^0 .
- The π^+, π^- are antiparticles of each other.
- \star π^{+},π^{-} mesons have a rest mass of 273m_e.
- The rest mass of π^0 mesons is 264m_e.
- ❖ The pions a mean life \rightarrow unstable of 2.6x10⁻⁸s.
- The charged pions decay into corresponding muons and neutrino.

$$\pi^+ --> \mu^+ + \gamma_{\mu}$$

$$\pi^{+} --> \mu^{-} + \gamma_{\mu}$$

The neutral pion has a mean life of 8.7x10- 17 s and decay into two gamma rays. $\pi^0 \rightarrow \gamma + \gamma$

 μ^{+} \$ μ^{-} [positive and negative muons] have the same rest mass of 106Mev/C² the same spin of ½.

Both decay with a relatively long mean life of $2.2x10^{-6}$ s into electron and neutrino antineutrino pions.

$$\mu^+ \rightarrow e^+ + \gamma_e + \gamma_\mu$$

$$\mu \rightarrow e^{-} + \gamma_{\mu} + \gamma_{e}$$