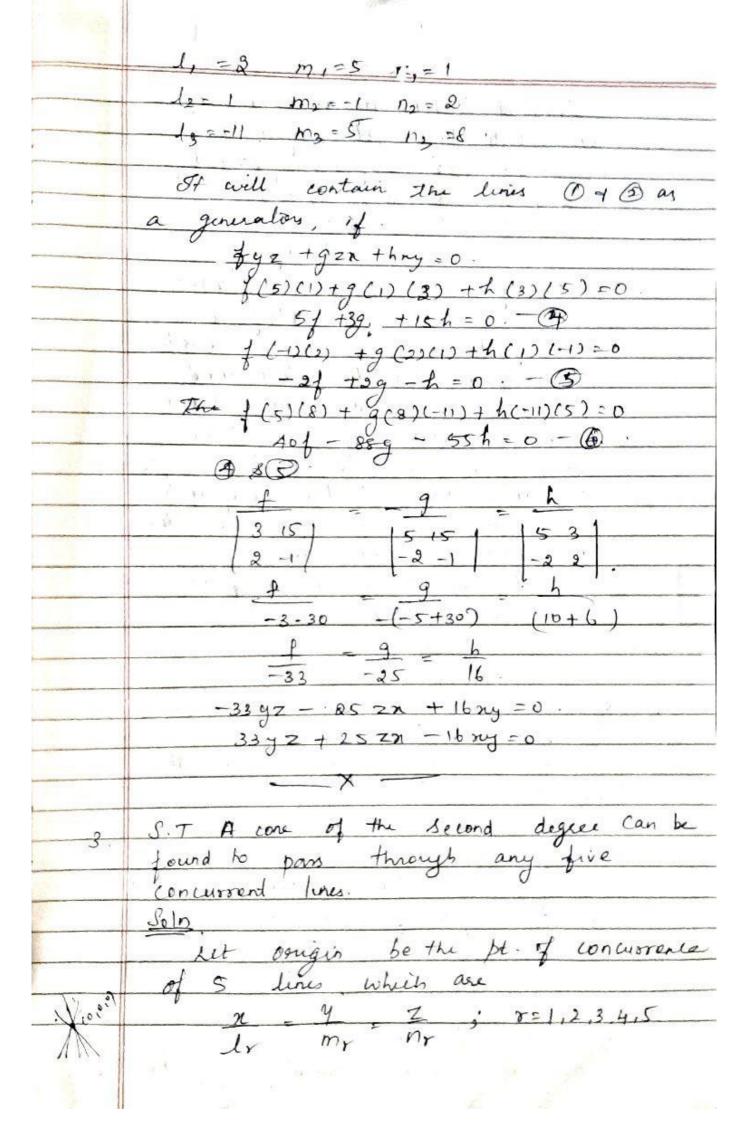
Analytical Geometry 3D

Subject Code: 16SCCMM4

Unit IV

Important Exercise Problems

Prepared by,

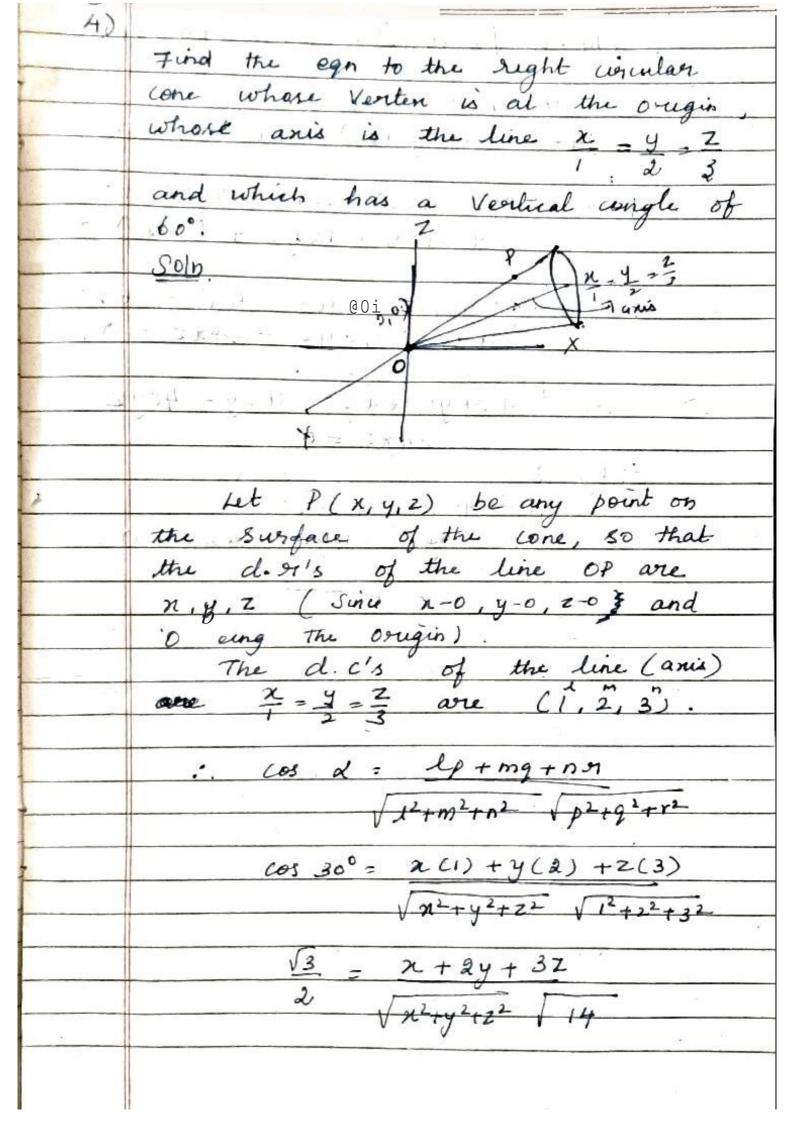

 $Mrs.\ H.\ SABITHA\ BEGUM,\ {\scriptsize \mathsf{M.SC.,B.Ed.,M.Phil.,SET.,}}$

Assistant Professor,

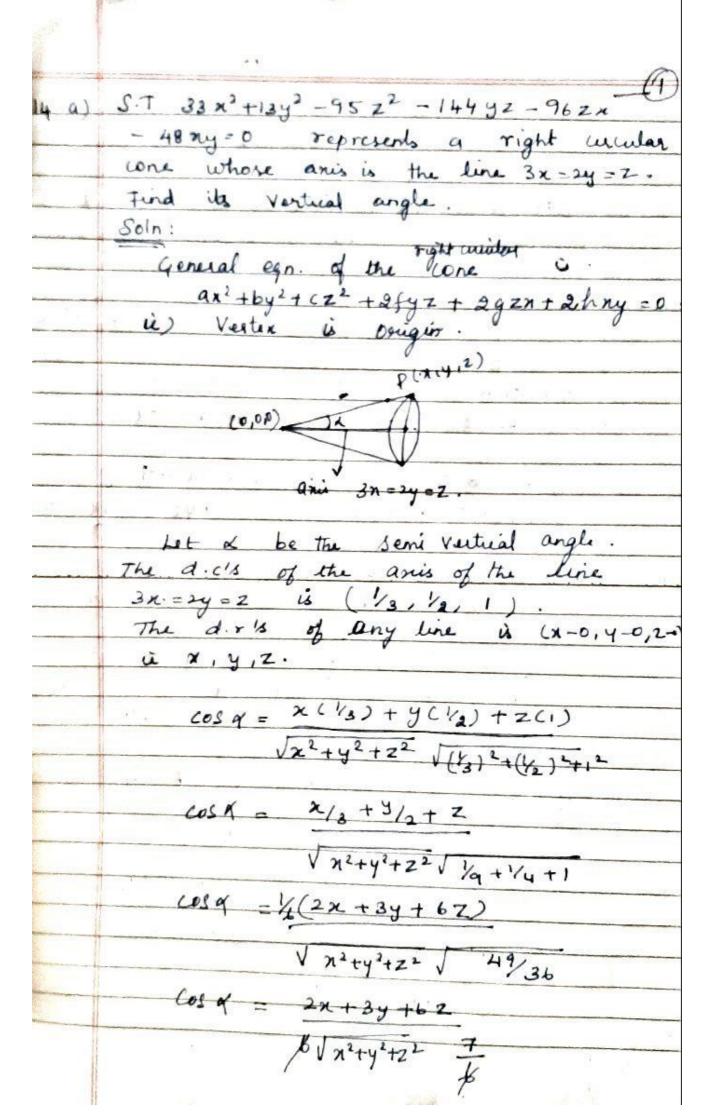
Department of Mathematics,

AIMAN College of Arts and Science for Women,

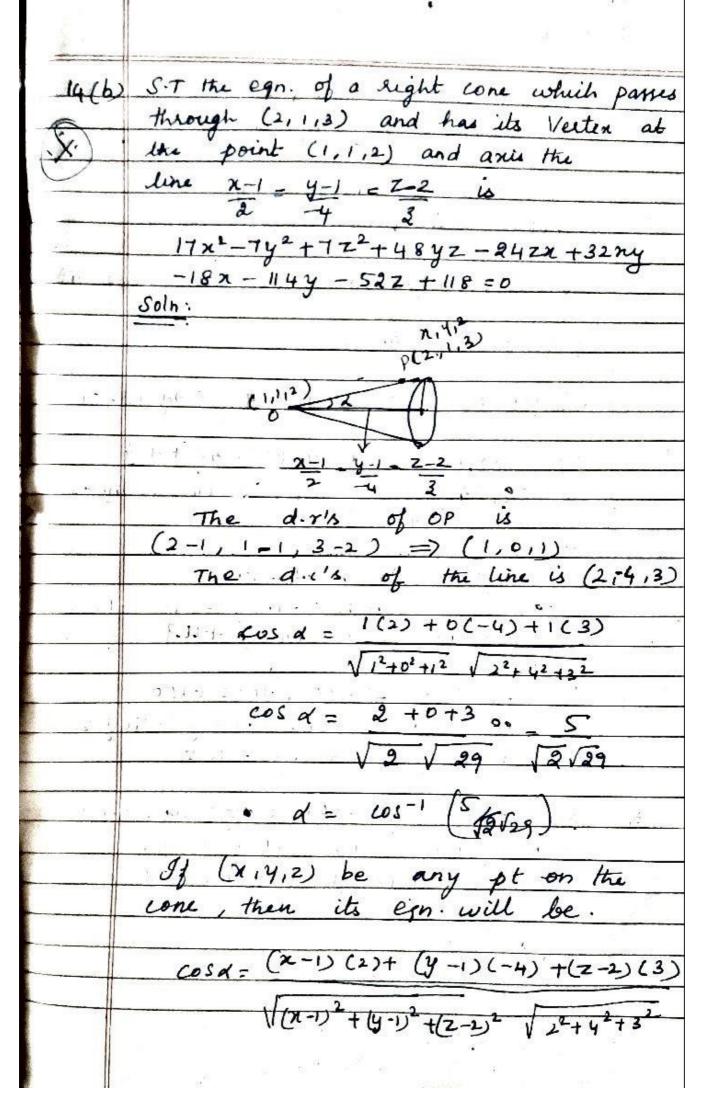
Trichy 21.


General Second degree egn. of the cone with Vertin at origin is

axe+by+cx2+24yz+2gzn+2hny=0. $x^{2} + by^{2} + cz^{2} + 2fyz + 2g$ + 2b ny = 0 $x^{2} + b'y^{2} + c'z^{2} + 2f'yz + 2g'zx$ This contains 5 arbitrary constants as therefore, can be determined by fine independent conditions Since de's of generators Satisfy the egn- of a cone, so any
5 lines charing theo' origin)
are sufficient to determine the
5 arbitrary constants.


i. A cone of second degree can
be found to pass thro's

concurrent lines.


Exceruse - 15 P.T ax2+ by2+ cz2+ 2un+ 2vy + 2wz +d. represents a cone if $\frac{u^2}{a} + \frac{v^2}{b} + \frac{w^2}{c} = d$ Soln. f(x,y,z,t) = an2 +by2+c22+ Quatt2vyt +2wzt + dt2=0 Of =0 for t=1 gives 2 ax + 2 u = 0 09 x = - 4/9 2by + 2v=0 on y=-V/b -Oz = 0 for t=1 gives 2CZ+2w=0 02 Z=- w Ot =0 for t=1 gives un + vy + wezt d =0 Subs D, 3, 3 in 3, no get the required oquation. u (- 4) + v (- 4) + w (- w) $\frac{-u^2}{a} - \frac{v^2}{b} - \frac{w^2}{a} + d = 0$ = $\frac{u^2 + v^2}{a^2} + \frac{w^2}{b^2} = d$

V14. V3 (n2+y2+z2= 2(n+0y+32) 14.3. (n2+y2+z2) = 4 (x +2y +3z)2 -48 n2+ 42y2+ 42z2= 4/2+ 4y2+ 9z2 42x2 + 42xy2 + 4222 - 4x2 - 4y2 - 3 - 48 yz 38x2 +26y2 + ba" - 16xy - 48yz -24x2 = 0- by 2 1922 + 1342+ 3221 S'. 1

	=) 7 cosx = 2x+8y+6z
	$\sqrt{x^2+y^2+z^2}$
	=> 7 cos x \ x2+y2+z2 = 2x+3y+62
	Squaring
45	49 cos2x (n2+y2+22) = (2x+3y+62)
⇒	$49\cos^2 x (2^2 + y^2 + z^2) - 4x^2 - 9y^2 - 36z^2$ $- 12xy - 36yz - 24xz = 0.$
	- 12xy - 36 yz - 24xz = 0.
=>	(49 cos2x-4)x2+(49cos2x-9)y2
	(49 cos2x - 36) z2 -12xy -36yz -24x2 0
	- (3)
	If we multiply by 4, we get
	are equal to 1.
	By comparing x2 or y2 or ze
	term, we will get &.
	4 (49 cost x -4)= 33 .
	=> 186 cos2x - 16 = 33
	=) 186 cos 2x = 33 +16 = 49
	\Rightarrow $\cos x = 49$
	186.
	$\frac{\cos x = \pm 7 - \pm 1}{14}$
	Servi Vertical angle, à = 600.
-	Vertical angle 2x = 120/
	1

$$(0) = 2x - 2x - 2x - 4y + 4 + 2z - 6$$

$$\sqrt{(x-1)^{2} + (y-1)^{2} + (z-2)^{2}} = \sqrt{29}$$

$$5 = 2x - 4y + 3z - 4$$

$$\sqrt{(x-1)^{2} + (y-1)^{2} + (z-2)^{2}} = \sqrt{2} \left(2x - 4y + 3z - 4\right)$$

$$5\sqrt{(x-1)^{2} + (y-1)^{2} + (z-2)^{2}} = \sqrt{2} \left(2x - 4y + 3z - 4\right)$$

$$8quarting on both sides,$$

$$25\frac{1}{2}(x-1)^{2} + (y-1)^{2} + (z-2)^{2} = 2(2x - 4y + 3z - 4)$$

$$25\frac{1}{2}(x-1)^{2} + (y-1)^{2} + (z-2)^{2} = 2(2x - 4y + 3z - 4)$$

$$25\frac{1}{2}(x-1)^{2} + (y-1)^{2} + (z-2)^{2} = 2(2x - 4y + 3z - 4)$$

$$25\frac{1}{2}(x-1)^{2} + (y-1)^{2} + (z-2)^{2} = 2(4)(2x - 4y + 3z - 4)$$

$$25\frac{1}{2}(x-1)^{2} + (y-1)^{2} + (z-2)^{2} + (z-2)$$

 $= 35x^{2} + 85y^{2} + 85z^{2} - 50x - 50y - 100z + 150$ $- 8x^{2} - 32y^{2} - 18z^{2} + 32xy + 48yz$ - 24xz + 32x - 64y + 48z - . -32=0 $= 17x^{2} - 17y^{2} + 7z^{2} - 18x - 114y - 52z$ + 32xy + 48yz - 24xz + 118 = 0