S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Artificial Intelligence
Subject Code: P16CSE2B

Unit V — Short Notes

Note: The following contents of the document are sourced from the reference
mentioned at the end of this document.

Game playing:
There were two reasons that games appeared to be a good domain in which to explore machine intelligence:

¢ They provide a structured task in which it is very easy to measure success or failure.
e They did not obviously require large amounts of knowledge. They were thought to be solvable by
straightforward search from the starting state to a winning position.

The first of these reasons remains valid and accounts for continued interest in the area of game playing by
machine. Unfortunately, the second is not true for any but the simplest garties. For example, consider chess.

¢ The average branching factor is around 35.
¢ In an average game, each player might make 50 moves.
e So in order to examine the complete game tree, we would have to examine 35'® positions.

Thus it is clear that a program that simply does a straightforward search of the game tree will not be able to
select even its first move during the lifetime of its opponent. Some kind of heuristic search procedure is
necessary.

One way of looking at all the search procedures we have discussed is that they are essentially generate-
and-test procedures in which the testing is done after varying amounts of work by the generator. At one
extreme, the generator generates entire proposed solutions, which the tester then evaluates. At the other
extreme, the generator generates individual moves in the search space, each of which is then evaluated by the,
tester and the most promising one is chosen. LLooked at this way, it is clear that to improve the effectiveness of
a search-based problem-solving program two things can be done:

e Improve the generate procedure so that only good moves (or paths) are generated.
e Improve the test procedure so that the best moves (or paths) will be recognized and explored first.

In game-playing programs, it is particularly important that both these things be done. Consider again the
problem of playing chess. On the average, there are about 35 legal moves available at each turn. If we use a
simple legal-move generator, then the test procedure (which probably uses some combination of search and a
heuristic evaluation function) will have to look at each of them. Because the test procedure must look at so
many possibilities, it must be fast. So it probably cannot do a very accurate job. Suppose, on the other hand,
that instead of a legal-move generator, we use a plausible-move generaror in which only some small number
of promising moves are generated. As the number of legal moves available increases, it becomes increasingly
important to apply heuristics to select only those that have some kind of promise. (So, for example, it is
extremely important in programs that play the game of go [Benson ef al.,, 1979].) With a more selective move
generator, the test procedure can afford to spend more time evaluating each of the moves it is given so it can
produce a more reliable result. Thus by incorporating heuristic knowledge into both the generator and the
tester, the performance of the overall system can be improved.

Of course, in game playing, as in other problem domains, search is not the only available technique. In
some games, there are at least some times when more direct techniques are appropriate. For example, in
chess, both openings and endgames are often highly stylized, so they are best played by table lookup into a
database of stored patterns. To play an entire game then, we need to combine search-oriented and nonsearch-
oriented techniques.

The ideal way to use a search procedure to find a solution to a problem is to generate moves through the
problem space until a goal state is reached. In the context of game-playing programs, a goal state is one in
which we win. Unfortunately, for interesting games such as chess, it is not usually possible, even with a good
plausible-move generator, to search until a goal state is found. The depth of the resulting tree (or graph) and
its branching factor are too great. In the amount of time available, it is usually possible to search a tree only ten
or twenty moves (called ply in the game-playing literature) deep. Then, in order to choose the best move, the
resulting board positions must be compared to discover which is most advantageous. This is done using a
static evaluation function, which uses whatever information it has to evaluate individual board positions by
estimating how likely they are to lead eventually to a win. Its function is similar to that of the heuristic
function /4’ In the A* algorithm: in the absence of complete information, choose the most promising position.
Of course, the static evaluation function could simply be applied directly to the positions generated by the
proposed moves. But since it is hard to produce a function like this that is very accurate, it is better to apply it
as many levels down in the game tree as time permits.



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

The minimax search procedure:

The minimax search procedure’is a depth-first, depth-limited search procedure. It was described briefly in
Section 1.3.1. The idea is to start at the current position and use the plausible-move generator to generate the
set of possible successor positions. Now we can apply the static evaluation {unction to those positions and
simply choose the best one. After doing so, we can back that value up to the starting position to represent our
evaluation of it. The starting position is exactly as good for us as the position generated by the best move we
can make next. Here we assume that the static evaluation functicn returns large values to indicate good
situations for us, so our goal is to maximize the value of the static evaluation function of the next board
position.

An example of this operation is shown in Fig. 12.1. It assumes a static
evaluation function that returns values ranging from — 10 to 10, with 10
indicating a win for us, — 10 a win for the opponent, and 0 an even match. Since
our goal is to maximize the value of the heuristic function, we choose to move
to B. Backing B’s value up to A, we can conclude that A’s value is 8, since we
know we can move to a position with a value of 8. (8 (3) (~2)

But since we know that the static evaluation function is not completely ~ Fig. 12.1  One-Ply Search
accurate, we would like to carry the search farther ahead than one ply. This
could be very important, for example, in a chess game in which we are in the
middle of a piece exchange. After our move, the
situation would appear to be very good, but, if we look
one move ahead, we will see that one of our pieces
also gets captured and so the situation is not as
favorable as it seemed. So we would like to look ahead
to see what will happen to each of the new game
positions at-the next move which will be made by the
opponent. Instead of applying the static evaluation
function to each of the positions that we just generated,

: . 9 -8 (© @) -2) —4) (-3)
we apply the plausible-move generator, generating a
set of successor positions for each position. If we Fig.12.2 Two-Ply Search
wanted to stop here, at two-ply lookahead, we could apply the static evaluation function to each of these
positions, as shown in Fig. 12.2.

But now we must take into account that the opponent gets to choose which successor moves to make and
thus which terminal value should be backed up to the next level. Suppose we made move B. Then the opponent
must choose among moves E, F, and G. The opponent’s goal is to minimize the value of the evaluation
function, so he or she can be expected to choose move F. This means that if we make move B, the actual
position in which we will end up one move later is very bad for us. This is true even though a possible
configuration is that represented by node E, which is very good for us. But since at this level we are not the
ones to move, we will not get to choose it. Figure 12.3 shows the result of propagating the new values up the
tree. At the level representing the opponent’s choice, the minimum value was chosen and backed up. At the
level representing our choice, the maximum value was chosen.

Maximizing ply

Minimizing ply

@ (-6) (0 (0) (-2) (-4) (9)
Fig. 12.3 Backing Up the Values of a Two-Ply Search



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Having described informally the operation of the minimax procedure, we now describe it precisely. It is a
straightforward recursive procedure that relies on two auxiliary procedures that are specific to the game being
played:

1. MOVEGEN(Position, Playery—The plausible-move generator, which returns a list of nodes representing
the moves that can be made by Player in Position. We call the two players PLAYER-ONE and PLAYER-
TWO; in a chess program, we might use the names BLLACK and WHITE instead.

2. STATIC(Position, Player)—The static evaluation function, which returns a num ber representing the

goodness of Position from the standpoint of Player.?

As with any recursive program, a critical issue in the design of the MINIMAX procedure is when to stop
the recursion and simply call the static evaluation function. There are a variety of factors that may influence
this decision. They include:

e Has one side won?

¢ How many ply have we already explored?
e How promising is this path?

e How much time is left?

e How stable is the configuration?

For the general MINIMAX procedure discussed here, we appeal to a function, DEEP-ENOUGH, which is
assumed to evaluate all of these factors and to return TRUE if the search should be stopped at the current level
and FALSE otherwise., Our simple implementation of DEEP-ENOUGH will take two parameters, Position
and Depth. It will ignore its Position parameter and simply return TRUE if its Depth parameter exceeds a
constant cutoff value.

One problem that arises in defining MINIMAX as a recursive procedure is that it needs to return not one
but two results:

¢ The backed-up value of the path it chooses.
o The path itself. We return the entire path even though probably only the first element, representing the
best move from the current position, is actually needed.

We assume that MINIMAX returns a structure containing both results and that we have two functions,
VALUE and PATH, that extract the separate components.

Since we define the MINIMAX procedure as a recursive function, we must also specify how it is to be
called initially. It takes three parameters, a board position, the current depth of the search, and the player to
move. So the initial call to compute the best move from the position CURRENT should be

MINIMAX (CURRENT, 0, PLAYER-ONE)
if PLAYER-ONE is to move, or

MINIMAX (CURRENT, 0, PLAYER-TWO)
if PLAYER-TWO is to move.



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Algorithm: MINIMAX(Position, Depth, Player)
1. If DEEP-ENOUGH(Position, Depth), then return the structure

VALUE = STATIC(Position, Player),;
PATH = nil

This indicates that there is no path from this node and that its value is that determined by the static
evaluation function.
2. Otherwise, generate one more ply of the tree by calling the function MOVE-GEN(Position Player) and
setting SUCCESSORS to the list it returns.
3. If SUCCESSORS is empty, then there are no moves to be made, so return the same structure that would
have been retumed if DEEP-ENOUGH had returned true.
4. 1f SUCCESSORS is not empty, then examine each element in turn and keep track of the best one. This
is done as follows.
Initialize BEST-SCORE to the minimum value that STATIC can return. It will be updated to reflect the
hest score that can be achieved by an element of SUCCESSORS.
For each element SUCC of SUCCESSORS, do the following:
(a) Set RESULT-SUCC to
MINIMAX(SUCC, Depth + 1, OPPOSITE(Player))
This recursive call to MINIMAX will actually carry out the exploration of SUCC.
(b) Set NEW-VALUE to - VALUE(RESULT-SUCC). This will cause it to reflect the merits of the
position from the opposite perspective from that of the next lower level.
{¢) If NEW-VALUE > BEST-SCORE, then we have found a successor that is better than any that
have been examined so far. Record this by doing the following:

(i) Set BEST-SCORE to NEW-VALUE.

(ii) The best known path is now from CURRENT to SUCC and then on to the appropriate path
down from SUCC as determined hy the recursive call to MINIMAX, So set BEST-PATH to
the result of attaching SUCC to the front of PATH(RESULT-SUCC).

5. Now that all the successors have been examined, we know the value of Position as well as which path
to take from it. So return the structure
VALUE = BEST-SCORE
PATH = BEST-PATH

When the initial call to MINIMAX returns, the best move from CURRENT is the first element on PATH.
To see how this procedure works, you should trace its execution for the game tree shown in Fig. 12.2.

The MINIMAX procedure just descobed is very simple. But its performance can be improved significantly
with a few refinements. Some of these are described in the next few sections.

Expert System:

Expert systems solve problems that are normally solved by human “experts”. To
solve expert-level problems, expert systems need access to a substantial domain
knowledge base, which must be built as efficiently as possible. They also need
to explore one or more reasoning mechanisms to apply their knowledge to the
problems they are given. Then they need a mechanism for explaining what they
have done to the users who rely on them. One way to look at the expert system
is that they represent applied Al in a very broad sense. Expert systems are
complex Al programs. The most widely used away of representing domain
knowledge in expert systems in as a set of production rules, which are often
coupled with a frame system that defines the objects that occur in the rules.
Expert system shells: Since the expert systems were constructed as a set of
declarative representations (mostly rules) combined with an interpreter for
those representations, it was possible to separate the interpreter from the




S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

domain-specific knowledge and thus to create a system that could be used to
construct new expert systems by adding new knowledge corresponding to the
new problem domain. The result interpreters are called shells.

In order for an expert system to be an effective tool, people must be able to interact with it easily. To facilitate
this interaction, the expert system must have the following two capabilities in addition to the ability to perform
its underlying task:

e Explain its reasoning. In many of the domains in which expert systems operate, people will not accept
results unless they have been convinced of the accuracy of the reasoning process that produced those
results. This is particularly true, for example, in medicine, where a doctor must accept ultimate
responsibility for a diagnosis, even if that diagnosis was arrived at with considerable help from a
program. Thus it is important that the reasoning process used in such programs proceed in understandable
steps and that enough meta-knowledge (knowledge about the reasoning process) be available so the
explanations of those steps can be generated.

¢ Acquire new knowledge and modifications of old knowledge. Since expert systems derive their power
from the richness of the knowledge bases they exploit, it is extremely important that those knowledge
bases be as complete and as accurate as possible. But often there exists no standard codification of that
knowledge; rather it exists only inside the heads of human experts. One way to get this knowledge into
a program is through interaction with the human expert. Another way is to have the program leam
expert behavior from raw data.

Knowledge acquisition:

How are expert systems built? Typically, a knowledge engineer interviews a domain expert to elucidate expert
knowledge, which is then translated into rules. After the initial system is built, it must be iteratively refined
until it approximates expert-level performance. This process is expensive and time-consuming, so it is
worthwhile to look for more autoinatic ways of constructing expert knowledge bases. While no totally automatic
knowledge acquisition systems yet exist, there are many programs that interact with domain experts to extract
expert knowledge efficiently. These programs provide support for the following activities:

* Entering knowledge
¢ Maintaining knowledge base consistency
¢ Ensuring knowledge base completeness

The most useful knowledge acquisition programs are those that are restricted to a particular problem-solving
paradigm, e.g., diagnosis or design. It is important to be able to enumerate the roles that knowledge can play in
the problem-solving process. For example, if the paradigm is diagnosis, then the program can structure its
knowledge base around symptoms, hypotheses, and causes. It can identify symptoms for which the expert has
not yet provided causes. Since one symptom may have multiple causes, the program can ask for knowledge about
how to decide when one hypothesis is better than another. If we move to another type of problem-solving, say
designing artifacts, then these acquisition strategies no longer apply, and we must look for other ways of
profitably interacting with an expert. We now examine two knowledge acquisition systems in detail.



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Perception_and Action:

Perception involves interpreting sights, sounds, smells, and touch. Action includes the ability to navigate
through the world and manipulate objects. In order to build robots that live in the world, we must come to
understand these processes. Figure 21.1 shows a design for a complete autonomous robot. Most of Al is
concerned only with cognition, the idea being that when intelligent programs are developed, we will simply
add sensors and effectors to them. But problems in perception and action are substantial in their own right and
are being tackled by researchers in the field of robotics.

In the past, robotics and Al have been largely independent endeavors, and they have developed different
techniques to solve different problems. We attempt to characterize the field of robotics at the end of this
chapter, but for now, we should note one key difference between
Al programs and robots: While Al programs usually operate in
computer-simulated worlds, robots must operate in the physical The
world. As an example, consider making a move in chess. An Physical
Al program can search millions of nodes in a game tree without World
ever having to sense or touch anything in the real world. A
complete chess-playing robot, on the other hand, must be
capable of grasping pieces, visually interpreting board positions, s
and carrying on a host of other actions. Fig. 21.1 A Design for an Autonomous Robot

The distinction between real and simulated worlds has several implications:

e The input to an Al program is symbolic in form, e.g., an 8-puzzle configuration or a typed English
sentence. The input to a robot is typically an analog signal, such as a two-dimensional video image or
a speech waveform.

e Robots require special hardware for perceiving and affecting the world, while Al programs require
only general-purpose computers.

* Robot sensors are inaccurate, and their effectors are limited in precision. There is always some degree
of uncertainty about exactly where the robot is located, and where objects and obstacles stand in
relation to it. Robot effectors are also limited in precision.

e Many robots must react in real time. A robot fighter plane, for example, cannot afford to search optimally
or to stop monitoring the world during a LISP garbage collection.

® The real world is unpredictable, dynamic, and uncertain. A robot cannot hope to maintain a correct and
complete description of the world. This means that a robot must consider the trade-off between devising
and executing plans. This trade-off has several aspects. For one thing, a robot may not possess enough
information about the world for it to do any useful planning. In that case, it must first engage in
information-gathering activity. Furthermore, once it begins executing a plan, the robot must continually
monitor the results of its actions. If the results are unexpected, then replanning may be necessary. Consider
the problem of traveling across town. We might decide to take a bus, but without a bus schedule, it is
impossible to complete the plan. So we make a plan for acquiring a schedule and execute it in the world.
Now we can plan our route. The bus we want to take may be scheduled to arrive at 5:22 p.m., but the
probability of it coming at exactly 5:22 p.m. is actually very small. We should stick to our plan and wait,
even if the bus is late. After a while, if the bus still has not come, we must make a new plan.

e Because robots must operate in the real world, searching and backtracking can be costly. Consider the
problem of moving furniture into a room. Operating in a simulated world with full information, an Al
program can come up with an optimal plan by best-first search. Preconditions of operators can be
checked quickly, and if an operator fails to apply, another can be tried. Checking preconditions in the
real world, however, can be time-consuming if the robot does not have full information. For example,
one operator may require that an object weigh less than fifty pounds. Navigating to the object and
applying a force to it may take the robot several minutes. At that rate, it is impossible to traverse and
backtrack over a large search space. Worse still, it may be impossible to evaluate a projected arrangement
of furniture without actually moving the pieces first.



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Perception:

We perceive our environment through many channels: sight, sound, touch, smell, taste. Many animals possess
these same perceptual capabilities, and others are able to monitor entirely different channels. Robots, too, can
process visual and auditory information, and they can also be equipped with more exotic sensors, such as
laser rangefinders, speedometers, and radar.

Two extremely important sensory channels for humans are vision and spoken language. It is through these
two faculties that we gather almost all of the knowledge that drives our problem-solving behaviors.

Vision:

A video camera provides a computer with an image represented as a two-dimensional grid of intensity
levels. Each grid element, or pixel, may store a single bit of information (that is, black/white) or many bits
{perhaps a real-valued intensity measure and color information). A visual image is composed of thousands of
pixels. What kinds of things might we want to do with such an image? Here are four operations, in order of

increasing complexity:

1. Signal Processing—Enhancing the image, either for human consumption or as input to another program.
2. Measurement Analysis—For images containing a single object, determining the two-dimensional extent

of the object depicted.

3. Pattern Recognition—For single-object images, classifying the object into a category drawn from a

finite set of possibilities.

4. Image Understanding—For images containing many objects, locating the objects in the image, classifying
them, and building a three-dimensional model of the scene.

As a result, 2-D images are highly ambiguous. Given a
single image, we could construct any number of 3-D worlds
that would give rise to the image. For example, consider the
ambiguous image of Fig. 21.2. It is impossible to decide
what 3-D solid it portrays. In order to determine the most
likely interpretation of a scene, we have to apply several
types of knowledge.

For example, we may invoke knowledge about low-level
image features, such as shadows and textures. Figure 21.3
shows how such knowledge can help to disambiguate the
image. Having multiple images of the same object can also
be useful for recovering 3-D structure. The use of two or
more cameras to acquire multiple simultaneous views of an
object is called stereo vision. Moving objects (or moving
cameras) also supply multiple views. Of course, we must
also possess knowledge about how motion affects images
that get produced. Still more information can be gathered
with a laser rangefinder, a device that returns an array of
distance measures much like sonar does. While rangefinders
are still somewhat expensive, integration of visual and range
data will soon become commonplace. Integrating different
sense modalities is called sensor fusion. Other image factors
we might want to consider include shading, color, and
reflectance.

High-level knowledge is also important for interpreting
visual data. For example, consider the ambiguous object at
the center of Fig. 21.4(a). While no low-level image features
can tell us what the object is, the object’s surroundings
provide us with top-down expectations. Expectations are
critical for interpreting visual scenes, but resolving
expectations can be tricky. Consider the scene shown in
Fig. 21.4(b). All objects in this scene are ambiguous; the
same shapes might be interpreted elsewhere as an amoeba,
logs in a fireplace, and a basketball. As a result, there are no
clear-cut top-down expectations. But the preferred
interpretations of egg, bacon, and plate reinforce each other
mutually, providing the necessary expectations.

? disk

g

e
@ ? dome

Fig. 21.2 An Ambiguous Image

Shadow g - 0

— 0@/

Texture
Stereo O _— Q
07
Motion ,,%" E—— 0
=
65 65 65
65 60
Range data  65(60 50 60 65 —_—
65 60 65 @
65 65 65

Fig. 21.3 Using Low-Level Knowledge to Interpret

7z

2
N
(b)

Fig. 21.4 Using High-Level Knowledge ta

L
|4
(a)



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Speech Recognition:
Design issues also provide dimensions along which systems can be compared

with one another:

* Speaker Dependence versus Speaker Independence—A speaker-independent system can listen to any
speaker and translate the sounds into written text. Speaker independence is hard to achieve because of
the wide variations in pitch and accent. It is easier to build a speaker-dependent system, which can be
trained on the voice patterns of a single speaker. The system will only work for that one speaker. It can
be retrained on another voice, but then it will no longer work for the original speaker.

e Continuous versus [solated-Word Speech—Interpreting isolated-word speech, in which the speaker
pauses between each word, is easier than interpreting continuous speech. This is because boundary
effects cause words to be pronounced differently in different contexts. For example, the spoken phrase
*“could you” contains a j sound, and despite the fact it contains two words, there is no empty space
between them in the speech wave. The ability to recognize continuous speech is very important, however,
since humans have difficulty speaking in isolated words.

¢ Real Time versus Offline Processing—Highly interactive applications require that a sentence be
translated into text as it is being spoken, while in other situations, it is permissihle to spend minutes in
computation. Real-time speeds are hard to achieve, especially when higher-level knowledge is involved.

e Large versus Small Vocabulary—Recognizing utterances that are confined to small vocabularies (e.g.,
20 words) is easier than working with large vocabularies (e.g., 20,000 words).A small vocabulary
helps to limit the number of word candidates for a given speech segment.

e Broad versus Narrow Grammar—An example of a narrow grammar is the one for phone numbers:

S - XXX-XXXX, where X is any number between zero and nine: Syntactic and semantic constraints
for unrestricted English are much harder to represent, as we saw in Chapter 15. The narrower the
grammar is, the smaller the search space for recognition will be.

Action:

Mobility and intelligence seem to have evolved together. Inmobile creatures have little use for intelligence,
while it is intelligence that puts mobility to effective use. In this section, we investigate the nature of mobility
in terms of how robots navigate through the world and manipulate objects.

Navigation:
Navigation means moving around the world: planning routes, reaching desired desti-nations without bumping
into things, and so forth. Like vision and speech recognition, this is something humans do fairly easily.

Navigational problems are surprisingly complex. For example,
suppose that there are obstacles in the robot’s path, as in

Fig. 21.6. The problem of path planning is to plot a continuous .
set of points connecting the initial position of the robot to its start obstacle

- ape Ld
desired position. goal

If the robot is so small as to be considered a point, the problem
can be solved straightforwardly by constructing a visibility graph.

Let S be the set consisting of the initial and final positions as >
well as the vertices of all obstacles. To form the visibility graph, / \

we connect every pair of points in S that are visible from one t \

Fig. 21.6 A Path planning problem

obstacle goal

another, as shown in Fig. 21.7. We can then search the graph
(perhaps using the A* algorithm) to find an optimal path for the
robot. Fig. 21.7 Constructing a Visibility Graph
Most robots have bulky extent, however, and we must take
this into account when we plan paths. Consider the problem S
shown in Fig. 21.8, where the robot has a pentagonal shape, Egoal::
Fortunately, we can reduce this problem to the previous path- =
planning problem. The algorithm is as follows: First choose a Fig. 21.8  Another Path Planning Problem:
point P on the surface of the robot, then increase the size of the
obstacles so that they cover all points that P cannot enter, because
of the physical size and shape of the robot. Now, simply construct
and search a visibility graph based on P and the vertices of the
new obstacles, as in Fig. 21.9. The basic idea is to reduce the
robot to a point P and do path planning in an artificially
constructed space, known as configuration space, or ¢-space
[Lozano-Perez et al., 1984]. :

Fig. 21.9 Constructing Configuration
Space Obstacles



S. Nafeesa Begam, Asst. Prof, Dept. of CS, AIMAN College of Arts & Science for Women, Trichy.

Manipulation:
Robots have found numerous applications in industrial settings. Robot manipulators are able to perform simple

repetitive tasks, such as bolting and fitting automobile parts, but these robots are highly task-specific. It is a long-
standing goal in robotics to build robots that can be programmed to carry out a wide variety of tasks.

Reference:

1. Rich, E. Kevin Knight. Shivashankar B Nair, 2009. Artificial Intelligence Third Edition,
McGraw-Hill Publishing Company Limited, New Delhi.

===End of Unit V===



