

Database Systems

Roll No :

Name :

Dept :

PG DEPARTMENT OF COMPUTER SCIENCE

BHARATH COLLEGE OF SCIENCE AND MANAGEMENT,TNJ-5

CONTENT

UNIT I

Sl.No Topic Page No

1 Introduction to Database Management Systems 3

1.1 What is Management System 4

1.2 Database System Applications 4

1.3 Purpose of Database systems 5

1.4 View of Database Systems 6

1.5 Instances and Schemas 7

1.6 Database Languages 9

1.7 Data Model 11

1.8 Database Design 12

1.9 Database architecture 18

1.10 Superkey 24

1.11 History of database systems 24

1.12 Data Mining 26

UNIT II

2.1 Relational Databases 29

2.2 Structure of Relational Databases 29

2.3 Relational Schema 30

2.4 Keys 31

2.5 Relational Query Language 33

2.6 Relational Algebra 33

2.7 SQL Null values 44

2.8 Modification of database 46

UNIT III

3.1 Overview of SQL Query 52

3.2 SQL Commands 53

3.3 Basic structure of SQL Quires 54

3.4 Null value 58

3.5 Sub Query 59

3.6 SQL Modification Statements 60

3.7 Join Expressions 63

3.8 Views in SQL 70

3.9 Transactions 75

3.10 Integrity constraints 76

3.11 SQL Data Types and Schemas 77

3.12 Authorization 78

SUBJECT CODE: 16SCCCS4

UNIT IV

4.1 Relational calculus 80

4.2 Entity Relationship Design issues 82

UNIT V

5.1 Designing good relational Databases 84

5.2 Normalization 86

5.3 Relational Decomposition 99

5.4 Functional Dependency 100

5.5 Multivalued Dependency 101

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 1

DATABASE SYSTEMS

Objective :

To provide the basic concepts of the Database Systems including Data Models, Storage

Structure, Normalization and SQL

Unit I

Introduction: Database-System Applications- Purpose of Database Systems - View of Data -

Database Languages - Relational Databases - Database Design -Data Storage and Querying

Transaction Management -Data Mining and Analysis - Database Architecture - Database

Users and Administrators - History of Database Systems.

Unit II

Relational Model: Structure of Relational Databases -Database Schema - Keys - Schema

Diagrams - Relational Query Languages - Relational Operations Fundamental Relational

Algebra Operations Additional Relational-Algebra Operations- Extended Relational-Algebra

Operations - Null Values - Modification of the Database.

Unit III

SQL:Overview of the SQL Query - Language - SQL Data Definition - Basic Structure of

SQL Queries - Additional Basic Operations - Set Operations - Null Values Aggregate

Functions - Nested Subqueries - Modification of the Database -Join Expressions - Views -

Transactions - Integrity Constraints - SQL Data Types and Schemas - Authorization

Unit IV

Relational Languages: The Tuple Relational Calculus - The Domain Relational Calculus

Database Design and the E-R Model: Overview of the Design Process - The Entity

Relationship Model - Reduction to Relational Schemas - Entity-Relationship Design Issues -

Extended E-R Features - Alternative Notations for Modeling Data - Other Aspects of

Database Design

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 2

Unit V

Relational Database Design: Features of Good Relational Designs - Atomic Domains and

First Normal Form - Decomposition Using Functional Dependencies - Functional-

Dependency Theory - Decomposition Using Functional Dependencies - Decomposition

Using Multivalued Dependencies-More Normal Forms - Database-Design Process

Text Book:

1. Database System Concepts, Sixth edition, Abraham Silberschatz, Henry F. Korth,

S.Sudarshan, McGraw-Hill-2010.

Reference Books:

1 Database Systems: Models, Languages, Design and Application, Ramez Elmasri, Pearson

Education 2014

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 3

Unit I

Introduction: Database-System Applications- Purpose of Database Systems - View of Data -

Database Languages - Relational Databases - Database Design -Data Storage and Querying

Transaction Management -Data Mining and Analysis - Database Architecture - Database

Users and Administrators - History of Database Systems.

1. Introduction to Database Management Systems:

As the name suggests, the database management system consists of two parts. They are:

1. Database and

2. Management System

What is a Database?

To find out what database is, we have to start from data, which is the basic

building block of any DBMS.

1. Data: Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19

etc).

2. Record: Collection of related data items, e.g. in the above example the three

data items had no meaning. But if we organize them in the following way, then

they collectively represent meaningful information.

3. Table or Relation: Collection of related records.

A database in a DBMS could be viewed by lots of different people with different

responsibilities.

Figure 1.1: Employees are accessing Data through DBMS

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 4

1.1 What is Management System?

1. A database-management system (DBMS) is a collection of interrelated data

and a set of programs to access those data.

2. This is a collection of related data with an implicit meaning and hence is a

database.

3. The collection of data, usually referred to as the database, contains information

relevant to an enterprise.

4. The primary goal of a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient.

5. By data, we mean known facts that can be recorded and that have implicit

meaning.

1.2 Database System Applications:

1.2.1 Enterprise Information

1. Sales: For customer, product, and purchase information.

2. Accounting: For payments, receipts, account balances, assets and other accounting

information.

3. Human resources: For information about employees, salaries, payroll taxes, and

benefits, and for generation of paychecks.

4. Manufacturing: For management of the supply chain and for tracking production of

items in factories, inventories of items in warehouses and stores, and orders for

items.

5. Online retailers: For sales data noted above plus online order tracking,

generation of recommendation lists, and maintenance of online product

evaluations.

1.2.2 Banking Finance

1. Banking: For customer information, accounts, loans, and banking transactions.

2. Credit card transactions: For purchases on credit cards and generation of monthly

statements.

3. Finance: For storing information about holdings, sales, and purchases of financial

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 5

instruments such as stocks and bonds; also for storing real-time market data to

enable online trading by customers and automated trading by the firm.

1.2.3 Others

1. Universities: For student information, course registrations, and grades (in addition

to standard enterprise information such as human resources and accounting).

2. Airlines: For reservations and schedule information. Airlines were among the first to

use databases in a geographically distributed manner.

3. Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

1.3 Purpose of Database Systems

Database systems arose in response to early methods of computerized management of

commercial data.

1. Data redundancy and inconsistency: Since different programmers create the files

and application programs over a long period, the various files are likely to have

different structures and the programs may be written in several programming

languages

2. Difficulty in accessing data : Suppose that one of the university clerks needs to find

out the names of all students who live within a particular postal-code area.

3. Data isolation : Because data are scattered in various files, and files may be in

different formats, writing new application programs to retrieve the appropriate data is

difficult.

4. Integrity problems : The data values stored in the database must satisfy certain types

of consistency constraints.

5. Atomicity problems : A computer system, like any other device, is subject to failure.

In many applications, it is crucial that, if a failure occurs, the data be restored to the

consistent state that existed prior to the failure.

6. Concurrent-access anomalies : To guard against this possibility, the system must

maintain some form of supervision. But supervision is difficult to provide because

data may be accessed by many different application programs that have not been

coordinated previously.

7. Security problems: Not every user of the database system should be able to access

all the data.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 6

1.3.1 Advantages of Database Systems :

1. Controlling of Redundancy

2. Improved Data Sharing

3. Data Integrity

4. Security

5. Data Consistency

6. Efficient Data Access

7. Enforcements of Standards

8. Data Independence

9. Reduced Application Development and Maintenance

1.3.2Disadvantages of Database Systems :

1) It is bit complex. Since it supports multiple functionality to give the user the best,

the underlying software has become complex. The designers and developers should

have thorough knowledge about the software to get the most out of it.

2) Because of its complexity and functionality, it uses large amount of memory. It also

needs large memory to run efficiently.

3) DBMS system works on the centralized system, i.e.; all the users from all over the

world access this database. Hence any failure of the DBMS, will impact all the

users.

4) DBMS is generalized software, i.e.; it is written work on the entire systems rather

specific one. Hence some of the application will run slow.

1.4 View of Database Systems:

1. A database system is a collection of interrelated data and a set of programs that

allow users to access and modify these data.

2. A major purpose of a database system is to provide users with an abstract view of the

data.

3. There is an 3 layers for viewing the data from the database they are as follows :

 Physical level (or Internal View / Schema)

 Logical level (or Conceptual View / Schema)

 View level (or External View / Schema)

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 7

1. Physical level (or Internal View / Schema):

1. The lowest level of abstraction describes how the data are actually stored.

2. The physical level describes complex low-level data structures in detail.

3. Logical level (or Conceptual View / Schema):

1. The next-higher level of abstraction describes what data are stored in the

database, and what relationships exist among those data.

2. The logical level thus describes the entire database in terms of a small number

of relatively simple structures. Although implementation of the simple

structures at the logical level may involve complex physical-level structures, the

user of the logical level does not need to be aware of this complexity. This is

referred to as physical data independence.

3. View level (or External View / Schema):

1. The highest level of abstraction describes only part of the entire database.

2. Even though the logical level uses simpler structures, complexity remains

because of the variety of information stored in a large database

1.5 Instances and Schemas:

1.5.1 Schemas

1. The overall design of a database is called schema.

2. A database schema is the skeleton structure of the database. It represents the

logical view of the entire database.

Fig 1.2 : Levels of Abstraction in DBMS

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 8

3. A schema contains schema objects like table, foreign key, primary key,

views,columns, data types, stored procedure, etc.

4. A database schema can be represented by using the visual diagram.

That diagram shows the database objects and relationship with each other.

5. A database schema is designed by the database designers to help programmers

whose software will interact with the database. The process of database

creation is called data modeling.

A database schema can be divided broadly into two categories −

 Physical Database Schema − This schema pertains to the actual storage of data

and its form of storage like files, indices, etc. It defines how the data will be stored

in a secondary storage.

 Logical Database Schema − This schema defines all the logical constraints that

need to be applied on the data stored. It defines tables, views, and integrity

constraints.

1.5.2 Instances

1. The data which is stored in the database at a particular moment of time is called an

instance of the database.

2. Database schema is the skeleton of database.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 9

3. A database schema does not contain any data or information.

4. A database instance is a state of operational database with data at any given time. It

contains a snapshot of the database. Database instances tend to change with time.

1.6 Database Languages:

 A DBMS has appropriate languages and interfaces to express database queries and

updates. Database languages can be used to read, store and update the data in the database.

1.6.1 Data Definition Language (DDL) :

1. It is used to define database structure or pattern.

2. It is used to create schema, tables, indexes, constraints, etc. in the database.

3. Using the DDL statements, you can create the skeleton of the database.

4. Data definition language is used to store the information of metadata like the

number of tables and schemas, their names, indexes, columns in each table,

constraints, etc.

Here are some tasks that come under DDL:

1. Create: It is used to create objects in the database.

2. Alter: It is used to alter the structure of the database.

3. Drop: It is used to delete objects from the database.

4. Truncate: It is used to remove all records from a table.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 10

5. Rename: It is used to rename an object.

6. Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that's why they come under Data

definition language.

1.6.2 Data Manipulation Language (DML):

 It is used for accessing and manipulating data in a database. It handles user

requests.

Here are some tasks that come under DML:

1. Select: It is used to retrieve data from a database.

2. Insert: It is used to insert data into a table.

3. Update: It is used to update existing data within a table.

4. Delete: It is used to delete all records from a table.

5. Merge: It performs UPSERT operation, i.e., insert or update operations.

6. Call: It is used to call a structured query language or a Java subprogram.

7. Explain Plan: It has the parameter of explaining data.

8. Lock Table: It controls concurrency.

1.6.3 Data Control Language (DCL):

1. It is used to retrieve the stored or saved data.

2. The DCL execution is transactional.

3. It also has rollback parameters.

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 11

1.6.4 Transaction Control Language

1. TCL is used to run the changes made by the DML statement.

2. TCL can be grouped into a logical transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit.

1.7 Data Models:

1. Data models define how the logical structure of a database is modeled.

2. Data Models are fundamental entities to introduce abstraction in a DBMS.

3. Data models define how data is connected to each other and how they are processed

and stored inside the system.

4. There are 2 model available

a. ER Model

b. Relational Model

1.7.1 ER model

1. ER model stands for an Entity-Relationship model.

2. It is a high-level data model.

3. This model is used to define the data elements and relationship for a specified

system.

4. It develops a conceptual design for the database.

5. It also develops a very simple and easy to design view of data.

6. In ER modeling, the database structure is portrayed as a diagram called an entity-

relationship diagram.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 12

1.7.2 Relational Model

The most popular data model in DBMS is the Relational Model. It is more

scientific a model than others. This model is based on first-order predicate

logic and defines a table as an n-ary

1.8 Database Design

1.8.1 Entity-Relationship Model

1. Entity-Relationship (ER) Model is based on the notion of real-world entities and

relationships among them.

2. While formulating real-world scenario into the database model, the ER Model

creates entity set, relationship set, general attributes and constraints.

ER Model is best used for the conceptual design of a database.

ER Model is based on −

 Entities and their attributes.

 Relationships among entities.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 13

These concepts are explained below.

What is ER Modeling?

 A graphical technique for understanding and organizing the data

independent of the actual database implementation

Component of ER Diagram:

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 14

1. Entity:

1. An entity may be any object, class, person or place. In the ER diagram, an entity can

be represented as rectangles.

2. Consider an organization as an example- manager, product, employee, department etc.

can be taken as an entity

a. Weak Entity

1. An entity that depends on another entity called a weak entity.

2. The weak entity doesn't contain any key attribute of its own. The weak entity is

represented by a double rectangle.

2. Attribute

The attribute is used to describe the property of

an entity. Eclipse is used to represent an

attribute.

For example, id, age, contact number, name, etc.

can be attributes of a student.

a. Key Attribute

The key attribute is used to represent the main

characteristics of an entity. It represents a primary

key. The key attribute is represented by an ellipse

with the text underlined.

b. Composite Attribute

An attribute that composed of many other attributes is known as a composite attribute. The

composite attribute is represented by an ellipse, and those ellipses are connected with an

ellipse.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 15

c. Multivalued Attribute

An attribute can have more than one value.

These attributes are known as a multivalued

attribute. The double oval is used to

represent multivalued attribute.For

example, a student can have more than one phone number.

d. Derived Attribute

 An attribute that can be derived from

other attribute is known as a derived attribute. It

can be represented by a dashed ellipse.

For example, A person's age changes over time

and can be derived from another attribute like

Date of

birth.

Relationship − The logical association among entities is called relationship. Relationships

are mapped with entities in various ways. Mapping cardinalities define the number of

association between two entities.

Mapping cardinalities −

 one to one

 one to many

 many to one

 many to many

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 16

Cardinality defines the number of entities in one entity set, which can be associated with

the number of entities of other set via relationship set.

1. One-to-one − One entity from entity set A can be associated with at most one entity

of entity set B and vice versa.

2. One-to-many − One entity from entity set A can be associated with more than one

entities of entity set B however an entity from entity set B, can be associated with at

most one entity.

3. Many-to-one − More than one entities from entity set A can be associated with at

most one entity of entity set B, however an entity from entity set B can be associated

with more than one entity from entity set A.

One-to-one

One-to-Many

Many -to- one

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 17

4. Many-to-many − One entity from A can be associated with more than one entity

from B and vice versa.

OBJECT-BASED DATA MODEL.

1. Object-oriented programming (especially in Java, C++, or C#) has become the

dominant software-development methodology.

2. This led to the development of an object- oriented data model that can be seen

as extending the E-R model with notions of encapsulation, methods (functions),

and object identity.

SEMI-STRUCTURED DATA MODEL.

1. The semi-structured data model permits the specification of data where

individual data items of the same type may have different sets of attributes.

2. This is in contrast to the data models mentioned earlier, where every data item

of a particular type must have the same set of attributes.

3. The Extensible Markup Language (XML) is widely used to represent semi-

structured data.

Many -to- Many

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 18

1.9DATABASE

ARCHITECTURE

o The DBMS design depends

upon its architecture.

o The basic client/server

architecture is used to deal

with a large number of PCs,

web servers, database servers

and other components that

are connected with networks.

o The client/server architecture consists of many PCs and a workstation which are

connected via the network.

o DBMS architecture depends upon how users are connected to the database to get

their request done

Types of DBMS Architecture

1-Tier Architecture

o In this architecture, the database is directly available to the user. It means the user

can directly sit on uses it.

o Any changes done here will directly be done on the database itself. It doesn't provide

a handy tool for end users.

o The 1-Tier architecture is used for development of the local application, where

programmers can directly communicate with the database for the quick response.

o The following user role this tier the are as follows:

 Naïve Users (Tellers, Agents & Web Users)

 Application Programmers

 Sophisticated Users (Analysts)

 Database Administrators

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 19

2-Tier Architecture

o The 2-Tier architecture is same as basic client-server. In the two-tier architecture,

applications on the client end can directly communicate with the database at the

server side. For this interaction, API's like: ODBC, JDBC are used.

o The user interfaces and application programs are run on the client-side.

o The server side is responsible to provide the functionalities like: query processing

and transaction management.

o To communicate with the DBMS, client-side application establishes a connection

with the server side.

o The Query Processor have the following :

 DDL Interpreter

 DML Compiler

 Query Evaluation Engine

3-Tier Architecture

o The 3-Tier architecture contains another layer between the client and server. In this

architecture, client can't directly communicate with the server.

o The application on the client-end interacts with an application server which further

communicates with the database system.

o End user has no idea about the existence of the database beyond the application

server. The database also has no idea about any other user beyond the application.

o The 3-Tier architecture is used in case of large web application.

o This Tier is responsible for the Storage and it have Storage Manager that have the

following functions

 Authorization and Integrity Manager

 Transaction Manager

 File Manager

 Buffer Manager

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 20

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 21

DATA DICTIONARY

1. We can define a data dictionary as a DBMS component that stores the definition

of data characteristics and relationships.

2. The DBMS data dictionary provides the DBMS with its self describing

characteristic. In effect, the data dictionary resembles and X-ray of the

company’s entire data set, and is a crucial element in the data administration

function.

For example, the data dictionary typically stores descriptions of all:

1. Data elements that are define in all tables of all databases. Specifically the data

dictionary stores the name, datatypes, display formats, internal storage formats,

and validation rules. The data dictionary tells where an element is used, by whom it

is used and so on.

2. Tables define in all databases. For example, the data dictionary is likely to store the

name of the table creator, the date of creation access authorizations, the number of

columns, and so on.

3. Indexes define for each database tables. For each index the DBMS stores at least

the index name the attributes used, the location, specific index characteristics and the

creation date.

4. Define databases: who created each database, the date of creation where the

database is located, who the

5. DBA is and so on.

6. End users and The Administrators of the data base

7. Programs that access the database including screen formats, report formats

application formats, SQL queries and so on.

8. Access authorization for all users of all databases.

9. Relationships among data elements which elements are involved: whether the

relationship are mandatory or optional, the connectivity and cardinality and so on.

Database Users and User Interfaces

 There are four different types of database-system users, differentiated by the way

they expect to interact with the system. Different types of user interfaces have been

designed for the different types of users.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 22

NAIVE USERS

1. Are unsophisticated users who interact with the system by invoking one of the

application programs that have been written previously.

2. For example, a bank teller who needs to transfer $50 from account A to account

B invokes a program called transfer.

APPLICATION PROGRAMMERS

1. Are computer professionals who write application programs. Application

programmers can choose from many tools to develop user interfaces.

2. Rapid application development (RAD) tools are tools that enable an

application programmer to construct forms and reports without writing a

program.

SOPHISTICATED USERS

1. Interact with the system without writing programs. Instead, they form their

requests in a database query language.

2. They submit each such query to a query processor, whose function is to break

down DML statements into instructions that the storage manager understands.

Analysts who submit queries to explore data in the database fall in this

category.

ONLINE ANALYTICAL PROCESSING (OLAP)

1. Tools simplify analysts’ tasks by letting them view summaries of data in

different ways.

2. For instance, an analyst can see total sales by region (for example, North,

South, East, and West), or by product, or by a combination of region and

product (that is, total sales of each product in each region).

QUERY PROCESSOR:

 The query processor components include

DDL interpreter, which interprets DDL statements and records the definitions in the data

dictionary.

DML compiler, which translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query evaluation engine

understands.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 23

A query can usually be translated into any of a number of alternative evaluation plans

that all give the same result. The DML compiler also performs query optimization,

that is, it picks the lowest cost evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the DML

compiler

STORAGE MANAGER:

A storage manager is a program module that provides the interface between the low level

data stored in the database and the application programs and queries submitted to the

system. The storage manager is responsible for the interaction with the file manager.

The storage manager components include:

1. Authorization and integrity manager, which tests for the satisfaction of

integrity constraints and checks the authority of users to access data.

2. Transaction manager, which ensures that the database remains in a consistent

(correct) state despite system failures, and that concurrent transaction

executions proceed without conflicting.

3. File manager, which manages the allocation of space on disk storage and the

data structures used to represent information stored on disk.

4. Buffer manager, which is responsible for fetching data from disk storage into

main memory, and deciding what data to cache in main memory. The buffer

manager is a critical part of the database system, since it enables the database to

handle data sizes that are much larger than the size of main memory.

TRANSACTION MANAGER:

 A transaction is a collection of operations that performs a single logical

function in a database application. Each transaction is a unit of both atomicity and

consistency. Thus, we require that transactions do not violate any database-

consistency constraints.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 24

1.10 SUPERKEY

 A superkey is a set of one or more attributes that, taken collectively, allow us to

identify uniquely a tuple in the relation. For example, the ID attribute of the relation

instructor is sufficient to distinguish one instructor tuple from another. Thus, ID is a

superkey. The name attribute of instructor, on the other hand, is not a superkey, because

several instructors might have the same name.

 A superkey may contain extraneous attributes. For example, the combination

of ID and name is a superkey for the relation instructor. If K is a superkey, then so is

any superset of K. We are often interested in superkeys for which no proper subset is a

superkey. Such minimal superkeys are called candidate keys.

1.11 HISTORY OF DATABASE SYSTEMS.

1960S

1. Computerized database started in the 1960s, when the use of computers became a

more cost-effective option for private organizations.

2. There were two popular data models in this decade: a network model called

CODASYL and a hierarchical model called IMS.

3. One database system that proved to be a commercial success was the SABRE system

that was used by IBM to help American Airlines manage its reservations data.

1970 TO 1972

1. E.F. Codd published an important paper to propose the use of a relational database

model, and his ideas changed the way people thought about databases.

2. In his model, the database’s schema, or logical organization, is disconnected from

physical information storage, and this became the standard principle for database

systems.

1970S

1. Two major relational database system prototypes were created between the years

1974 and 1977, and they were the Ingres, which was developed at UBC, and System

R, created at IBM San Jose.

2. Ingres used a query language known as QUEL, and it led to the creation of systems

such as Ingres Corp., MS SQL Server, Sybase, Wang’s PACE, and Britton-Lee. On

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 25

the other hand, System R used the SEQUEL query language, and it contributed to

the development of SQL/DS, DB2, Allbase, Oracle, and Non-Stop SQL.

3. It was also in this decade that Relational Database Management System, or

RDBMS, became a recognized term.

1976

1. A new database model called Entity-Relationship, or ER, was proposed by P. Chen

this year.

2. This model made it possible for designers to focus on data application, instead of

logical table structure.

1980S

1. Structured Query Language, or SQL, became the standard query language.

2. Relational database systems became a commercial success as the rapid increase in

computer sales boosted the database market, and this caused a major decline in the

popularity of network and hierarchical database models.

3. DB2 became the flagship database product for IBM, and the introduction of the IBM

PC resulted in the establishments of many new database companies and the

development of products such as PARADOX, RBASE 5000, RIM, Dbase III and IV,

OS/2 Database Manager, and Watcom SQL.

EARLY 1990S

1. After a database industry shakeout, most of the surviving companies sold complex

database products at high prices.

2. Around this time, new client tools for application development were released, and

these included the Oracle Developer, PowerBuilder, VB, and others.

3. A number of tools for personal productivity, such as ODBC and Excel/Access, were

also developed. Prototypes for Object Database Management Systems, or ODBMS,

were created in the early 1990s.

MID 1990S

1. The advent of the Internet led to exponential growth of the database industry.

2. Average desktop users began to use client-server database systems to access

computer systems that contained legacy data.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 26

LATE 1990S

1. Increased investment in online businesses resulted in a rise in demand for Internet

database connectors, such as Front Page, Active Server Pages, Java Servelets,

Dream Weaver, ColdFusion, Enterprise Java Beans, and Oracle Developer 2000.

2. The use of cgi, gcc, MySQL, Apache, and other systems brought open source

solution to the Internet. With the increased use of point-of-sale technology, online

transaction processing and online analytic processing began to come of age.

2000S

1. Although the Internet industry experienced a decline in the early 2000s, database

applications continue to grow.

2. New interactive applications were developed for PDAs, point-of-sale transactions,

and consolidation of vendors. Presently, the three leading database companies in the

western world are Microsoft, IBM, and Oracle.

TODAY

1. Today, databases are everywhere and are used to enhance our day-to-day life. From

personal cloud storage to predicting the weather, many of the services we utilize

today are possible due to databases.

2. Presently, there are many new players in the non-relational database space offering

specific solutions. Some of the current relational databases include giants such as

Oracle, MySQL, and DB2.

3. We're also seeing new trends emerging that focus on making powerful technology

accessible to everyone.

4. Quick Base is an online database platform built on a relational database, which

gives users of any skill level the ability to create custom applications using the power

of a relational database, but with the simplicity of a point-and-click user interface.

1.12 DATA MINING

 There is a huge amount of data available in the Information Industry. This data is of

no use until it is converted into useful information. It is necessary to analyze this huge

amount of data and extract useful information from it.

https://www.quickbase.com/business-application-platform/online-database-software

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 27

WHAT IS DATA MINING?

Data Mining is defined as extracting information from huge sets of data. In other words,

we can say that data mining is the procedure of mining knowledge from data. The

information or knowledge extracted so can be used for any of the following applications −

 Market Analysis

 Fraud Detection

 Customer Retention

 Production Control

 Science Exploration

DATA MINING APPLICATIONS

Data mining is highly useful in the following domains −

 Market Analysis and Management

 Corporate Analysis & Risk Management

 Fraud Detection

Apart from these, data mining can also be used in the areas of production control, customer

retention, science exploration, sports, astrology, and Internet Web Surf-Aid

MARKET ANALYSIS AND MANAGEMENT

Listed below are the various fields of market where data mining is used −

 Customer Profiling − Data mining helps determine what kind of people buy what

kind of products.

 Identifying Customer Requirements − Data mining helps in identifying the best

products for different customers. It uses prediction to find the factors that may

attract new customers.

 Cross Market Analysis − Data mining performs Association/correlations between

product sales.

 Target Marketing − Data mining helps to find clusters of model customers who

share the same characteristics such as interests, spending habits, income, etc.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 28

 Determining Customer purchasing pattern − Data mining helps in determining

customer purchasing pattern.

 Providing Summary Information − Data mining provides us various

multidimensional summary reports.

CORPORATE ANALYSIS AND RISK MANAGEMENT

Data mining is used in the following fields of the Corporate Sector −

 Finance Planning and Asset Evaluation − It involves cash flow analysis and

prediction, contingent claim analysis to evaluate assets.

 Resource Planning − It involves summarizing and comparing the resources and

spending.

 Competition − It involves monitoring competitors and market directions.

FRAUD DETECTION

1. Data mining is also used in the fields of credit card services and telecommunication

to detect frauds.

2. In fraud telephone calls, it helps to find the destination of the call, duration of the

call, time of the day or week, etc. It also analyzes the patterns that deviate from

expected norms.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 29

Unit II

Relational Model: Structure of Relational Databases -Database Schema - Keys – Schema

Diagrams - Relational Query Languages - Relational Operations Fundamental Relational

Algebra Operations Additional Relational-Algebra Operations- Extended Relational-Algebra

Operations - Null Values - Modification of the Database.

2.1 Relational Databases

1. The relational model represents the database as a collection of relations. A relation

is nothing but a table of values.

2. Every row in the table represents a collection of related data values.

3. These rows in the table denote a real-world entity or relationship.

2.2 Structure of Relational Databases

1. A relational database consists of a collection of tables, each having a unique

name.

2. A row in a table represents a relationship among a set of values.

3. Thus a table represents a collection of relationships.

In Relational Data base model records are stored into tables. Relational data model is

easier to understand than the hierarchal data models and network data models. Relational

data model provides a logical view of the data and its relationship among other data.

Characteristics of a Table:

1. A table is composed of rows and columns.

2. Each row of the table represents one entity (tuple) in the entity set.

3. Each column represents an attribute and each column has distinct name.

4. Each cell represents a single value.

5. All values in a column must have same data format.

6. Each column has a specified range of values which is called domain.

7. The order of the rows and columns is immaterial to the DBMS.

8. Each table must have an attribute or group of attributes that uniquely identified each

row.

The following Student table shows above characteristics.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 30

2.3Relation Schema:

The relation schema describes the column heads for the table. The schema specifies the

relation’s name, the name of each field (column, attribute) and the ‘domain’ of each field. A

domain is referred to in a relation schema by the domain name and has a set of associated

values.

Example:

Student information in a university database to illustrate the parts of a

relation schema. Students (Sid: string, name: string, login: string, age:

integer, gross: real)

This says that the field named ‘sid’ has a domain named ‘string’.The set of values associated

with domain ‘string’ is the set of all character strings.

Relation Instance:

1. This is a table specifying the information.

2. An instance of a relation is a set of ‘tuples’, also called ‘records’, in which each tuple

has the same number of fields as the relation schemas.

3. A relation instance can be thought of as a table in which each tuple is a row and all

rows have the same number of fields.

4. The relation instance is also called as ‘relation’.Each relation is defined to be a set of

unique tuples or rows.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 31

Example:

Fields (Attributes, Columns)

sid login age Field names

1111 Dave dave@cs 19 1.2

2222 Jones Jones@cs 18 2.3 Tuples (Records, Rows)

333 Smith smith@ee 18 3.4

4444 Smith smith@math 19 4.5

This example is an instance of the students relation, which consists 4
tuples and 5 fields. No two rows are identical.

2.4KEYS

Key is an attribute or collection of attributes that uniquely identifies an entity among entity

set.

For example, the roll_number of a student makes him/her identifiable among students.

1. Super Key − A set of attributes (one or more) that collectively identifies an entity in

an entity set.

2. Candidate Key − A minimal super key is called a candidate key. An entity set may

have more than one candidate key.

3. Primary Key − A primary key is one of the candidate keys chosen by the database

designer to uniquely identify the entity set.

2.4.1 Super Key

The set of fields that contains a key is called as a ‘super key’. The set of 1 or more

attributes that allows us to identify uniquely an entity in the entity set . A super key

specifies a uniqueness constraint that no 2 distinct tuples can have the same value. Every

relation has at least 1 default super key as the set of all attributes.

Example:

Students Name

(Relation) Login

 Age

 Gross

One of the super key = {Sid, Name, Login,Gross}

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 32

2.4.2 CANDIDATE KEY:

1. A set of fields that uniquely identifies a tuple according to a key constraint is called

as a ‘Candidate Key’ for the relation.

2. This is also called as a ‘key’.

From the definition of candidate key, we have,

Two distinct tuples in a legal instance cannot have identical values in all the fields of a

key.i.e, in any legal instance, the values in the key fields uniquely identify a tuple in the

instance.The values in the key fields uniquely identify a tuple in the instance..No subset of

the set of fields in key is a unique identifier for a tuple,

i.e., the set of fields {sid, name} is not a key for Students. A relation schema may have more

than key.

Example: In the above Students relation, the ‘sid’ field is a candidate key.

{sid}.

The value of a key attribute can be used to identify uniquely each tuple in the relation.

‘A set of attributes constituting a key’ is a property of the relation schema. A key is

determined from the meaning of attributes.

Every relation is guaranteed to have a key. Since a relation is a set of tuples, the set of all

fields is always a super key.

2.4.3 PRIMARY KEY:

1. This is also a candidate key, whose values are used to identify tuples in the relation. It is

common to designate one of the candidate keys as a primary key of the relation.

2. The attributes that form the primary key of a relation schema are underlined.

3. It is used to denote a candidate key that is chosen by the database designer as the principal

means of identifying entities with an entity set.

Example:

‘Sid’ of Students relation.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 33

2.5 RELATIONAL QUERY LANGUAGES

Relational query languages use relational algebra to break the user requests and

instruct the DBMS to execute the requests. It is the language by which user communicates

with the database. These relational query languages can be procedural or non-procedural.

PROCEDURAL QUERY LANGUAGE

A procedural query language will have set of queries instructing the DBMS to

perform various transactions in the sequence to meet the user request. For

example, get_CGPA procedure will have various queries to get the marks of student in each

subject, calculate the total marks, and then decide the CGPA based on his total marks.

NON-PROCEDURAL QUERY LANGUAGE

Non-procedural queries will have single query on one or more tables to get result

from the database. For example, get the name and address of the student with particular ID

will have single query on STUDENT table.

2.6RELATIONAL ALGEBRA

Relational algebra is a procedural query language. It takes one or more relations /

tables and performs the operation and produce the result. This result is also considered as a

new table or relation.

Relational algebra will have operators to indicate the operations. This algebra can be

applied on single relation – called unary or can be applied on two tables – called binary.

2.6.1 SELECT (Σ)

1. Select (σ) – This is a unary relational operation.

2. This operation pulls the horizontal subset (subset of rows) of the relation that satisfies

the conditions.

3. This can use operators like <, >, <=, >=, = and != to filter the data from the relation. It

can also use logical AND, OR and NOT operators to combine the various filtering

conditions. This operation can be represented as below:

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 34

2.6.2 σ p (r)

1. Where σ is the symbol for select operation, r represents the relation/table, and p is

the logical formula or the filtering conditions to get the subset. Let us see an

example as below:

σSTD_NAME = “James” (STUDENT)

What does above relation algebra do? It selects the record/tuple from the STUDENT table

with Student name as ‘James’

σdept_id = 20 AND salary>=10000 (EMPLOYEE) – Selects the records from EMPLOYEE table with

department ID = 20 and employees whose salary is more than 10000.

2.6.3 PROJECT (∏)

1. Project (∏) – This is a unary operator and is similar to select operation above. It

creates the subset of relation based on the conditions specified.

2. Here, it selects only selected columns/attributes from the relation- vertical subset of

relation. The select operation above creates subset of relation but for all the attributes

in the relation. It is denoted as below:

∏a1, a2, a3 (r)

Where ∏ is the operator for projection, r is the relation and a1, a2, a3 are the attributes of the

relations which will be shown in the resultant subset.

∏std_name, address, course (STUDENT) – This will select all the records from STUDENT table

but only selected columns – std_name, address and course. Suppose we have to select only

these 3 columns for particular student then we have to combine both project and select

operations.

∏STD_ID, address, course (σ STD_NAME = “James”(STUDENT)) – this selects the record for ‘James’

and displays only std_ID, address and his course columns. Here we can see two unary

operators are combined, and it has two operations performing. First it selects the tuple from

STUDENT table for ‘James’. The resultant subset of STUDENT is also considered as

intermediary relation. But it is temporary and exists till the end of this operation. It then

filters the 3 columns from this temporary relation.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 35

2.6.4 RENAME (Ρ)

1. Rename (ρ) – This is a unary operator used to rename the tables and columns of a

relation.

2. When we perform self join operation, we have to differentiate two same tables. In

such case rename operator on tables comes into picture.

3. When we join two or more tables and if those tables have same column names, then

it is always better to rename the columns to differentiate them. This occurs when we

perform Cartesian product operation.

ρ
R(E)

Where ρ is the rename operator, E is the existing relation name, and R is the new relation

name.

ρ STUDENT (STD_TABLE) – Renames STD_TABLE table to STUDENT

Let us see another example to rename the columns of the table. If the STUDENT table has

ID, NAME and ADDRESS columns and if they have to be renamed to STD_ID,

STD_NAME, STD_ADDRESS, then we have to write as follows.

ρ
STD_ID, STD_NAME, STD_ADDRESS(STUDENT) – It will rename the columns in the order the names

appear in the table

2.6.5 CARTESIAN PRODUCT (X)

1. Cartesian product (X): – This is a binary operator. It combines the tuples of two

relations into one relation.

 RXS

Where R and S are two relations and X is the operator. If relation R has m tuples and relation

S has n tuples, then the resultant relation will have mn tuples. For example, if we perform

cartesian product on EMPLOYEE (5 tuples) and DEPT relations (3 tuples), then we will have

new tuple with 15 tuples.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 36

EMPLOYEE X DEPT

This operator will simply create a pair between the tuples of each table. i.e.; each employee in

the EMPLOYEE table will be mapped with each department in DEPT table. Below diagram

depicts the result of cartesian product.

2.6.6. Union (U)

Union (U) – It is a binary operator, which combines the tuples of two relations. It is denoted

by R U S

Where R and S are the relations and U is the operator.

DESIGN_EMPLOYEE U TESTING_EMPLOYEE

Where DESIGN_EMPLOYEE and TESTING_EMPLOYEE are two relations.

It is different from cartesian product in:

 Cartesian product combines the attributes of two relations into one relation

whereas Union combines the tuples of two relations into one relation.

 In Union, both relations should have same number of columns. Suppose we have

to list the employees who are working for design and testing department. Then we

will do the union on employee table. Since it is union on same table it has same

number of attributes. Cartesian product does not concentrate on number of

attribute or rows. It blindly combines the attributes.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 37

 In Union, both relations should have same types of attributes in same order. In

the above example, since union is on employee relation, it has same type of

attribute in the same order.

It need not have same number of tuples in both the relation. If there is a duplicate tuples as a

result of union, then it keeps only one tuple. If a tuple is present in any one relation, then it

keeps that tuple in the new relation. In the above example, number of employees in design

department need not be same as employees in testing department. Below diagram shows the

same. We can observe that it combines the table data in the order they appear in the table.

We would not able to join both these tables if the order of columns or the number of columns

were different.

2.6.7 SET-DIFFERENCE (-)

 Set-difference (-) – This is a binary operator. This operator creates a new relation with

tuples that are in one relation but not in other relation. It is denoted by ‘-‘symbol.

R – S

Where R and S are the relations.

Suppose we want to retrieve the employees who are working in Design department but not in

testing.

 DESIGN_EMPLOYEE −TESTING_EMPLOYEE

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 38

There are additional relational operations based on the above fundamental operations.

Some of them are:

2.6.7 SET INTERSECTION

1. Set Intersection – This operation is a binary operation. It results in a relation with

tuples that are in both the relations. It is denoted by ‘∩ ‘.

 R∩S

Where R and S are the relations. It picks all the tuples that are present in both R and S, and

results it in a new relation.

Suppose we have to find the employees who are working in both design and testing

department. If we have tuples as in above example, the new result relation will not have any

tuples. Suppose we have tuples like below and see the new relation after set difference.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 39

This set intersection can also be written as a combination of set difference operations.

R ∩ S R-(R-S)

i.e.; it evaluates R-S to get the tuples which are present only in R and then it gets the record

which are present only in R but not in new resultant relation of R-S.

In above example of employees,

DESIGN_EMPLOYEE – (DESIGN_EMPLOYEE – TESTING_EMPLOYEE)

It first filters only those employees who are only design employees – (104, Kathy). This

result is then used to find the difference with design employee. This will find those

employees who are design employees but not in new result – (100, James). Thus it gives the

result tuple which is both designer and tester. We can see here fundamental relational

operator is used twice to get set intersection. Hence this operation is not fundamental

operation.

2.6.8 ASSIGNMENT

1. Assignment – As the name indicates, the assignment operator ‘ ’ is used to assign

the result of a relational operation to temporary relational variable. This is useful

when there is multiple steps in relational operation and handling everything in one

single expression is difficult. Assigning the results into temporary relation and using

this temporary relation in next operation makes task simple and easy.

T S – denotes relation S is assigned to temporary relation T

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 40

A relational operation ∏a1, a2 (σ p (E)) with selection and projection can be divided as below.

T σ p (E)

 S ∏a1, a2 (T)

Our example above in projection for getting STD_ID, ADDRESS and COURSE for the

Student ‘James’ can be re-written as below.

∏STD_ID, address, course (σ STD_NAME = “James”(STUDENT))

↓

T σ STD_NAME = “James”(STUDENT)

S ∏STD_ID, address, course (T)

2.6.9 NATURAL JOIN

1. Natural join – As we have seen above, cartesian product simply combines the

attributes of two relations into one. But the new relation will not have correct tuples.

It has only combinations of tuples.

2. In order to get the correct tuples, we have to use selection operation on the cartesian

product result. This set of operations – cartesian product followed by selection – is

combined into one relation called natural join. It is denoted by ∞

R∞S

Suppose we want to select the employees who are working for department 10. Then we will

perform the cartesian product on the EMPLOYEES and DEPT and find the DEPT_ID in both

relations matching to 10. The same is done with natural join as

σ EMPLOYEE.DEPT_ID = DEPT>DEPT_ID AND EMPLOYEE.DEPT_ID = 10(EMPLOYEE X DEPT)

Same can be written using natural join as EMPLOYEE ∞ DEPT

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 41

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 42

From the above example, we see that only the matching data from both the relations are

retained in the final relation. Suppose we want to retain all the information from first relation

and the corresponding information from the second relation irrespective of if it exists or

not. There are three types of outer joins

2.6.10 LEFT OUTER JOIN

1. Left outer join – In this operation, all the tuples in the left hand side relation is

retained.

2. All matching attribute in the right hand relation is displayed with values and the

ones which do not have value are shown as NULL.

Below example of left outer join on DEPT and EMPLOYEE table combines the matching

combination of DEPT_ID = 10 with values. But DEPT_ID = 30 does not have any employees

yet. Hence it displays NULL for those employees. Thus this outer join makes more

meaningful to combining two relations than a cartesian product.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 43

2.6.11 RIGHT OUTER JOIN

1. Right outer join – This is opposite of left outer join. Here all the attributes of right

hand side is retained and it matching attribute in left hand relation is found and

displayed.

2. If no matching is found then null is displayed. Same above example is re-written to

understand this as below:

Notice the order and column difference in both the cases.

2.6.12 FULL OUTER JOIN

1. Full outer join – This is the combination of both left and right outer join. It displays

all the attributes from both the relation.

2. If the matching attribute exists in other relation, then that will be displayed, else

those attributes are shown as null.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 44

2.7 SQL NULL VALUES

1. A field with a NULL value is a field with no value.

2. If a field in a table is optional, it is possible to insert a new record or update a record

without adding a value to this field.

3. Then, the field will be saved with a NULL value.

How to Test for NULL Values?

It is not possible to test for NULL values with comparison operators, such as =, <, or <>.

We will have to use the IS NULL and IS NOT NULL operators instead.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 45

IS NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NULL;

IS NOT NULL Syntax

SELECT column_names

FROM table_name

WHERE column_name IS NOT NULL;

Demo Database

Below is a selection from the "Customers" table in the Northwind sample database:

CustomerI

D

CustomerNam

e

ContactNam

e

Address City PostalCod

e

Countr

y

1

Alfreds

Futterkiste

Maria Anders Obere Str. 57 Berlin 12209 German

y

2 Ana Trujillo

Emparedados y

helados

Ana Trujillo Avda. de la

Constitución

2222

Méxic

o D.F.

05021 Mexico

3 Antonio

Moreno

Taquería

Antonio

Moreno

Mataderos

2312

Méxic

o D.F.

05023 Mexico

4

Around the

Horn

Thomas

Hardy

120 Hanover

Sq.

Londo

n

WA1 1DP UK

5 Berglunds

snabbköp

Christina

Berglund

Berguvsväge

n 8

Luleå S-958 22 Sweden

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 46

The IS NULL Operator

The IS NULL operator is used to test for empty values (NULL values).

The following SQL lists all customers with a NULL value in the "Address" field:

Example

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NULL;

The IS NOT NULL Operator

The IS NOT NULL operator is used to test for non-empty values (NOT NULL values).

The following SQL lists all customers with a value in the "Address" field:

Example

SELECT CustomerName, ContactName, Address

FROM Customers

WHERE Address IS NOT NULL;

2.8 MODIFICATION OF DATABASE

SQL Modification Statements

The SQL Modification Statements make changes to database data in tables and columns.

There are 3 modification statements:

 INSERT Statement -- add rows to tables

 UPDATE Statement -- modify columns in table rows

 DELETE Statement -- remove rows from tables

2.8.1 INSERT STATEMENT

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)

and,

http://www.firstsql.com/tutor4.htm#insert
http://www.firstsql.com/tutor4.htm#update
http://www.firstsql.com/tutor4.htm#delete

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 47

INSERT INTO table-1 [(column-list)] (query-specification)

The first form inserts a single row into table-1 and explicitly specifies the column values for

the row. The second form uses the result of query-specification to insert one or more rows

into table-1. The result rows from the query are the rows added to the insert table. Note: the

query cannot reference table-1.

Both forms have an optional column-list specification. Only the columns listed will be

assigned values. Unlisted columns are set to null, so unlisted columns must allow nulls. The

values from the VALUES Clause (first form) or the columns from the query-

specification rows (second form) are assigned to the corresponding column in column-list in

order.

If the optional column-list is missing, the default column list is substituted. The default

column list contains all columns in table-1 in the order they were declared in CREATE

TABLE, or CREATE VIEW.

VALUES Clause

The VALUES Clause in the INSERT Statement provides a set of values to place in the

columns of a new row. It has the following general format:

VALUES (value-1 [, value-2] ...)

value-1 and value-2 are Literal Values or Scalar Expressions involving literals. They can also

specify NULL.

The values list in the VALUES clause must match the explicit or implicit column list for

INSERT in degree (number of items). They must also match the data type of corresponding

column or be convertible to that data type.

INSERT Examples

INSERT INTO p (pno, color) VALUES ('P4', 'Brown')

Before

After

pno descr color

P1 Widget Blue =>

pno descr color

P1 Widget Blue

http://www.firstsql.com/tutor4.htm#values
http://www.firstsql.com/tutor6.htm#createtable
http://www.firstsql.com/tutor6.htm#createtable
http://www.firstsql.com/tutor6.htm#createview
http://www.firstsql.com/tutor3.htm#literal
http://www.firstsql.com/tutor3.htm#exp

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 48

P2 Widget Red

P3 Dongle Green

P2 Widget Red

P3 Dongle Green

P4 NULL Brown

INSERT INTO sp

SELECT s.sno, p.pno, 500

FROM s, p

WHERE p.color='Green' AND s.city='London'

Before

After

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

=>

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

S2 P3 500

2.8.2 UPDATE STATEMENT

The UPDATE statement modifies columns in selected table rows. It has the following

general format:

UPDATE table-1 SET set-list [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement.

See WHERE Clause. The WHERE clause chooses which table rows to update. If it is

missing, all rows are in table-1 are updated.

The set-list contains assignments of new values for selected columns. See SET Clause.

http://www.firstsql.com/tutor2.htm#where
http://www.firstsql.com/tutor4.htm#set

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 49

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the

subqueries cannot reference table-1. This prevents situations where results are dependent on

the order of processing.

SET Clause

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the

selected table rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...

column-1 and column-2 are columns in the Update table. value-1 and value-

2 are expressions that can reference columns from the update table. They also can be the

keyword -- NULL, to set the column to null.

Since the assignment expressions can reference columns from the current row, the

expressions are evaluated first. After the values of all Set expressions have been computed,

they are then assigned to the referenced columns. This avoids results dependent on the order

of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20

Before

After

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

=>

sno pno qty

S1 P1 NULL

S2 P1 220

S3 P1 1020

S3 P2 220

UPDATE s

SET name = 'Tony', city = 'Milan'

WHERE sno = 'S3'

http://www.firstsql.com/tutor3.htm#exp

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 50

Before

After

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

=>

sno name city

S1 Pierre Paris

S2 John London

S3 Tony Milan

2.8.3 DELETE STATEMENT

The DELETE Statement removes selected rows from a table. It has the following general

format:

DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement.

See WHERE Clause. The WHERE clause chooses which table rows to delete. If it is

missing, all rows are in table-1 are removed.

The WHERE Clause predicate can contain subqueries, but the subqueries cannot

reference table-1. This prevents situations where results are dependent on the order of

processing.

DELETE Examples

DELETE FROM sp WHERE pno = 'P1'

Before

After

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

=>

sno pno qty

S3 P2 200

http://www.firstsql.com/tutor2.htm#where

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 51

S3 P2 200

DELETE FROM p WHERE pno NOT IN (SELECT pno FROM sp)

Before

After

pno descr color

P1 Widget Blue

P2 Widget Red

P3 Dongle Green

=>

pno descr color

P1 Widget Blue

P2 Widget Red

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 52

Unit III

SQL:Overview of the SQL Query - Language - SQL Data Definition - Basic Structure of

SQL Queries - Additional Basic Operations - Set Operations - Null Values Aggregate

Functions - Nested Subqueries - Modification of the Database -Join Expressions - Views -

Transactions - Integrity Constraints - SQL Data Types and Schemas - Authorization

3.1 OVERVIEW OF THE SQL QUERY

SQL is a language to operate databases; it includes database creation, deletion, fetching

rows, modifying rows, etc. SQL is an ANSI (American National Standards Institute)

standard language, but there are many different versions of the SQL language.

What is SQL?

1. SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in a relational database.SQL is the standard

language for Relational Database System.

2. All the Relational Database Management Systems (RDMS) like MySQL, MS Access,

Oracle, Sybase, Informix, Postgres and SQL Server use SQL as their standard database

language.A classic query engine handles all the non-SQL queries, but a SQL query engine

won't handle logical files.

Following is a simple diagram showing the SQL Architecture −

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 53

3.2 SQL COMMANDS

The standard SQL commands to interact with relational databases are CREATE, SELECT,

INSERT, UPDATE, DELETE and DROP. These commands can be classified into the

following groups based on their nature −

3.2.1 DDL - DATA DEFINITION LANGUAGE

Sr.No. Command & Description

1
CREATE

Creates a new table, a view of a table, or other object in the database.

2
ALTER

Modifies an existing database object, such as a table.

3
DROP

Deletes an entire table, a view of a table or other objects in the database.

3.2.2 DML - DATA MANIPULATION LANGUAGE

Sr.No. Command & Description

1
SELECT

Retrieves certain records from one or more tables.

2
INSERT

Creates a record.

3
UPDATE

Modifies records.

4
DELETE

Deletes records.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 54

3.3.3 DCL - DATA CONTROL LANGUAGE

Sr.No. Command & Description

1
GRANT

Gives a privilege to user.

2
REVOKE

Takes back privileges granted from user.

3.3. BASIC STRUCTURE OF SQL QUERIES

SQL is based on set and relational operations with certain modifications and enhancements

• A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

– A is represent attributes

– r is represent relations

– P is a predicate.

• This query is equivalent to the relational algebra expression:

ΠA1, A2, ..., An(σP (r1 × r2 × ... × rm))

• The result of an SQL query is a relation.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 55

3.3.1 THE SELECT CLAUSE

1. The select clause corresponds to the projection operation of the relational algebra.

2. It is used to list the attributes desired in the result of a query.

• Find the names of all branches in the loan relation

select branch-name from loan

In the “pure” relational algebra syntax, this query would be:

Πbranch-name (loan)

• An asterisk in the select clause denotes “all attributes”

select ∗from loan

1. SQL allows duplicates in relations as well as in query results.

2. To force the elimination of duplicates, insert the keyword distinct after select.

Find the names of all branches in the loan relation, and remove duplicates

select distinct branch-name from loan

• The keyword all specifies that duplicates not be removed.

select all branch-name from loan

• The select clause can contain arithmetic expressions involving the operators, +, −, ∗, and /,

and operating on constants or attributes of tuples.

• The query:

select branch-name, loan-number, amount ∗ 100 from loan

would return a relation which is the same as the loan relation, except that the attribute

amount is multiplied by 100

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 56

3.3.2 The where Clause

• The where clause corresponds to the selection predicate of the relational algebra. It

consists of a predicate involving attributes of the relations that appear in the from clause.

• Find all loan numbers for loans made at the Perryridge branch with loan amounts greater

than $1200.

select loan-number from loan

where branch-name = “Perryridge” and amount > 1200

• SQL uses the logical connectives and, or, and not. It allows the use of arithmetic

expressions as operands to the comparison operators.

SQL includes a between comparison operator in order to simplify where clauses that specify

that a value be less than or equal to some value and greater than or equal to some other

value.

• Find the loan number of those loans with loan amounts between $90,000 and $100,000

(that is, ≥ $90,000 and ≤ $100,000)

select loan-number from loan

where amount between 90000 and 100000

3.3.3The from Clause

• The from clause corresponds to the Cartesian product operation of the relational algebra.

It lists the relations to be scanned in the evaluation of the expression.

• Find the Cartesian product borrower × loan

select ∗from borrower, loan

• Find the name and loan number of all customers having a loan at the Perryridge branch.

select distinct customer-name, borrower.loan-number from borrower, loan

where borrower.loan-number = loan.loan-number and branch-name = “Perryridge”

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 57

3.3.4 The Rename Operation

• The SQL mechanism for renaming relations and attributes is accomplished through the as

clause: old-name as new-name

• Find the name and loan number of all customers having a loan at the Perryridge branch;

replace the column name loan-number with the name loan-id.

select distinct customer-name, borrower.loan-number as loan-id from borrower, loan

where borrower.loan-number = loan.loan-number and branch-name = “Perryridge”

3.3.5 Tuple Variables

• Tuple variables are defined in the from clause via the use of the as clause.

• Find the customer names and their loan numbers for all customers having a loan at some

branch.

select distinct customer-name, T.loan-number from borrower as T, loan as S where T.loan-

number = S.loan-number

• Find the names of all branches that have greater assets than some branch located in

Brooklyn.

select distinct T.branch-name from branch as T, branch as S where T.assets > S.assets and

S.branch-city = “Brooklyn”

3.3.6 Set Operations

• The set operations union, intersect, and except operate on relations and correspond to the

relational algebra operations ∪, ∩, and −.

• Each of the above operations automatically eliminates duplicates; to retain all duplicates

use the corresponding multiset versions union all, intersect all and except all.Suppose a

tuple occurs m times in r and n times in s, then, it occurs:

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 58

– m + n times in r union all s

– min(m, n) times in r intersect all s

– max(0, m − n) times in r except all s

• Find all customers who have a loan, an account, or both:

(select customer-name from depositor)

union

(select customer-name from borrower)

• Find all customers who have both a loan and an account.

(select customer-name from depositor)

intersect

(select customer-name from borrower)

• Find all customers who have an account but no loan.

(select customer-name from depositor)

except

(select customer-name from borrower

3.4 NULL VALUE

1. It is possible for tuples to have a null value, denoted by null, for some of their

attributes; null signifies an unknown value or that a value does not exist.

2. The result of any arithmetic expression involving null is null.• Roughly speaking, all

comparisons involving null return false.

More precisely,

– Any comparison with null returns unknown

– (true or unknown) = true, (false or unknown) = unknown (unknown or unknown) =

unknown,

(true and unknown) = unknown, (false and unknown) = false,(unknown and unknown) =

unknown

– Result of where clause predicate is treated as false if it evaluates to unknown

– “P is unknown” evaluates to true if predicate P evaluates to unknown

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 59

Find all loan numbers which appear in the loan relation with null values for amount.

select loan-number from loan

where amount is null

• Total all loan amounts select sum (amount) from loan

Above statement ignores null amounts; result is null if there is no non-null amount.

• All aggregate operations except count(*) ignore tuples with null values on the aggregated

attributes

3.5 SUB QUERY

1. A Subquery or Inner query or a Nested query is a query within another SQL query

and embedded within the WHERE clause.

2. A subquery is used to return data that will be used in the main query as a condition

to further restrict the data to be retrieved.

3. Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE

statements along with the operators like =, <, >, >=, <=, IN, BETWEEN, etc.

There are a few rules that subqueries must follow −

1. Subqueries must be enclosed within parentheses.

2. A subquery can have only one column in the SELECT clause, unless multiple

columns are in the main query for the subquery to compare its selected columns.

3. An ORDER BY command cannot be used in a subquery, although the main query

can use an ORDER BY. The GROUP BY command can be used to perform the same

function as the ORDER BY in a subquery.

4. Subqueries that return more than one row can only be used with multiple value

operators such as the IN operator.

5. The SELECT list cannot include any references to values that evaluate to a BLOB,

ARRAY, CLOB, or NCLOB.

6. A subquery cannot be immediately enclosed in a set function.

7. The BETWEEN operator cannot be used with a subquery. However, the BETWEEN

operator can be used within the subquery.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 60

3.6 SQL MODIFICATION STATEMENTS

The SQL Modification Statements make changes to database data in tables and columns.

There are 3 modification statements:

 INSERT Statement -- add rows to tables

 UPDATE Statement -- modify columns in table rows

 DELETE Statement -- remove rows from tables

3.6.1 INSERT Statement

The INSERT Statement adds one or more rows to a table. It has two formats:

INSERT INTO table-1 [(column-list)] VALUES (value-list)

and,

INSERT INTO table-1 [(column-list)] (query-specification)

The first form inserts a single row into table-1 and explicitly specifies the column values for

the row. The second form uses the result of query-specification to insert one or more rows

into table-1. The result rows from the query are the rows added to the insert table. Note: the

query cannot reference table-1.

Both forms have an optional column-list specification. Only the columns listed will be

assigned values. Unlisted columns are set to null, so unlisted columns must allow nulls. The

values from the VALUES Clause (first form) or the columns from the query-specification

rows (second form) are assigned to the corresponding column in column-list in order.

If the optional column-list is missing, the default column list is substituted. The default

column list contains all columns in table-1 in the order they were declared in CREATE

TABLE, or CREATE VIEW.

3.6.2 UPDATE STATEMENT

The UPDATE statement modifies columns in selected table rows. It has the following general

format:

UPDATE table-1 SET set-list [WHERE predicate]

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 61

The optional WHERE Clause has the same format as in the SELECT Statement. See

WHERE Clause. The WHERE clause chooses which table rows to update. If it is missing,

all rows are in table-1 are updated.

The set-list contains assignments of new values for selected columns. See SET Clause.

The SET Clause expressions and WHERE Clause predicate can contain subqueries, but the

subqueries cannot reference table-1. This prevents situations where results are dependent on

the order of processing.

3.6.3 SET CLAUSE

The SET Clause in the UPDATE Statement updates (assigns new value to) columns in the

selected table rows. It has the following general format:

SET column-1 = value-1 [, column-2 = value-2] ...

column-1 and column-2 are columns in the Update table. value-1 and value-2 are

expressions that can reference columns from the update table. They also can be the keyword

-- NULL, to set the column to null.

Since the assignment expressions can reference columns from the current row, the

expressions are evaluated first. After the values of all Set expressions have been computed,

they are then assigned to the referenced columns. This avoids results dependent on the

order of processing.

UPDATE Examples

UPDATE sp SET qty = qty + 20

Before After

sno pno qty

S1 P1 NULL

S2 P1 200

S3 P1 1000

S3 P2 200

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 62

=>

sno pno qty

S1 P1 NULL

S2 P1 220

S3 P1 1020

S3 P2 220

UPDATE s

SET name = 'Tony', city = 'Milan'

WHERE sno = 'S3'

Before After

sno name city

S1 Pierre Paris

S2 John London

S3 Mario Rome

=>

sno name city

S1 Pierre Paris

S2 John London

S3 Tony Milan

DELETE Statement

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 63

The DELETE Statement removes selected rows from a table. It has the following general

format:

DELETE FROM table-1 [WHERE predicate]

The optional WHERE Clause has the same format as in the SELECT Statement. See

WHERE Clause. The WHERE clause chooses which table rows to delete. If it is missing, all

rows are in table-1 are removed.

The WHERE Clause predicate can contain subqueries, but the subqueries cannot reference

table-1. This prevents situations where results are dependent on the order of processing.

3.7 JOIN EXPRESSIONS :

1. Sql join is used to fetch data from two or more tables, which is joined to appear as

single set of data.

2. It is used for combining column from two or more tables by using values common to

both tables.

3. Join keyword is used in sql queries for joining two or more tables. minimum

required condition for joining table, is (n-1) where n, is number of tables.

4. A table can also join to itself, which is known as, self join.

Types of join

Following are the types of join that we can use in sql:

 inner

 outer

 left

 right

3.7.1 INNER JOIN OR EQUI JOIN

This is a simple join in which the result is based on matched data as per the equality

condition specified in the sql query.

inner join syntax is,

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 64

select column-name-list from

table-name1 inner join table-name2

where table-name1.column-name = table-name2.column-name;

example of inner join

consider a class table,

id name

1 abhi

2 adam

3 alex

4 anu

and the class_info table,

id address

1 delhi

2 mumbai

3 chennai

inner join query will be,

select * from class inner join class_info where class.id = class_info.id;

the result set table will look like,

id name id address

1 abhi 1 delhi

2 adam 2 mumbai

3 alex 3 chennai

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 65

3.7.2 NATURAL JOIN

Natural Join is a type of Inner join which is based on column having same name and

same datatype present in both the tables to be joined.

The syntax for Natural Join is,

SELECT * FROM

table-name1 NATURAL JOIN table-name2;

Example of Natural JOIN

Here is the class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Natural join query will be,

SELECT * from class NATURAL JOIN class_info;

The result set table will look like,

ID NAME Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

In the above example, both the tables being joined have ID column(same name and same

datatype), hence the records for which value of ID matches in both the tables will be the

result of Natural Join of these two tables.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 66

3.7.3 OUTER JOIN

Outer join is based on both matched and unmatched data. outer joins subdivide

further into,

 left outer join

 right outer join

 full outer join

3.7.3.1 LEFT OUTER JOIN

The left outer join returns a resultset table with the matched data from the two tables

and then the remaining rows of the left table and null from the right table's columns.

syntax for left outer join is,

select column-name-list from

table-name1 left outer join table-name2

on table-name1.column-name = table-name2.column-name;

to specify a condition, we use the on keyword with outer join.

left outer join syntax for oracle is,

select column-name-list from

table-name1, table-name2 on table-name1.column-name = table-name2.column-name(+);

example of left outer join here is the class table,

id name

1 abhi

2 adam

3 alex

4 anu

5 ashish

and the class_info table,

id address

1 delhi

2 mumbai

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 67

3 chennai

7 noida

8 panipat

left outer join query will be,

select * from class left outer join class_info on (class.id = class_info.id);

the resultset table will look like,

id name id address

1 abhi 1 delhi

2 adam 2 mumbai

3 alex 3 chennai

4 anu null null

5 ashish null null

3.7.3.2 RIGHT OUTER JOIN

The right outer join returns a resultset table with the matched data from the two

tables being joined, then the remaining rows of the right table and null for the remaining

left table's columns.

syntax for right outer join is,

select column-name-list from

table-name1 right outer join table-name2

on table-name1.column-name = table-name2.column-name;

right outer join syntax for oracle is,

select column-name-list from

table-name1, table-name2

on table-name1.column-name(+) = table-name2.column-name;

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 68

example of right outer join once again the class table,

id name

1 abhi

2 adam

3 alex

4 anu

5 ashish

and the class_info table,

id address

1 delhi

2 mumbai

3 chennai

7 noida

8 panipat

right outer join query will be,

select * from class right outer join class_info on (class.id = class_info.id);

the resultant table will look like,

id name id address

1 abhi 1 delhi

2 adam 2 mumbai

3 alex 3 chennai

null null 7 noida

null null 8 panipat

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 69

3.7.3.3 FULL OUTER JOIN

The full outer join returns a resultset table with the matched data of two table then

remaining rows of both left table and then the right table.

syntax of full outer join is,

select column-name-list from

table-name1 full outer join table-name2

on table-name1.column-name = table-name2.column-name;

example of full outer join is,

the class table,

id name

1 abhi

2 adam

3 alex

4 anu

5 ashish

and the class_info table,

id address

1 delhi

2 mumbai

3 chennai

7 noida

8 panipat

full outer join query will be like,

select * from class full outer join class_info on (class.id = class_info.id);

the resultset table will look like,

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 70

id name id address

1 abhi 1 delhi

2 adam 2 mumbai

3 alex 3 chennai

4 anu null null

5 ashish null null

null null 7 noida

null null 8 panipat

3.8 VIEWS IN SQL

1. A view is nothing more than a sql statement that is stored in the database with an

associated name.

2. A view is actually a composition of a table in the form of a predefined sql query.

3. A view can contain all rows of a table or select rows from a table.

4. A view can be created from one or many tables which depends on the written sql

query to create a view.

5. views, which are a type of virtual tables allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data in such a way that a user can see and (sometimes)

modify exactly what they need and no more.

 Summarize data from various tables which can be used to generate reports.

3.8.1 CREATING VIEWS

Database views are created using the CREATE VIEW statement. Views can be

created from a single table, multiple tables or another view. To create a view, a user must

have the appropriate system privilege according to the specific implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 71

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example to create a view from the CUSTOMERS table. This view would be

used to have customer name and age from the CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table.

Following is an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

This would produce the following result.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 72

+----------+-----+

| name | age |

+----------+-----+

| Ramesh | 32 |

| Khilan | 25 |

| kaushik | 23 |

| Chaitali | 25 |

| Hardik | 27 |

| Komal | 22 |

| Muffy | 24 |

+----------+-----+

THE WITH CHECK OPTION

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of

the WITH CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the

condition(s) in the view definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following code block has an example of creating same view CUSTOMERS_VIEW with

the WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS

WHERE age IS NOT NULL

WITH CHECK OPTION;

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 73

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the

view's AGE column, because the view is defined by data that does not have a NULL value in

the AGE column.

UPDATING A VIEW

A view can be updated under certain conditions which are given below −

1. The SELECT clause may not contain the keyword DISTINCT.

2. The SELECT clause may not contain summary functions.

3. The SELECT clause may not contain set functions.

4. The SELECT clause may not contain set operators.

5. The SELECT clause may not contain an ORDER BY clause.

6. The FROM clause may not contain multiple tables.

7. The WHERE clause may not contain subqueries.

8. The query may not contain GROUP BY or HAVING.

9. Calculated columns may not be updated.

All NOT NULL columns from the base table must be included in the view in order for the

INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that view. The

following code block has an example to update the age of Ramesh.

SQL > UPDATE CUSTOMERS_VIEW

SET AGE = 35

WHERE name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same would reflect in the

view itself. Now, try to query the base table and the SELECT statement would produce the

following result.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 74

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

INSERTING ROWS INTO A VIEW

Rows of data can be inserted into a view. The same rules that apply to the UPDATE

command also apply to the INSERT command.

Here, we cannot insert rows in the CUSTOMERS_VIEW because we have not included all

the NOT NULL columns in this view, otherwise you can insert rows in a view in a similar

way as you insert them in a table.

DELETING ROWS INTO A VIEW

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and

INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

SQL > DELETE FROM CUSTOMERS_VIEW

WHERE age = 22;

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 75

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

DROPPING VIEWS

Obviously, where you have a view, you need a way to drop the view if it is no longer needed.

The syntax is very simple and is given below −

DROP VIEW view_name;

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

DROP VIEW CUSTOMERS_VIEW;

3.9 TRANSACTIONS

1. A transaction is a unit of work that is performed against a database.

2. Transactions are units or sequences of work accomplished in a logical order, whether

in a manual fashion by a user or automatically by some sort of a database program.

3. A transaction is the propagation of one or more changes to the database.

4. For example, if you are creating a record or updating a record or deleting a record

from the table, then you are performing a transaction on that table.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 76

PROPERTIES OF TRANSACTIONS

Transactions have the following four standard properties, usually referred to by the acronym

ACID

 ATOMICITY − ensures that all operations within the work unit are completed

successfully. Otherwise, the transaction is aborted at the point of failure and all the

previous operations are rolled back to their former state.

 CONSISTENCY − ensures that the database properly changes states upon a

successfully committed transaction.

 ISOLATION − enables transactions to operate independently of and transparent to

each other.

 DURABILITY − ensures that the result or effect of a committed transaction persists

in case of a system failure.

TRANSACTION CONTROL

The following commands are used to control transactions.

 COMMIT − to save the changes.

 ROLLBACK − to roll back the changes.

 SAVEPOINT − creates points within the groups of transactions in which to

ROLLBACK.

 SET TRANSACTION − Places a name on a transaction.

3.10 INTEGRITY CONSTRAINTS

1. Sql constraints are used to specify rules for the data in a table.

2. Integrity constraints are used to ensure accuracy and consistency of the data in a

relational database. Data integrity is handled in a relational database through the

concept of referential integrity.

3. Constraints are used to limit the type of data that can go into a table.

4. This ensures the accuracy and reliability of the data in the table. if there is any

violation between the constraint and the data action, the action is aborted.

5. Constraints can be column level or table level. column level constraints apply to a

column, and table level constraints apply to the whole table.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 77

6. The following constraints are commonly used in sql:

 NOT NULL - ensures that a column cannot have a null value

 UNIQUE - ensures that all values in a column are different

 PRIMARY KEY - a combination of a not null and unique. uniquely

identifies each row in a table

 FOREIGN KEY - uniquely identifies a row/record in another table

 CHECK - ensures that all values in a column satisfies a specific condition

 DEFAULT - sets a default value for a column when no value is specified

 INDEX - used to create and retrieve data from the database very quickly

3.11 SQL DATA TYPES AND SCHEMAS

1. A Schema in SQL is a collection of database objects associated with a database.

2. The username of a database is called a Schema owner (owner of logically grouped

structures of data).

3. Schema always belong to a single database whereas a database can have single or

multiple schemas.

4. Also, it is also very similar to separate namespaces or containers, which stores

database objects.

5. It includes various database objects including your tables, views, procedures, index,

etc.

Syntax to create SQL:

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]

[DEFAULT CHARACTER SET char_set_name]

[PATH schema_name[, ...]]

[ANSI CREATE statements [...]]

[ANSI GRANT statements [...]];

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 78

3.12 AUTHORIZATION

We can access the DB2 Database and its functionality within the DB2 database system,

which is managed by the DB2 Database manager. Authorization is a process managed by the

DB2 Database manager. The manager obtains information about the current authenticated

user, that indicates which database operation the user can perform or access.

Here are different ways of permissions available for authorization:

1. Primary permission: Grants the authorization ID directly.

2. Secondary permission: Grants to the groups and roles if the user is a member

3. Public permission: Grants to all users publicly.

4. Context-sensitive permission: Grants to the trusted context role.

Authorization can be given to users based on the categories below:

System-level authorization

1. System administrator [SYSADM]

2. System Control [SYSCTRL]

3. System maintenance [SYSMAINT]

4. System monitor [SYSMON]

Authorities provide of control over instance-level functionality. Authority provide to group

privileges, to control maintenance and authority operations. For instance, database and

database objects.

Database-level authorization

1. Security Administrator [SECADM]

2. Database Administrator [DBADM]

3. Access Control [ACCESSCTRL]

4. Data access [DATAACCESS]

5. SQL administrator. [SQLADM]

6. Workload management administrator [WLMADM]

7. Explain [EXPLAIN]

Authorities provide controls within the database. Other authorities for database include with

LDAD and CONNECT.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 79

Object-Level Authorization: Object-Level authorization involves verifying privileges when

an operation is performed on an object.

Content-based Authorization: User can have read and write access to individual rows and

columns on a particular table using Label-based access Control [LBAC].

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 80

Unit IV

Relational Languages: The Tuple Relational Calculus - The Domain Relational Calculus

Database Design and the E-R Model: Overview of the Design Process - The Entity

Relationship Model - Reduction to Relational Schemas - Entity-Relationship Design Issues -

Extended E-R Features - Alternative Notations for Modeling Data - Other Aspects of

Database Design

4.1 RELATIONAL CALCULUS

Relational calculus is a non-procedural query language. In the non-procedural

query language, the user is concerned with the details of how to obtain the end results.

The relational calculus tells what to do but never explains how to do.

Types of Relational calculus:

4.1.1. Tuple Relational Calculus (TRC)

The tuple relational calculus is specified to select the tuples in a relation. In TRC,

filtering variable uses the tuples of a relation.

The result of the relation can have one or more tuples.

Notation:

{T | P (T)} or {T | Condition (T)}

Where

T is the resulting tuples

P(T) is the condition used to fetch T.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 81

For example:

{ T.name | Author(T) AND T.article = 'database' }

OUTPUT: This query selects the tuples from the AUTHOR relation. It returns a tuple with

'name' from Author who has written an article on 'database'.

TRC (tuple relation calculus) can be quantified. In TRC, we can use Existential (∃)

and Universal Quantifiers (∀).

For example:

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output: This query will yield the same result as the previous one.

4.1.2. Domain Relational Calculus (DRC)

The second form of relation is known as Domain relational calculus. In domain

relational calculus, filtering variable uses the domain of attributes.

Domain relational calculus uses the same operators as tuple calculus. It uses logical

connectives ∧ (and), ∨ (or) and ┓ (not).

It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable.

Notation:

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where

a1, a2 are attributes

P stands for formula built by inner attributes

For example:

{< article, page, subject > | ∈ javatpoint ∧ subject = 'database'}

Output: This query will yield the article, page, and subject from the relational javatpoint,

where the subject is a database.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 82

4.2 ENTITY-RELATIONSHIP DESIGN ISSUES

Use of entity sets vs. attributes :

Choice mainly depends on the structure of the enterprise being modeled, and on the

semantics associated with the attribute in question.

 Use of entity sets vs. relationship sets :

Possible guideline is to designate a relationship set to describe an action that occurs

between entities

 Binary versus n-ary relationship sets :

Although it is possible to replace a nonbinary (n-ary, for n > 2) relationship set by a

number of distinct binary relationship sets, a n-ary relationship set shows more clearly that

several entities participate in a single relationship.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 83

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 84

Unit V

Relational Database Design: Features of Good Relational Designs - Atomic Domains and

First Normal Form - Decomposition Using Functional Dependencies - Functional-

Dependency Theory - Decomposition Using Functional Dependencies - Decomposition

Using Multivalued Dependencies-More Normal Forms - Database-Design Process

5.1 DESIGNING GOOD RELATIONAL DATABASES:

Databases have a reputation for being difficult to construct and hard to maintain. The

power of modern database software makes it possible to create a database with a few mouse-

clicks. The databases created this way, however, are typically the databases that are hard to

maintain and difficult to work with because they are designed poorly. Modern software

makes it easy to construct a database, but doesn't help much with the design aspect of

database creation.

Database design has nothing to do with using computers. It has everything to do with

research and planning. The design process should be completely independent of software

choices. The basic elements of the design process are:

1. Defining the problem or objective

2. Researching the current database

3. Designing the data structures

4. Constructing database relationships

5. Implementing rules and constraints

6. Creating database views and reports

7. Implementing the design

Notice that implementing the database design in software is the final step. All of the

preceding steps are completely independent of any software or other implementation

concerns.

Defining the problem or objective.

The most important step in database design is the first one: defining the problem the database

will address or the objective of the database. It is important however, to draw a distinction

between:

 How the database will be used and

 What information needs to be stored in it.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 85

Researching the current database.

In most database design situations, there is some sort of database already in existence. That

database may be Post-it notes, paper order forms, a spreadsheet of sales data, a word

processor file of names and addresses, or a full-fledged digital database (possibly in an

outdated software package or older legacy system).

Designing the data structures.

A database is essentially a collection of data tables, so the next step in the design process is to

identify and describe those data structures. Each table in a database should represent some

distinct subject or physical object, so it seems reasonable to simply analyse the subjects or

physical objects relevant to the purpose of the database, then arrive at a list of tables.

Once the tables have been determined and fields have been assigned to each, the next step is

to develop the specifications for each field. The perfect field should be atomic: It should be

unique in all tables in the database (unless it is used as a key) and contain a single value, and

it should not be possible to break it into smaller components.

Constructing database relationships.

Once the data structures are in place, the next step is to establish the relationships between

the databases. First you must ensure that each table has a unique key that can identify the

individual records in each table.

Implementing rules and constraints.

In this step, the fields in the database are still fairly amorphous. Defining the fields as text or

numeric and getting a rough feel for the types of data that the client needs to store has

narrowed them down, but there is room for further refinement.

Creating database views and reports.

Now that the data design is essentially complete, the penultimate step is to create the

specifications that help turn the data into useful information in the form of a report or view of

the data. Views are simply collections of the data available in the database combined and

made accessible in one place.

Implementing the design in software.

All of the work to this point has been accomplished without explicitly worrying about the

details of the program being used to produce the database. In fact, the design should only

exist as diagrams and notes on paper

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 86

5.2 NORMALIZATION

1. Normalization is the process of organizing the data in the database.

2. Normalization is used to minimize the redundancy from a relation or set of relations.

3. It is also used to eliminate the undesirable characteristics like insertion, update and

deletion anomalies.

4. Normalization divides the larger table into the smaller table and links them using

relationship.

5. The normal form is used to reduce redundancy from the database table.

Normal

Form

Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are

fully functional dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency

exists.

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no

multi-valued dependency.

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency

and joining should be lossless.

5.2 .1 ATOMIC DOMAINS AND FIRST NORMAL FORM

1. First Normal Form is defined in the definition of relations (tables) itself.

2. This rule defines that all the attributes in a relation must have atomic domains. The

values in an atomic domain are indivisible units.

3. First normal form is an essential property of a relation in a relational database.

4. If tables in a database are not even in the 1st Normal Form, it is considered as bad

database design.

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 87

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,

9064738238

UP

20 Harry 8574783832 Bihar

12 Sam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

12 Sam 8589830302 Punjab

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 88

5.2.2 SECOND NORMAL FORM (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on

the primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In

a school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on

TEACHER_ID which is a proper subset of a candidate key. That's why it violates the rule for

2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 89

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

5.2.3. THIRD NORMAL FORM (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial

dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data

integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must

be in third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for every

non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 90

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-

prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent

on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively

dependent on super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 91

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 92

5.2.3 BOYCE CODD NORMAL FORM (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the

table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one

department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 93

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 94

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID

For the second table: EMP_DEPT

For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a key.

5.2.4 FOURTH NORMAL FORM (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-

valued dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then

the relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 95

59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent

entity. Hence, there is no relationship between COURSE and HOBBY.

In the STUDENT relation, a student with STU_ID, 21 contains two

courses, Computer and Math and two hobbies, Dancingand Singing. So there is a Multi-

valued dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

STU_ID COURSE

21 Computer

21 Math

34 Chemistry

74 Biology

59 Physics

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 96

STUDENT_HOBBY

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

59 Hockey

5.2.5 FIFTH NORMAL FORM (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order

to avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 97

Math Akash Semester 2

Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't

take Math class for Semester 2. In this case, combination of all these fields required to

identify a valid data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who

will be taking that subject so we leave Lecturer and Subject as NULL. But all three columns

together acts as a primary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3:

P1

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 98

P2

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

P3

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 99

5.3 RELATIONAL DECOMPOSITION

1. When a relation in the relational model is not in appropriate normal form then the

decomposition of a relation is required.

2. In a database, it breaks the table into multiple tables. If the relation has no proper

decomposition, then it may lead to problems like loss of information.

3. Decomposition is used to eliminate some of the problems of bad design like

anomalies, inconsistencies, and redundancy

Types of Decomposition

1. Lossless Decomposition

2. Dependency Preserving

Lossless Decomposition

o If the information is not lost from the relation that is decomposed, then the

decomposition will be lossless.

o The lossless decomposition guarantees that the join of relations will result in the

same relation as it was decomposed.

o The relation is said to be lossless decomposition if natural joins of all the

decomposition give the original relation.

DEPENDENCY PRESERVING

o It is an important constraint of the database.

o In the dependency preservation, at least one decomposed table must satisfy every

dependency.

o If a relation R is decomposed into relation R1 and R2, then the dependencies of R

either must be a part of R1 or R2 or must be derivable from the combination of

functional dependencies of R1 and R2.

o For example, suppose there is a relation R (A, B, C, D) with functional dependency

set (A->BC). The relational R is decomposed into R1(ABC) and R2(AD) which is

dependency preserving because FD A->BC is a part of relation R1(ABC).

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 100

5.4 FUNCTIONAL DEPENDENCY

The functional dependency is a relationship that exists between two attributes. It

typically exists between the primary key and non-key attribute within a table.

1. X → Y

The left side of FD is known as a determinant, the right side of the production is known as a

dependent.

For example:

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table

because if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency can be written as:

1. Emp_Id → Emp_Name

We can say that Emp_Name is functionally dependent on Emp_Id.

Types of Functional dependency

5.4.1. Trivial functional dependency

o A → B has trivial functional dependency if B is a subset of A.

o The following dependencies are also trivial like: A → A, B → B

Example:

1. Consider a table with two columns Employee_Id and Employee_Name.

2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as

3. Employee_Id is a subset of {Employee_Id, Employee_Name}.

4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial

dependencies too.

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 101

5.4.2. Non-trivial functional dependency

o A → B has a non-trivial functional dependency if B is not a subset of A.

o When A intersection B is NULL, then A → B is called as complete non-trivial.

Example:

1. ID → Name,

2. Name → DOB

5.5 MULTIVALUED DEPENDENCY

o Multivalued dependency occurs when two attributes in a table are independent of

each other but, both depend on a third attribute.

o A multivalued dependency consists of at least two attributes that are dependent on a

third attribute that's why it always requires at least three attributes.

Example: Suppose there is a bike manufacturer company which produces two colors(white

and black) of each model every year.

BIKE_MODEL MANUF_YEAR COLOR

M2011 2008 White

M2001 2008 Black

M3001 2013 White

M3001 2013 Black

M4006 2017 White

M4006 2017 Black

Database Systems

Compiled by: Arun Kumar.M Ph.D AP/CS BCSM,TNJ-5 Page 102

Here columns COLOR and MANUF_YEAR are dependent on BIKE_MODEL and

independent of each other.

In this case, these two columns can be called as multivalued dependent on BIKE_MODEL.

The representation of these dependencies is shown below:

1. BIKE_MODEL → → MANUF_YEAR

2. BIKE_MODEL → → COLOR

This can be read as "BIKE_MODEL multidetermined MANUF_YEAR" and

"BIKE_MODEL multidetermined COLOR".

	What is a Database?
	1.1 What is Management System?
	1.2.1 Enterprise Information
	1. Sales: For customer, product, and purchase information.
	2. Accounting: For payments, receipts, account balances, assets and other accounting information.
	3. Human resources: For information about employees, salaries, payroll taxes, and benefits, and for generation of paychecks.
	4. Manufacturing: For management of the supply chain and for tracking production of items in factories, inventories of items in warehouses and stores, and orders for items.
	5. Online retailers: For sales data noted above plus online order tracking, generation of recommendation lists, and maintenance of online product evaluations.

	1.6.3 Data Control Language (DCL):
	1. It is used to retrieve the stored or saved data.
	2. The DCL execution is transactional.
	3. It also has rollback parameters.
	1.6.4 Transaction Control Language
	1.7.1 ER model
	1.7.2 Relational Model
	1.8 Database Design
	1.8.1 Entity-Relationship Model
	What is ER Modeling?
	2. Attribute

	Types of DBMS Architecture
	1-Tier Architecture
	2-Tier Architecture
	3-Tier Architecture
	Database Users and User Interfaces

	1960s
	1970 to 1972
	1970s
	1976
	1980s
	Early 1990s
	Mid 1990s
	Late 1990s
	2000s
	Today
	What is Data Mining?
	Data Mining Applications
	Market Analysis and Management
	Corporate Analysis and Risk Management
	Fraud Detection
	2.5 Relational Query Languages
	Procedural Query Language
	Non-Procedural Query Language

	2.6Relational Algebra
	2.6.1 Select (σ)
	2.6.3 Project (∏)
	2.6.4 Rename (ρ)
	2.6.5 Cartesian product (X)
	2.6.6. Union (U)
	2.6.7 Set-difference (-)
	2.6.7 Set Intersection
	2.6.8 Assignment
	2.6.9 Natural Join
	2.6.10 Left Outer Join
	2.6.11 Right outer join
	2.6.12 Full Outer Join

	2.7 SQL NULL Values
	How to Test for NULL Values?
	IS NULL Syntax
	IS NOT NULL Syntax

	Demo Database
	The IS NULL Operator
	Example

	The IS NOT NULL Operator
	Example

	SQL Modification Statements
	2.8.1 INSERT Statement
	VALUES Clause
	INSERT Examples

	2.8.2 UPDATE Statement
	SET Clause
	UPDATE Examples

	2.8.3 DELETE Statement
	DELETE Examples

	What is SQL?
	3.2 SQL Commands
	3.2.1 DDL - Data Definition Language
	3.2.2 DML - Data Manipulation Language
	3.3.3 DCL - Data Control Language
	5.1 Designing Good Relational Databases:
	Defining the problem or objective.
	Researching the current database.
	Designing the data structures.
	Constructing database relationships.
	Implementing rules and constraints.
	Creating database views and reports.
	Implementing the design in software.

	5.2.2 Second Normal Form (2NF)
	5.2.3. Third Normal Form (3NF)
	5.2.3 Boyce Codd normal form (BCNF)
	5.2.4 Fourth normal form (4NF)
	Example

	5.2.5 Fifth normal form (5NF)
	Example
	Types of Decomposition
	1. Lossless Decomposition
	2. Dependency Preserving
	Lossless Decomposition
	Dependency Preserving

	5.4 Functional Dependency
	Types of Functional dependency
	5.4.1. Trivial functional dependency
	5.4.2. Non-trivial functional dependency

