Arputha college of arts and science for women

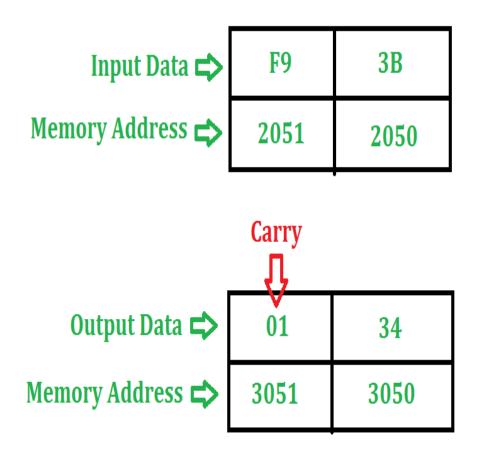
(Affiliated to Bharathidasan University, Thiruchirappalli)

Arputha Nagar, Vamban

Pudukkottai (Dt), Tamilnadu, India 622 303

III B.Sc., Physics

Semester VI


Microprocessor and C programming (16SMBEPH2)

Assembly language programming:

# 8085 program to add two 8 bit numbers:

**Problem** – Write an assembly language program to add two 8 bit numbers stored at address 2050 and address 2051 in 8085 microprocessor. The starting address of the program is taken as 2000.

Example -



# Algorithm –

- 1. Load the first number from memory location 2050 to accumulator.
- 2. Move the content of accumulator to register H.
- 3. Load the second number from memory location 2051 to accumulator.
- 4. Then add the content of register H and accumulator using "ADD" instruction and storing result at 3050
- 5. The carry generated is recovered using "ADC" command and is stored at memory location 3051

# Program -

| Memory Address | Mnemonics | Comment        |
|----------------|-----------|----------------|
| 2000           | LDA 2050  | A<-[2050]      |
| 2003           | MOV H, A  | H<-A           |
| 2004           | LDA 2051  | A<-[2051]      |
| 2007           | ADD H     | A<-A+H         |
| 2006           | MOV L, A  | L←A            |
| 2007           | MVI A 00  | A←00           |
| 2009           | ADC A     | A←A+A+carry    |
| 200A           | MOV H, A  | H←A            |
| 200B           | SHLD 3050 | H→3051, L→3050 |
| 200E           | HLT       |                |

# **Explanation** –

- 1. **LDA 2050** moves the contents of 2050 memory location to the accumulator.
- 2. MOV H, A copies contents of Accumulator to register H to A
- 3. **LDA 2051** moves the contents of 2051 memory location to the accumulator.
- 4. ADD H adds contents of A (Accumulator) and H register (F9). The result is stored in A itself. For all arithmetic instructions A is by default an operand and A stores the result as well
- 5. MOV L, A copies contents of A (34) to L
- 6. MVI A 00 moves immediate data (i.e., 00) to A

- 7. **ADC A** adds contents of A(00), contents of register specified (i.e A) and carry (1). As ADC is also an arithmetic operation, A is by default an operand and A stores the result as well
- 8. MOV H, A copies contents of A (01) to H
- 9. **SHLD 3050** moves the contents of L register (34) in 3050 memory location and contents of H register (01) in 3051 memory location
- 10. **HLT** stops executing the program and halts any further execution

# 8085 program to subtract two 8-bit numbers with or without borrow:

**Problem** – Write a program to subtract two 8-bit numbers with or without borrow where first number is at **2500** memory address and second number is at **2501** memory address and store the result into **2502** and borrow into **2503** memory address.

Example -



## Algorithm –

- 1. Load 00 in a register C (for borrow)
- 2. Load two 8-bit number from memory into registers

- 3. Move one number to accumulator
- 4. Subtract the second number with accumulator
- 5. If borrow is not equal to 1, go to step 7
- 6. Increment register for borrow by 1
- 7. Store accumulator content in memory
- 8. Move content of register into accumulator
- 9. Store content of accumulator in other memory location
- 10.Stop

#### Program -

| Memory | Mnemonics | Operands | Comment               |
|--------|-----------|----------|-----------------------|
| 2000   | MVI       | C, 00    | [C] <- 00             |
| 2002   | LHLD      | 2500     | [H-L] <- [2500]       |
| 2005   | MOV       | А, Н     | [A] <- [H]            |
| 2006   | SUB       | L        | [A] <- [A] – [L]      |
| 2007   | JNC       | 200B     | Jump If no borrow     |
| 200A   | INR       | С        | [C] <- [C] + 1        |
| 200B   | STA       | 2502     | [A] -> [2502], Result |
| 200E   | MOV       | Α, C     | [A] <- [C]            |
| 2010   | STA       | 2503     | [A] -> [2503], Borrow |
| 2013   | HLT       |          | Stop                  |

Explanation – Registers A, H, L, C are used for general purpose:

- MOV is used to transfer the data from memory to accumulator (1 Byte)
- 2. **LHLD** is used to load register pair directly using 16-bit address (3 Byte instruction)
- 3. MVI is used to move data immediately into any of registers (2 Byte)
- 4. **STA** is used to store the content of accumulator into memory(3 Byte instruction)
- 5. **INR** is used to increase register by 1 (1 Byte instruction)
- 6. **JNC** is used to jump if no borrow (3 Byte instruction)

- 7. **SUB** is used to subtract two numbers where one number is in accumulator(1 Byte)
- 8. **HLT** is used to halt the program

# 8085 program to multiple two 8 bit numbers:

**Problem** – Multiply two 8 bit numbers stored at address 2050 and 2051. Result is stored at address 3050 and 3051. Starting address of program is taken as 2000.

Example –

| Input Data 📫     | 07   | 43   |
|------------------|------|------|
| Memory Address 🖒 | 2051 | 2050 |

| Output Data 📫    | 01   | D5   |
|------------------|------|------|
| Memory Address 🖨 | 3051 | 3050 |

## Algorithm –

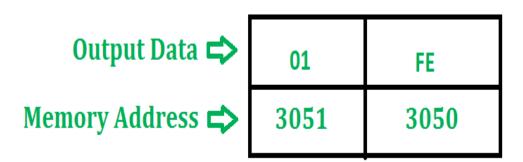
- 1. We are taking adding the number 43 seven(7) times in this example.
- 2. As the multiplication of two 8 bit numbers can be maximum of **16 bits** so we need register pair to store the result.

Program -

| Memory Address | Mnemonics  | Comment                   |
|----------------|------------|---------------------------|
| 2000           | LHLD 2050  | H←2051, L←2050            |
| 2003           | XCHG       | H↔D, L↔E                  |
| 2004           | MOV C, D   | C←D                       |
| 2005           | MVI D 00   | D←00                      |
| 2007           | LXI H 0000 | H←00, L←00                |
| 200A           | DAD D      | HL←HL+DE                  |
| 200B           | DCR C      | C←C-1                     |
| 200C           | JNZ 200A   | If Zero Flag=0, goto 200A |
| 200F           | SHLD 3050  | H→3051, L→3050            |
| 2012           | HLT        |                           |

Explanation – Registers used: A, H, L, C, D, E

- 1. LHLD 2050 loads content of 2051 in H and content of 2050 in L
- 2. XCHG exchanges contents of H with D and contents of L with E
- 3. MOV C, D copies content of D in C
- 4. MVI D 00 assigns 00 to D
- 5. LXI H 0000 assigns 00 to H and 00 to L
- 6. DAD D adds HL and DE and assigns the result to HL
- 7. DCR C decreaments C by 1


- 8. **JNZ 200A** jumps program counter to 200A if zero flag = 0
- 9. SHLD stores value of H at memory location 3051 and L at 3050
- 10. HLT stops executing the program and halts any further execution

# 8085 program to divide two 8 bit numbers:

Problem – Write 8085 program to divide two 8 bit numbers.

Example -

| Input Data 📫     | FF   | FF   |
|------------------|------|------|
| Memory Address 🖒 | 2051 | 2050 |



## Algorithm –

- 1. Start the program by loading the HL pair registers with address of memory location.
- 2. Move the data to B Register.
- 3. Load the second data into accumulator.
- 4. Compare the two numbers to check carry.
- 5. Subtract two numbers.
- 6. Increment the value of carry.
- 7. Check whether the repeated subtraction is over.
- 8. Then store the results(quotient and remainder) in given memory location.

9. Terminate the program.

#### Program -

| ADDRESS | MNEMONICS   | COMMENT               |
|---------|-------------|-----------------------|
| 2000    | LXI H, 2050 |                       |
| 2003    | MOV B, M    | B<-M                  |
| 2004    | MVI C, 00   | C<-00H                |
| 2006    | INX H       |                       |
| 2007    | MOV A, M    | A<-M                  |
| 2008    | CMP B       |                       |
| 2009    | JC 2011     | check for carry       |
| 200C    | SUB B       | A<-A-B                |
| 200D    | INR C       | C<-C+1                |
| 200E    | JMP 2008    |                       |
| 2011    | STA 3050    | 3050<-A               |
| 2014    | MOV A, C    | A<-C                  |
| 2015    | STA 3051    | 3051<-A               |
| 2018    | HLT         | terminate the program |

**Explanation** – Registers A, H, L, C, B are used for general purpose.

- 1. **LXI H, 2050** will load the HL pair register with the address 2050 of memory location.
- 2. MOV B, M copies the content of memory into register B.
- 3. MVI C, 00 assign 00 to C.
- 4. **INX H** increment register pair HL.
- 5. MOV A, M copies the content of memory into accumulator.
- 6. **CMP B** compares the content of accumulator and register B.
- 7. JC 2011 jump to address 2011 if carry flag is set.

- 8. **SUB B** subtract the content of accumulator with register B and store the result in accumulator.
- 9. **INR C** increment the register C.
- 10. JMP 2008 control will shift to memory address 2008.
- 11. **STA 3050** stores the remainder at memory location 3050.
- 12. MOV A, C copies the content of register into accumulator.
- 13. **STA 3051** stores the remainder at memory location 3051.
- 14. **HLT** stops executing the program and halts any further execution.