

“Real Programmers, do not comment their code.

If it was hard to write, it should be

Hard to understand.”

-Anan

“Life is a difficult game. You can win it only by retaining

your birthright to be a person”.

 -Dr.A.P.J

[CORE COURSE II PROGRAMMING IN C++]
 To impart basic knowledge of Programming Skills in C++ language.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 2

CORE COURSE II

PROGRAMMING IN C++

Objective: To impart basic knowledge of Programming Skills in C++ language.

 Unit I :

Principles of Object- Oriented Programming – Beginning with C++ - Tokens, Expressions

and Control Structures – Functions in C++

Unit II :

Classes and Objects – Constructors and Destructors –Operator Overloading and Type

Conversions

Unit III:

 Inheritance : Extending Classes – Pointers - Virtual Functions and Polymorphism

Unit IV:

 Managing Console I/O Operations – Working with Files – Templates – Exception Handling

Unit V :

Standard Template Library – Manipulating Strings – Object Oriented Systems Development

Text Book

1. Balagursamy E, Object Oriented Programming with C++, Tata McGraw Hill

Publications, Sixth Edition, 2013

Reference Books

1. Ashok Kamthane, Programming in C++, Pearson Education,2013. *****

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 3

Basic Regards Programming:

 The process of preparing and feeding the instruction into the computer for execution

is referred to as programming.

 The following are the steps adopted to develop a program in any programming

language.

i. Problem definition

ii. Collection of information

iii. Selection of solution

iv. Development of algorithm

v. Writing program code

vi. Debugging & testing

vii. Documentation

viii. Program Maintenance

 Software design is a creative procedure, hence they have various design procedures.

Two design approaches to solve any problems are

i. Top-Down design approach

ii. Bottom-Up Design approach

 Programming methodologies is a complex filed with many methodologies, names,

many goals & means to reach them. Some of the important programming

methodologies are as follows:

i. Step Wise Refinement

ii. Modularity

iii. Structured Programming.

 Three design tools emerged from structured programming, they are as follows

i. Flow chart

ii. Nassi-Shneiderman (NS) Diagrams

iii. Pseuducode.

 A flowchart is s pictorial presentation of the flow of data decrying a process/

programs/ project being studied.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 4

 Pseudo code is neither a programming language nor a

natural language, but an informal language written in English,

particularly used for developing algorithms.

 An algorithm is step by step recipe for solving an instance of a problem.

Fig1.1 Sample Flowchart

Nassi-Shneiderman(NS) diagrams are similar to flowcharts, is a pictorial

representation of flow of logic with in a program.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 5

WHAT IS C++:

 C++ is a general purpose, case-sensitive, free-form programming language that

supports object-oriented, procedural and generic programming.

 C++ is a middle-level language, as it encapsulates both high and low level language

features.

HISTORY FOR C++:

 C is a general purpose structured programming language developed at AT & T bell

Laboratories in 1972 by Dennis Ritche.

 In 1979, Bharene Stroustrup at AT & T bell Laboratories developed another High

Level Programming language called c++ as the name imples c++ is an

enchancement of C .

 Stroustrup initially called the language “C with Classes” however in 1983 it was

renamed as c++.

 C++ is not merely and extension of c , rather it incorporates sever all new

fundamental concepts that form a basis for Object – oriented Programming.

APPLICATIONS OF C++:

 C++ allows us to create hierarchy- related objects, where we can build special object

oriented libraries which can be used later by many programmers.

 C++ programs are easily maintainable and expandable. When a new feature needs to

be implemented, it is very easy to add to the existing structure of an object.

 C++ is able to map the real-world problem properly, the part of c++ gives the

language the ability to get close to the machine – level details.

USAGE OF C++

 By the help of C++ programming language, we can develop different types of secured

and robust applications:

o Window application

o Client-Server application

o Device drivers

o Embedded firmware etc

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 6

C vs C++
 No. C C++

1) C follows the procedural style

programming.

C++ is multi-paradigm. It supports both

procedural and object oriented.

2) Data is less secured in C. In C++, you can use modifiers for class

members to make it inaccessible for outside

users.

3) C follows the top-down approach. C++ follows the bottom-up approach.

4) C does not support function

overloading.

C++ supports function overloading.

5) In C, you can't use functions in

structure.

In C++, you can use functions in structure.

6) C does not support reference

variables.

C++ supports reference variables.

7) In C, scanf() and printf() are mainly

used for input/output.

C++ mainly uses stream cin and cout to

perform input and output operations.

8) Operator overloading is not possible in

C.

Operator overloading is possible in C++.

9) C programs are divided into

procedures and modules

C++ programs are divided into functions

and classes.

10) C does not provide the feature of

namespace.

C++ supports the feature of namespace.

11) Exception handling is not easy in C. It

has to perform using other functions.

C++ provides exception handling using Try

and Catch block.

INTRODUCTION TO C++:

Basics of OOP:

 Object – oriented programming (OOP) is the most dramatic innovation in software

development in the last decade.

 OOP offers a new and powerful way to cope with the complexity in programs of

procedural languages.

 OOP treats data as a critical element in the program development and does not allow

it flow freely around the system. It ties data more closely to the function that operate

on it and protects it from accidental modifications from outside functions.

 C++ is a superset of C. To support the principles of Object- Oriented Programming

have the most important features that add on to C, They are as follows:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 7

BENEFITS OF OBJECT – ORIENTED PROGRAMMING:

i. Data Security is enforced

ii. Inheritance save time

iii. User – Defined data types can be easily constructed

iv. Inheritance emphasizes inventions of new data types.

v. Large complexity in software development can be easily managed.

vi. It is possible to have multiple instances of an object to co-exist without any

interference.

vii. It is possible to map objects in the problem domain to those in the program

viii. It is easy to partition the work in a project based on objects.

ix. Through inheritance we can eliminate redundant code and extend the use of

existing classes.

x. Object oriented systems can be easily upgraded from small to large system.

OBJECT ORIENTED LANGUAGES:

 the languages should support several of the OOP concepts to claim that they are

object-oriented. Depending upon the features they support, they can be classified

into following two categories:

 Object- Based programming Languages.

 Object- oriented programming Languages.

OBJECT- BASED PROGRAMMING LANGUAGES:

 Is the style of programming that primarily supports encapsulation and object

identity. Major features that are required for object-based programming are:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 8

I. Data encapsulation

II. Data hiding and access mechanisms

III. Automatic initialization and clear – up of

objects

IV. Operator Overloading

OBJECT- ORIENTED PROGRAMMING LANGUAGES:

 Incorporates all of object – based programming features along with two

additional features, namely

I. Inheritance

II. Dynamic binding

Object- based features + inheritance + dynamic binding.

APPLICATIONS OF OOP:

 OOP has become one of the programming buzzwords today. There appears to be a

great deal of excitement and interest among software engineers in using OOP.

Hundreds of Windowing systems have been developed, using the OOP

Techniques. The promising areas for applications of OOP Include:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 9

PRINCIPLES OF OBJECT:

OBJECTS:

 Objects are the basic run time entities in object -oriented system.

 The fundamental concept behind the object -oriented languages is to combine both

data and functions together such a unit is called as an objects.

 They may represent user defined data such as vectors, time and lists.

 Memory is allocated to objects and not for classes.

 When a program is executed, the objects interact by sending an message to another

one.

 For eg: if “customer” and “account” are two objects in a program, then the

customer object may send a message to the account object requesting for the bank

balance.

CLASSES:

 Classes are the fundamental unit of object -oriented programming.

 A class is thus a collection of objects of similar type.

 The entire set of data and code of an data and code of an object can be made a user

defined data type with the help of classes.

 The c++ class mechanism is a new way of creating and implementing a user defined

data type according to the needs of the problem to be solved.

 Once a class has been defined, we can create a many number of objects belonging to

that class.

 FOR EG: fruit mango;

Will create an object Mango belonging to the class fruit.

DATA ABSTRACTION :

 Abstraction refers to the act of representing essential features without including the

background details (or) explanations.

 Classes use the concept of abstraction and are defined as a list of abstract attributes

such as size, weight and cost and functions to operate on these attributes.

 These attributes are sometimes called as data members because they hold

information. The functions that operate on these data are called as methods or

member functions.

 Abstraction is the ability to create and define user defined data types using built-in

data types.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 10

DATA ENCAPSULATION:

 The wrapping up of data and functions into a single unit (called class) is known as

encapsulation.

 It is the process of combining member functions and the data it manipulates by

logically binding the data keeping them safe from outside interference.

 The insulation of data from direct access by the program is called as Data Hiding

or information hiding.

INHERITANCE:

 It is the process by which one objects of one class acquire the properties of objects of

another class.

 Inheritance involves the creation of new type from existing type in some hierarchical

fashion. it supports the concepts of hierarchical classification.

 The existing class is called as the Base class and the new class is called as derived

class

 Inheritance is used to reduce the source code of an OOP

Fig shows property of inheritance

POLYMORPHISM:

 Polymorphism is an Greek term means the ability to take more than one form.

 An operation may exhibit different behaviors in different instances. The behavior

depends upon the types of data used in operations.

 For eg: consider the operation of addition of two numbers, the operation will

generate a sum. If the operands are strings, then the operation would produce a third

string by concatenation.

bird

flying bird

robin

swallow

non flying bird

penguin

kiwi

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 11

 The process of making an operator to exhibit different behaviors in different

instances are called as operator overloading

 The correct functions to be invoked is determined by the number , type and sequence

of arguments in function is refereed to as function overloading or function

polymorphism.

shape

Draw()

DYNAMIC BINDING:

 Binding refers to the linking of procedure call to the code to be executes in response

to the call.

 Dynamic binding means that the code associated with a given procedure call is not

known until the time if the call at run time.

 It is associated with polymorphism and inheritance

MESSAGE PASSING:

 An OOP consists of a set of objects that communicate with each other. The following

basic steps includes for communication

1) Creating classes that define objects and their behavior

2) Creating objects from class definitions

3) Establishing communication among the objects.

 The concept of message passing makes it easier to talk about building systems that

directly model or simulate their real world counterparts.

 Objects have a life cycle. They can be created and destroyed. Communication with an

object is feasible as long as it is alive.

Employee Salary Name

object Message information

Circle object

Draw(circle)

Box object

Draw(box)

Triangle

Draw(triangle)

Fig shows polymorphism

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 12

STRUCTURE OF C++ PROGRAM:

 Every c++ program contains a number of building blocks. These building blocks

should be written in a correct order and procedure.

#include<iostream.h> Include files / preprocessor directives

void main() class declartion / function name

{

int x,y,sum member function definitons / variable declartion

cout<<” enter the values of x and y :” // output statement

cin>>x>>y; // input statement main function program

Sum=x+y;

Cout<<”the sum of x and y=”<<sum; // output statement

} end of the main / end of the program

Output:

Enter the values of x and y : 25 30

The sum of x and y = 35

Include files

Class Declaration

Member functions definitions

Main function program

 Structure of C++ Program

Sample example Addition program using 2 variables

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 13

i) Include file

 In C++ number of functions, classes and variables are defined and stored in a

special file called header file.

 There are so many header files available.

 Each header file has related functions, classes and data.

 If we want to use the predefined functions, classes and variables and data the

appropriate header file should be included at the beginning of the program.

E.g.: iostream.h, string.h, conio.h

ii) Class Definition

 It is a user defined data type having defined functions and data.

 Class test

 {

}

iii) Member function definition

 Member function can be defined inside or outside the class.

 Void add()

 (

 }

iv) Main function

 The execution of the program begins from void main() function.

 The parentheses following the word main are the distinguishing feature of the

function, without the parentheses the compiler would think that main referred

to a variable (or) some other program element.

 Where void proceeding the function main () indicates that this particular

function does not have a return value.

. void main()

 {

 }

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 14

TOKENS:

 Tokens are the smallest individual unit in a program. C++ has the following tokens

1) Keywords

2) Identifiers

3) Constants

4) Data types

5) Operators

KEYWORDS:

 Keywords also referred to as reserved words are words whose meaning has been

already defined in the c++ compiler.

 All keywords have fixed meaning and their meanings cannot be changed.

 All keywords must be compulsorily written in lowercase.

 Eg’s of keywords are as follows:

auto double int struct break else long switch bool catch

delete dynamic_cast virtual what_t public false new export if goto

IDENTIFIERS:

 It refers to the name of variables, functions, array, classes .etc., created by the

programmer.

RULERS FOR CONSTRUCTING IDENTIFIERS:

i. Only alphabetic characters, digits and underscores are permitted.

ii. The name cannot start with a digit.

iii. Upper and lowercases letters are distinct.

iv. A declared keyword can’t be used as a variable name.

CONSTANTS :

 It refer to fixed values that do not change during the execution of a program.

 They include integers, characters, floating point numbers and strings.

Examples are as follows:

123 //decimal integer constant

12.34 // floating point integer constant

037 //octal integer constant

0X2 //hexa decimal integer constant

“C++” //string constant

‘a’ //character constant

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 15

DATA TYPES:

 C++ language is rich in its data type. It supports a wide variety of data types each of

which may be represented differently within the computer’s memory, which allows

the programmer to select the appropriate type to the needs of the applications.

Integral Type

1. int

2. char

Void

1.empty

Floating type

1.float

2.double

Hierarchy of c++ data types

USER DEFINED DATA TYPES:

STRUCTURE:

 It is often required to group logically related data items together.

 While array are used to group together similar type data elements, where structures

are used for grouping together elements of dissimilar types.

The general form of a structure definition is as follows:

C++ Data Types

Built – in Type User – Defined Type

1. Structure

2. Union

3. Class

4. enumeration

Derived Type

1.Array

2.Function

3.Pointer

4.reference

struct name

{

 data_type member1;

 data_type member2;

 ………………………

 …………………………

};

struct book

{

 Charttitle[25];

 Charauthor[25];

 int pages;

 float price;

};

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 16

UNIONS:

 These are conceptually similar to structures as they allows us to group together

dissimilar type elements inside a single unit.

 The size of the union is equal to the size of the its largest member element.

Union reslut

{

 Int marks;

 Char grade;

 float percentage;

};

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 17

CLASSES:

 The class variables are known as objects, which area the central focus of OOP.

ENUMERATED DATA TYPES:

 Is an another user – defined data types which provides a way for attaching names to

the numbers, thereby increasing comprehensibility of the code.

 The enum Keyword automatically enumerates a list of words by assigning the values

0,1,2, and so…on.

 This is an alternative way for symbolic constant.

 The Syntax of enum statement is similar to that of struct statement.

EG:

DERIVED DATA TYPES:

ARRAY:

 Array are defined as a group of data items that share a common name with the same

data type.

 Individual data elements are called as Elements.

 Similar to the others array should be declared before all executable statements, for

example

 int a[10];

 char ab[10] [10];

 floar abc[10] [10] [10];

Explanation:

 The 1
st
 declaration declares a single dimensional integer array “a” that can store

10 integers (i.e.,0-9) in consecutive memory locations.2
nd

 Declaration shows a

2D character array “ab” that can store 10 string constant in consecutive

memory.3
rd

 declaration shows 3D point array “abc” that can store 1000

elements(10*10*10

1.Array

2.Function

3.Pointer

4.reference

enum shape {circle,square,trianagle};

enum colour {red,blue,green};

enum position {off,on };

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 18

INITIALIZATION OF ARRAYS:

 Array can be initialized when they are declared.

 This is done by adding an equal sign followed by the required values to be

initializes after the declaration between braces separated with commas

for eg

FUNCTIONS:

 A functions is a self-contained program segment (block of segments) that performs

some specific well- defined task when called.

 C++ allows programmers to define their own functions for carrying out various

individual tasks.

Function declaration :

 A function has to be declared before using it, in a manner similar to variables and

constants.

 A function declaration tells the compiler about a function's name, return type, and

parameters and how to call the function.

The general form :

Function Definition:

 The function definition is the actual body of the function.

 The function definition consists of two parts namely,

1. function header

2. function body.

The general form of a C++ function definition is as follows:

int a[5]={1,2,3,4,5};

char name [8]={‘h’,’i’};

char name[8]={“bharath”};

char names [3] [10] ={ (“BCA”} , {“CS”} , {“IT”};

return_type function_name(parameter list);

return_type function_name(parameter list)

{

body of the function

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 19

Where

 A return type function may return a value. The return_type is the data type of the value

the function returns. Some functions perform the desired operations without returning a

value. In this case, the return_type is the keyword void.

 Function Name: This is the actual name of the function.

 Parameters: A parameter is like a placeholder. When a function is invoked, you pass a

value to the parameter. This value is referred to as actual parameter or argument. The

parameter list refers to the type, order, and number of the parameters of a function.

Parameters are optional; that is, a function may contain no parameters.

 Function Body: The function body contains a collection of statements that define what

the function does.

Actual Parameters/ arguments:

 The Parameters in the invocation are called the actual parameters / arguments.

Formal Parameters / arguments:

 The actual parameters are represented in the invoked function by its are called as

formal parameters / arguments.

 Arguments can be passed to functions in one of two ways: using

1. call-by-value

2. call-by-reference.

 CALL BY REFERENCE

 When using call-by-value, a copy of the argument is passed to the function. Call-by-

reference passes the address of the argument to the function. By default, C++ uses

call-by-value.

 Provision of the reference variables in c++ permits us to pass parameter to the

functions by reference.

 When we pass arguments by reference, the formal arguments in the called function

become aliases to the actual arguments in the calling function. This means that

when the function is working with its own arguments, it is actually working on the

original data.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 20

Example :

#include <iostream.h>

#include<conio.h>

void swap(int &x, int &y); // function declaration

int main (){

int a = 10, b=20;

cout << "Before swapping”<<endl;

cout<< “value of a :" << a <<” value of b :" << b << endl;

swap(a, b); //calling a function to swap the values.

cout << "After swapping”<<endl;

cout<<” value of a :" << a<< “value of b :" << b << endl;

return 0;

}

void swap(int &x, int &y) { //function definition to swap the values.

int temp;

temp = x;

x = y;

y = temp;

}

Output:

Before swapping value of a:10 value of b:20

After swapping value of a:20 value of b:10

CALL BY VALUE

 The call by value method of passing arguments to a function copies the actual value

of an argument into the formal parameter of the function.

 In this case, changes made to the parameter inside the function have no effect on the

argument.

 By default, C++ uses call by value to pass arguments.

 In general, this means that code within a function cannot alter the arguments used to

call the function.

Consider the function swap() definition as follows.
void swap(int x, int y)
{
int temp;
temp = x; /* save the value of x */
x = y; /* put y into x */
y = temp; /* put x into y */
return;
}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 21

No. Call by value Call by reference

1 A copy of value is passed to the

function

An address of value is passed to the function

2 Changes made inside the function is

not reflected on other functions

Changes made inside the function is reflected

outside the function also

3 Actual and formal arguments will be

created in different memory location

Actual and formal arguments will be created in

same memory location

Listed below are the special types of member functions that can be used within the class.

 Simple member function

 Static Member function

 Const function

 Inline function

 Friend function

SIMPLE MEMBER FUNCTIONS

 These are simple functions of C++ with or without return type and with or

without parameters. The basic structure of a simple member function is:

Syntax:

return_type functionName(parameter_list)

{

 // function body;

}

STATIC MEMBER FUNCTIONS

 The keyword ‘static‘ is used with such member functions. Static is mainly

used to hold its positions. These functions work for the whole class rather than

for a particular object of the class.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 22

Example:

class X {

public:

 static void k(){};

};

int main()

{

 G::k(); // calling member function directly with class name

}

 The static member functions cannot access ordinary data members and

member functions, but can only access the static data members and static

member functions of a class.

CONST MEMBER FUNCTION

 Const keyword makes variable constant, which means once defined, their

value cannot be changed. The basic syntax of const member function is:

Example:

void fun() const{}

INLINE FUNCTIONS:

 It is an function that us expanded in line when it is invoked. Hence inline functions

are recommended only for functions having few statements.

 The general form of inline function is as follows :

inline<function_header>

{

………. Body of the functions

…….

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 23

FRIEND FUNCTION

 In C++ a function or an entire class may be declared to be a friend of another class

or function. A friend function can also be used for function overloading.

 Friend function declaration can appear anywhere in the class. But a good practice

would be where the class ends.

 An ordinary function that is not the member function of a class has no privilege to

access the private data members, but the friend function does have the capability to

access any private data members.

VIRTUAL FUNCTION

 A virtual function is a special form of member function that is declared within a base

class and redefined by a derived class.

 The keyword virtual is used to create a virtual function, precede the function’s

declaration in the base class.

 If a class includes a virtual function and if it gets inherited, the virtual class redefines

a virtual function to go with its own need.

 In other words, a virtual function is a function which gets override in the derived class

and instructs the C++ compiler for executing late binding on that function.

 A function call is resolved at runtime in late binding and so compiler determines the

type of object at runtime.

RECURSION :

 When function is called within the same function, it is known as recursion in C++.

The function which calls the same function, is known as recursive function.

 A function that calls itself, and doesn't perform any task after function call, is

known as tail recursion. In tail recursion, we generally call the same function with

return statement.

Let's see a simple example of recursion.

 recursionfunction(){

 recursionfunction(); //calling self function

 }

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 24

POINTER

 A pointer is a programming language object, whose value refers to (or "points to")

another value stored elsewhere in the computer memory using its memory address.

OPERATORS:

 An operator is a symbol that tells the compiler to perform specific mathematical or

logical manipulations.

 C++ is rich in built-in operators. Generally, there are six type of operators:

a. Arithmetic operator

b. Relation operator

c. logical operator

d. Assignment operator

e. Conditional operator

f. Increment and Decrement Operators

a) Arithmetical operators

Arithmetical operators +, -, *, /, and % are used to performs an arithmetic (numeric)

operation.

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Memory_address

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 25

You can use the operators +, -, *, and / with both integral and floating-point data types.

Modulus or remainder % operator is used only with the integral data type.

b) Relational operators

The relational operators are used to test the relation between two values. All relational

operators are binary operators and therefore require two operands. A relational expression

returns zero when the relation is false and a non-zero when it is true. The following table

shows the relational operators.

Relational Operators

< Less than

<= Less than or equal to

== Equal to

> Greater than

>= Greater than or equal to

! = Not equal to

c) Logical operators

The logical operators are used to combine one or more relational expression. The logical

operators are

Operators Meaning

|| OR

&& AND

! NOT

d)Assignment operator

 The assignment operator '=' is used for assigning a variable to a value. This

operator takes the expression on its right-hand-side and places it into the variable

on its left-hand-side.

For example:m = 5;

 The operator takes the expression on the right, 5, and stores it in the variable on

the left, m.

x = y = z = 32;

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 26

This code stores the value 32 in each of the three variables x, y, and z. In addition to

standard

assignment operator shown above, C++ also support compound assignment operators.

Compound Assignment Operators

Operator Example Equivalent to

+ = A + = 2 A = A + 2

- = A - = 2 A = A – 2

% = A % = 2 A = A % 2

/= A/ = 2 A = A / 2

*= A * = 2 A = A * 2

e) Increment and Decrement Operators

 C++ provides two special operators viz '++' and '--' for incrementing and

decrementing the value of a variable by 1. The increment/decrement operator can

be used with any type of variable but it cannot be used with any constant.

Increment and decrement operators each have two forms, pre and post.

f) Conditional operator

 The conditional operator ?: is called ternary operator as it requires three operands.

The format of the conditional operator is :

Conditional_ expression ? expression1 : expression2;

If the value of conditional expression is true then the expression1 is evaluated, otherwise

expression2

is evaluated.

int a = 5, b = 6;

big = (a > b) ? a : b;

The condition evaluates to false, therefore big gets the value from b and it becomes 6.

The comma operator

 The comma operator gives left to right evaluation of expressions. When the set of

expressions has to be evaluated for a value, only the rightmost expression is

considered.

int a = 1, b = 2, c = 3, i; // comma acts as separator, not as an operator

i = (a, b); // stores b into i would first assign the value of a to i, and then assign value of b

to variable i.So, at the end, variable i would contain the value 2.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 27

Explicit type casting operator

 Type casting operators allow to convert a value of a given type to another type. There

are several ways to do this in C++.

 The simplest one, which has been inherited from the C language, is to precede the

expression to be converted by the new type enclosed between parentheses (()):

1

2

3

int i;

float f = 3.14;

i = (int) f;

The previous code converts the floating-point number 3.14 to an integer value (3); the remainder is

lost. Here, the typecasting operator was (int). Another way to do the same thing in C++ is to use the

functional notation preceding the expression to be converted by the type and enclosing the expression

betweenparentheses:

 i = int (f);

Both ways of casting types are valid in C++.

Precedence of operators

 A single expression may have multiple operators. For example:

 x = 5 + 7 % 2;



In C++, the above expression always assigns 6 to variable x, because the % operator

has a higher precedence than the + operator, and is always evaluated before.

 Parts of the expressions can be enclosed in parenthesis to override this precedence

order, or to make explicitly clear the intended effect. Notice the difference:

1

2

x = 5 + (7 % 2); // x = 6 (same as without parenthesis)

x = (5 + 7) % 2; // x = 0

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 28

From greatest to smallest priority, C++ operators are evaluated in the following order:

Level Precedence group Operator Description Grouping

1 Scope :: scope qualifier
Left-to-

right

2 Postfix (unary)

++ -- postfix increment / decrement

Left-to-

right

() functional forms

[] subscript

. -> member access

3 Prefix (unary)

++ -- prefix increment / decrement

Right-to-

left

~ ! bitwise NOT / logical NOT

+ - unary prefix

& * reference / dereference

new delete allocation / deallocation

sizeof parameter pack

(type) C-style type-casting

4 Pointer-to-member .* ->* access pointer
Left-to-

right

5 Arithmetic: scaling * / % multiply, divide, modulo
Left-to-

right

6 Arithmetic: addition + - addition, subtraction
Left-to-

right

7 Bitwise shift << >> shift left, shift right
Left-to-

right

8 Relational < > <= >= comparison operators
Left-to-

right

9 Equality == != equality / inequality
Left-to-

right

10 And & bitwise AND
Left-to-

right

11 Exclusive or ^ bitwise XOR Left-to-

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 29

right

12 Inclusive or | bitwise OR
Left-to-

right

13 Conjunction && logical AND
Left-to-

right

14 Disjunction || logical OR
Left-to-

right

15
Assignment-level

expressions

= *= /= %= += -

=

>>= <<= &= ^=

|=

assignment / compound

assignment
Right-to-

left

?: conditional operator

16 Sequencing , comma separator
Left-to-

right

 When an expression has two operators with the same precedence

level, grouping determines which one is evaluated first: either left-to-right or right-to-

left.

EXPRESSIONS:

 Is a combination of operators, constants and variables arranged as per the rules

of the language.

 An expression may consist of one or more operands, and zero or more operators

to produce a value.

 It can be broadly classified into following types they are as follows:

1. Constant expression

2. Integral expression

3. Float expression

4. Pointer expression

5. Relational expression

6. Logical expression

7. Bitwise expression

8.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 30

CONSTANT EXPRESSION:

 It consist of only values.

For eg: 15 (or) 20+5/2.0

INTEGRAL EXPRESSION

 It consist of those produce integer results after implementing all the automatic

explicit type conversion.

 For eg:

M

M*n-5

Where m and n are integer variables.

FLOAT EXPRESSIONS:

 Are those which after all conversions , produce floating point results

Foe eg:

X+y

X*y/10

5+float(10)

10.75

Where x and y are floating point variables.

POINTER EXPRESSIONS:

 Which produce address value.

For eg:

&m

Ptr

Ptr+1

“xyz”

Where m is a variable and ptr is a pointer

RELATIONAL EXPRESSIONS:

 It yields of type bool which takes a value true or false

LOGICAL EXPRESSION:

 It combine two or more relational expressions and produce bool type results

For eg:

a>b && x==10

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 31

BITWISE EXPRESSION

 Are used to manipulate data at bit level .

 This are basically used for testing or shifting bits.

For eg:

X<<3 // shift three bit position to left

Y>>1 // shift one bit position to right

STATEMENTS IN C++:

Selection statements:

If STATEMENT:

 The C++ if statement tests the condition. It is executed if

 condition is true.

Syntax:

if(condition)

{

//code to be executed

}

1. include <iostream>

2. using namespace std;

3. int main () {

4. int num = 10;

5. if (num % 2 == 0)

6. {

7. cout<<"It is even nu

mber";

8. }

9. return 0;

}

Output:/p>

It is even number

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 32

IF-ELSE STATEMENT

 The C++ if-else statement also tests the condition. It executes if block if condition is

true otherwise else block is executed.

if(condition)

{

//code if condition is true

}else{

//code if condition is false

}

IF-ELSE-IF LADDER STATEMENT

 The C++ if-else-if ladder statement executes one condition from multiple

statements.

if(condition1){

//code to be executed if condition1 is true

}else if(condition2){

//code to be executed if condition2 is true

}

else if(condition3){

//code to be executed if condition3 is true

}

..

else{

//code to be executed if all the conditions are false

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 33

C++ SWITCH

 The C++ switch statement executes one statement from multiple conditions. It is

like if-else-if ladder statement in C++.

switch(expression){

case value1:

 //code to be executed;

 break;

case value2:

 //code to be executed;

 break;

......

default:

 //code to be executed if all cases are not matched;

 break;

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 34

ITERATION STATEMENT:

 The loop / iteration statement execute the set of statements repeatedly until the

condition is true.

 They are three statements. They are as follows:

 For

 While

 dowhile

For loop:

 The C++ for loop is used to iterate a part of the program several times. If the number

of iteration is fixed, it is recommended to use for loop than while or do-while loops.

 The C++ for loop is same as C/C#. We can initialize variable, check condition and

increment/decrement value.

for(initialization; condition; increment;)

{

Statements;

}

1. #include <iostream>

2. using namespace std;

3. int main() {

4. for(int i=1;i<=10;i++){

5. cout<<i <<"\n";

6. }

7. }
o/p:

 1 2 3 4 5 6 7 8 9 10

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 35

While loop:

 In C++, while loop is used to iterate a part of the program several times. If the

number of iteration is n

 ot fixed, it is recommended to use while loop than for loop.

C++ DO-WHILE LOOP

 The C++ do-while loop is used to iterate a part of the program several times.

 If the number of iteration is not fixed and you must have to execute the loop at least

once, it is recommended to use do-while loop.

 The C++ do-while loop is executed at least once because condition is checked after

loop body.

while(condition)

 { statements;

 }

 do

 {

 Statements;

 } while(condition);

1. #include <iostream>

2. using namespace std;

3. int main() {

4. int i = 1;

5. do{

6. cout<<i<<"\n";

7. i++;

8. } while (i <= 10) ;

9. }

o/p:

1 2 3 4 5 6 7 8 9 10

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 36

JUMP STATEMENTS :

BREAK:

 The C++ break is used to break loop or switch statement. It breaks the current flow

of the program at the given condition. In case of inner loop, it breaks only inner

loop.

CONTINUE

 The C++ continue statement is used to continue loop.

 It continues the current flow of the program and skips the remaining code at

specified condition.

 In case of inner loop, it continues only inner loop.

GOTO STATEMENT

 The C++ goto statement is also known as jump statement. It is used to transfer

control to the other part of the program.

 It unconditionally jumps to the specified label.

 It can be used to transfer control from deeply nested loop or switch case label.

1. jump-statement;

2. break;

1. jump-statement;

2. continue;

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 37

Standard output (cout)

 On most program environments, the standard output by default is the screen, and the

C++ stream object defined to access it is cout.

 For formatted output operations, cout is used together with the insertion operator,

which is written as << (i.e., two "less than" signs).

1

2

3

cout << "Output sentence"; // prints Output sentence on screen

cout << 120; // prints number 120 on screen

cout << x; // prints the value of x on screen

Standard input (cin)

 In most program environments, the standard input by default is the keyboard, and the

C++ stream object defined to access it is cin.

 For formatted input operations, cin is used together with the extraction operator,

which is written as >> (i.e., two "greater than" signs). This operator is then followed

by the variable where the extracted data is stored. For example:

1

2

int age;

cin >> age;

C++ STORAGE CLASSES

 Storage class is used to define the lifetime and visibility of a variable and/or function

within a C++ program.

 Lifetime refers to the period during which the variable remains active and visibility

refers to the module of a program in which the variable is accessible.

There are five types of storage classes, which can be used in a C++ program

1. Automatic

2. Register

3. Static

4. External

5. Mutable

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 38

Storage

Class
Keyword Lifetime Visibility Initial Value

Automatic auto Function Block Local Garbage

Register register Function Block Local Garbage

Mutable mutable Class Local Garbage

External extern Whole Program Global Zero

Static static Whole Program Local Zero

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 39

UNIT II

2.1CLASSES AND OBJECTS:

2.1.1CLASSES:

 A class is a c++ mechanism that enables user to create and implement user-defined

data type, according to the needs of the problem to be solved.

 It allows the data to be hidden , if necessary from external use.

 A class is a user defined data type. It is a template of an object.

 A class contain data member and member function.

 Generally a class is specification has two parts they are as follows:

O Class Declaration

O Class function Definitions

 The class declaration describes the type and scope of its member. The class function

definitions describe how the class functions are implemented.

 The general form of class declaration is as follows:

CLASS MEMBERS:

 A class may declare data members, member function, within its scope, referred to as

class members.

 A class may also declare type names with its scope, referred to as nested type.

Classes and Objects – Constructors and Destructors –

Operator Overloading and Type Conversions

Class class_name

{

Private:

Variable declaration;

Function declaration;

Public:

Variable declaration;

Function declaration;

}

 Here the keyword class specifies that

follows is an abstract data of type

class_name.

 The functions, variables are

collectively called as class members.

 They are usually groped under two

section namely

 Public

 Private

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 40

 A class member should not be declared with storage classes as auto,extern (or)

register but it may declared as static.

 Data and functions are members.

 Data Members and methods must be declared within the class definition.

 Private member functions and data can not be accessed out side of class and only

accessed within a class.

 The public access_specifier allows functions or data to be accessible to other parts of

your program.

 The protected access_specifier is needed only when inheritance is involved.

Example:

Class A

{

 int i; // i is a data member of class A

 int j; // j is a data member of class A

 int i; // Error redefinition of i

}

 A member cannot be redeclared within a class.

 No member can be added elsewhere other than in the class definition.

OBJECTS:

CREATING OBJECTS:

 In C++, Object is a real world entity, for example, chair, car, pen, mobile, laptop etc.

 In other words, object is an entity that has state and behavior. Here, state means data

and behavior means functionality.

 Object is a runtime entity, it is created at runtime.

 Object is an instance of a class. All the members of the class can be accessed

through object.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 41

 Let's see an example to create object of student class using s1 as the reference

variable.

In this example, Student is the type and s1 is the reference variable that refers to

the instance of Student class.

 Once the class declared we can create variables of that type by using the class

name

 Declaration of an object is similar to that of a variable of any basic type. The

necessary memory space is allocated to an object at this stage.

 Objects can also be created when a class is defined by placing their names

immediately after closing brace.

 Class item

 {

 …………….

 ……………

 } x,y,z;

Student s1; //creating an object of Student

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 42

ACCESSING CLASS MEMBER:

 The main() cannot contain statements that access class members directly. Class

members can be accessed only by an object of that class.

 To access class members, use the dot (.) operator. The dot operator links the name

of an object with the name of a member.

 The general form of the dot operator is shown here:

 For eg:

x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by

implementing the getdata() function.

DEFINING MEMBER FUNCTIONS:

 Member function can be defined in to two places they are as follows:

 Outside the class definition

 Inside the class definition

 The general form of an member function is as follows:

//

Object-name.function-name (actual aruguments);

return-type class-name :: function-name (argument declaration)

{

 function body

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 43

Program to illustrate the working of objects and class in C++

Programming

#include <iostream>

using namespace std;

class Test

{

 private:

 int data1;

 float data2;

 public:

 void insertIntegerData(int d)

 {

 data1 = d;

 cout << "Number: " << data1;

 }

 float insertFloatData()

 {

 cout << "\nEnter data: ";

 cin >> data2;

 return data2;

 }

};

 int main()

 {

 Test o1, o2;

 float secondDataOfObject2;

 o1.insertIntegerData(12);

 secondDataOfObject2 = o2.insertFloatData();

 cout << "You entered " << secondDataOfObject2;

 return 0;

 }

Number: 12

Enter data: 23.3

You entered 23.3

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 44

ARRAY WITHIN A CLASS:

 The array can be used as member variable in a class.

MEMORY ALLOCATION FOR OBJECTS:

 Actually, the member functions are created and placed in the memory space only

once when they area defined as a part of class specification.

 Since all the objects belonging to that class use the same member functions, no

separate space is allocated for member functions when the objects are created.

 Only space for member variable is allocated separately for each object.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 45

Static Class Members

 Static class members can be defined using static keyword.

 When we declare a member of a class as static it means no matter how

many objects of the class are created, there is only one copy of the static

member which is shared by all objects of the class.

A) Static data member b) Static member functions

a) Static data member

The member variables in a class can be declared as static. The general form is,

Characteristics

 At once the object for the class are declared, the static member variables are

initialized to zero.

 For each static variable separate memory locations are allocated and it is

common for all objects in the class.

 Each static member variable must be defined outside the class using scope

resolution operator.

datatype classname::membervariable;

 For static member variable we can give initial value.

datatype classname::membervariable=value;

b) Static member function

 It can be declared using static. It can only access the static members

declared in the same class. Static member function can be called using

classname.

General form: classname::memberfunction;

Example:

#include<iostream.h>

#include<conio.h>

class sample

{

private:

static int st;

public:

void incre()

{

 static datatype membervariable;

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 46

st++;

}

static void print()

{

cout<<”static = ”<<st;

}

};

int sample::st;

void main()

{

clrcsr();

sample s1,s2;

sample::print();

s1.incre();

s2.incre();

sample::print();

getch();

}

C++ ARRAYS

 Like other programming languages, array in C++ is a group of similar types of

elements that have contiguous memory location.

 In C++ std::array is a container that encapsulates fixed size arrays. In C++,

array index starts from 0. We can store only fixed set of elements in C++

array.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 47

ADVANTAGES OF C++ ARRAY

o Code Optimization (less code)

o Random Access

o Easy to traverse data

o Easy to manipulate data

o Easy to sort data etc.

Eg:

Employee manager [3]; // array of manager

Employee foreman [15]; // array of foreman

Employee worker [75]; // array of worker

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 48

Friend Function

 In a class, private member variables can be accessed only by the member

functions in that class.

 Friend function can be used to access all private and protected members

of the class for which it is a friend.

 Friend function should be a non-member class.

General form: friend return_type function_name(args);

Characteristics:

 The keyword friend can only be used inside the class.

 More than one friend function can be declared in a class.

 A function can be friend to more than one class.

 Friend function definition should not contain the scope operator.

CONSTRUCTORS AND DESTRUCTORS

CONSTRUCTORS

 A constructor is a “special “ member whose task is to initialize the objects of its

class.

 A class constructor is a special member function of a class that is executed whenever

we create new objects of that class.

 Constructor functions are invoked automatically when an object for a class is

created.

CHARACTERISTICS OF CONSTRUCTOR:

 A constructor has the same name as the class itself.

 It is invoked automatically when the objects are created.

 It should be defined public.

 They can have default argument.

 It can be overload.

 It has no return type even void.

 We cannot refer to their address.

 They cannot be inherited.

 They cannot be virtual.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 49

Types of Constructor

i) Default Constructor / Constructor with no argument

ii) Parameterized Constructor

iii) Multiple Constructor / Overloading Constructor

iv) Copy Constructor

DEFAULT CONSTRUCTOR / CONSTRUCTOR WITH NO ARGUMENT :

 A constructor which has no argument is known as default constructor. It is invoked at

the time of creating object.

For example:

#include <iostream>

using namespace std;

class Employee

 {

 public:

 Employee()

 {

 cout<<"Default Constructor Invoked"<<endl;

 }

};

int main(void)

{

 Employee e1; //creating an object of Employee

 Employee e2;

 return 0;

}

o/p:

Default Constructor Invoked

Default Constructor Invoked

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 50

PARAMETERIZED CONSTRUCTOR

 A constructor which has parameters is called parameterized constructor. It is used to

provide different values to distinct objects.

Let's see the simple example of C++ Parameterized Constructor.

#include <iostream>

using namespace std;

class Employee {

 public:

 int id;//data member (also instance variable)

 string name;//data member(also instance variable)

 float salary;

 Employee(int i, string n, float s)

 {

 id = i;

 name = n;

 salary = s;

 }

 void display()

 {

 cout<<id<<" "<<name<<" "<<salary<<endl;

 }

};

int main(void) {

 Employee e1 =Employee(101, "Sonoo", 890000); //creating an

object of Employee

 Employee e2=Employee(102, "Nakul", 59000);

 e1.display();

 e2.display();

 return 0;

}

O/P:

101 Sonoo 890000

102 Nakul 59000

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 51

MULTIPLE CONSTRUCTOR / OVERLOADING CONSTRUCTOR :

 If a class has more than one constructor, then it is called Multiple Constructor.

Example:

#include<iostream.h>

#include<conio.h>

class time

{

private:

int hours;

int minutes

int seconds;

public:

time() // default constructor

{

hours=0;

minutes=0;

seconds=0;

}

time(int h) // one argument constructor

{

hours=h;

minutes=0;

seconds=0;

}

time(int h,int m) // two argument constructor

{

hours=h;

minutes=m;

seconds=0;

}

time(int h,int m,int s) // three argument constructor

{

hours=h;

minutes=m;

seconds=s;

}

void showtime()

{

cout<<hours;

cout<<minutes;

cout<<seconds;

}

};

void main()

{

clrscr();

time t1;

time t2(12);

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 52

time t3(12,15);

time t4(12,15,15);

t1.showtime();

t2.showtime();

t3.showtime();

t4.showtime();

getch();

Copy Constructor

 It is used to declare and initialize an object with the values from another object.

#include<iostream.h>

#include<conio.h>

class data

{

private:

int a;

public:

data(int x)

{

a=x;

}

data(data &ob)

{

a=ob.a;

}

void print()

{

cout<<a;

}

};

void main()

{

clrscr();

data d1(100);

d1.print();

data d2=d1;

d2.print();

getch();

}

CONSTRUCTORS WITH DEFAULT ARGUMENTS:

 It is possible to define constructors with default arguments.

for eg:

 complex (float real, float imag=0);

The default value of the argument imag is 0. Then the statement

 Complex c(5.0);

Assigns the values 5.0 to the real varaiable and 0.0 to imag (by default)

DYNAMIC INITIALIZATION OF OBJECTS:

 Objects can be initialized dynamically too. That is to say, the initial value of an

object may be provided during run time.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 53

 One advantage of dynamic initialization is that we can provide various initialization

formats, using overloaded constructors.

DESTRUCTORS

 As the name imples , is used to destroy the objects that have been created by a

constructor

 A destructor works opposite to constructor; it destructs the objects of classes. It can

be defined only once in a class. Like constructors, it is invoked automatically.

 A destructor is defined like constructor. It must have same name as class. But it is

prefixed with a tilde sign (~).

~destructorname()

{

Statement;

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 54

Characteristics:

 Destructor has the same name as the classname.

 No argument can be provided to a destructor.

 It won‟t return any value.

 They cannot be inherited.

 It may not be static.

OPERATOR OVERLOADING:

 It is an important technique that c++ permits us to add 2 variables of user defined

types with same syntax that is applied to basic types.

 This means that c++ has the ability to provide the operators with a special meaning

for data type. The mechanism of giving such special meaning to an operator is

known as operator overloading.

PROCESS OF OPERATOR OVERLOADING:

 Create a class that define the data type that is to be used in the overloading

operation.

 Declare the operator function operator op() in the part of the class.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 55

 It may be either friend or member function.

 Define the operator function to implement the required operations.

Overloaded operator function can be invoked by expression such as

For unary operators

 For binary operators

C++ OVERLOADING (FUNCTION AND OPERATOR)

 If we create two or more members having same name but different in number or

type of parameter, it is known as C++ overloading. In C++, we can overload:

o methods,

o constructors, and

o indexed properties

It is because these members have parameters only.

Types of overloading in C++ are:

o Function overloading

o Operators overloading

C++ FUNCTION OVERLOADING

 Having two or more function with same name but different in parameters, is

known as function overloading in C++.

 The advantage of Function overloading is that it increases the readability of the

program because you don't need to use different names for same action.

op X or X op

X op y

Operator op(x)

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 56

OVERLOADING UNARY OPERATORS:

EXAMPLE FOR UNARY OPERATOR :

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 57

10

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 58

RULES OF OPERATOR OVERLOADING IN C++

MANIPULATION OF STRING USING OPERATORS:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 59

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 60

TYPE CONVERSIONS:

 The assignment operation causes the automatic type conversion.

 The type of data to the right of an assignment operator is automatically converted to

the type of the variable on the left.

For eg:

 int m;

float x=3.145;

 m=x

Here convert x to an integer before its value is assigned to m. Thus the fractional part is

truncated. The type conversions are automatic as long as the data types involved are built in

types.

 Three types of situation might arise in the data conversion between uncompatible

types they are as follows:

 Conversion from basic type to class type.

 Conversion from class type to basic type.

 Conversion from one class type to another class type.

CONVERSION FROM BASIC TYPE TO CLASS TYPE

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 61

CONVERSION FROM CLASS TYPE TO BASIC TYPE

CONVERSION FROM ONE CLASS TYPE TO ANOTHER CLASS TYPE

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 62

syntax for Conversion from one class type to another class type

“You have to dream before

Your dreams can come true”

-Dr.A.P.J.Abdul Kalam

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 63

UNIT III

Inheritance : Extending Classes – Pointers - Virtual Functions and Polymorphism

INHERITANCE:

 The c++ classes can be reused in several ways. Once a class has been written and

tested it can be adopted by other programmers to suit their requirements.

 The mechanism of deriving a new class from an old one is called as inheritance.

 The class which from which we derive is referred to as the base class, parent class

or super class

 The class that we derive is refereed as the derived class, child class or sub class.

 The derived class is always as big as the base class, since the derived class inherits all

the properties of the base class and can add properties of its own.

 The act of creating a derived class by is something is referred as sub classing.

FEATURES/ADVANTAGES OF INHERITANCE

 Reusability
 Extensibility
 Saves time and effort
 Reliability
 Overriding

 The inheritance mechanism can be broadly classified into five types they area as

follows:

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 64

SINGLE INHERITANCE:

 In single inheritance, there is only one base class and one derived class. The Derived

class gets inherited from its base class.

 This is the simplest form of inheritance. In the above figure, fig(a) is the diagram for

single inheritance.

Syntax:

MULTIPLE INHERITANCE

 In this type of inheritance, a single derived class may inherit from two or more base

classes.

 In the above list of figures, fig(b) is the structure of Multiple Inheritance.

class base_class

{

.....

};

class derived_class:visibilitymode base_class

{

.....

};

class base_class1

{

.....

};

class base_class2

{

.....

};
classderived_class:visibilitymode base_class1,base_class2
{
.....

};

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 65

HIERARCHICAL INHERITANCE

 In this type of inheritance, multiple derived classes get inherited from a single base

class.

 In the above list of figures, fig(c) is the structure of Hierarchical Inheritance.

Syntax:

MULTILEVEL INHERITANCE

 The classes can also be derived from the classes that are already derived. This type of

inheritance is called multilevel inheritance.

 In the above list of figures, fig(d) is the structure of Multilevel Inheritance

Syntax:

class base_class

{

.....

};

class base_classname

{

properties; methods;

 };

class derived_class1 : visibility_mode base_classname

{

properties; methods;

};

 class derived_class2 : visibility_mode base_classname

{

properties; methods;

 };

class derived_classN : visibility_mode base_classname

{

properties; methods;

 };

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 66

class derived_class1:visibilitymode base_class

{

.....

};

class derived_class2:visibilitymode derived_class1

{

.....

};

HYBRID INHERITANCE

 This is a Mixture of two or More Inheritance and in this Inheritance, a Code May

Contains two or Three types of inheritance in Single Code.

 In the above figure, the fig(e) is the diagram for Hybrid inheritance.

class base1

{

.....

};

class derived1:visibilitymode base1

{

.....

};

class base2

{

.....

};

class derived2:visibilitymode derived1,visibilitymode base2

{

....

};

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 67

POINTERS

 Pointers are extremely powerful programming tool that can make things easier and

help to increase the efficiency of a program and allow programmers to handle an

unlimited amount of data.

 In other words, a pointer variable holds the address of a memory location.

DECLARING A POINTER

 The pointer in C++ language can be declared using ∗ (asterisk symbol).

Syntax:

 type *var-name;

 Following are the valid pointer declaration :

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

ADVANTAGE OF POINTER

1) Pointer reduces the code and improves the performance, it is used to retrieving strings,

trees etc. and used with arrays, structures and functions.

2) We can return multiple values from function using pointer.

3) It makes you able to access any memory location in the computer's memory.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 68

POINTER WITH ARRRAYS AND STRINGS:

There are many usage of pointers in C++ language.

1) Dynamic memory allocation

 In c++ language, we can dynamically allocate memory using malloc() and calloc()

functions where pointer is used.

2) Arrays, Functions and Structures

 Pointers in c++ language are widely used in arrays, functions and structures. It

reduces the code and improves the performance.

For eg:

#include <iostream>

using namespace std;

int main()

{

int number=30;

int ∗ p;

p=&number;//stores the address of number variable

cout<<"Address of number variable is:"<<&number<<endl;

cout<<"Address of p variable is:"<<p<<endl;

cout<<"Value of p variable is:"<<*p<<endl;

return 0;

}

O/p:

Address of number variable is:0x7ffccc8724c4

Address of p variable is:0x7ffccc8724c4

Value of p variable is:30

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 69

Types of pointer:

There are following few important pointer concepts which should be

clear to a C++ programmer :

Sr.No Concept & Description

1

Null Pointers

C++ supports null pointer, which is a constant with a value of

zero defined in several standard libraries.

2

Pointer Arithmetic

There are four arithmetic operators that can be used on pointers:

++, --, +, -

3 Pointers vs Arrays

There is a close relationship between pointers and arrays.

4 Array of Pointers

You can define arrays to hold a number of pointers.

5 Pointer to Pointer

C++ allows you to have pointer on a pointer and so on.

6

Passing Pointers to Functions

Passing an argument by reference or by address both enable the

passed argument to be changed in the calling function by the

called function.

7

Return Pointer from Functions

C++ allows a function to return a pointer to local variable, static

variable and dynamically allocated memory as well.

https://www.tutorialspoint.com/cplusplus/cpp_null_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_arithmatic.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointers_vs_arrays.htm
https://www.tutorialspoint.com/cplusplus/cpp_array_of_pointers.htm
https://www.tutorialspoint.com/cplusplus/cpp_pointer_to_pointer.htm
https://www.tutorialspoint.com/cplusplus/cpp_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cplusplus/cpp_return_pointer_from_functions.htm

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 70

MANIPULATION OF POINTERS:

 We can manipulate a pointer with the indirection operator i.e “*” which is known as

derefence operator.

 With this operator, we can indirectly access the data variable content.

Syntax:

 *pointer_varaiable

For eg:

#include<iostream.h>

int main()

{

 int a=10;

 int *ptr;

 clrscr();

 ptr=&a;

cout<<”the value of a is: “<<*ptr;

*ptr=*ptr+a;

cout<<”\n The revised value of a is “<<a;

getch();

return(0);

}

O/p:

The value of a is : 10

The revised value of a is : 20

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 71

ARRAY OF POINTERS:

 An array of pointers point to an array of data items.

 Each element of the pointer array points to an item of the data array.

 Data items can be accessed wither directly or by dereferencing the elements of pointer

array.

 We can declare an array of pointer as follows:

int *inarray[10];

POINTERS TO FUNCTIONS:

 The pointer to function is known as Callback function.

 We can use these function pointers to refer to a function.

 Using function pointer, we can allow a c++ program to select a function dynamically

at run time.

 Here the function is passed as a pointer.

 C++ provides 2 types of function pointers 1. Function pointers that point to static

member functions and 2. Function pointers that point to non-static member

functions.

 These 2 function pointers are incompatible with each other

 We can declare a function pointer in c++ as follows:

Example:

POINTER TO OBJECTS:

 As stated earlier , a pointer can point to an object created by a class. Consider the

following statement

 item x;

 where item is a class and x is an object defined to be of type item. Similarity we can

define a pointer it_ptr of type item as item*it_ptr;

data _type (*function_name) ();

int(*num_function(int x));

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 72

this Pointer:

 c++ usues a unique keyword called this to represent an object that invokes a member

function.

 this is a pointer that points to the object for which this function was called.

 For eg: the function call A.max() will set the pointer this to the address of the object

A.

Example:

 Here the private varaibale ‘a’ can be used directly inside a

me member function , like

 a=123;

 We can also use the following statement to do the same

 job as this a

VIRTUAL FUNCTIONS:

 A virtual function is a special form of member function that is declared within a base

class and redefined by a derived class.

 The keyword “virtual” is used to create a virtual function, precede the function’s

declaration in the base class.

 If a class includes a virtual function and if it gets inherited, the virtual class

redefines a virtual function to go with its own need.

 In other words, a virtual function is a function which gets override in the derived

class and instructs the C++ compiler for executing late binding on that function.

 A function call is resolved at runtime in late binding and so compiler determines

the type of object at runtime.

class abc

{

 int a;

 …..;

 …..;

};

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 73

RULES FOR VIRTUAL FUNCTIONS:

1) The virtual functions must be members of some class.

2) They cannot be static members.

3) They are accessed by using object pointers.

4) A virtual function can be a friend of another class.

5) Virtual function in a base class must be defined even though it may not be used.

6) The prototype of base class version of a virtual function and all the derived class

versions must be identical.

7) We cannot have virtual constructors, but we can have virtual destructors.

8) Base pointer can point to any type of derived object. But we cannot use a pointer of a

derived class to access an object of base type.

9) Incrementing and decrementing of the base pointer will not point to next object of

derived class.

10) It will get incremented or decremented only relative to its base type.

11) If a virtual function is defined in the base class, it not be redefined in the derived

class, then calls will invoke the base function.

PURE VIRTUAL FUNCTIONS:

 The function inside the base class is seldom used for perfoming any task.

 It only serves a placeholder.

 For example: if we have not defined any object of alcss media and therefoe the

function display() in the base class has been defined ”empty” .

 Such functions are called “do-nothing” functions.

 A “do-nothig” function may be defined as follows:

Virtual void display ()=0;

ABSTRACT BASE CLASS

 Abstract class is a class which contains at least one pure virtual function in it.

Abstract classes are used to provide an interface for its sub classes.

 Classes inheriting an Abstract class must provide definition to the pure virtual

function; otherwise they will also become abstract class.

CHARACTERISTICS

 It cannot be instantiated, but pointers and references of Abstract class type can be

created.

 It can have normal functions and variables along with a pure virtual function.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 74

 They are mainly used for Up casting, so that its derived classes can use its interface.

 Classes inheriting an Abstract class must implement all pure virtual functions, or else

they will become abstract too.

POLYMORPHISM :

 The term "Polymorphism" is the combination of "poly" + "morphs" which means

many forms. It is a greek word.

 In object-oriented programming, we use 3 main concepts: inheritance, encapsulation

and polymorphism.

There are two types of polymorphism in C++:

o Compile time polymorphism: It is achieved by function overloading and operator

overloading which is also known as static binding or early binding.

o Runtime polymorphism: It is achieved by method overriding which is also known

as dynamic binding or late binding.

In programming background, polymorphism can be broadly divided into two parts. These

are:

 1. Static Polymorphism

 2. Dynamic Polymorphism.

STATIC POLYMORPHISM

 In static polymorphism or early binding, there you will get two subcategories like:

 Function overloading which is the process of using the same name for two or more

functions.

 Operator overloading which is the process of using the same operator for two or more

operands.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 75

CODE SNIPPET FOR FUNCTION OVERLOADING

class funcOl {

public:

 funcOl ();

 funcOl (int i);

 int add(int a, int b);

 int add(float a, float b);

};

CODE SNIPPET FOR OPERATOR OVERLOADING

class calc {

public:

 // + operator overloading technique

 int operator+(calc g);

private:

 int k;

};

DYNAMIC POLYMORPHISM

 This refers to the entity which changes its form depending on circumstances at

runtime.

 This concept can be adopted as analogous to a chameleon changing its color at the

sight of an approaching object.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 76

Unit IV

Managing Console I/O Operations – Working with Files – Templates – Exception

Handling

Managing Console I/O Operations

STREAMS:

 The I/O system in c++ is designed to work with a wide variety of device

including terminals, disks, and tape drives.

 Although each device is very different, the I/O system supplies as interface to the

programmer that is independent of the actual device being accesses. This

Interface is called stream.

 A stream is a sequence of bytes.

 It acts either as a Source form which the input data can be obtained or as a

designation to which the output data can be sent.

 The source stream that provides data to the program is called the input stream .

 the destination stream that receives the output from the program is called as

output stream

C++ STREAMS:

 The c++ I/O system contains a hierarchy of classes that are used to define

various streams to deal with both the console and disk files. These classes are

called as stream classes.

 The classes are declared in the header file iostream this file should be included in

all the programs that communicate with the console unit.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 77

Stream classed for console i/O operations

UNFORMATTED INPUT/OUTPUT OPERATIONS

 We have already used the cin and cout (pre-defined in iostream file) for input and

output of data of various types.

 This has been made possible by overloading the operators << and >> to recognize all

the basic C++ types.

 cin standard input stream

 cout standard output stream

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 78

Example:

#include <iostream>

using namespace std;

void main()

 {

 int g;

 cin>>g;

 cout << "Output is: "<< g;

 }

put() and get() functions

 The classes istream and ostream defines two member functions get() and put()

respectively to handle single character input/output operations.

Get() function is of two types:

1. get(char *)

2. get(void)

Both of them can be used to fetch a character including a blank space, tab or new-line

character.

Code snippet

char ch;

cin.get(ch);

 while(ch != '\n')

 {

 cout<<ch;

 cin.get(ch);

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 79

 Similarly, the function put(), a member of ostream class can be used to output a line

of text character by character.

Example:

cout.put ('g');

char ch;

cout.put(ch);

getline() and write()

 We can read and display lines of text more efficiently using the lie oriented

input/output functions. They are:

 getline()

 write()

 The getline() function reads the entire line of texts that ends with a newline

character. The general form of getline() is:

cin.getline (line, size);

 The write() function displays the entire line of text and the general form of writing

this function is:

cout.write (line, size);

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 80

FORMATTED CONSOLE I/O OPERATIONS:

 C++ supports a number of features that could be used for formatting the output.

These features include:

 ios class function and flags

 Manipulators

 User-defined output functions

 The ios class contains a large of member functions that would help us to format the

output in a number of ways. The most important ones among them are as follows:

Defining field width :width()

 We can use the width() function to define the width of a field necessary for the output

of an item. Since it is a member function, we have to use an object to invoke it as

follows:

 Where w is the field width (number of columns). The output will be printed in

a filed of w characters wide at the right end of the filed.

cout.width(w);

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 81

Setting Precision: precision()

 We can specify the number of digits to be displayed after the decimal point while

printing the floating point numbers. This can be done by using the precision()

member function as follows:

Where d is the number of digits to the right of the decimal point.

Example program for width and precision Manipulators:

Filling and padding : fill()

 The unused positions of the field are filled with white spaces, by default. We can use

fill() function to fill the used positions by any desired character.

for eg:

output:

* * * * * * 5 2 5 0

cout.precision(d)

;

 #include<iostream>

 void main()

 {

 float pi=22.0/7.0;

 int I;

 cout<<”value of pi:\n”;

 for(i=1;i<=10;i++)

 {

 cout.width(i+1);

 cout.precision(i);

 cout<<pi<<”\n”;

 }

 }

o/p:

value of PI:

3.1

3.14

3.143

3.1429

3.14286

3.142857

3.1428571

3.14285707

3.142857075

3.1428570747

cout.fill(ch)

;
cout.fill(‘*’);

cout.width(10);

cout<<5250<<”\n”;

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 82

Formatting flags, bit – fileds and setf();

 The setf() , a member function of the ios class, can provide formatted operations.

 The setf() (setf stands for set flags)

The arg1 is one of the formatting flags defined in the class ios. The formatting flags

specify the format action required for the output. Another ios constant arg2, known as bit

filed specifies the group to which formatting flag belongs.

Managing output with manipulators:

 The header file iomanip provides a set of function called manipulators which can be

used to manipulate the output formats.

 The provide the same features as that of the ios member functions and flags.

 Some manipulators are more convenient to use than their counterparts in the class

ios.

 cout<<maniple<<manip2<<manip3<<item;

 cout<<manip1<<item1<<manip2<<item2;

 This kind of concatenation is useful when we want to display several

columns of output.

cout.setf(args1,arg2)

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 83

WORKING WITH FILES:

 A file is a collection of related data stored in particular area on the disk.

 The program can be designed to perform the read and write operations on these

files.

 The program typically involves either or both of the following kinds of data

communication.

 Data transfer b/w the console unit and the program.

 Data transfer b/w the program and a disk file

 The stream that supplied data to the program is known as input stream and one

that receives data from the program is known as output stream.

CLASSES FOR FILE STREAM OPERATIONS :

 The i/o system of c++ contains a set of classes that define the file handling

methods.

 These include ifstream, ofstream and fstream

 To create an input stream, declare an object of type ifstream.

 To create an output stream, declare an object of type ofstream.

 To create an input/output stream, declare an object of type fstream.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 84

For example, this fragment creates one input stream, one output stream and one stream

capable of both input and output:

ifstream in; // input;

fstream out; // output;

fstream io; // input and output

 To perform file I/O operation. We must include a header file <fstream.h> which

contains all classes supports file operations.

 Ifstream class: (input file operation)

This calss provides input operations or methods which contains open(), getline(),

get(), read(), tellg(), seekg().

Example :

 Ifstrem f1;

Fstream infile;

f1.open(“employee.dat”);

 ofstream class: (output file operation)

 This class provides output operations it supports the following methods.

 Open() tell()

Put() write() Seeekp()

Example :

Ofstream outfile;

Outfile open (“student-dat”);

 fstream class:

It provides all function supports I/O operation

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 85

details of file stram classes :

OPENING AND CLOSING A FILE :

 A file must be opened before you can read from it or write to it.

Either ofstream or fstream object may be used to open a file for writing. And

ifstream object is used to open a file for reading purpose only.

 Following is the standard syntax for open() function, which is a member of fstream,

ifstream, and ofstream objects.

void open(const char *filename, ios::openmode mode);

 Here, the first argument specifies the name and location of the file to be opened

and the second argument of the open() member function defines the mode in which

the file should be opened.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 86

CLOSING A FILE

 When a C++ program terminates it automatically flushes all the streams, release all

the allocated memory and close all the opened files.

 But it is always a good practice that a programmer should close all the opened files

before program termination.

Following is the standard syntax for close() function, which is a member of fstream,

ifstream, and ofstream objects.

void close();

READING FROM A FILE

 We read information from a file into your program using the stream extraction

operator (>>) just as you use that operator to input information from the keyboard.

The only difference is that you use an ifstream or fstream object instead of the cin object.

SEQUENTIAL INPUT AND OUTPUT OPERATIONS:

 The file stream classes support a number of member functions for performing the

input and output operations on files.

 One pairs of functions,put() and get() are designed for handling a single character

at a time.

 Another pair of functions, write(),read() are designed to write and read blocks of

binary data.

put() and get() Functions:

 The function put() writes a single character to the associated stream.Similarly,the

function get() reads a single character from the associated stream.

 The following program illustrates how the functions work on a file.The program

requests for a string.

 On receiving the string,the program writes it,character by character,to the file using

the put() function in a for loop.The length of string is used to terminate the for loop.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 87

The program then displays the contents of file on the screen.It uses the function get() to fetch

a character from the file and continues to do so until the end –of –file condition is

reached.The character read from the files is displayed on screen using the operator <<.

 PROGRAM FOR I/O OPERATIONS ON CHARACTERS

#include <iostream.h>

 #include <fstream.h>

#include<string.h>

int main() {

char string[80];

cout<<”enter a string \n”;

cin>>string;

int len =strlen(string);

fstream file;

file.open(“TEXT”. Ios::in | ios::out);

for (int i=o;i<len;i++)

file.put(string[i]);

file .seekg(0);

char ch;

while(file)

{

file.get(ch);

cout<<ch;

} return }

WRITE() AND READ () FUNCTIONS:

 The functions write() and read(),unlike the functions put() and get() ,handle the data

in binary form .This means that the values are stored in the disk file in same format

in which they are stored in the internal memory.

 An int character takes two bytes to store its value in the binary form,irrespective of

its size.But a 4 digit int will take four bytes to store it in the character form.

 The binary input and output functions takes the following form:



CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 88

infile.read ((char *) & V,sizeof (V));

outfile.write ((char *) & V ,sizeof (V));

 These functions take two arguments. The first is the address of the variable V, and

the second is the length of that variable in bytes.

 The address of the variable must be cast to type char*(i.e pointer to character type).

 The following program illustrates how these two functions are used to save an array

of floats numbers and then recover them for display on the screen.

PROGRAM FOR // I/O OPERATIONS ON BINARY FILES

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

const char * filename =”Binary”;

int main()

{

float height[4] ={ 175.5,153.0,167.25,160.70};

ofstream outfile;

outfile.open(filename);

outfile.write((char *) & height,sizeof(height));

outfile.close();

for (int i=0;i<4;i++)

height[i]=0;

ifstream infile;

infile.open(filename);

infile.read ((char *) & height,sizeof (height));

for (i=0;i<4;i++)

{

cout.setf(ios::showpoint);

cout<<setw(10)<<setprecision(2)<<height[i];

}

infile.close();

return 0; }

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 89

UPDATING A FILE : RANDOM ACCESS:

 The updating would include more of the following tasks:

 Displaying the contents of a file

 Modifying an existing item

 Adding a new item

 Deleting an existing item

 These actions require file pointers to move to a particular locations that

corresponds to the item/ object under consideration.

 A file pointer points to a data element such as character in the file.The pointers are

helpful in lower level operations in files. There are two types of pointers:

 get pointer

 put pointer

 The get pointer is also called input pointer. When we open a file for reading, we

can use the get pointer. The put pointer is also called output pointer. When we

open a file for writing, we can use put pointer.

 These pointers are helpful in navigation through a file. When we open a file for

reading, the get pointer will be at location zero and not 1. The bytes in the file

are numbered from zero.

 Therefore, automatically when we assign an object to ifstream and then initialize

the object with a file name, the get pointer will be ready to read the contents

from 0th position.

 Similarly, when we want to write we will assign to an ofstream object a filename.

Then, the put pointer will point to the 0th position of the given file name after it is

created.

 When we open a file for appending, the put pointer will point to the 0th position.

But, when we say write, then the pointer will advance to one position after the

last

 character in the file.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 90

FILE POINTER FUNCTIONS

 There are essentially four functions, which help us to navigate the file as given

below Functions

 tellg() Returns the current position of the get pointer

 seekg() Moves the get pointer to the specified location

 tellp() Returns the current position of the put pointer

 seekp() Moves the put pointer to the specified location

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 91

FILE POSITION POINTERS

 Both istream and ostream provide member functions for repositioning the file-

position pointer. These member functions areseekg ("seek get") for istream

and seekp ("seek put") for ostream.

 The argument to seekg and seekp normally is a long integer. A second argument can

be specified to indicate the seek direction.

 The seek direction can be ios::beg (the default) for positioning relative to the

beginning of a stream, ios::cur for positioning relative to the current position in a

stream or ios::end for positioning relative to the end of a stream.

 The file-position pointer is an integer value that specifies the location in the file as a

number of bytes from the file's starting location. Some examples of positioning the

"get" file-position pointer are −

COMMAND – LINE ARGUMENTS:

 The name of the file containing the program to be executed and data and results are

the filenames passed to the program as command- line arguments

 main(int argc, char*argv[]

The 1
st
 argument argc (known as argument counter)represents Number of

arguments in the command line and 2
nd

 arugument argv(known as argument vector) is an

array of char type pointers that points to the command line arguments.

TEMPLATES:

 It is an new concept which enables us to define generic classed and functions and

thus provides support for generic programming.

 Generic programming is an approach where generic types are used as parameters in

algorithms so that they work for a variety of suitable data types and data structures

 An template can be consider as an a kind of macro.

 A template is a blueprint or formula for creating a generic class or a function.

 There is a single definition of each container, such as vector, but we can define many

different kinds of vectors for example, vector <int> or vector <string>.

 Templates can be classified into two types they are as follows:

 Function Template

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 92

 Class Template

FUNCTION TEMPLATE:

The general form of a template function definition is shown here −

template <class type> ret-type func-name(parameter list) {

 // body of function

}

Here, type is a placeholder name for a data type used by the function. This name

can be used within the function definition.

CLASS TEMPLATE

 Just as we can define function templates, we can also define class templates. The

general form of a generic class declaration is shown here −

template <class type> class class-name {

 .

 .

 .

}

Here, type is the placeholder type name, which will be specified when a class is

instantiated. You can define more than one generic data type by using a comma-separated

list.

PREDEFINED C++ MACROS

C++ provides a number of predefined macros mentioned below −

Sr.No Macro & Description

1 __LINE__

This contains the current line number of the program when it is being compiled

2 __FILE__

This contains the current file name of the program when it is being compiled.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 93

3 __DATE__

This contains a string of the form month/day/year that is the date of the translation

of the source file into object code.

4 __TIME__

This contains a string of the form hour:minute:second that is the time at which the

program was compiled.

EXCEPTION HANDLING:

 Exception Handling in C++ is a process to handle runtime errors. We perform

exception handling so the normal flow of the application can be maintained even

after runtime errors.

 In C++, exception is an event or object which is thrown at runtime. All exceptions

are derived from std::exception class. It is a runtime error which can be handled. If

we don't handle the exception, it prints exception message and terminates the

program.

ADVANTAGE

 It maintains the normal flow of the application. In such case, rest of the code is

executed even after exception.

C++ EXCEPTION

CLASSES

 In C++ standard exceptions

are defined in

<exception> class that

we can use inside our

programs. The

arrangement of

parent- child class hierarchy

is shown below:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 94

All the exception classes in C++ are derived from std::exception class. Let's see the list of

C++ common exception classes.

Exception Description

std::exception It is an exception and parent class of all standard C++ exceptions.

std::logic_failure It is an exception that can be detected by reading a code.

std::runtime_error It is an exception that cannot be detected by reading a code.

std::bad_exception It is used to handle the unexpected exceptions in a c++ program.

std::bad_cast This exception is generally be thrown by dynamic_cast.

std::bad_typeid This exception is generally be thrown by typeid.

std::bad_alloc This exception is generally be thrown by new.

 C++ Exception Handling Keywords In C++, we use 3 keywords to perform exception

handling:

 try

 catch, and

 throw

C++ TRY/CATCH

 In C++ programming, exception handling is performed using try/catch statement. The

C++ try block is used to place the code that may occur exception.

 C++ function that can detect and recover from errors execute from within a try block

which causes the complier to pay special attention to generate code for handling

exception

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 95

The General form of try block is as follows:

CATCH BLOCK

 When an exception is thrown it is caught by its corresponding catch blaock , whch

processes the exception.

 The catch block immediately following the try block is called as exception

handler.

The general form of catch block is as follows:

RETHROWING AN EXCEPTION:

 C++ allows to rethorw an exception after partially handling it or after

determining that the exception handler cannot deal with it all .

 A “throw ”statement can be used for it

C++ example without try/catch

#include <iostream>

using namespace std;

float division(int x, int y) {

 return (x/y);

}

int main () {

 int i = 50;

 int j = 0;

 float k = 0;

 k = division(i, j);

 cout << k << endl;

 return 0;

try

{

…..

…..

}

catch (exception Type argument)

{

..............

}

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 96

}

output: Floating point exception (core dumped)

C++ TRY/CATCH EXAMPLE

#include <iostream>

using namespace std;

float division(int x, int y) {

 if(y == 0) {

 throw "Attempted to divide by zero!";

 }

 return (x/y);

}

int main () {

 int i = 25;

 int j = 0;

 float k = 0;

 try {

 k = division(i, j);

 cout << k << endl;

 }catch (const char* e) {

 cerr << e << endl;

 }

 return 0;

}

Output:

Attempted to divide by zero!

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 97

Unit V

Standard Template Library – Manipulating Strings – Object

Oriented Systems Development

Standard Template Library:

 Classes (data structures) and functions (algorithms) that could be used as a standard

approach for storing and processing of data.

 The collection of these generic classes and functions is called as standard Template

Library (STL) .

 Using STL can save time, effort and lead to high quality programs.

 All these benefits are possible because we are basically “resusing” the well-written

and well-tested components defined in STL.

COMPONENTS OF STL:

 There are 3 core key components of STL they are as follows:

 Containers

 Algorithms

 Iterators

Relationship b/w the three STL components

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 98

CONTAINERS:

 A container is a way to store data, whether the data consists of built-in types such as

int and float, or of class objects.

 The STL makes seven basic kinds of containers available, as well as three more that

are derived from the basic kinds.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 99

 Containers supported by stl

SEQUENCE CONTAINERS:

 A sequence container stores a set of elements in what you can visualize as a line,

like houses on a street. Each element is related to the other elements by its position

along the line. Each element is preceded by one specific element and followed by

another.

 The STL provides the vector container to avoid these difficulties. This can be very

time-consuming.

 The STL provides the list container, which is based on the idea of a linked list.

 The third sequence container is the deque, which can be thought of as a

combination of a stack and a queue. Both input and output take place on the top of

the stack.

 A queue, on the other hand, uses a first-in-first-out arrangement: data goes in at

the front and comes out at the back, like a line of customers in a bank.

 A deque combines these approaches so you can insert or delete data from either

end. The word deque is derived from Double-Ended QUEue. It’s a versatile

mechanism that’s not only useful in its own right, but can be used as the basis for

stacks and queues.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 100

ASSOCIATIVE CONTAINERS

 An associative container is not sequential; instead it uses keys to access data. The

keys, typically numbers or stings, are used automatically by the container to arrange

the stored elements in a specific order.

 It’s like an ordinary English dictionary, in which you access data by looking up

words arranged in alphabetical order and the container converts this key to the

element’s location in memory.

 There are two kinds of associative containers in the STL: sets and maps.

 These both store data in a structure called a tree, which offers fast searching,

insertion, and deletion.

 Sets and maps are thus very versatile general data structures suitable for a wide

variety of applications. However, it is inefficient to sort them and perform other

operations that require random access.

 Sets are simpler and more commonly used than maps. A set stores a number of

items which contain keys. The keys are the attributes used to order the items.

 For example, a set might store objects of the person class, which are ordered

alphabetically using their name attributes as keys. In this situation, you can quickly

locate a desired person object by searching for the object with a specified name.

 If a set stores values of a basic type such as int, the key is the entire item stored.

 A map stores pairs of objects: a key object and a value object.

 The map and set containers allow only one key of a given value to be stored. This

makes sense in, say, a list of employees arranged by unique employee numbers.

ALGORITHMS

 An algorithm is a function that does something to the items in a container (or

containers).

 We noted, algorithms in the STL are not member functions or even friends of

container classes, as they are in earlier container libraries, but are standalone

template functions.

 STL algorithms reinforce the philosophy of reusability

 STL algorithms based on the nature of operations they perform, may be categorized

as under:

 Retrieve or nonmutating algorithm

 Mutating algorithm

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 101

 Sorting algorithm

 Set Algorithm

 Relational Algorithm

 Suppose you create an array of type int, with data in it:

 int arr[8] = {42, 31, 7, 80, 2, 26, 19, 75};

 You can then use the STL sort() algorithm to sort this array by saying

 sort(arr, arr+8);

where arr is the address of the beginning of the array, and arr+8 is the past-the-

end address(one item past the end of the array).

ITERATORS

 Iterators are pointer-like entities that are used to access individual data items (which

are usually called elements), in a container.

 Often they are used to move sequentially from element to element, a process called

iterating through the container.

 We can increment iterators with the ++ operator so they point to the next element,

and dereference them with the * operator to obtain the value of the element they

point to.

 In the STL an iterator is represented by an object of an iterator class.

 Different classes of iterators must be used with different types of container.

 There are three major classes of iterators: forward, bidirectional, and random

access.

 A forward iterator can only move forward through the container, one item at a

time. Its ++ operator accomplishes this. It can’t move backward and it can’t be set

to an arbitrary location in the middle of the container.

 A bidirectional iterator can move backward as well as forward, so both its ++ and

-- operators are defined.

 A random access iterator, in addition to moving backward and forward, can jump to

an arbitrary location

APPLICATIONS OF CONTAINER CLASSES:

 Most popular containers namely Vector , list and map

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 102

VECTORS:

 Is the most widely used container. It stores elements in contiguous memory locations

and enables direct access to any element using the subscript operator [].

 A vector can change its size dynamically and therefore allocated memory as needed

at run time.

LISTS:

 It supports bidirectional , linear list and provides an efficient implementation for

deletion and insertion operations.

 Unlike a vector , which supports random access , a list can be accesses sequentially

only.

MAPS:

 A map is a sequence of (key, value) pairs where a single value is associated with

each unique key.

 A map is commonly called an assocaivaite array.

FUNCTION OBJECTS:

 Is a function that has been wrapped in a class so that it looks like an object.

 The class has only one member function the overloaded () operator and no data.

 This class is templatized so that it can be used with different data types.

MANIPULATING STRINGS

 ANSI standard C++ introduces a new class called “string” which is an improvised

version of C strings in several ways.

 In many cases, the strings object may be treated like any other built-in data type.

 The string is treated as another container class for C++.

STRING CLASS IN C++

 The string class is huge and includes many constructors, member functions,

and operators.

 Programmers may use the constructors, operators and member functions to

achieve the following:

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 103

1. Creating string objects

2. Reading string objects from keyboard

3. Displaying string objects to the screen

4. Finding a substring from a string

5. Modifying string

6. Adding objects of string

7. Comparing strings

8. Accessing characters of a string

9. Obtaining the size or length of a string, etc…

IMPORTANT CONSTRUCTORS OBTAINED BY STRING CLASS

 String(): This constructor is used for creating an empty string

 String(const char *str): This constructor is used for creating string objects from a null-

terminated string

 String(const string *str): This constructor is used for creating a string object from another

string object

IMPORTANT FUNCTIONS SUPPORTED BY STRING CLASS

1) append(): This function appends a part of a string to another string

2) assign():This function assigns a partial string

3) at(): This function obtains the character stored at a specified location

4) begin(): This function returns a reference to the start of the string

5) capacity(): This function gives the total element that can be stored

6) compare(): This function compares a string against the invoking string

7) empty(): This function returns true if the string is empty

8) end(): This function returns a reference to the end of the string

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 104

9) erase(): This function removes character as specified

10) find(): This function searches for the occurrence of a specified substring

11) length(): It gives the size of a string or the number of elements of a string

12) swap(): This function swaps the given string with the invoking one

OPERATORS USED FOR STRING OBJECTS

1. =: assignment

2. +: concatenation

3. ==: Equality

4. !=: Inequality

5. <: Less than

6. <=: Less than or equal

7. >: Greater than

8. >=: Greater than or equal

9. []: Subscription

10. <<: Output

11. >>: Input

OBJECT ORIENTED SYSTEMS DEVELOPMENT:

 Software engineers have been trying various tools, methods, and procedures to

control the process of software development in order to build high quality software

with improved productivity.

 The methods provide “how to s” for building the software while the tools provide

automated or semi-automated support for the methods.

 They are used in all the stages of software development process, namely, planning,

analysis, design, development and maintenance.

 The software development procedures integrate the methods and tools together and

enable rational and timely development of software systems.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 105

 They provide guidelines as to apply the methods and tools, how to produce the

deliverables at each stage, what controls to apply, and what milestones to use to

assess the progress.

 There exist a number of software development paradigms, each using a different set

of methods and tools.

 The selection of particular paradigms depends on the nature of the application, the

programming language used, and the controls and deliverables required.

 The development of a successful system depends not only on the use of the

appropriate methods and techniques but also on the developer’s commitment to the

objectives of the systems.

 A successful system must:

1. satisfy the user requirements,

2. be easy to understand by the users and operators,

3. be easy to operate,

4. have a good user interface,

 5. be easy to modify, Tools

6.be expandable,

7.have adequate security controls against misuse of data,

8.handle the errors and exceptions satisfactorily, and

 9.Be delivered on schedule within the budget.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 106

PROCEDURE-ORIENTED PARADIGM.

 Software development is usually characterized by a series of stages depicting the

various asks involved in the development process.

 The classic life cycle is based on an underlying model, commonly referred to as the

“water fall” model.

 This model attempts to break up the identifiable activities into series of actions, each

of which must be completed before the next begins.

 The activities include problem definition, requirement analysis, design, coding,

testing, and maintenance.

 Further refinements to this model include iteration back to the previous stages in

order to incorporate any changes or missing links.

Problem Definition:

 This activity requires a precise definition of the problem in user terms.

 A clear statement of the problem is crucial to the success of the software.

 It helps not only the development but also the user to understand the problem

better.

Analysis:

 This covers a detailed study of the requirements of both the user and the software.

 The activity is basically concerned with what of the system such as

1. What are the inputs to the systems?

2. What are the processes required?

3. What are the outputs expected?

4. What are the constraints?

Design:

 The design phase deals with various concepts of system design such as data

structure, software architecture, and algorithms.

 This phase translates the requirements into a representation of the software. This

stage answers the questions of how.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 107

Coding:

 Coding refers to the translation of the design into machine-readable form. The more

detailed the design, the easier is the coding, and better its reliability.

Testing:

 Once the code is written, it should be tested rigorously for correctness of the code

and results. Testing may involve the individual units and the whole systems. It

requires a detailed plan as to what, when and how to test.

Maintenance:

 After the software has been installed, it may undergo some changes. This may occur

due to a change in the user’s requirement, a change in the operating environment,

or an error in the software that has been fixed during the testing.

 Maintenance ensures that these changes are incorporated wherever necessary.

 Fig. classic software development life cycle (Embedded ‘water-fall’ model)

OBJECT-ORIENTED ANALYSIS

 Object-oriented analysis (OOA) refers to the methods of specifying requirements of

the software in the terms of real-world objects, their behavior, and their interactions.

 Object- oriented design (OOD), on the other hand, turns the software requirements

into specifications for objects and derives class hierarchies from which the objects

can be created.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 108

 Finally, object-oriented programming (OOP) refers to the implementation of the

program using objects, in an object-oriented programming language such as C++.

 By developing specifications of the objects found in the problem space, a clear and

well- organized statement of the problem is actually built into application.

 These objects form a high-level layer of definitions that are written in terms of the

problem space. During the refinement of the definitions and the implementation of

the application objects, other objects and identified.

 All the phases in the object-oriented approach work more closely together because of

the commonality of the object model. In one phase, the problem domain objects are

identified, while in the next phase additional objects required for a particular

solution are specified. The design process is repeated for these implementation-level

objects.

 Object-oriented analysis provides us with simple, yet powerful, mechanism for

identifying objects, the building block of the software to be developed.

 The analysis is basically concerned with the decomposition of a problem into its

component parts and establishing a logical model to describe the system functions.

 The object-oriented analysis (OOA) approach consists of the following steps:

a. Understanding the problem.

b. Drawing the specification of requirement of the user and the software.

c. Identifying the objects and their attributes.

d. Identifying the services that each object is expected to provide (interface).

e. Establishing inter-connections (collaborations) between the objects in terms of

services required and services rendered.

Understanding the problem.

 1
st
 step in the analysis process is to understand the problem of the user.

 The problem statement should be refined and redefined in terms of computer system

engineering that could suggest a computer based solution.

 The problem statement provides the basis for drawing the requirements specification

of both the user and s/w.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 109

Specification of requirement

 Once the problem is Cleary defined, the next step is to understand what the proposes

system is required to do.

 A clear understanding should be exist between the user and developer of what is

required.

 Based on the requirements, the specifications for the s/w should be drawn.

 The developer should state clearly

 What output are required

 What processes are involved to produce these o/p.

 What i/p are necessary

 What resources are required.

Identifying the objects and their attributes

 objects can be identified in terms of the real world objects as well as the abstract

objects.

 The application may be analyzed by using one the following approaches:

 Data flow Diagrams(DFD)

 Textual analysis (TA)

Identifying the services

 Once the objects in the solution space have been identified, the next step is to identify

the set of services that object should offer.

 Services are identified by examining all the verbs and verb phrases in the problem

description statements.

Establishing inter-connections

 Here we may use an information flow diagram (IFD) or an Entity Relationship

diagram (ER) to enlist this information.

 Here we must establish a correspondence b/w the service and actual information

(messages) that are being communicated.

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 110

STEPS IN OBJECT ORIENTED DESIGN:

 Design is concerned with mapping of objects in the problem space into objects in the

solution space and creating an overall structure and computational models of the

system.

 Reusability of classes from the previous designs, classification of the object into

subsystems and determination of appropriate protocols are some of the consideration

of design stage.

 The OOD approach may involve following steps:

1) Review of objects created in the analysis phase.

2) Specification of class dependencies

3) Organization of class hierarchies

4) Design of Classes

5) Design of member function

6) Deign of Driver Program

Review of objects created in the analysis phase

 The main objective of this review exercise is to refine the objects in terms of their

attributed and operations and to identity other objects that are solution specific.

 Some guidelines that might help the review process are:

 If only one object is necessary for a service , then it operates only on

that objects

 If two or more objects are required for an operation to occur, then it is

necessary to identify which object’s private part should be known to

the operation

 If an operation requires knowledge of more than one type of objects,

then the operations is not functionally cohesive and should be

rejected,.

Class dependencies

 It is important to identify appreciate classes to represent the objects in the solution

space and establish a relationships.

 The major relationships that are important in context of designs are:

 Inheritance Relationships

 Containment Relationships

 Use Relationships

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 111

Organization of class hierarchies

 It involves identification of common attributes and functions among a group or

related classes and then combining them to form a new class.

 The new class will serve as the super class and others as subordinate class.

 The new class may or may not have the meaning of the object by itself.

 If the object is created purely to combine the common attributes, it is called as an

“abstract class”.

Design of Classes

 We have identified classes, their attributes and minimal set of operations required by

the concepts a class is representing

 For the class to be useful, it must contain the following functions:

 Class Management functions

 Class implementation functions

 Class access functions

 Class utility functions

Design of member functions

 The member functions define the operations that are performed on the object’s data.

Deign of the driver program

 Every c++ program must contain a main() function code known as “driver

program”

 The execution of the program begins and ends here.

 The driver program is mainly responsible for

 Receiving data values from the user

 Creating objects from the class definitions

 Arranging communication b/w the objects as a sequence of messages

for invoking member functions

 Displaying output results in form required by the user

Implementation

 It includes coding and testing

 Codes includes writing code for classes, member functions and main program, that

acts as a driver in the program,

CORE COURSE II PROGRAMMING IN C++

Compiled by: Arun Kumar.M AP/CS BCSM Page 112

Wrapping up

 Following are some points for your thought and innovation

1. Set clear goals and tangible objectives

2. Keep in mind that the proposed system must be flexible m portable and

extendable

3. Keep a clear documentation of everything that goes into the system

4. Try to reuse the existing functions and classes

5. Keep functions strongly typed wherever possible

6. Use prototype wherever possible

7. Match design and programming style

8. Keep the system clean, simple, small and efficient as far as possible

…..the end….

