

BHARATH COLLEGE OF SCIENCE AND MANAGEMENT, THANJAVUR.

B.Sc INFORMATION TECHNOLOGY –VI SEMESTER
(For the candidates admitted from the academic year 2016-2017 onwards)

CORE COURSE IX - DATA BASE SYSTEMS

Unit I

Introduction: Database-System Applications- Purpose of Database Systems - View of Data --

Database Languages - Relational Databases - Database Design -Object-Based and Semi

structured Databases - Data Storage and Querying Transaction Management -Data Mining and

Analysis - Database Architecture - Database Users and Administrators - History of Database

Systems.

Unit II

Relational Model: Structure of Relational Databases - Fundamental Relational-Algebra

Operations Additional Relational-Algebra Operations- Extended Relational-Algebra Operations

- Null Values - Modification of the Database.

Unit III

SQL: Data Definition - Basic Structure of SQL Queries - Set Operations-Aggregate Functions -

Null Values- Nested Sub queries - Complex Queries - Views -Modification of the Database -

Joined Relations - SQL Data Types and Schemas - Integrity Constraints -Authorization -

Embedded SQL

Unit IV

Relational Languages: The Tuple Relational Calculus - The Domain Relational Calculus -

Query-by- Example. Database Design and the E-R Model: Overview of the Design Process -

The Entity-Relationship Model - 3 Constraints - Entity-Relationship Diagrams - Entity-

Relationship Design Issues - Weak Entity Sets - Database Design for Banking Enterprise

Unit V

Relational Database Design: Features of Good Relational Designs - Atomic Domains and First

Normal Form - Decomposition Using Functional Dependencies - Functional-Dependency

Theory - Decomposition Using Functional Dependencies - Decomposition Using Multivalve

Dependencies-More Normal Forms - Database-Design Process

Text Book:

1. Database System Concepts, Fifth edition, Abraham Silberschatz , Henry F. Korth, S.

Sudarshan, McGraw-Hill-2005.

Reference Books:

1. “An introduction to database systems”, Bipin C. Desai, Galgotia Publications Pvt Ltd, 1991.

2. “An Introduction to Database Systems”, C.J.Date, Third Edition Addison Wesl

Unit I

2 Marks

1. What is database?

 A database is a collection of information that is organized so that it can easily be accessed,

managed, and updated.

 Some examples of database software are Oracle, FileMaker Pro, Microsoft Access, Microsoft

SQL Server, SAP and MySQL

 Databasesoftware, also called a database management system or DBMS, is used to store,

retrieve, add, delete and modify data.

2. What is Database Management System (DBMS)?

 A database management system (DBMS) is a computer software application that interacts

with the user, other applications, and the database itself to capture and analyze data

 A general-purpose DBMS is designed to allow the definition, creation, querying, update, and

administration of databases

 DBMS contains information about a particular enterprise

1. Collection of interrelated data

2. Set of programs to access the data

3. An environment that is both convenient and efficient to use.

3. What are the advantages of DBMS?

 Redundancy is controlled

 Unauthorized access restricted.

 Providing multiple user interface

 Enforcing integrity constraints.

 Providing backup and recovery.

4. List out the disadvantages in File Processing System.

 Data redundancy & inconsistency

 Difficult in accessing data

 Data isolation

 Data integrity

 Concurrent access is not possible

 Security Problems.

5. What are the major disadvantages of a database system?

 Setup of the database system requires much more knowledge, money, skills, and time

 Complexity of the database may result in poor performance

6. List the different applications of DBMS.

 Banking: all transactions

 Airlines: reservations, schedules

 Universities: registration, grades

 Credit card transactions

 Tele communications

 Finance

 Sales: customers, products, purchases

 Online retailers: order tracking, customized recommendations

 Manufacturing: production, inventory, orders, supply chain

 Human resources: employee records, salaries, tax deductions

7. Define Data independence.

 The ability to modify a schema definition in only level without affecting a Schema definition

in the next higher level is called data independence.

8. Give the levels of data abstraction?

 Physical level

 Logical level

 View level

9. Write about the instances and Schemas

 The collection of information stored in the database at a particular moment is called an

instance of the database.

 The overall design of the database is called the database schema. Schemas are changed

infrequently

 Schema represents the variable declaration in a program.

 The value of the variable in a program is an instant of a database schema.

 A database may also have several schemas at the view level and is called as sub-schemas

10. Define Storage Manager.

 Storage manger is a program module that provides the interface between the low levels data

stored in the database and the application programs and queries submitted to the system.

 The storage manager is responsible to the following tasks:

 Interaction with the file manager

 Translation of DML commands in to low level file system commands

 Efficient storing, retrieving and updating of data.

11. What are the components of storage manager?

 The storage manager components include

o Authorization and integrity manager

o Transaction manager

o File manager

o Buffer manager

12. What are the data structures implemented by Storage manager?

 Data files – which store the database itself

 Data dictionary – which stores metadata about the structure of the database in particular

the schema of the database

 Indices – which can provide fast access to data items

13. Define data model and list out their types.

 A collection of conceptual tools for describing Data, Data relationships, Data semantics,

consistency constraints.

 Types of data Model

 Relational model

 Entity Relationship data model (mainly for database design)

 Object based data models (Object oriented and Object relational)

 Semi structured data model (XML)

 Other older models:

 Network model

 Hierarchical model

14. What is E-R model?

 The entity-relationship data model is based on perception of a real world that consists of a

collection of basic objects, called entities and of relationships among these object

15. Define entity and entity set.

 An entity is a “thing” or “object” in the real world that is distinguishable from other objects.

For example, each person in an entity.

 The set of all entities of the same type are termed and entity set.

16. Define relationship and relationship set.

 A relationship is an association among several entities. For example, a depositor relationship

associated a customer with each account.

 The set of all relationships of the same type are termed a relationship set.

17. What is Object Oriented Model?

 The model is based on collection of object.

 An object contains values stored in instance variables within the object.

 An object also contains bodies of code that operate on the object. These bodies of code are

called methods.

 Objects that contain same type of values and the same methods are grouped together into

classless

18. Define Record-Based Logical Models.

 Record-based logical models are used in describing data at the logical and levels.

 They are used both to specify the overall structure of the database and provide a high-level

description of the implementation.

19. Define Relational model.

 The relational model uses a collection of tables to represent both data and the relationships

among those data.

 Each table has multiple columns, and each column has a unique name.

20. Define Network model.

 Data in the networks model are represented by collection of records and relationships among

data are represented by links, which can be viewed as pointers.

 The records in the database are organized as collections of arbitrary graphs.

21. Define Hierarchical Model

 The hierarchical model is similar to the network models in the sense that data and

relationship among data are represented by records and links respectively.

 It differ from the network model in that the records are organized as collection of trees rather

that arbitrary graphs.

22. Define Semi-structured data model

 The semi-structured data model permits the specification of data where individual data items

of the same type may have different sets of attributes.

 Every data item of a particular type must have the same set of attributes.

 The Extensible Markup Language (XML) is widely used to represent semi-structured data

23. What is a data dictionary?

 A data dictionary is a data structure which stores Meta data about the structure of the

database that is the schema of the database.

24. What are the Database languages?

 Database languages are used for read, update and store data in adatabase.

 There are several such languages that can be used for this purpose; one of them is SQL

(Structured Query Language).

 Types of DBMS languages:

o Data Definition Language (DDL) - to specify the database schema

o Data Manipulation Language (DML) - to express database queries and updates.

25. What is a DML?

 A data-manipulation language (DML) is a language that enables users to access or manipulate

data as organized by the appropriate data model

 DML used to

o Retrieval of information stored in the database

o Insertion of new information into the database

o Deletion of information from the database

o Modification of information stored in the database

26. What are the types of DML?

 Procedural DMLs - require a user to specify what data are needed and how to get those data.

 Declarative DMLs or nonprocedural DMLs - require a user to specify what data are needed

without specifying how to get those data.

27. What is a query and query language?

 A query is a statement requesting the retrieval of information.

 The portion of a DML that involves information retrieval is called a query language.

28. What is a DDL?

 DDL is used to specify a database schema by a set of definitions.

 DDL is also used to specify additional properties of the data.

 DDL is also called as data storage and definition language since it is used to specify the

storage structure and access methods used by the database system.

29. What is an Integrity constraint?

 Integrity means something like 'be right' and consistent.

 The data in a database must be right and in good condition.

 Integrity constraints are

o Domain constraint

o Referential integrity

o Assertion

o Authorization

30. What is a Domain constraint?

 A domain of possible values must be associated with every attribute (for example, integer

types, character types, date/time types)

 Domain constraints are the most elementary form of integrity constraint.

 They are tested easily by the system whenever a new data item is entered into the database

31. What is a Referential integrity?

 There are cases where we wish to ensure that a value that appears in one relation for a given

set of attributes also appears in a certain set of attributes in another relation (referential

integrity).

32. What is an assertion?

 An assertion is any condition that the database must always satisfy.

 Domain constraints and referential-integrity constraints are special forms of assertions

33. What is an authorization?

 We may want to differentiate among the users as far as the type of access they are permitted

on various data values in the database.

 These differentiations are expressed in terms of authorization.

 Types of authorizations are

o Read authorization

o Insert authorization

o Update authorization

o Delete authorization

34. What is normalization?

 In relational database design, the process of organizing data to minimize redundancy.

 Normalization usually involves dividing a database into two or more tables and defining

relationships between the tables.

35. What are the query processors?

 DDL interpreter, which interprets DDL statements and records the definitions in the data

dictionary.

 DML compiler, which translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

36. What are the database users?

 Users are differentiated by the way they expect to interact with the system

 Application programmers–interact with system through DML calls

 Sophisticated users–form requests in a database query language

 Specialized users–write specialized database applications that do not fit into the

traditional data processing framework

 Naive users–invoke one of the permanent application programs that have been written

previously

37. What are the data base subsystems?

A database system has several subsystems.

 The storage manager subsystem provides the interface between the low level data stored in

the database and the application programs and queries submitted to the system.

 The query processor subsystem compiles and executes DDL and DML statements.

5 Marks

38. List out the disadvantages of File processing System

 Data redundancy and inconsistency

 Data redundancy means two different fields within a single database, or two different

spots in multiple software environments or platforms.

 Data inconsistency is a condition that occurs between files when similar data is kept

in different formats in two different files, or when matching of data must be done

between files

 Difficulty in accessing data

 Difficulty in accessing data arises whenever there is no application program for a

specific task.

 Data isolation:

 This problem arises due to the scattering of data in various files with various formats.

Due to the above disadvantages of the earlier data processing system, the necessity for

an effective data processing system arises.

 Integrity problems.

 The data values stored in the database must satisfy certain types of consistency

constraints

 Atomicity Problems

 An atomic transaction is an indivisible and irreducible series of database operations

such that either all occur, or nothing occurs. A guarantee of atomicity prevents

updates to the database occurring only partially, which can cause

greater problems than rejecting the whole series outright.

 Concurrent access anomalies

 If multiple users are updating the same data simultaneously it will result in

inconsistent data state

 Security problems

 Not every user of the database system should be able to access all the data.

39. List out the DBMS applications in detail

 Enterprise Information

o Sales: For customer, product, and purchase information.

o Accounting: For payments, receipts, account balances, assets and other accounting

information.

o Humanresources: For information about employees, salaries, payroll taxes, and

benefits, and for generation of paychecks.

o Manufacturing: For management of the supply chain and for tracking production of

items in factories, inventories of items in warehouses and stores, and orders for items

o Onlineretailers: For sales data noted above plus online order tracking, generation of

recommendation lists, and maintenance of online product evaluations.

 Banking and Finance

o Banking: For customer information, accounts, loans, and banking transactions.

o Credit card transactions: For purchases on credit cards and generation of monthly

statements.

o Finance: For storing information about holdings, sales, and purchases of financial

instruments such as stocks and bonds; also for storing real-time market data to enable

online trading by customers and automated trading by the firm.

 Universities: For student information, course registrations, and grades (in addition to

standard enterprise information such as human resources and accounting).

 Airlines: For reservations and schedule information. Airlines were among the first to use

databases in a geographically distributed manner.

 Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the

communication networks.

40. Discuss briefly about view of data.

 A major purpose of a database system is to provide users with an abstract view of the data.

That is, the system hides certain details of how data stored and maintained.

Data abstraction

 For the system to be useful, it must retrieve data efficiently. The need for the efficiency has

to lead designers to use complex data structures to represent data in a database.

 The three levels of Data abstraction

 Physical level

 Logical level

 View level

 Physical level:

o The lowest level of abstraction describes how the data are actually stored.

o The physical level describes complex low-level data structures in detail.

 Logical level:

o The next-higher level of abstraction

o It describes data stored in database, and the relationships among the data.

 View level:

o The highest level of abstraction describes only part of the entire database

o The application programs hide details of data types.

o Views can also hide information (such as an employee’s salary) for security purposes.

41. Explain about ACID in DBMS

 A transaction is a unit of program execution that accesses and possibly updates various data

items.

 ACID Properties

o A transaction is a unit of program execution that accesses and possibly updates

various data items. To preserve the integrity of data the database system must ensure:

o Atomicity. Either all operations of the transaction are properly reflected in the

database or none are.

o Consistency Execution of a transaction in isolation preserves the consistency of the

database.

o Isolation. Although multiple transactions may execute concurrently, each transaction

must be unaware of other concurrently executing transactions. Intermediate

transaction results must be hidden from other concurrently executed transactions.

o Durability. After a transaction completes successfully, the changes it has made to

the database persist, even if there are system failures.

42. Explain about the Database Administrator (DBA) and the functions of DBA

 A person who has such central control over the system is called a database Administrator.

 Data coordinates all the activities of the database system; the database administrator has a

good understanding of the enterprise’s information resources and needs.

 The functions of DBA include:

 Schema definition - The DBA creates the original database schema by executing a set

of data definition statements in the DDL.

 Storage structure and access method definition

 Schema and physical organization modification

o The DBA carries out changes to the schema and physical organization, or to

alter the physical organization to improve performance.

 Granting user authority to access the database

o By granting different type of authorization, the database administrator can

regulates which parts of the database various users can access.

o The authorization information is kept in a special system structure that the

database system consults whenever someone attempts to access the data in the

system.

 Routine maintenances.

o Periodically backing up the database, either onto tapes or onto remote servers,

to prevent loss of data in case of disaster such as flooding.

o Monitoring performance and responding to changes in requirements

o Ensuring that enough free disk space is available or normal operations, and

upgrading disk space as required.

10 Marks

43. Explain the history of DBMS

 20th century - Punched Cards – invented by Herman Hollerith. Used to record US Census

data and mechanical systems were used to process the cards and tabulate the results.

 1950’s and early 1960’s

 Magnetic tapes were developed for data storage

 Data could also be input from punched card decks and output to printers

 Late 1960’s and 1970’s

 Hard disks widely used for data processing

 The position of the data on the disk was immaterial. Since any location on disk could

be accessed in just tens of milliseconds

 1970’s – CODD invented landmark paper defined the relational model and non-procedural

ways of querying data

 1980’s

 Relations databases had become competitive with network and hierarchical database

system even in the area of performance

 Researches on parallel and distributed database and also on object oriented databases

 Early 1990’s

 SQL language was designed primarily for decision support applications

 Tools for analyzing large amounts of data saw large growths in usage

 Vendors used parallel database products in this period

 1990’s

 The major event of the 1990s the growth of WWW

 DB systems had to support very high transaction processing rates as well as very high

reliability and 24 * 7 availability

 No downtime for scheduled maintenance activities.

 DB system also had to be support web interfaces to data.

 2000’s

 The first half of the 2000s saw the emerging of XML and the associated query

language XQuery as a db technology

 Although XML is widely used for data exchange for storing certain complex data

types

44. Discuss briefly about Data Models.

 A collection of tools for describing Data, Data relationships, Data semantics and Data

constraints.

 Relational model:

 The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple column has a unique name.

 The relational model is an example of Record-based model

 The relational data model is the most widely used data model, and a vast majority of

current database systems are based on the relational model.

Example

 The Entity-Relationship Model

 The entity-relationship (E-R) data Model is based on a perception of a real world that

consists of a collection of entities and relationships

 Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects

 Described by a set of attributes

 Relationship: an association among several entities

 Represented diagrammatically by an entity-relationship diagram:

 Object Relational Data Models

 Extend the relational data model by including object orientation and constructs to deal with

added data types.

 Allow attributes of tuples to have complex types, including non atomic values such as nested

relations.

 Preserve relational foundations, in particular the declarative access to data, while extending

modeling power.

 Provide upward compatibility with existing relational languages.

 Semi structured data model (XML)

 Defined by the WWW Consortium (W3C)

 Originally intended as a document markup language not a database language

 The ability to specify new tags, and to create nested tag structures made XML a great way to

exchange data, not just documents

 XML has become the basis for all new generation data interchange formats.

 A wide variety of tools is available for parsing, browsing and querying XML documents/data

45. Explain the Database Languages

 Database languages are used for read, update and store data in a database.

 There are several such languages that can be used for this purpose; one of them is SQL

(Structured Query Language).

 Types of DBMS languages:

o Data Definition Language (DDL) - to specify the database schema

o Data Manipulation Language (DML) - to express database queries and updates

 DML

o A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model

o DML used to

 Retrieval of information stored in the database

 Insertion of new information into the database

 Deletion of information from the database

 Modification of information stored in the database

 DDL

o DDL is used to specify a database schema by a set of definitions.

o DDL is also used to specify additional properties of the data.

o DDL is also called as data storage and definition language since it is used to specify

the storage structure and access methods used by the database system

 DDL involved in consistency constraints

o Domain Constraints

 A domain of possible values must be associated with every attribute (for

example, integer types, character types, date/time types)

o Referential integrity

 There are cases where we wish to ensure that a value that appears in one

relation for a given set of attributes also appears in a certain set of attributes in

another relation (referential integrity).

o Assertion

 An assertion is any condition that the database must always satisfy.Domain

constraints and referential-integrity constraints are special forms of assertions

o Authorization

 We may want to differentiate among the users as far as the type of access they

are permitted on various data values in the database.

 These differentiations are expressed in terms of authorization.

 Types of authorizations are

 Read authorization

 Insert authorization

 Update authorization

 Delete authorization

Unit II

2 Marks

1. What is the relational model?

 The relational model is today the primary data model for commercial data processing

applications

 It attained its primary position because of its simplicity

2. What is a relation, tuple, attribute?

 Relation – In relational model relation is used to refer to a table, each of which is assigned a

unique name.

 Tuple – Tuple is a row in the table

 Attribute – refers to a column of a table.

 Relation instance – to refer to a specific instance of a relation that is containing a specific set of

rows.

 Domain - For each attribute of a relation, there is a set of permitted values, called as domain.

 Atomic domain - We require that for all relations r, the domains of all attributes of r be atomic.

A domain is atomic if the elements of the domain are considered to be indivisible units.

3. What are the different relational algebra operations?

 Fundamental relational algebra operations:

a. Unary Operators - select, project and rename.

b. Binary operator-product, set union and set difference

 Additional relational algebra

a. Set intersection, natural join, division and assignment

 Extended relational algebra

a. Outer join, aggregate and generalized projection

4. Define keys.

 A way to specify how tuples within a given relation are distinguished. This is expressed in terms

of their attributes. That is, the values of the attribute values of a tuple must be such that they can

uniquely identify the tuple.

 Superkey is a set of one or more attributes that, taken collectively allow us to identify uniquely a

tuple in the relation.

 Candidate keys Which no proper subset is a superkey. Such minimal superkeys are called

candidate keys.

 Primary key: a candidate key chosen as the principal means of identifying tuples within a

relation

a. Should choose an attribute whose value never, or very rarely, changes.

E.g. email address is unique, but may change

 Foreign key:A relation schema may have an attribute that corresponds to the primary key of

another relation. The attribute is called a foreign key.

b. E.g. customer_name and account_number attributes of depositor are foreign keys to

customer and account respectively.

c. Only values occurring in the primary key attribute of the referenced relation may occur

in the foreign key attribute of the referencing relation.

5. Define database schema and instance.

 Database schema is the logical design of the database.

 Database instance is a snapshot of the data in the database at a given instant in time.

 The concept of a relation schema corresponds to the programming language notion of type

definition.

E.g., Account_schema = (account_no, branch_name, balance)

Branch_schema = (branch_name, branch_city, assets)

6. What are Query languages?

 A Query language is a language in which user requests information from the database. These

languages are usually higher than that of standard programming language.

 Categories of languages

 Procedural

 Non-procedural, or declarative

 “Pure” languages:

 Relational algebra

 Tuple relational calculus

 Domain relational calculus

Pure languages form underlying basis of query languages that people use.

7. List out Additional relational algebra operation:

 Set intersection

 Natural join

 Outer Join

 Division

5 Marks

8. Explain the schema diagram

 A database schema is the skeleton structure that represents the logical view of the entire

database.

 A database schema defines its entities and the relationship among them. It contains a

descriptive detail of the database, which can be depicted by means of schema diagrams.

 Below schema diagram shows the student database with Course, Student and Enrolls tables.

i. Course table has CourseID as primary key field and Course name as normal field

ii. Student table has StudentID as primary key field and StudentName, DOB, Address

are the other fields

iii. Enrolls table has the StudentCode field which referenced from Student’s Student ID

field and CourseID referenced from Course table.

9. Discuss in detail about fundamental relational algebra operations

Fundamental Operations

 The select, project, and rename operations are called unary operations, because they operate on

one relation.

 The other three operations operate on pairs of relations and are, therefore, called binary

operations.

 All procedural relational query languages provide a set of operations that can be applied to

either a single relation or a pair of relations

 Selection of specific tuples from a single relation that satisfies some particular predicate for

example salary >$85,000. This result in new relation that is subset of the original relation

 Selection of specific attribute (column) from the relation. The result in a new relation

having only those selected attributes. For example dept_name from instructor table / relation.

 The join operation allows the combining of two relations by merging pairs of tuples, one

from each relation, into a single tuple. There are a number of different ways to join relations

 The Cartesian product operation combines tuples fromtworelations, but unlikethe join

operation, its result contains all pairs of tuples from the two relations,regardless of whether

their attribute values match.

 The union operation performs a set union of two “similarly structured” tables(say a table of

all graduate students and a table of all undergraduate students).

 Relational algebra defines with a few of the operations below.

10 Marks

10. Explain briefly about the basic structure of relational Model

 Basic Structure

 Formally, given sets D1, D2, …. Dn a relation r is a subset of

D1x D2 x …x Dn

Thus, a relation is a set of n-tuples (a1,a2, …, an) where each ai∈Di

Example: If

o customer_name= {Jones, Smith, Curry, Lindsay, …} /* Set of all customer names */

o customer_street= {Main, North, Park, …} /* set of all street names*/

o customer_city= {Harrison, Rye, Pittsfield, …} /* set of all city names */

Then r= { (Jones, Main, Harrison),

(Smith, North, Rye),

(Curry, North, Rye),

(Lindsay, Park, Pittsfield) }is a relation over

Customer_name x customer_street x customer_city

 Attribute Types

 Each attribute of a relation has a name

 The set of allowed values for each attribute is called the domain of the attribute

 Attribute values are (normally) required to be atomic; that is, indivisible

E.g. the value of an attribute can be an account number, but cannot be a set of account

numbers

 Domain is said to be atomic if all its members are atomic

 The special value null is a member of every domain

 The null value causes complications in the definition of many operations

We shall ignore the effect of null values in our main presentation and consider their effect

later

 Relation Schema

 A1, A2, …, An are attributes

 R= (A1, A2, …, An) is a relation schema

Example:

Customer_schema= (customer_name, customer_street, customer_city)

 r(R) denotes a relation on the relation schema R

Example:

Customer (Customer_schema)

 Relation Instance

 The current values (relation instance) of a relation are specified by a table

 An element t of r is a tuple, represented by a row in a table Attributes

(Or columns)

Tuples

(or rows)

Customer

 Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

 Example: account relation with unordered tuples

 Database

 A database consists of multiple relations

 Information about an enterprise is broken up into parts, with each relation storing one part of

the information

o account : stores information about accounts

o depositor : stores information about which customer owns which account

o customer : stores information about customers

 Storing all information as a single relation such as

bank (account_number, balance, customer_name, ..)

 Results inrepetition of information

e.g., if two customers own an account (What gets repeated?)

Customer_name Customer_street Customer_city

John Main Harrison

Smith North Ray

curry North Ray

Lindsay Park pits field

 The need for null valuese.g., to represent a customer without an account

11. Discuss briefly about the modification of the database.

 The content of the database may be modified using the following operations:

a. Deletion

b. Insertion

c. Updating

 All these operations are expressed using the assignment operator.

 The customer Relation

Deletion:

 A delete request is expressed similarly to a query, except instead of displaying tuples to the

user; the selected tuples are removed from the database.

 Can delete only whole tuples; cannot delete values on only particular attributes

 A deletion is expressed in relational algebra by:

rr – E

Where r is a relation and E is a relational algebra query.

 Delete all account records in the Perryridge branch.

account ←account –σ branch_name = “Perryridge”(account)

 Delete all loan records with amount in the range of 0 to 50

Loan ←loan–σamount ≥ 0 and amount ≤ 50(loan)

 Delete all accounts at branches located in Needham.

r1←σbranch_city = “Needham”(account × branch)

r2←∏account_number, branch_name, balance(r1)

r3 ←∏customer_name, account_number(r2×depositor)

account ←account –r2

depositor ←depositor –r3

Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

r ←r∪E

Where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E is a constant relation containing one

tuple.

Insertion Examples

 Insert information in the database specifying that Smith has $1200 in account A-973 at the

perryridge branch.

account ←account∪{(“A-973”, “Perryridge”, 1200)}

depositor ←depositor∪{(“Smith”, “A-973”)}

 Provide as a gift for all loan customers in the Perryridge branch, a $200 savings account. Let the loan

number serve as the account number for the new savings account.

r1←(σbranch_name = “Perryridge”(borrower loan))

account ←account∪∏loan_number, branch_name,200(r1)

depositor ←depositor ∪∏customer_name, loan_number (r1)

Updating

 A mechanism to change a value in a tuple without changing all values in the tuple

 Use the generalized projection operator to do this task

r←∏f1,f2…fr(r)

Update examples

 Make interest payments by increasing all balances by 5 percent

account ←∏account_number, branch_name, balance * 1.05(account)

 Pay all accounts with balances over $10,000 6 percent interest and pay all others 5 percent

account←∏account_number, branch_name, balance * 1.06(σBAL >10000 (account))

∪∏account_number, branch_name, balance * 1.05 (σBAL ≤10000 (account))

12. Discuss briefly about aggregate functions with example.

 Aggregation function takes a collection of values and returns single values a result.

Avg : average value

Min : minimum value

Max : maximum value

Sum : sum of values

Count : number of values

 Aggregate operation in relational algebra

G1,G2…GNθF1(A1),F2(A2)….FN(AN)(E)

E is any relational algebra expression

G1,G2...,Gn is a list of at tributes on which to group(can be empty)

Each Fi is an aggregate function

Each Ai is an attribute name

 Aggregate function Examples

Relation r

Empname Empid salary

Arun 1001 4000

Vinoth 1002 5000

Ganesh 1003 7000

kaviya 1004 3500

gsum(salary)(r)

Sum(salary)

19500

Relational account grouped by branch-name

Branch-name Account_no balance

A1 A-102 900

A1 A-304 700

B1 A-207 800

B1 A-206 500

C1 A-207 750

branch_name g sum(balance)(account)

Branch-name Sum(balance)

A1 1600

B1 1300

C1 750

Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate operation

branch_name gsum(balance) as sum_balance(account)

13. Discuss in detail about fundamental relational algebra operations

Fundamental Operations

 The select, project, and rename operations are called unary operations, because they operate on

one relation.

 The other three operations operate on pairs of relations and are, therefore, called binary

operations.

The Select Operation

 The selectoperation selects tuples that satisfy a given predicate.

 We use the lowercase Greek letter sigma (σ) to denote selection.

Relation r

A B C D

α α 1 9

α β 5 7

β β 67 12

β β 8 9

σA=B^D>5(r)

A B C D

α α 1 9

β β 67 12

Notation:σp(r)

 P is called the selection predicate

 Defined as:

σp(r)={t|t ∈ r and p(t)}

 Where p is a formula in propositional calculus consisting of terms connected

by:∧(and),∨(or),¬(not) Each term is one of:

<attribute>op<attribute>or<constant>

Where op is one of:=,≠,>,≥.<.≤n

Example of selection:

σbranch_name=“Perryridge”(account)

Project operation

 The project operation is a unary operation that returns its argument relation, with certain

attributes left out. Since a relation is a set, any duplicate rows are eliminated.

 Projection is denoted by the uppercase Greek letter pi (∏).

Project Example:

Relation r

A B C

α 10 1

α 20 1

∏A,C(r)

A C

α 1

β 30 1

β 40 2

β 1

β 2

Notation:∏A1,A2…An(r)

 Where A1,A2 are attribute names and r is a relation name

 The result is defined as the relation of k columns obtained by erasing the columns that are not

listed

 Duplicate rows removed from result, since relations are set

 Example: To eliminate the branch_name attribute of account

∏account_number,balance(account)

Set Union operation

 The union operation is a binary operation, It is used to combined tuples of the given two relations

Relation r and s:

r

A B

xxx 12

Yyy 15

Hhh 90

s

A B

Kkk 12

Jjj 89

Hhh 90

r∪s

A B

Xxx 12

Yyy 15

Hhh 90

Kkk 12

Jjj 90

 Notation:r∪s

 Defined as: r ∪ s= {t | t ∈ r or t ∈ s}

For r∪s to be valid,

1. r,s must have the same arity(same number of attributes)

2. The attribute domains must be compatible (example:2nd column of r deals with the same

Type of values as does the 2nd column of s)

Example: to find all customers with either an account or a loan

∏customer_name(depositor)∪∏customer_name(borrower)

Set difference operation

It is a binary operation. It is used to find the tuples belongs to one relation not belongs to another

relation

r

A B

Xxx 12

Yyy 15

Hhh 90

s

A B

Kkk 12

Jjj 89

Hhh 90

r-s

A b

Xxx 12

Yyy 15

 Notation:r - s

 Defined as: r - s= {t | t ∈ r or t ∉ s}

 Set difference must be taken between compatible relations

 r,s must have the same arity

 The attribute domains of r and s must be compatible

Example: To find all customers who have an account not a loan

∏customer_name(depositor)∪∏customer_name(borrower)

Cartesian product

It is binary operation in fundamental relational algebra it’s used to combine the information of the given

two relations

Relation r

A B

α 1

β 2

Relation r

C D E

α 10 a

β 20 b

γ 30 b

R X S

A B C D E

α 1 α 10 a

α 1 β 20 b

α 1 γ 30 b

β 2 α 10 a

β 2 β 20 b

β 2 γ 30 b

Rename operation

 Allows us to name, and therefore to refer to, the results of relational-algebra expressions.

 Allows us to refer to a relation by more than one name.

 Example:

x (E)

returns the expression E under the name X

 If a relational-algebra expression E has arity n, then

)(),...,,(21
E

nAAAx

returns the result of expression E under the name X, and with the attributes renamed to A1 , A2 , …., An .

14. Discuss briefly about the additional algebra operations and extended relational algebra

operations

 Additional relational algebra operation:

 Set intersection

 Natural join

 Outer Join

 Division

 All above, other than aggregation, can be expressed using basic operations we have seen earlier

Set intersection()

 The union operation is a binary operation, It is used to extract common tuples of the given two

relations

Relation r

A B

xxx 12

Yyy 15

Hhh 90

Relation s
A B

Kkk 12

Jjj 89

Hhh 90

rs

A b

Hhh 90

 Notation: r∪s

 Defined as: r ∪ s= {t | t ∈ r and t ∈ s}

For r∪s to be valid.

3. r,s must have the same arity(same number of attributes)

Example: to find all customers with either an account or a loan

∏customer_name(depositor)∏customer_name(borrower)

Natural join

 Notation: r s

Relations r

A C

α 10

β 30

γ 30

Relations s

A C D B

α 10 a 13

β 20 b 16

γ 30 b 16

 R S:

A B C D

α 13 10 a

γ 16 30 b

 Let r and s be relations on schemas R and S respectively.

Then, r s is a relation on schema R S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in RS, add a tuple t to the

result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D) S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

Division operation

 Notation: r s

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S respectively where

 R = (A1, …, Am , B1, …, Bn)

 S = (B1, …, Bn)

 The result of r  s is a relation on schema

R – S = (A1, …, Am)

r s = { t | t R-S (r) u s (tu r) }

Where tu means the concatenation of tuples t and u to produce a single tuple

r

A C D E

Xxx 12 a 1

yyy 15 b 1

Hhh 90 b 3

Xxx 12 b 1

Hhh 90 a 3

s

D E

a 1

b 1

r s

A b

Xxx 12

Extended Relational Algebra operations

 Outer join

 Aggregate functions

 Generalized projection

Outer join

 An extension of the join operation that avoids loss of information.

 Computes the join and then adds tuples form one relation that does not match tuples in the other

relation to the result of the join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by definition.

 Relation loan

 Relation borrower

 Join

loan borrower

 Left Outer Join

 Right outer join

Null values:

 It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 For duplicate elimination and grouping, null is treated like any other value, and two nulls are

assumed to be the same (as in SQL)

Unit III

2 Marks

1. What is SQL data definition?

The SQL DDL allows specification of not only a set of relations, but also information about each

relation, including:

 The schema for each relation.

 The types of values associated with each attribute.

 The integrity constraints.

 The set of indices to be maintained for each relation.

 The security and authorization information for each relation.

 The physical storage structure of each relation on disk.

2. Define null values.

 It is possible for tuples to have a null value, denoted by null, for some of their attributes null

signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 Example: Find all loan number which appears in the loan relation with null values for amount.

o Select loan_numberfrom loanwhere amount is null

3. List the Basic domain type in SQL.

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer domain type).

 numeric (p,d). Fixed point number, with user-specified precision of p digits, with n digits to

the right of decimal point.

 real, double precision. Floating point and double-precision floating point numbers, with

machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n digits.

4. What is meant by set operation in SQL?

 The set operations union, intersect, and except operate on relations and correspond to the

relational algebra operations 

 Each of the above operations automatically eliminates duplicates; to retain all duplicates use the

corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it occurs:

o m + n times in r union all s

o min(m,n) times in rintersect all s

o max(0, m – n) times in rexcept all s

5. What is a tuple variable in SQL?

 Tuple variables are defined in the from clause via the use of the as clause.

 Find the customer names and their loan numbers and amount for all customers having a loan at

some branch.

 Select customer_name,T.loan_number,S.amount from borrower as T, loan as S

where T.loan_number = S.loan_number

 Find the names of all branches that have greater assets than some branch located in brooklyn.

Select distinct T.branch_name

from branch as T, branch as S

where T.assets > S.assets and S.branch_city = 'Brooklyn'

 Keywords is optional and may be omitted

borrower as T ≡ borrowerT

 Some database such as Oracle requireas to be omitted

6. What is a schema definition?

 Define an SQL relation by using the create table command.

 Syntax to create the relation

create table r

(A1 D1,

A2 D2,

. . . ,

An Dn,

integrity-constraint1,

. . . ,

integrity-constraintk);

 The followingcommand creates a relation department in the database.

create table department

(dept name varchar (20),

building varchar (15),

budget numeric (12,2),

primary key (dept name));

7. How to remove the relation from SQL database?

 To remove a relation from an SQL database, we use the drop table command.

 The drop table command deletes all information about the dropped relation fromthe

database.

 The command is

drop table r;

 Delete is also a more drastic action than

delete from r;

8. How to change the relation in SQL database?

 The alter table command to add attributes to an existing relation. Alltuples in the relation are

assigned null as the value for the new attribute.

 The formof the alter table command is

alter table r add AD;

where r is the name of an existing relation, A is the name of the attribute to beadded, and

D is the type of the added attribute.

 We can drop attributes from arelation by the command

alter table r drop A;

where r is the name of an existing relation, and A is the name of an attribute of

therelation.

 Many database systems do not support dropping of attributes, althoughthey will allow an

entire table to be dropped.

9. What is the Select clause?

 The select clause list the attributes desired in the result of a query.

 Corresponds to the projection operation of the relational algebra

 Example: find the names of all branches in the loan relation:

select branch_name from loan

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after select.

 The keyword all specifies that duplicates not be removed.

select allbranch_name from loan

 An asterisk in the select clause denotes “all attributes”

select *from loan

 The select clause can contain arithmetic expressions involving the operation, +, –, *, and /,

and operating on constants or attributes of tuples.

 E.g.: selectloan_number, branch_name, amount * 100 from loan

10. Explain The Where clause

 The where clause specifies conditions that the result must satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch with loan amounts greater

than $1200.

select loan_number from loan

 where branch_name ='Perryridge'and amount > 1200

 Comparison results can be combined using the logical connectives and, or, and not.

11. Explain The from clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower X loan

select *from borrower, loan

 Find the name, loan number and loan amount of all customers having a loan at the Perryridge

branch.

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number andbranch_name = 'Perryridge

12. Explain The Rename Operation

 SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 E.g. Find the name, loan number and loan amount of all customers; rename the column name

loan_number as loan_id.

select customer_name, borrower.loan_number as loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

5 Marks

13. Discuss briefly about several parts of SQL language.

The SQL language has several parts:

 Data-definition language (DDL). The SQL DDL provides commands for defining relation

schemas, deleting relations, and modifying relation schemas.

 Data-manipulation language (DML). The SQL DML provides the ability to query information

from the database and to insert tuples into, delete tuples from, and modify tuples in the database.

 Integrity. The SQL DDL includes commands for specifying integrity constraints that the data

stored in the database must satisfy. Updates that violate integrity constraints are disallowed.

 View definition. The SQL DDL includes commands for defining views.

 Transaction control. SQL includes commands for specifying the beginning and ending of

transactions.

 Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how SQL statements

can be embedded within general-purpose programming languages, such as C, C++, and Java.

 Authorization. The SQL DDL includes commands for specifying access rights to relations and

views.

14. Write about the basic schema definition in SQL data definition

 The set of relations in a database must be specified to the system by means of adata-definition

language (DDL). The SQL DDL allows specification of not only aset of relations, but also

information about each relation

 We can define an SQL relation by using the create table command.

Syntax to create the relation

create table r

(A1 D1,

A2 D2,

. . . ,

An Dn,

integrity-constraint1,

. . . ,

integrity-constraintk);

 The following command creates a relation department in the database.

create table department

(dept name varchar (20),

building varchar (15),

budget numeric (12,2),

primary key (dept name));

 Remove the relation

1. To remove a relation from an SQL database, we use the drop table command.

2. The drop table command deletes all information about the dropped relation from the

database. The command is

drop table r;

3. Delete is also a more drastic action than

delete from r;

 Change the relation

1. The alter table command to add attributes to an existing relation. All tuples in the

relation are assigned null as the value for the new attribute.

2. The form of the alter table command is

alter table r add AD;

where r is the name of an existing relation, A is the name of the attribute to be added,

and D is the type of the added attribute.

3. We can drop attributes from a relation by the command

alter table r drop A;

where r is the name of an existing relation, and A is the name of an attribute of the

relation.

4. Many database systems do not support dropping of attributes, although they will allow

an entire table to be dropped.

10 Marks

15. Explain Select statement with all possible options

 The basic structure of an SQL query consists of three clauses: select, from, and where.

 Queries on a Single Relation

select name from instructor;

 “Find the names of all instructors in the Computer Science department who have salary greater than

$70,000.”

select name

from instructor

where dept name = ’Comp. Sci.’

and salary > 70000

 “Retrieve the names of all instructors, along with their department names and department building

name.”

select name, instructor.dept name, building

from instructor, department

where instructor.dept name= department.dept name;

 Cartesian Product

select name, course id

from instructor, teaches

where instructor.ID=

teaches.ID;

 “For all instructors in the university who have taught some course, find their names and the course

ID of all courses they taught.”

select name, course id

from instructor, teaches

where instructor.ID= teaches.ID and instructor.dept name = ’Comp.

Sci.’;

 Natural join similar to Cartesian product

select name, course id

from instructor natural join teaches;

 Or

select name, title

from (instructor natural join teaches)

join course using (course id);

16. Discuss briefly about the Basic structure of SQL and rename operation.

 The basic structure of an SQL query consists of three clauses: select, from, and where.

 The query takes as its input the relations listed in the from clause, operates on them as specified

in the where and select clauses, and then produces a relation as the result.

 We introduce the SQL syntax through examples,

 A typical SQL query has the form:

 select A1, A2, ..., An

 fromr1, r2, ..., rm

 where P

o Ai represents an attribute

o Ri represents a relation

o P is a predicate.

 This query is equivalent to the relational algebra expression.

 The result of an SQL query is a relation.

 The Select clause

 The select clause list the attributes desired in the result of a query

o corresponds to the projection operation of the relational algebra

 Example: find the names of all branches in the loan relation:

 select branch_name from loan

 In the relational algebra, the query would be:

𝜋branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)

E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

Some people use upper case wherever we use bold font.

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct after select.

 Find the names of all branches in the loan relations, and remove duplicates

 select distinct branch_name from loan

 The keyword all specifies that duplicates not be removed.

 select allbranch_name from loan

 An asterisk in the select clause denotes “all attributes”

 select *from loan

 The select clause can contain arithmetic expressions involving the operation, +, –, *, and /, and

operating on constants or attributes of tuples.

 E.g.: selectloan_number, branch_name, amount * 100 from loan

The Where clause

 The where clause specifies conditions that the result must satisfy. Corresponds to the selection

predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch with loan amounts greater than

$1200.

select loan_number from loan

 where branch_name ='Perryridge'and amount > 1200

 Comparison results can be combined using the logical connectives and, or, and not.

The from clause

 The from clause lists the relations involved in the query

o Corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower X loan

select *from borrower, loan

 Find the name, loan number and loan amount of all customers having a loan at the Perryridge

branch.

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number and

branch_name = 'Perryridge

The Rename Operation

 SQL allows renaming relations and attributes using the as clause:

o old-name as new-name

 E.g. Find the name, loan number and loan amount of all customers; rename the column name

loan_number as loan_id.

o select customer_name, borrower.loan_number as loan_id, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

17. Discuss briefly about the string operation in SQL.

 SQL specifies strings by enclosing them in single quotes, for example, ’Computer’.

 A single quote character that is part of a string can be specified by using two single quote

characters; for example, the string “It’s right” can be specified by “It”s right”.

 The SQL standard specifies that the equality operation on strings is case sensitive; as a result the

expression “’comp. sci.’ = ’Comp. Sci.’” evaluates to false.

 SQL also permits a variety of functions on character strings, such as concatenating (using “_”),

extracting substrings, finding the length of strings, converting strings to uppercase (using the

function upper(s) where s is a string) and lowercase (using the function lower(s)), removing

spaces at the end of the string(using trim(s)) and so on.

 There are variations on the exact set of string functions supported by different database systems.

See your database system’s manual for more details on exactly what string functions it supports.

Pattern matching can be performed on strings, using the operator like. We describe patterns by

using two special characters:

• Percent (%): The % character matches any substring.

• Underscore (): The character matches any character.

 Patterns are case sensitive; that is, uppercase characters do not match lowercase characters, or

vice versa. To illustrate pattern matching, we consider the following examples:

 ’Intro%’ matches any string beginning with “Intro”.

 ’%Comp%’ matches any string containing “Comp” as a substring, for example,

’Intro. to Computer Science’, and ’Computational Biology’.

 ’ ’ matches any string of exactly three characters.

 ’ %’ matches any string of at least three characters.

 SQL expresses patterns by using the like comparison operator.

 Consider the query “Find the names of all departments whose building name includes the

substring‘Watson’.” This query can be written as:

select dept name

from department

where building like ’%Watson%’;

18. Explain Set operation, Aggregate operation in SQL.

SET operations

The SQL operations union, intersect, and except operate on relations and correspond to the

mathematical set-theory operations , ∩, and −. We shall now construct queries involving the union,

intersect, and except operations over two sets.

The Union Operation

 Find all customers who have a loan, an account, or both:

(selectcustomer_name from depositor)

union

(selectcustomer_name from borrower)

 The union operation automatically eliminates duplicates, unlike the select clause.

 If we want to retain all duplicates, we must write union all in place of union:

(selectcustomer_name from depositor)

union all

(selectcustomer_name from borrower)

The intersection operation

 Find all customers who have both a loan and an account.

(selectcustomer_name from depositor)

intersect

(selectcustomer_name from borrower)

 The intersectoperation automatically eliminates duplicates, unlike the select clause.

 If we want to retain all duplicates, we must write intersect all in place of intersect:

(selectcustomer_name from depositor)

intersect all

(selectcustomer_name from borrower)

Set difference or Except operation

 Find all customers who have an account but no loan.

(selectcustomer_name from depositor)

except

(selectcustomer_name from borrower)

 The exceptoperation automatically eliminates duplicates, unlike the select clause.

 If we want to retain all duplicates, we must write except all in place of except:

(selectcustomer_name from depositor)

except all

(selectcustomer_name from borrower)

Aggregate Functions

 These functions operate on the multiset of values of a column of a relation, and return a value

avg:average value

 min: minimum value

 max: maximum value

 sum: sum of values

 count:number of values

 Find the average account balance at the Perryridge branch.

select avg (balance) from account

where branch_name = 'Perryridge'

 Find the number of tuples in the customer relation.

 select count (*) from customer

 Find the number of depositors in the bank.

select count (distinct customer_name) from depositor

Aggregation with grouping

 The aggregate function not only to a single set of tuples, but also to a group of sets of tuples; we

specify this wish in SQL using the group by clause.

 The attribute or attributes given in the group by clause are used to form groups.

 Tuples with the same value on all attributes in the group by clause are placed in one group.

Example

 Find the number of depositors for each branch.

select branch_name, count (distinctcustomer_name)

from depositor, account

where depositor.account_number = account.account_number

group by branch_name

The Having Clause

 It is useful to state a condition that applies to groups rather than to tuples.

 we use the having clause of SQL applies predicates in the having clause after groups have been

formed, so aggregate functions may be used.

 We express this query in SQL as follows:

Find the names of all branches where the average account balance is more than $1,200.

 select branch_name, avg (balance)

from account

group by branch_name

having avg(balance)>1200

19. Explain in detail about the nested sub query and complex query in sql.

Nested Sub queries

 SQL provides a mechanism for nesting sub queries.

 A sub query is a select-from where expression that is nested within another query.

 A common use of sub queries is to perform tests for set membership, make set comparisons, and

determine set cardinality, by nesting sub queries in the where clause.

Set Membership

 SQL allows testing tuples for membership in a relation.

 The in connective tests for set membership, where the set is a collection of values produced by a

select clause.

 The not in connective tests for the absence of set membership.

Example for in and not in construct

Find all customers who have both an account and a loan at the bank

select distinct customer_name

from borrower

where customer_name in (select customer_namefromdepositor)

Find all customers who have a loan at the bank but do not have an account at the bank

select distinct customer_name

 from borrower

 where customer_name not in (select customer_name from depositor)

Set Comparison

As an example of the ability of a nested sub query to compare sets.

Find all branches that have greater assets than some branch located in Thanjavur.

select distinct T.branch_name

 from branch as T, branch as S

 where T.assets > S.assets andS.branch_city = 'thanjavur'

Same query using >some clause

select branch_name from branch

where assets >some (select assets from branch where branch_city = thanjavur')

“All” Construct

Find the names of all branches that have greater assets than all branches located in thanjavur

select branch_namefrom branchwhere assets >all

 (select assetsfrom branchwhere branch_city = 'thanjavur')

Complex queries – Sub-queries in the From Clause

 SQL allows a sub-query expression to be used in the from clause.

 The key concept applied here is that any select-from-where expression returns a relation as a

result and, therefore, can be inserted into another select-from-where anywhere that a relation

can appear.

 Consider the query “Find the average instructors’ salaries of those departments where the

average salary is greater than $42,000.” We wrote this query in using the having clause.

 We can now rewrite this query, without using the having clause, by using a sub query in the

from clause, as follows:

select dept name, avg salary

from (select dept name, avg (salary) as avg_ salary

from instructor

group by dept name)

where avg salary >42000;

 The sub query generates a relation consisting of the names of all departments and their

corresponding average instructors’ salaries.

 The attributes of the sub query result can be used in the outer query, as can be seen in the above

example.

 As another example, suppose we wish to find the maximum across all departments of the total

salary at each department. The having clause does not help us in this task, but we can write this

query easily by using a sub query in the from clause, as follows:

select max (tot salary)

from (select dept name, sum(salary)

from instructor

group by dept name) as dept total (dept name, tot salary);

The with Clause

 The with clause provides away of defining a temporary relation whose definition is available

only to the query in which the with clause occurs.

 Consider the following query, which finds those departments with the maximum budget.

with max budget (value) as

(select max(budget)

from department)

select budget

from department, max budget

where department.budget = max budget.value;

 The with clause defines the temporary relation max budget, which is used in the immediately

following query.

 The with clause, introduced in SQL:1999, is supported by many, but not all, database systems.

 We could have written the above query by using a nested sub query in either the from clause or

the where clause.

 However, using nested sub queries would have made the query harder to read and understand.

 The with clause makes the query logic clearer; it also permits a view definition to be used in

multiple places within a query.

 For example, suppose we want to find all departments where the total salary is greater than the

average of the total salary at all departments. We can write the query using the with clause as

follows.

with dept total (dept name, value) as

(select dept name, sum(salary)

from instructor

group by dept name),

dept total avg(value) as

(select avg(value)

from dept total)

select dept name

from dept total, dept total avg

where dept total.value >= dept total avg.value;

 We can, of course, create an equivalent query without the with clause, but it would be more

complicated and harder to understand.

20. Discuss briefly about Authorization.

Authorization

 We may assign a user several forms of authorizations on parts of the database.

 Authorizations on data include:

• Authorization to read data.

• Authorization to insert new data.

• Authorization to update data.

• Authorization to delete data.

 Each of these types of authorizations is called a privilege.

 We may authorize the user all, none, or a combination of these types of privileges on specified

parts of a database, such as a relation or a view

Granting and Revoking of Privileges

 The SQL standard includes the privileges select, insert, update, and delete.

 The privilege all privileges can be used as a short form for all the allowable privileges.

 user who creates a new relation is given all privileges on that relation automatically.

 The SQL data-definition language includes commands to grant and revoke privileges.

 The grant statement is used to confer authorization.

 The basic form of this statement is:

grant <privilege list>

on <relation name or view name>

to <user/role list>;

 The privilege list allows the granting of several privileges in one command.

 The select authorization on a relation is required to read tuples in the relation.

 The following grant statement grants database users Amit and Satoshi

Select authorization on the department relation:

 grant select on department to Amit, Satoshi;

 To revoke an authorization, we use the revoke statement. It takes a form almost identical to that

of grant:

revoke <privilege list>

on <relation name or view name>

from <user/role list>;

 Thus, to revoke the privileges that we granted previously, we write

revoke select on department from Amit, Satoshi;

revoke update (budget) on department from Amit, Satoshi;

 Revocation of privileges is more complex if the user from whom the privilege is revoked has

granted the privilege to another user.

21. Discuss about Integrity constraints

Integrity constraints ensure that changes made to the database by authorized users do not result in a loss

of data consistency.

Thus, integrity constraints guard against accidental damage to the database.

Examples of integrity constraints are:

• An instructor name cannot be null.

• No two instructors can have the same instructor ID.

• Every department name in the course relation must have a matching department

name in the department relation.

• The budget of a department must be greater than $0.00.

Constraints on a Single Relation

 Unique

unique (Aj1 , Aj2, . . . , Ajm)

 not null

name varchar(20) not null

budget numeric(12,2) not null

Check constraint

 A common use of the check clause is to ensure that attribute values satisfy specified conditions,

in effect creating a powerful type system.

 For instance, a clause check (budget > 0) in the create table command for relation department

would ensure that the value of budget is nonnegative.

As another example, consider the following:

create table section

(course id varchar (8),

building varchar (15),

room number varchar (7),

time slot id varchar (4),

primary key (course id, sec id, semester, year),

check (semester in (’Fall’, ’Winter’, ’Spring’, ’Summer’)));

 primary key (A1, ..., An)

Example: Declare branch_name as the primary key for branch

create table branch

 (branch_name char(15),

 branch_city char(30) not null,

 assets integer,

 primary key (branch_name))

22. Discuss in detail about the modification of database and joining a relation.

Modification of the database

 In the modification of database we show how to add, remove, or change information with SQL.

Deletion

 A delete request is expressed in much the same way as a query.

 We can delete only whole tuples; we cannot delete values on only particular attributes.

 SQL expresses a deletion by

delete from r where P;

 WhereP represents a predicate and r represents a relation.

 The delete statement first finds all tuples t in r for which p (t) is true, and then deletes them from

r. The where clause can be omitted, in which case all tuples in r are deleted.

 A delete command operates on only one relation. If we want to delete tuples from several

relations, we must use one delete command for each relation.

 The predicate in the where clause may be as complex as a select command’s where clause. At

the other extreme, the where clause may be empty. The request

delete from instructor;

deletes all tuples from the instructor relation. The instructor relation itself still exists, but it is empty.

 Here are examples of SQL delete requests:

Delete all account tuples at the Perryridge branch

delete from account

 where branch_name = 'Perryridge'

 Delete all accounts at every branch located in the city ‘Needham’.

delete from account

 where branch_name in (select branch_namefrom branch

 where branch_city = 'Needham')

 Delete the record of all accounts with balances below the average at the bank.

delete from account

where balance < (select avg (balance)from account)

 Problem: as we delete tuples from deposit, the average balance changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without re-computing avg or retesting the tuples)

Insertion

 To insert data into a relation, we either specify a tuple to be inserted or write a query

whose result is a set of tuples to be inserted.

 The attribute values for inserted tuples must be members of the corresponding attribute’s

domain.

 Similarly, tuples inserted must have the correct number of attributes.

 The simplest insert statement is a request to insert one tuple.

 Add a new tuple to account

insert into accountvalues ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)

 values ('Perryridge', 1200, 'A-9732')

 Add a new tuple to account with balance set to null

insert into account

 values ('A-777','Perryridge', null)

 Provide as a gift for all loan customers of the Perryridge branch, a $200 savings account. Let the

loan number serve as the account number for the new savings account

o insert into account

 select loan_number, branch_name, 200

 from loan

 where branch_name = 'Perryridge'

o insert into depositor

 select customer_name, loan_number

 from loan, borrower

 where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

 The select from where statement is evaluated fully before any of its results are inserted into the

relation

insert intotable1 select * fromtable1

Updates

 We may wish to change a value in a tuple without changing all values in the tuple. For this

purpose, the update statement can be used.

 As we could for insert and delete, we can choose the tuples to be updated by using a query.

 Increase all accounts with balances over $10,000 by 6%, all other accounts receive 5%.

 Write two update statements:

update account

 set balance = balance  1.06

 where balance > 10000

 The order is important

 Can be done better using the case statement

 Same query as before: Increase all accounts with balances over $10,000 by 6%, all other

accounts receive 5%.

updateaccount

setbalance = case

whenbalance<= 10000 thenbalance *1.05

elsebalance * 1.06

end

Joined Relations

 Join operations take two relations and return as a result another relation.

 These additional operations are typically used as sub query expressions in the from clause

 Join condition – defines which tuples in the two relations match, and what attributes are present in

the result of the join.

 Join type – defines how tuples in each relation that do not match any tuple in the other relation

(based on the join condition) are treated.

 Relation loan&Relation borrower

 Inner Join

loan inner join borrower

on loan.loan_number = borrower.loan_number

 Left Outer Join

loan left outer join borrower on

loan.loan_number = borrower.loan_number

 Natural Join

o loan natural inner joinborrower

 Right Outer Join

o loan natural right outer join borrower

Unit IV

2 Marks

1. Define tuple relational calculus.

 The tuple relational calculus is a nonprocedural query language.

 It describes the desired information without giving a specific procedure for obtaining that

information.

 A query in the tuple relational calculus is expressed as:{t | P(t)}

That is, it is the set of all tuples t such that predicate P is true for t.

2. What is meant by a domain relational calculus?

 A nonprocedural query language equivalent in power to the tuple relational calculus

 Each query is an expression of the form:

{ x1, x2, …, xn | P (x1, x2, …, xn)}

o x1, x2, …, xn represent domain variables

o P represents a formula similar to that of the predicate calculus

3. What is QBE?

 A graphical query language which is based (roughly) on the domain relational calculus

 Two dimensional syntax – system creates templates of relations that are requested by

users

 Queries are expressed “by example”

 Find all loan numbers at the Perryridge branch.

o x is a variable (optional; can be omitted in above query)

o P. means print (display)

o duplicates are removed by default

o To retain duplicates use P.ALL

4. Define Entity Sets.

 An entity is a “thing” or “object” in the real world that is distinguishable from all other

objects. For example, each person in a university is an entity

 An entity has a set of properties, and the values for some set of properties may uniquely

identify an entity.

 An entity set is a set of entities of the same type that share the same properties, or

attributes.

5. Define the purpose of Condition box in QBE.

 Allows the expression of constraints on domain variables that are either inconvenient or

impossible to express within the skeleton tables.

 Complex conditions can be used in condition boxes

 Example: Find the loan numbers of all loans made to Smith, to Jones, or to both jointly

6. What are the design phases in SQL?

 The design phases are

i. Initial phase

ii. Conceptual design phase

iii. Specification of functional requirements

iv. Final design phase

7. What is an E-R model?

 The entity relationship model was developed to facilitate database design by

allowing specification of an enterprise schema that represents the overall logical

structure of a database.

8. What are the basic notions in E-R model?

 The basic notions are

i. Entity sets

ii. Relationships sets

iii. Attributes

5 Marks / 10 Marks

9. Explain the design phases in SQL?

 Design process may be easy for small applications. But for real world applications

they are often complex.

 The database designer must interact with users of the application to understand the

needs of the application represent them in high-level fashion that can be

understood by the user and then translate the requirement into lower levels of the

design

 The design phases are

i. Initial phase

ii. Conceptual design phase

iii. Specification of functional requirements

iv. Final design phase

 Initial phase

 The initial phase of database design is to characterize fully the data need of

the database users.

 The database designer need to interact with domain experts and users to

came out this task.

 The outcome of this phase is a specification of user requirement.

 Conceptual design phase

 The designer chooses a data model and by applying the concepts of the

chosen data model, translated the requirement into a conceptual schema of

the database

 The schema provides a details overview of the enterprise

 Specification of functional requirements

 In this stage the designer review the schema to ensure it meets functional

requirements which describes operation such as

1. Modifying or updating data

2. Searching for and retrieving specific data

3. Deleting data

 Final design phase

 The process of moving from an abstract data model to the implementation

of the database proceeds in two final designs.

1. Logical design phase

 The designer maps the high level conceptual schema into the

implementation data model of the database system that will

be used.

 This step typically maps the conceptual schema defined using

the ER model into a relation schema

2. Physical design phase

 The designer uses the resulting system specific database

schema in the subsequent physical design phase, in which the

physical features such as form of file organization and the

internal storage structures are specified

10. Explain briefly about Tuple relational calculus with example.

 A nonprocedural query language, where each query is of the form

 {t | P (t) }

 It is the set of all tuples t such that predicate P is true for t

Predicate Calculus Formula

 Set of attributes and constants

 Set of comparison operators: (e.g., , , , , , )

 Set of connectives: and (), or (v)‚ not ()

 Implication (): x  y, if x if true, then y is true

xyx v y

 Set of quantifiers:

o  t  r (Q (t))”there exists” a tuple in t in relation r

 such that predicate Q (t) is true

o t r (Q (t)) Q is true “for all” tuples t in relation r

Example Queries

 Find the loan_number, branch_name, and amount for loans of over $1200

{t | tloant [amount]  1200}

 Find the loan number for each loan of an amount greater than $1200

{t | s loan (t [loan_number] = s [loan_number] s [amount]  1200)}

 Find the names of all customers having a loan, an account, or both at the bank

{t |s borrower (t [customer_name] = s [customer_name])

u depositor (t [customer_name] = u [customer_name])

 Find the names of all customers having a loan at the Perryridge branch

{t |s borrower (t [customer_name] = s [customer_name]

u loan (u [branch_name] = “Perryridge”

u [loan_number] = s [loan_number]))}

 Find the names of all customers having a loan from the Perryridge branch, and the cities

in which they live

{t |s loan (s [branch_name] = “Perryridge”

u borrower (u [loan_number] = s [loan_number]

 t [customer_name] = u [customer_name])

 v customer (u [customer_name] = v [customer_name]

 t [customer_city] = v [customer_city])))}

Safety of Expressions

 It is possible to write tuple calculus expressions that generate infinite relations.

 For example, { t | tr } results in an infinite relation if the domain of any

attribute of relation r is infinite

 To guard against the problem, we restrict the set of allowable expressions to safe

expressions.

 An expression {t | P (t)}in the tuple relational calculus is safe if every component

of t appears in one of the relations, tuples, or constants that appear in P

 NOTE: this is more than just a syntax condition.

 E.g. { t | t [A] = 5  true } is not safe --- it defines an infinite set with attribute values that

do not appear in any relation or tuples or constants in P.

11. Discuss briefly about QBE with examples.

 A graphical query language which is based (roughly) on the domain relational calculus

 Two dimensional syntax – system creates templates of relations that are requested by

users

 Queries are expressed “by example”

QBE Skeleton Tables for the Bank Example

Queries on One Relation

 Find all loan numbers at the Perryridge branch.

 _x is a variable (optional; can be omitted in above query)

 P. means print (display)

 duplicates are removed by default

 To retain duplicates use P.ALL

 Find the loan number of all loans with a loan amount of more than $700

 Find names of all branches that are not located in Brooklyn

 Find the loan numbers of all loans made jointly to Smith and Jones

 Find all customers who live in the same city as Jones

Queries on Several Relations

Find the names of all customers who have a loan from the Perryridge branch.

 Find the names of all customers who have both an account and a loan at the bank.

Negation in QBE

 Find the names of all customers who have an account at the bank, but do not have a loan

from the bank.

¬ means “there does not exist”

The Condition Box

 Allows the expression of constraints on domain variables that are either inconvenient or

impossible to express within the skeleton tables.

 Complex conditions can be used in condition boxes

 Example: Find all account numbers with a balance greater than $1,300 and less than

$1,500

 Find all account numbers with a balance greater than $1,300 and less than $2,000 but not

exactly $1,500.

The Result Relation Join and projection

 Find the customer_name, account_number, and balance for all customers who have an

account at the Perryridge branch.

o We need to:

 Join depositor and account.

 Project customer_name, account_number and balance.

o To accomplish this we:

 Create a skeleton table, called result, with attributes customer_name,

account_number, and balance.

 Write the query.

The resulting query is:

Ordering the Display of Tuples

 AO = ascending order; DO = descending order.

 Example: list in ascending alphabetical order all customers who have an account at the

bank

 When sorting on multiple attributes, the sorting order is specified by including with each

sort operator (AO or DO) an integer surrounded by parentheses.

 Example: List all account numbers at the Perryridge branch in ascending alphabetic

order with their respective account balances in descending order.

12. Discuss briefly about entity-Relationship diagram and mapping cardinality.

Entity-Relationship Diagrams

E-R diagram can express the overall logical structure of a database graphically.

E-R diagrams are simple and clear—qualities that may well account in large part for the

widespread use of the E-R model.

Basic Structure

An E-R diagram consists of the following major components:

 Rectangles divided into two parts represent entity sets.

o The first part, which in this textbook is shaded blue, contains the name of the

entity set.

o The second part contains the names of all the attributes of the entity set.

 Diamonds represent relationship sets.

 Undivided rectangles represent the attributes of a relationship set. Attributes that are

part of the primary key are underlined.

 Lines link entity sets to relationship sets.

 Dashed lines link attributes of a relationship set to the relationship set.

 Double lines indicate total participation of an entity in a relationship set.

 Double diamonds represent identifying relationship sets linked to weak entity sets

Consider the E-R diagram which consists of two entity sets, instructor and student related

through a binary relationship set advisor.

 The attributes associated with instructor are ID, name, and salary.

 The attributes associated with student are ID, name, and tot_cred.

 Primary keys(ID) are underlined.

 For example, we have the date descriptive attribute attached to the relationship

set advisor to specify the date on which an instructor became the advisor.

 E-R diagram with an attribute attached to a relationship set.

Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be one-

to-one, one-to-many, many-to-one, or many-to-many. To distinguish among these types,we

draw either a directed line (→) or an undirected line (—) between the relationship set and the

entity set in question, as follows:

 One-to-one: We draw a directed line from the relationship set advisor to both entity

sets instructor and student. This indicates that an instructor may advise at most one

student, and a student may have at most one advisor.

 One-to-many: We draw a directed line from the relationship set advisor to the entity

set instructor and an undirected line to the entity set student. This indicates that an

instructor may advise many students, but a student may have at most one advisor.

 Many-to-one: We draw an undirected line from the relationship set advisor to the

entity set instructor and a directed line to the entity set student. This indicates that an

instructor may advise at most one student, but a student may have many advisors.

 Many-to-many: We draw an undirected line from the relationship set advisor to both

entities sets instructor and student. This indicates that an instructor may advise many

students, and a student may have many advisors.

13. Explain in detail about Tuple relational calculus and domain relational calculus

with example.

The Tuple Relational Calculus

 When we write a relational-algebra expression, we provide a sequence of procedures

that generates the answer to our query.

 The tuple relational calculus, by contrast, is a nonprocedural query language.

 It describes the desired information without giving a specific procedure for obtaining

that information.

 A query in the tuple relational calculus is expressed as:

{t | P(t)}

 That is, it is the set of all tuples t such that predicate P is true for t.

 Example Queries

 Find the ID, name, dept name, salary for instructors whose salary is greater

than$80,000:

{t | t ∈ instructor ∧ t[salary] >80000}

 “Find the instructor ID for each instructor with a salary greater than $80,000” as:

{t | ∃ s ∈ instructor (t[ID] = s[ID]

∧ s[salary] >80000)}

 In English, we read the preceding expression as “The set of all tuples t such

that there exists a tuple s in relation instructor for which the values of t and s for the ID

attribute are equal, and the value of s for the salary attribute is greater than$80,000.”

Formal Definition

 A tuple-relational-calculus expression is of the form:

{ t | P(t) } Where P is a formula.

 Several tuple variables may appear in a formula.

 A tuple variable is said to be a free variable unless it is quantified by ∃ or ∀.Thus, in:

t ∈ instructor ∧ ∃ s ∈ department(t[dept name] = s[dept name])

 t is a free variable.

 Tuple variable s is said to be a bound variable.

 A tuple-relational-calculus formula is built up out of atoms.

 An atom has one of the following forms:

• s ∈r, where s is a tuple variable and r is a relation (we do not allow use of the /

∈operator).

• s[x] 𝜃 u[y], where s and u are tuple variables, x is an attribute on which s is

defined, y is an attribute on which u is defined, and _ is a comparison operator

(<, ≤, =, _=, >, ≥); we require that attributes x and y have domains whose

members can be compared by 𝜃

• s[x] 𝜃 c, where s is a tuple variable, x is an attribute on which s is defined, 𝜃is a

comparison operator, and c is a constant in the domain of attribute x.

 We build up formulae from atoms by using the following rules:

• An atom is a formula.

• If P1 is a formula, then so are ￢P1 and (P1).

• If P1 and P2 are formulae, then so are P1 ∨ P2, P1 ∧ P2, and P1 ⇒ P2.

• If P1(s) is a formula containing a free tuple variable s, and r is a relation, then

∃ s ∈ r (P1(s)) and ∀ s ∈ r (P1(s))are also formulae.

 In the tuple relational calculus, these equivalences include the following three rules:

i. P1 ∧P2 is equivalent to ￢(￢(P1) ∨￢(P2)).

ii. ∀t ∈r (P1(t)) is equivalent to ￢∃t ∈r (￢P1(t)).

iii. P1 ⇒P2 is equivalent to ￢(P1) ∨P2.

Safety of Expressions

 It is possible to write tuple calculus expressions that generate infinite relations.

 For example, { t | tr } results in an infinite relation if the domain of any attribute of

relation r is infinite

 To guard against the problem, we restrict the set of allowable expressions to safe

expressions.

 An expression {t | P (t)}in the tuple relational calculus is safe if every component of t

appears in one of the relations, tuples, or constants that appear in P

Domain relational calculus:

 A nonprocedural query language equivalent in power to the tuple relational calculus

 Each query is an expression of the form:

 { x1, x2, …, xn | P (x1, x2, …, xn)}

o x1, x2, …, xn represent domain variables

o P represents a formula similar to that of the predicatecalculus

Example Queries

 Find the loan_number, branch_name, and amount for loans of over $1200

{l, b, a  | l, b, a loana > 1200}

 Find the names of all customers who have a loan of over $1200

{c | l, b, a (c, l borrower l, b, a loana> 1200)}

 Find the names of all customers who have a loan from the b1 branch and the loan

amount:

{c, a | l (c, lborrower b (l, b, a loan b = “b1”))}

{c, a | l (c, lborrower l, “ b1”, a loan)}

 Find the names of all customers having a loan, an account, or both at the b1 branch:

{c | l (c, lborrower

b,a (l, b, a loanb = “b1”))

a (c, adepositor

b,n (a, b, n accountb = “b1”))}

 Find the names of all customers who have an account at all branches located in Trichy:

{c |  s,n (c, s, n customer) 

x,y,z (x, y, z branchy = “trichy”) 

a,b (x, y, z accountc,adepositor)}

Safety of Expressions

The expression: { x1, x2, …, xn | P (x1, x2, …, xn)}

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom (P) (that is, the

values appear either in P or in a tuple of a relation mentioned in P).

2. For every “there exists” sub formula of the form x (P1(x)), the sub formula is true if and

only if there is a value of x in dom (P1) such that P1(x) is true.

3. For every “for all” sub formula of the form x (P1 (x)), the sub formula is true if and

only if P1(x) is true for all values x from dom (P1).

14. Discuss in detail about the entity relationship diagram, Entity relationship design issues

and database design.

Modeling

 A database can be modeled as:

o a collection of entities,

o relationship among entities.

 An entity is an object that exists and is distinguishable from other objects.

o example: specific person, company, event, plant

 Entities have attributes

o Example: people have names and addresses

 An entity set is a set of entities of the same type that share the same properties.

o Example: set of all persons, companies, trees, holidays

Entity Sets customer and loan

Relationship Sets

 A relationship is an association among several entities

o Example:

 Hayes depositor A-102

 customer entity relationship set account entity

 A relationship set is a mathematical relation among n 2 entities, each taken from entity

sets

{(e1, e2, … en) | e1E1, e2E2, …, enEn}

where (e1, e2, …, en) is a relationship

o Example: (Hayes, A-102) depositor

o An attribute can also be property of a relationship set.

o For instance, the depositor relationship set between entity sets customer and account may

have the attribute access-date

Degree of a Relationship Set

 Refers to number of entity sets that participate in a relationship set.

 Relationship sets that involve two entity sets are binary (or degree two). Generally, most

relationship sets in a database system are binary.

 Relationship sets may involve more than two entity sets.

o Example: Suppose employees of a bank may have jobs (responsibilities) at

multiple branches, with different jobs at different branches. Then there is a ternary

relationship set between entity sets employee, job, and branch

 Relationships between more than two entity sets are rare. Most relationships are binary.

(More on this later.)

Attributes

 An entity is represented by a set of attributes that is descriptive properties possessed by

all members of an entity set.

 Domain – the set of permitted values for each attribute

 Attribute types:

o Simple and composite attributes.

o Single-valued and multi-valued attributes

 Example: multivalve attribute: phone_numbers

o Derived attributes

 Can be computed from other attributes

 Example: age, given date_of_birth

Keys

 A super key of an entity set is a set of one or more attributes whose values uniquely

determine each entity.

 A candidate key of an entity set is a minimal super key

o Customer_id is candidate key of customer

o account_number is candidate key of account

 Although several candidate keys may exist, one of the candidate keys is selected to be the

primary key.

Keys for Relationship Sets

 The combination of primary keys of the participating entity sets forms a super key of a

relationship set.

 (customer_id, account_number) is the super key of depositor

 NOTE: this means a pair of entity sets can have at most one relationship in a

particular relationship set.

 Example: if we wish to track all access_dates to each account by each customer, we

cannot assume a relationship for each access. We can use a multivalve attribute though

E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

o Double ellipses represent multivalve attributes.

o Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes

E-R Diagram With Composite, Multivalve, and Derived Attributes

E-R Design Decisions

 The use of an attribute or entity set to represent an object.

 Whether a real-world concept is best expressed by an entity set or a relationship set.

 The use of a ternary relationship versus a pair of binary relationships.

 The use of a strong or weak entity set.

 The use of specialization/generalization – contributes to modularity in the design.

 The use of aggregation – can treat the aggregate entity set as a single unit without concern

for the details of its internal structure.



E-R Diagram for a Banking Enterprise

Summary of Symbols Used in E-R Notation

Unit V
2 Marks

1. What is normalization?

 In relational database design, the process of organizing data to minimize redundancy.

 Normalization usually involves dividing a database into two or more tables and defining

relationships between the tables.

2. What is primary and composite key?

 Primary key:A primary is a single column values used to uniquely identify a database record.

o E.g.:Accno uniquely identify tuples in account relation.

 Composite key: A composite key is a primary key composed of multiple columns used to

identify a record uniquely.

o Eg. Cname,accno are combined to uniquely tuples in depositor relation.

3. Define Functional dependencies?

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines uniquely the value for another set

of attributes.

 A functional dependency is a generalization of the notion of a key.

 The functional dependency

Holds on R if and only if for any legal relations r(R), whenever any two tuples t1and t2 of r agree

on the attributes , they also agree on the attributes . That is,

t1[] = t2 [] t1[] = t2 []

4. Define atomic domain and first normal form?

 Domain is atomic if its elements are considered to be indivisible units

o Examples of non-atomic domains:

 Set of names, composite attributes

 Identification numbers like CS101 that can be broken up into parts

 A relational schema R is in first normal form if the domains of all attributes of R are atomic

 Non-atomic values complicate storage and encourage redundant (repeated) storage of data

o Example: Set of accounts stored with each customer, and set of owners stored with each account

5.What is Armstrong’s axiom?

The rules to find logically implied functional dependencies. By applying these rules repeatedly,

we can find all of F+, given F. This collection of rules is called Armstrong’s axioms in honor of the

person who first proposed it.

 Reflexivity rule. If α is a set of attributes and , then .

 Augmentation rule. If α → β holds and γ is a set of attributes, then γα → γβ holds.

 Transitivity rule. If α→β holds and β→γ holds, then α→γ holds.

6. What is Boyce-codd normal form?

 A relation schema R is in BCNF with respect to a set F of functional dependencies if for all

functional dependencies in F+ of the form

o 

 where R and R,at least one of the following holds:

o is trivial (i.e., )

o  is a superkey for R

 Example schema not in BCNF:

o bor_loan = (customer_id, loan_number, amount)

 because loan_numberamount holds on bor_loan but loan_number is not a superkey

7. List out the various levels of normalizations

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)

 Boyce-Codd Normal Form (BCNF)

 Fourth Normal Form (4NF)

 Fifth Normal Form (5NF)

 Domain Key Normal Form (DKNF)

5 Marks

8. Discuss briefly about the design goals of relational database design and multi-value

dependencies.

 Goal for a relational database design is:

o BCNF.

o Lossless join.

o Dependency preservation.

 If we cannot achieve this, we accept one of

o Lack of dependency preservation

o Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying functional dependencies other

than superkeys.

o Can specify FDs using assertions, but they are expensive to test

 Even if we had a dependency preserving decomposition, using SQL we would not be able to

efficiently test a functional dependency whose left hand side is not a key.

9. Write short note on decomposition using functional dependencies with example.

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines uniquely the value for another

set of attributes.

 A functional dependency is a generalization of the notion of a key.

 Let R be a relation schema

 R and R

 The functional dependency

 

holds onR if and only if for any legal relations r(R), whenever any two tuples t1and t2 of r

agree on the attributes , they also agree on the attributes . That is,

 t1[] = t2 [] t1[] = t2 []

 Example: Consider r(A,B) with the following instance of r.

 On this instance, AB does NOT hold, but BA does hold.

 K is a superkey for relation schema R if and only if K  R

 K is a candidate key for R if and only if

o K  R, and

o for no  K,  R

 Functional dependencies allow us to express constraints that cannot be expressed using

superkeys. Consider the schema:

 bor_loan = (customer_id, loan_number, amount).

 We expect this functional dependency to hold:

 loan_number  amount

 but would not expect the following to hold:

 amount  customer_name

10. Explain the Use of Functional Dependencies

 We use functional dependencies to:

o Test relations to see if they are legal under a given set of functional dependencies.

 If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.

o specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.

 Note: A specific instance of a relation schema may satisfy a functional dependency even if the

functional dependency does not hold on all legal instances.

o For example, a specific instance of loan may, by chance, satisfy

amount customer_name.

 A functional dependency is trivial if it is satisfied by all instances of a relation

o Examples:

 customer_name, loan_number customer_name

 customer_name customer_name

In general, is trivial if

Closure of a Set of Functional Dependencies

 Given a set F of functional dependencies, there are certain other functional dependencies

that are logically implied by F.

o For example: If AB and BC, then we can infer that AC

 The set of all functional dependencies logically implied by F is the closure of F.

 We denote the closure of F by F+.

 F+ is a superset of F.

10 Marks

11. What are the characteristic of Boyce-codd normal form?

 A relation schema R is in BCNF with respect to a set F of functional dependencies if for all

functional dependencies in F+ of the form

o 

 where R and R,at least one of the following holds:

o is trivial (i.e., )

o  is a superkey for R

 Example schema not in BCNF:

bor_loan = (customer_id, loan_number, amount)

 because loan_numberamount holds on bor_loan but loan_number is not a superkey

Decomposing a Schema into BCNF

 Suppose we have a schema R and a non-trivial dependency causes a violation of BCNF.

We decompose R into:

( U )

(R - ( - ))

 In our example,

o  = loan_number

o = amount

and bor_loan is replaced by

o ( U ) = (loan_number, amount)

o (R - ( - )) = (customer_id, loan_number)

BCNF and Dependency Preservation

 Constraints, including functional dependencies, are costly to check in practice unless they pertain

to only one relation

 If it is sufficient to test only those dependencies on each individual relation of a decomposition in

order to ensure that all functional dependencies hold, then that decomposition is dependency

preserving.

 Because it is not always possible to achieve both BCNF and dependency preservation, we consider

a weaker normal form, known as third normal form.

How good is BCNF?

 There are database schemas in BCNF that do not seem to be sufficiently normalized

 Consider a database

 classes (course, teacher, book)

 such that (c, t, b) classes means that t is qualified to teach c, and b is a required textbook for c

 The database is supposed to list for each course the set of teachers any one of which can be the

course’s instructor, and the set of books, all of which are required for the course (no matter who

teaches it).

 There are no non-trivial functional dependencies and therefore the relation is in BCNF

 Insertion anomalies – i.e., if Marilyn is a new teacher that can teach database, two tuples

need to be inserted

(database, Marilyn, DB Concepts)

 (database, Marilyn, Ullman)

 Therefore, it is better to decompose classes into:

teaches

12. Discuss briefly about the design goals of relational database design and multi-value

dependencies.

Design Goals

 Goal for a relational database design is:

o BCNF.

o Lossless join.

o Dependency preservation.

 If we cannot achieve this, we accept one of

o Lack of dependency preservation

o Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying functional dependencies other

than superkeys.

o Can specify FDs using assertions, but they are expensive to test

 Even if we had a dependency preserving decomposition, using SQL we would not be able to

efficiently test a functional dependency whose left hand side is not a key.

Multivalve Dependencies (MVDs)

 Let R be a relation schema and let R and R. The multivalve dependency



holds on R if in any legal relation r(R), for all pairs for tuples t1 and t2 in r such that t1[] = t2 [],

there exist tuples t3 and t4 in r such that:

t1[] = t2 [] = t3 [] = t4[]

 t3[] = t1 []

 t3[R – ] = t2[R – ]

 t4 [] = t2[]

 t4[R – ] = t1[R – ]

Example

 Let R be a relation schema with a set of attributes that are partitioned into 3 nonempty

subsets.

Y, Z, W

 We say that Y Z (Y multi-determines Z)

if and only if for all possible relations r (R)

<y1, z1, w1>r and <y1, z2, w2>r

then

<y1, z1, w2>r and <y1, z2, w1>r

 Note that since the behavior of Z and W are identical it follows that

Y Z if YW

 In our example:

course  teacher

 course  book

 The above formal definition is supposed to formalize the notion that given a particular value

of Y (course) it has associated with it a set of values of Z (teacher) and a set of values of W

(book), and these two sets are in some sense independent of each other.

 Note:

o If Y Z then Y Z

o Indeed we have (in above notation) Z1 = Z2

The claim follows.

Use of Multivalve Dependencies

 We use multivalve dependencies in two ways:

1. To test relations to determine whether they are legal under a given set of functional and

multivalve dependencies

2. To specify constraints on the set of legal relations. We shall thus concern ourselves only

with relations that satisfy a given set of functional and multivalve dependencies.

 If a relation r fails to satisfy a given multivalve dependency, we can construct a relations r that

does satisfy the multivalve dependency by adding tuples to r.

13. Explain in detail about various normal forms used for Normalization.

1st Normal Form

A database is in first normal form if it satisfies the following conditions:

 Contains only atomic values

 There are no repeating groups

An atomic value is a value that cannot be divided. For example, in the table shown below, the

values in the [Color] column in the first row can be divided into "red" and "green", hence

[TABLE_PRODUCT] is not in 1NF.

1st Normal Form Example

How do we bring an un-normalized table into first normal form? Consider the following

example:

This table is not in first normal form because the [Color] column can contain multiple values.

For example, the first row includes values "red" and "green."

To bring this table to first normal form, we split the table into two tables and now we have the

resulting tables:

Now first normal form is satisfied, as the columns on each table all hold just one value.

2nd Normal form

A database is in second normal form if it satisfies the following conditions:

 It is in first normal form

 All non-key attributes are fully functional dependent on the primary key

Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes determines uniquely the value for another

set of attributes.

 A functional dependency is a generalization of the notion of a key.

Consider the following example:

This table has a composite primary key [Customer ID, Store ID]. The non-key attribute is [Purchase

Location]. In this case, [Purchase Location] only depends on [Store ID], which is only part of the

primary key. Therefore, this table does not satisfy second normal form.

To bring this table to second normal form, we break the table into two tables, and now we have the

following:

3rd Normal Form Definition

A database is in third normal form if it satisfies the following conditions:

 It is in second normal form

 There is no transitive functional dependency

By transitive functional dependency, we mean we have the following relationships in the table: A is

functionally dependent on B, and B is functionally dependent on C. In this case, C is transitively

dependent on A via B.

3rd Normal Form Example

Consider the following example:

In the table able, [Book ID] determines [Genre ID], and [Genre ID] determines [Genre Type]. Therefore,

[Book ID] determines [Genre Type] via [Genre ID] and we have transitive functional dependency, and

this structure does not satisfy third normal form.

To bring this table to third normal form, we split the table into two as follows:

Now all non-key attributes are fully functional dependent only on the primary key. In [TABLE_BOOK],

both [Genre ID] and [Price] are only dependent on [Book ID]. In [TABLE_GENRE], [Genre Type] is

only dependent on [Genre ID].

Boyce-Codd Normal Form (BCNF)

A relation is in Boyce-Codd Normal Form (BCNF) if every determinant is a candidate key.

A candidate key is a combination of attributes that can be uniquely used to identify a database

record without any extraneous data. Each table may have one or more candidate keys. One of these

candidate keys is selected as the table primary key.

Consider the following non-BCNF table whose functional dependencies follow the {AB → C, C → B}

pattern:

http://databases.about.com/cs/administration/g/key.htm
http://databases.about.com/cs/administration/g/primarykey.htm

Nearest Shops

Person Shop Type Nearest Shop

Davidson Optician Eagle Eye

Davidson Hairdresser Snippets

Wright Bookshop Merlin Books

Fuller Bakery Doughy's

Fuller Hairdresser Sweeney Todd's

Fuller Optician Eagle Eye

The candidate keys of the table are:

 {Person, Shop Type}

 {Person, Nearest Shop}

Shop Near Person

Person Shop

Davidson Eagle Eye

Davidson Snippets

Wright Merlin Books

Fuller Doughy's

Fuller Sweeney Todd's

Fuller Eagle Eye

Shop

Shop Shop Type

Eagle Eye Optician

Snippets Hairdresser

Merlin Books Bookshop

Doughy's Bakery

Sweeney Todd's Hairdresser

Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of functional and multivalve dependencies if

for all multivalve dependencies in D+ of the form , where R and R, at least one of the

following hold:

o  is trivial (i.e.,  or  = R)

o  is a superkey for schema R

 If a relation is in 4NF it is in BCNF

Restriction of Multivalve Dependencies

 The restriction of D to Ri is the set Di consisting of

o All functional dependencies in D+ that include only attributes of Ri

o All multivalve dependencies of the form

 ( Ri)

where  Ri and  is in D+

Example

 R =(A, B, C, G, H, I)

F ={ A B

BHI

CG H }

 R is not in 4NF since AB and A is not a superkey for R

 Decomposition

a) R1 = (A, B) (R1 is in 4NF)

b) R2 = (A, C, G, H, I) (R2 is not in 4NF)

c) R3 = (C, G, H) (R3 is in 4NF)

d) R4 = (A, C, G, I) (R4 is not in 4NF)

 Since AB and BHI, AHI, AI

e) R5 = (A, I) (R5 is in 4NF)

f)R6 = (A, C, G) (R6 is in 4NF)

14. Explain in detail about database design process.

Overall Database Design Process

 We have assumed schema R is given

o R could have been generated when converting E-R diagram to a set of tables.

o R could have been a single relation containing all attributes that are of interest (called

universal relation).

o Normalization breaks R into smaller relations.

o R could have been the result of some ad hoc design of relations, which we then

test/convert to normal form.

ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all entities correctly, the tables

generated from the E-R diagram should not need further normalization.

 However, in a real (imperfect) design, there can be functional dependencies from non-key

attributes of an entity to other attributes of the entity

o Example: an employee entity with attributes department_number and

department_address, and a functional dependency department_number 

department_address

o Good design would have made department an entity

 Functional dependencies from non-key attributes of a relationship set possible, but rare --- most

relationships are binary

De-normalization for Performance

 May want to use non-normalized schema for performance

 For example, displaying customer_name along with account_number and balance requires join

of account with depositor

 Alternative 1: Use de-normalized relation containing attributes of account as well as depositor

with all above attributes

o faster lookup

o extra space and extra execution time for updates

o extra coding work for programmer and possibility of error in extra code

 Alternative 2: use a materialized view defined as

 account depositor

o Benefits and drawbacks same as above, except no extra coding work for programmer and

avoids possible errors

	1st Normal Form Example
	3rd Normal Form Definition
	3rd Normal Form Example
	Consider the following example:
	Boyce-Codd Normal Form (BCNF)

