
 1

MAJOR BASED ELECTIVE II
MICROPROCESSORN AND C PROGRAMMING

 UNIT IV

Basic Structure of a C programs-Character set-C Tokens-Keywords and Identifiers-
Constant-Variables - Data Types – Declarations –Assigning Value to Variables-Symbolic
Constants– Operators and Expressions –Arithmetic Operators-Relational ,Logical and
Assignment Operators-Increment and Decrement Operators-Conditional Operators,
Bitwise and special Operators-Arithmetic expressions.

UNIT V

 Data Input and Output –getchar ,putchar,scanf,printf,gets,puts functions –Decision Making
and Branching- IF,IF-ELSE,ELSE – IF LADDER,SWITCH,BREAK,COUNTINE,GOTO-Decision
Making and Looping- WHILE , DO – WHILE, FOR,NESTED LOOPS-Arrays(One,Two and
Multi- Dimensional Arrays)-Declaration, Initialization of Arrays.

UNIT IV

History of C

 ALGOL was the first computer language to use a block structure.

 In 1967, Martin Richards developed a language called BCPL [Basic Combined

Programming Language] primarily for writing system software.

 In 1970, Ken Thompson created a language using many features of BCPL and called

it simply B.

 C was evolved from ALGOL, BCPL and B by Dennis Ritchie at Bell laboratories in

1972.

 C was many concepts from these languages and added the concept of data types and

other powerful features.

 Since it was developed along with the UNIX operating system, It is strongly

associated with UNIX.

 During 1970’s C had evolved into what is now known as ” Traditional C”.

 To assure that the C language remains standard in 1983; American National

Standards Institute [ANSI] appointed a technical committee to define a standard for

C.

 The committee approved a version of C in 1989 which is now known as ANSI.

 2

1960 International Group

1967 Martin Richards

1970 Ken thompson

1972 Dennis Ritchie

1989 ANSI Committee

1990 ISO Committee

Importance of C :

 It is a robust language whose rich set of built – in – functions and operators can be

used to write any complex program.

 The C compiler combines the capabilities of an assembly language with the features

of a high – level language and therefore it is well suited for writing both system

software and business package.

 It is many times faster then BASIC.

 Several standard functions are available which can be used for developing

programs.

 C is highly portable this means that c program written for one computer can be run

on another with little or no modifications.

 C language is well suited for structured programming thus required the user to

think of a program in terms of function modules or blocks.

 Another important feature of c is its ability to extend itself.

Evaluation of the Structure of a C program

 Every “C” program must have one main() function section.

 This section contains two parts, declaration part and executable part.

 The Declaration part declares all the variables used in the executable part. There is

at least one statement in the executable part.

ALGOL

BCPL

B

Traditional C

ANSI C

ANSI / ISO C

 3

 These two parts must appear between the opening and the closing braces. The

program execution begins at the opening brace and ends at the closing brace.

 All statement in the declaration and executable parts end with semicolon.

Example :

DOCUMENTATION SECTION

/* Addition of 2 numbers */

LINK SECTION

#include <stdio.h> // Standard I/O File //

#include <conio.h> // Console I/O File //

MAIN() FUNCTION SECTION

void main()

{

DECLARATION PART

int a = 10;

int b = 12,c;

//EXECUTABLE PART

C = a+b;

Printf(“Addition = %d”’c);

}

OUTPUT

 Additon = 22

Constants, Variables and Data Types :

CHARACTER SET :

 The characters in C are grouped into the following categories

i) Letters

ii) Digits

iii) Special Characters

iv) White Spaces

 4

Letters :

 Upper Case A......Z

 Lower Case a......z

Digits :

 All decimal digits 0.......9

Special Characters :

, Comma & Ampersand

; Semicolon * Asterisk

: Colon ! Exclamation mark

~ Tilde ‘ Apostrophe

/ Slash _ Underscore

White Space :

 Blank Space

 Horizontal tab

 Carriage return

 New line

 Form Feed

Trigraph Characters :

 Ansi C introduces the concept of “trigraph” sequence to provide a way to

enter certain characters that are not available on some keyboards.

 Each trigraph sequence consists of three characters [two question mark

followed by another character].

Trigraph Sequence Translation

?? =

?? (

 # number sign

 [left bracket

 5

?? <

?? /

?? \

 { left brace

 \ back slash

 ^ caret

C Tokens :

 In a C Program the smallest individual units are known a C Tokens.

 C has six types of C Tokens.

Key Words :

 Every C word is classified as either a keyword or an identifier.

 All keywords have fixed meanings and these meanings cannot be changed.

 All keywords must be written in lower case.

 Eg : int, float, char, double, if, do, else, static, main, scanf, printf.

Identifiers :

 Identifiers refer to the names of variables, function and arrays.

 These are user-defined names and consists of sequence of letters and digits, with a

letter as a first character.

 Both uppercase and lowercase letters are permitted. The underscore characters is

also permitted in identifiers.

CONSTANTS

IDENTIFIERS

KEY WORDS OPERATORS

SPECIAL SYMBOLS

STRINGS

 C TOKENS

 6

Rules for Identifiers :

1) First character must be a letter or underscore.

2) Only first 31 characters are significant.

3) Cannot use keyword.

4) White spaces are not allowed.

Constants :

 Constants in C refers tp fixed values that do not change during the execution of a

program.

 C supprot several types of constants.

Integer Constants :

 An integer constants refers to a sequence of digits. There are three types of integers

namely Decimal Integer, Octal Integer and Hexadecimal Integer.

 Decimal Integers consists of a set of digits 0 through 9 preceeded by optional – (or)

+ sign.

Eg : 123, -321, 0...

 An Octal Integer constant consist of any combination of digits from 0 to 7 with

leading zero.

Eg : 037, 0435..,

 A sequence of digits preceded by OX or ox is considered as hexadecimal integer.

They also include alphabets A to F or a to f. The letter A to F represents the numbers

from 10 to 15.

Eg : ox2, OXA1

CONSTANT

S

Numeric Constants

String Constants Single Character

Constants

Real constants Integer Constants

Character Constants

 7

Real Constants :

 A number with decimal point is called real or floating point.

Eg : 12.4, 0.25.

 A real number may also be expressed in exponential or scientific notation.

 The general form is “mantissa e exponent” the mantissa is either a real or an

integer. The exponent is an integer number with an optional + or _ sign.

Eg: 0.65e4, 1.4e+2.

Single Character Constants :

 A single character constants contains a single character enclosed within a pair of

single quote mark.

Eg : ‘5’ , ‘A’

String Constants :

 A string constant is a sequence of characters enclosed in double quotes.

Eg: “Hai”

VARIABLES :

 A variables is a data name that may be used to store a value.

 A variable may take different values at different times during execution.

Rules for naming a variable :

 They must begin with an alphabet.

 Some system permits underscore as the first character.

 It should not be a keyword.

 White space is not allowed.

Valid => Sum, +1, S-value,

Invalid => % sum, 5+0+, int.

DATA TYPES:

 C supports three classes of data types.

i) Primary [or] Fundamental [or] Built-in data types.

 8

ii) Derived data types.

iii) User – Defined data types.

Primary Data Types:

 C Supports four fundamental data types, They are

i) Integer

ii) Floating Point

iii) Character

iv) Void.

Integer types:

 Integers are whole number C has three classes of Integer storage namely,

 Short int –> 1 byte –> (range) -128 to +127

 int –> 2 byte –> (range) -32768 to +32767

 Long int –> 4 byte –> (range) -2,147,483,648 to +2,147,483,647.

Floating Point Type :

 In C floating point numbers are defined by the keyword float. The storage capacity

of float is 4 bytes or 32 bits, The range of float data type is from 3.4e – 38 to 3.4e +

38.

 When the accuracy of float is not sufficient the type double can be used. Double data

type uses 64 bits.

 To extend the accuracy we may use long double which uses 80 bits.

Character Data Type:

 In C character are defined by the keyword char.

 Characters are usually stored in 8 bits or 1 byte.

 It may be signed or unsigned

Float

Double

Long Double

 9

 Signed char values from -128 to 127 unsigned char values from 0 to 255.

Void Type :

 It has no values.

 This is usually used to specify the type of function.

 The type of function is said to be void, when it does not return any value to the

calling function.

Declaration of Variables:

 Declaration does two things

i) It tells the name of the variable to the compiler.

ii) It specifies what type of data the variable will hold.

 The variable must be declared before they are used.

 There are two types of declaration.

 Primary type declaration.

 User _ defined type declaration.

Primary Type Declaration :

 A variable can be used to store the value of any data type

Syntax :

 Where v1,v2 are the names of variable they are separated by commas.

Eg : float a, xy;

User - Defined data type Declaration :

C supports user defined data types like typedef, enum, structures, union etc...

Assigning Value to Variables:

 The variable must be declared before assigning value to the variable.

Syntax:

Datatype v1,v2,.....vn;

Variable Name = Value;

 10

 The equal to sign is used to assign value to variable.

Eg: a=10.0;

 xy=25.0;

Symbolic Constant:

 A symbolic constant is a name given to numeric value or a constant value or string
value.

 Symbolic constant are also known as constant identifers.

Syntax:

 Eg: #define PI=3.1415

 #define MAX 500

Rules:

 Symbolic constant name written in
uppercase.

 It must not end with semicolon.

 It must begin with #define.

Operators :

 An operator is a symbol that tells the computer to perform certain mathematical or

logical manipulation.

 Operators are used in programs to manipulate data and variables.

 C operators can be classified into a number of categories.

 They include,

i) Arithmetic operators

ii) Relational operators

iii) Logical operators

iv) Assignment operators

v) Increment and Decrement operators

vi) Conditional operators

#define symbolic-constant-name value-of-constant

 11

vii) Bitwise operators

viii) Special operators

Arithmetic Operators :

 C provides all the basic arithmetic operators. They can operate on any built –in data

type allowed in C.

 The integer division truncates any fractional part. The modulo division operation

produces the remainder of an integer division.

Integer Arithmetic :

 When both the operands in a single arithmetic expression such as a+b are integers,

the expression is called as an integer expression and the operation is called

ARITHMETIC..,

Eg : a-b = 10

 a+b = 18

Relational Operators :

 C supports six relational operators in all

Operator Meaning

+

-

*

/

%

Addition or Unary plus

Subtraction or Unary minus

Multiplication

Division

Modulo division

Operator Meaning

<

<=

 Less than

 Less than or equal to

 12

 A simple relational expression contains only one relational operator and takes the

following forms.

Where,

 ae – 1 and ae – 2 are arithmetic expressions which may be simple constants,

variables or combination of them.

Logical Operators :

In addition to the relational operators, C has the following three logical operators.

 The logical operators && and || are used when we want to test more than one

condition and make decisions.

Eg : a>b && x == 10;

 An expression which combines two or more relational expressions, is termed as a

logical expression.

>

>=

==

!=

 Greater than

 Greater than or equal to

 Equal to

 Not equal to

Operator Meaning

&&

||

!

 Logical AND

 Logical OR

 Logical NOT

ae – 1 relational operator ae -2

 13

Eg : if (age > 55 && salary < 1000).

Assignment Operators :

 Assignment operators are used to assign the result of in expression to a variable. In

addition, C has a set of SHORTHAND assignment operators of the form,

Where, v is a variable, exp is an expression and op is a C binary arithmetic operator.

 The assignment operator statement v op = exp; is equivalent to v = v op (exp);

Eg : x+ = y+1;

 Same as x = x+(y+1);

Increment and Decrement Operator :

++ and –

 The operator ++ adds 1 to the operand, while – subtracts 1 from the operand. Both

are unary operators and takes the following form.

++m ; or m++;

--m; or m--;

i) ++m is equivalent to m=m+1

ii) --m is equivalent to m=m-1

 m=5; y=m++

then the value of y would be 5 and m would be 6.

 A prefix operator ++m first adds 1 to the operand and then the result is assigned to

the variable on left.

 A postfix operator m++ first assign the value to the variables an left and then

increases 1 to the operand.

v op = exp
;

 14

Conditional Operator :

 A ternary operator pair “?” is available to construct conditional expressions of the

form.

Where, exp1, exp2 and exp3 are expressions.

 The operator ?: works as follows :

i) exp1 is evaluated first. If it is non zero (true), then the expression

exp2 is evaluated and becomes the value of the expressions.

ii) If exp1 is false, exp3 is evaluated and its value becomes the value of

the expression.

Eg : a = 10; b = 15;

 x = (a>b) ? a : b ;

Bitwise Operator :

 C has a distinction of supporting special operators known as bitwise operators for

manipulation of data at bit level.

 These operators are used for testing the bits, or shifting them right or left.

 Bitwise operator may not be applied to float or double.

Special Operators :

 C supports some special operators of interest such as comma operator, size of

operator, pointer operators (& and *) and member selection operator (. and ->).

Operator Meaning

&

|

^

<<

>>

 Bitwise AND

 Bitwise OR

 Bitwise exclusive OR

 Shift Left

 Shift Right

exp1? exp2 : exp3;

 15

Comma Operator :

 The comma operator can be used to link the related expressions together.

Eg: value = (x=10, y=5, x+y);

Sizeof Operator :

 The sizeof is a compile time operator and when used, with an operand, it returns the

number of bytes the operand occupies.

Eg : m = sizeof (sum);

 n = sizeof (long int);

k = sizeof (235L);

Arithmetic Expressions:

 An arithmetic expressions is a combination of variables constants and operators

arranged as per the syntax of the language.

Evaluation of Expressions :

 Expressions are evaluated using an assignment statement of the form.

 Variable is any valid C variable name. The expression is evaluated first and the

result then replaces the previous value of the variable on the left hand side.

Eg : x = a * b - c;

 y = b / c * a;

z = a – b / c + d;

Program :

Main()
{
 Float a, b ,c, x, y, z ;
 a = 9; b =12; c = 3;
 x = a – b / 3 \ = c * z - 1

Variable = expressions
;

 16

y = a – b / (3 + c) * (z - 1);
z = a - (b / (3 + c) * z) - 1;
Printf(“X = %f \n”, x);
Printf(“Y = %f \n”, y);
Printf(“Z = %f \n”, z);

}

Precedence of arithmetic operator :

 An arithmetic expression without parenthesis will be evaluated from left to right

using the rules of precedence of operators.

 There are two distinct priority levels of arithmetic operators in C.

i) High Priority * ? %

ii) Low Priority + -

 X = a – b / 3 + c * 2 – 1

When a = 9 b = 12 and c = 3 the statement becomes,

 X = 9 – 12 / 3 + 3 * 2 – 1 and is evaluated as follows.

Step 1 : x = 9 – 4 + 3 * 2 – 1

Step 2 : x = 9 – 4 + 6 – 1

Step 3 : x = 5 + 6 – 1

Step 4 : x = 11 – 1

Step 5 : x = 10

Rules for evaluation of Expression:

 First, parenthesized sub expression from left to right are evaluated.

 If parenthesis are nested, the evaluation begins with the innermost sub-expression.

 The precedence rule is applied in determining the order of application of operators

in evaluating sub expression.

 The associativity rule is applied when two or more operators of the same

precedence level appear in a sub expression.

 Arithmetic expressions are evaluated from left to right using the rules of

precedence.

 17

 When parenthesis is used, the expressions with in parentheses assume highest

priority.

Type Conversion in Expression :

 There are two types of conversions, they are as follows :

i) Implicit type conversion

ii) Explicit type conversion

Implicit Type Conversion :

 C permits mixing of constants and variables of different types in an expression.

 This automatic conversion is known as implicit type conversion.

 If the operands are of different types, the “lower” type is automatically converted to

the “higher” type before the operation proceeds.

Rules :

 All short and char are automatically converted into int; then

1) If one of the operands is long double and the other will be converted to long

double.

2) Else, if one of the operands is double, the other will be converted and the result

in double.

3) Else,. If one of the operands is float, the other will be converted to float and the

result will be float.

4) Else, if one of the operands is unsigned long int, the other will be converted to

unsigned long int and the results will be unsigned long int.

5) Else, if one of the operands is long int and the other is unsigned int, then the

unsigned int can be converted into long int.

Explicit Conversion :

 There are instances when we want to force a type conversion in a way that is

different from the automatic conversion is known as explicit conversion.

 The process of such a local conversion is known as Explicit Conversion or CASTING

A VALUE.

 18

Syntax :

Built-in Functions:

 The C standard library provides numerous built-in functions that your

program can call. For example, function strcat() to concatenate two strings,

function memcpy() to copy one memory location to another location and

many more functions.

 A function is known with various names like a method or a sub-routine or a

procedure etc.These functions can perform task such like string handling,

mathematical computations, input/output processing, memory allocation

and several other operating system services.

 These functions are included in the c programm by adding their header file in

the starting of the c program.

 Some of the header files are:

o Math.h - Defines mathematical functions.

o String.h - Defines string manipulation functions.

o Time.h - Containg time and date handling functions.

UNIT V

Data Input and Output Control Statements

Output Operations:

 Unformated I/P and O/P Operations

 Formated I/P and O/P Operations

Example Action

 X = (int) 7.5 7.5 is converted to integer by truncation.

A = (int)21.3 / (int)4.5 Evaluated as 21/4 and the result would be 5.

(type-name) expression

 19

Unformated I/P and O/P Operations:

Reading a Character :

 Reading a single character can be done by using the function get char()

 The getchar() takes the following form

 Variable-name = getchar();

 Variable-name is a valid C name that has been declared as char type.

Eg : char name

 Name = getchar();

Writing a Character :

 A putchar() is used for a single character to the terminal.

 The putchar() takes the following form.

Putchar (variable-name);

Where, variable-name is a type char variable containing a character.

Eg : answer = ‘Y’;

 Purchar (answer);

Example :

 # include <stdeio.h>

 # incluce<conio.h>

 Main()

 {

 Char alphabet;

 Printf(“Enter an alphabet”);

Putchar (“\n”);

Alphabet = getchar();

If (is lower (alphabet))

 Putchar (to upper (alphabet));

Else

 20

 Putchar(to lower (alphabet));

}

Ouput:

Enter an alphabet: b

B

Formatted I/P and O/P Operations:

Formatted Input :

 Formatted input refers to an input data that has been arranged in a particular

format.

 The general form of scanf() is

scanf(“control string”, &arg1, &arg2,.....& argn)

 The control string specifies the field format in whch the data is to be entered and the

arguments arg2, arg2,.....argn specifies the address of locations wh3re the data is

stored.

 Control string and arguments are separated by commas.

Inputting Integer Numbers :

 The field specification for reading an integer number is %wd

 W is an integer number that specifies the field width of the number to be read and d

known as datatype.

Eg : scanf(“% 2d %sd”, & num1, & num2);

 50 31426

 The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is as

follows 31426 50

 The variable num1 will be assigned 31 because of %2d abd num2 will be assigned

426.

 The value 50 that is unread will be assigned to the first variable in the scanf next

call.

 21

Inputting Character Strings:

 Follwoing are the specifications for reading character strings

%ws (or) %wc

Reading mixed datatype:

 It is possible to use one scanf statement to input a data line containing mixed mode

data.

Eg: scanf(“%d %c %f %s”, &count, &code, &ration; name);

15 p1.575 coffee

Rules for scanf

 Each variable to be read must have field specification.

 For each field specification there must be a variable address of proper type.

 Any non-white space character used in the format string must have a matching

character in the user input.

 Never end the format string with whitespaces. It is a fatal error!

 The scanf reads until :

 A white space character is found in a numeric specification (or)

 The maximum number characters have been read (or)

 An error is detected (or)

 The end of file is reached.

 Scanf code format

 22

Code meaning

%c

%d

%e, %f, %q

%h

%i

%o

%s

%u

%x

read a single character

read a decimal integer

read a floating point value

read a short integer

read a decimal hexadecimal or octal

read a octal integer

read a string

read a unsigned decimal integer

read a hexadecimal integer

Formatted Output :

 The general form of printf statement is printf(“control string”, arg1, arg2,.... arg

n);

Output of Integer Numbers:

 The format specification for printing an integer no is %wd, where w specifies the

minimum field width for the output d specifies that the value to be printed is an

integer.

 Format Output

Printf (“% d”, 9876)

 Printf (“% 6d”, 9876)

Printf (“”% -6d”, 9876)

Output of Real Numbers:

 The output of a real number may be displayed in decimal notation using the

following format specification.

 % wpf

9 8 7 6

 9 8 7 6

9 8 7 6

 23

 The integer w indicates the minimum number of positions that are to be used for

the display of the value and the integer p indicates the number of digits to be

displayed after the decimal point.

 It can also display a real number in exponential notation by using the

specification.

 % wpe

 Format Output

Printf (“% 7.4f ”, y)

Printf (“% 7.2f ”, y)

printf (“% -7.2f ”, y)

 printf (“% f “, y)

 printf (“%f 10.2e“, y)

Printing A Single Character:

 A single character cab ne displayed in a desired position using the format %wc.

The character will be displayed right-justified in the field of w columns. We can

make the display left-justified by placing a minus sign before the integer w. The

default value of 2 is 1.

Printing of strings :

 The format specification for outputting string is similar to that of real numbers.

 %wps

Where, w specifies that field width for display and p instructs that only the

first p characters of the string are to be displayed. The display is right justified.

Specification Output

%s

9 8 . 7 6 5 4

 9 8 . 7 6

9 8 . 7 6

9 8 . 7 6 5 4

 9 . 8 8 e + 0 1

 24

N E W D E L H I 1 1 0 0 0 1

% 20s

 N E W D E L H I 1 1 0 0 0 1

% 20.10s

 N E W D E L H I

% -20.10s

N E W D E L H I

Mixed Data Output:

 It is permitted to mix data type in one printf statement for example the statement of

the type.

Printf (“%d %f %s %c”, a, b, c, d);

Decision making and Branching :

 The statement which is used to change (or) alter the flow of execution is called by

the name control statement.

 There are two types of control statement.

1) Selection (or) Branching and decision making.

2) Looping (or) Iteration.

Selection (or) Branching :

 This is further classified into two types.

 If

 Switch

If :

 The different form of if statement is as follows

 25

 Simple if statement

 Ifelse statement

 Nested ifelst statement

 Eles if ladder.

Simple if Statement :

 The General form of a if statement

If (test expression)

{

 Statement-block ;

}

 Statement – x;

 The statement – block may be a single statement of a group of statements. If the test

expression is true the statement - block will be executed otherwise the statement -

block will be skipped and the execution will jump to statement - x.

Flow chart:

Example:

include <stdio.h>
 # include <conio.h>
 Void main()

{
Int a,b;
Clrscr();
Printf (“Enter the No. ”);
Scanf (“%d %d”, &a, &b);
If (a>b)
{
Printf (“a is greater”);
}
Getch();
}

The IfElse Statement :

 The if....else statement is an extension of the simple if statement.

 The General form is

Test

expression

Statement - block

Statement - x

Next Statement

Entry

 26

If (test expression)

{

 True – block statement;

}

Else

 {

 Flase – block statement;

 }

Statement – x;

 The Test expression is true, then the true – block statement, immediately following

the if statement are executer; otherwise the false – block statement are executed in

either case, either true or false – block will be executed not both in both the cases,

the control is transferred subsequently to the statement –x.

 Example :

 # include <stdio.h>
 #inclide <conio.h>
Void main()
{
Int a,b;
Clrscr();
Printf(“Enter the Number”);
Scanf(“%d D”, &a, &b);
If (a>b)
{
 Printf(“ a is greater”);
}
Else
{

Printf(“b is greater”);
}
Printf(“Process is Completed”);
Getch();
}

Test

expressi

on

False – block Statement

True – block statement

Statement - X

Flow Chart :

Entry

Exit

 27

The Switch Statement :

 C has a built in multi way decision statement known a SWITCH. The switch

statement tests the value of a given variable (or expression) against a list of case

values and when a match is found, a block of statements associated with that case is

executed.

 General Syntax:

 Switch (expression)

{

case value-1;

block -1;

break;

case value -2;

block -2;

break 2;

......

......

default ;

default-block

break;

}

statement –x;

 Expression is an integer expression or characters value-1, value-2 are constants or

constant expressions are known as case labels. Each of these values should be a

unique within a switch.

 Statement block-1, block-2..... are statement lists and may contain zero or more

statements. There is no need to put bracer around these blocks. Note that case

labels end with a count.

 When the switch is executed the value of the expression is successfully compared

against the value, value-1, value-2,,....... if a case is found whose value matches with

Switch

Expression

Block - 1

Block - 2

Default Block

Statement - X

Entry

Expr 1

Expr 2

default

Flow Chart:

 28

the value of the expressoion then the block of statements that follows, the case are

executed.

 The break statement at the end of each block signals the end of a particular case and

causes an exit from the switch sttatement transferring the control to the statement-

x following the switch.

Example :

include <stdio.h>
#include<conio.h>
Voidmain()
{
 Int res a, b ,c;
 Clrscr ();
 Printf (“Enter the a, b, value \n”);
 Scanf(“ %d %d”, &a, &b);
 Switch();
 {

Case 1:
 C = a + b;

Break;
Csse 2:

C = a – b;
Break;

Case 3:
C = a * b;
Break;

Case 4:
C = a / b;
Break;

Default:
Printf (“Exit”);

}
Printf (“The Result is %d”,c);
getch ();
}

Rules for Switch Statement:

 The switch expression must be an integral type.

 Case labels must be constants.

 Case labels must be unique. No 2 labels can have the same value. It must end with

colon.

 29

 The break statement transfers the control out of the switch statement.

GoTo Statement:

 The go to statements is used to branch unconditionally from one point to another in

the program. The goto requires a label in order to identify the place where the

branch is to be made. A label is any valid variable name, and must be follows by a

colon.

The G.F.:

Forward jump

 Go to label;

 ------- ---

 --- - --- --

 Label;

Statement;

 Backward jump

 Label 1;

Statement ;

---- - - -

---- - - -

Goto label;

 The label : can be anywhere in the program either before or after the fotolabel;

statement.

 Ex :

#include <stdio.h>
include<conio.h>
Void main()
{
 Int i,x;
 Printf (“ goto example program \n”);
 Scanf (“%d”, & x);
 For (i = 0; i < 100; i = i + 2)

 30

 {
 If (i==50)

 Goto x;
 Printf (“i = %d \n”,’);
 }
Printf(“End”);
getch();
}

Decision Making (or) Looping:

 The loop in a program consists of two parts one is body of the loop another one is

control statement

 Any looping statement includes the following steps.

1) Initialization of a condition variable.

2) Test the control statement

3) Executing the body of the loop depending on the condition.

4) Updating the condition variable.

 There are two types of looping.

i) Entry – controlled loop

ii) Exit – controlled loop.

Entry controlled loop:

 In the entry controlled loop the condition are tested before the start of the loop

execution.

Exit controlled loop:

 In the exit – controlled loop the test is performed of the end of the body of the loop.

Therefore body is executed unconditionally for the first time.

 The ‘C’ language provides for three constructs for the performing looping

operations. They are,

1. While Statement

2. Do _while Statement

3. For loop Statement.

The While Statement:

G.F:

 While (test condition)
 {
 body of the loop;

}

 31

 The while is an entry-controlled loop statement. The best condition is evaluated and

if the condition is true then the body of the loop is executed. After execution of the

body, the test condition is once again evaluated and if it is true, the body is executed

once again.

 This process of repeated execution of the body continues until the test condition

finally becomes false and the control is transferred out of the loop.

Example:

include <stdio.h>
#include ?<conio.h>
void main()
{

int i, sum;
Clrscr ();
i=1;
Sum = 0;
While (i<=10)
{

Sum = sum+1;
i++

}
Printf(“The sum of the numbers is =%d”,sum);
getch();

}

Do - While Statement:

Syntax:

Do

 {

 Body of the loop;

 } While (test-condition);

 The program proceeds to evaluate the body of the loop first. At the end of the loop the

test-condition in the while statement is evaluated. If the condition is true the program

continue to evaluate the body of the loop once again. The process continues as long as

the condition is true when the condition become false the loop will be terminated.

Body of the loop

Condit

ion

Yes

No

Body of the loop

Condit

ion

 32

Ex :

 # include <stdio.h>
include <conio.h>
void main()
{

 int i, sum;
Clrscr();
i = 1;
Sum = 0;
Do
{

Sum = sum + 1;
i++;

}
While (i < = 10);
Printf (“The sum of the no is =%d”, sum);
getch ();

}

For Loop:

Syntax:

For (initialization; test-condition; increment)

 -- - - - -- ----

body of the loop

Flow chart :

Example:
 # include <stdio.h>

include <conio.h>
void main()
{
 int i, sum;
Clrscr();
i = 1;
Sum = 0;
for (i = 1; i < = 10; i + +)
{

Sum = sum + i;
}
Printf (“The sum of the no is = % d”, sum);

Yes

No

Initialization

Body of the Loop

Increment

Condit

ion

 33

getch ();
}

Difference between while and do-while statement:

While Do-While

This is the top tested loop [Entry Controlled] This is the bottom tested loop [Exit

Controlled]

This condition is first tested. If the condition

is true then the block is executed until the

condition is false

If executes the body once after it check the

condition. If it is true the body executed

until condition becomes false.

Loop is not executed. If the condition is false Loop is executed at least once even though

the condition is false.

It has no termination It has termination

Break Statement :

 Break statement is used to terminate the loop

Syntax:

break:

Eg :

 # include <stdio.h>
include <conio.h>
void main()
{
 int i;
for (i = 1; i < = 10; i + +)
{

for (i == 6)
break;
printf(“%d” , i);

}
getch ();
}

The Continue Statement:

Syntax :

 34

continue;

Eg :

include <stdio.h>
include <conio.h>
void main()
{
 int i, n,sum = 0;
Clrscr();
for (i = 1; i < = 5; i + +)
{

 Printf (“The sum of the no is = % d”, sum);
Scanf (“%d”, &n);
If (n < 0)

 continue;
Else

Sum = sum + n;
}
Printf (“The sum of the no is = % d”, sum);
getch ();
}

Break Continue

Break statement takes the control to the

outside of the loop

Continue statement takes the control to the

beginning of the loop

It is also used in switch statement This can be used only in loop statement

Always associated with if condition in loops This is also associated with if condition in

loops

Arrays:

Definition :

 An array is a group of related data items that share a common name.

E.g:

 A single variable can be used to store n values of the same category.

 int salary[10];

 Salary is a integer variable, that can store 10 values in its location starting from

salary[0] to salary[10].

 35

Declaration Syntax :

Datatype varname [size];

Datatype - datatype of the array variable

Varname - variable name

Size - also called as subscript (or) index.

 Individual values in the array are called “elements”.

 Array’s can be of any variable type.

 Array elements are stored in continuous memory locations

A[0] [1] [2] [3] [4]...................

 Array index always starts from zero(0).

 Array elements can be accessed using the position of the element in the array.

 Arr[i] refers to the ith element in the array arr.

 Index should always be an integer or an expression that gives integers.

 Index cannot be negative.

 Index must be given within square brackets after the array name.

One – Dimensional Array:

 A list of items stored in single variable using only one index (or subscript) is called

single-subscripted variable or one-dimensional array.

Initialize an Array:

Syntax:

 val 1, val 2,....val n - initial values for the corresponding array elements.

 E.g:

 1. static int a[5] = {3,7,9,10,11};

 2. char col[3] = {‘R’ , ‘E’ , ‘D’};

 3. int dig[3] = {7,9,10,13};

 4. int y[5] = {7,8};

5. int z[] = {7, 8, 10, 11};

Eg 1: Eg 2: Eg 3: Eg 4: Eg 5:

a[0] =3

a[1] =7

a[2] =9

a[3] =10

a[4] =11

Col[0] = ‘R’

Col[1] = ‘E’

Col[2] = ‘D’

dig[0] = 7

dig[1] = 9

dig[2] = 10

y[0] = 7

y[1] = 8

y[2] = 0

y[3] = 0

y[4] = 0

z[0] = 7

z[1] = 9

z[2] = 10

z[3] = 11

 datatype var nm[size] = {val 1, val 2,..... val n};

 36

 In the above example,

‘a’ is a static array.

All the others are external arrays.

 All individual elements that are not assigned explicit initial values are set to ‘0’.

 If the size of an array is undefined, the compiler will count the number of initializes

and substitute that number for the size of the array.

 In a character array, each characters are assigned within a set of single quotes (‘ ‘).

 To assign string to a variable, unsized char array is used.

str[0] = ‘B’, str [1] = ‘H’, str [2] = ‘A’, str [3] = ‘R’, str [4] = ‘A’, str [5] = ‘T’, str [6] = ‘H’,

str [7] = ‘\o’.

 The array size will be assigned automatically.

 This will include a provision for the null character ‘\0’, which is automatically added

at the end of every string.

 Unsized array in other data types are also allowed.

Accessing Array Element:

 Single operations involving entire arrays are not permitted in C.

 If a and b are similar arrays, assignment operations, comparison operations etc

must be carried out on an element basis.

 Usually a loop is used to process one-dimensional array.

 The number of passes through the loop will be equal to the number of array

elements to be processed.

E.g: Sum of n numbers:

#include <stdio.h>

#include <conio.h>

void main()

{

int i, sum , a[15], n;

float avg;

clrscr();

sum =0;

printf(“Enter n:”);

scanf(“ % d” , & n);

for (i = 0 ; i < n ; i++)

{

scanf(“%d” , & a[i]);

sum = sum + a[i];

}

printf(“sum = %d” , sum);

 37

getch();

}

Passing Arrays to Function:

 Arrays can be passed to functions.

 To pass an array to a function the array name must appear by itself, without

brackets or subscript as an actual, assignment within the function call.

E.g: int a[12];

y = max(a);

 The corresponding formal argument is written in the same manner, though it must

be declared as an array within the formal argument declaration.

int max(int a1[])

{

}

 When declaring a one-dimensional array as formal argument, the array name is

written with a pair of square brackets, the size of the array is not specified within

the formal argument declaration.

E.g:

int max(int []);

 When the function is called, the values of all elements of the array are passed to the

corresponding elements of the array in the called function.

E.g:

 //To fine MEAN of n values:

#include <stdio.h>

#include<conio.h>

{

float val[10]; int n; float m;

float mean (float []; int);

printf(“\n Enter no of values to enter:”);

scanf(“%d”, &n);

printf(“Enter the Values:”);

for (i = 0 ; i < n ; i++)

scanf(“%f”, &val[i]);

m = mean(val, n);

printf(“\n The MEAN of the number is %d”, m);

getch();

 38

}

float mean(float arr[], int n)

{

int i;

float sum = 0;

for (i = 0; i < n ; i++)

sum += arr[i];

return (sum / (float) n);

}

Multi - Dimensional Array:

 Applications involving matrix requires two-dimensional arrays to store and process

information.

 Similarly a ‘N’ dimensional array can also be created.

 For every dimension, one more square bracket is included.

 The limit for dimensions is determined by the compiler.

Declaration:

 Type arr_nm[s1] [s2] [s3]....[sn];

Type - data type of the array.

Arr_nm - array variable name,

[s1]...[sn] – maximum size of each array location.

 A ‘m X n’ 2-dimensional array can be thought of as a table of values

having ‘m’ rows and ‘n’ columns.

E.g:

 int a1[3][3];

A1[3][3] = {{1,1,1},{3,4,5),{6,7,8}};

 To initialize the two dimensional array, inside a pair of curly braces, data’s are

inserted for every individual rows separately.

 To access the elements of a two dimensional array, nested for loop is the best

solution.

for (i = 0; i<3;i++) {

for(j=0;j<3;j++) {

printf(“%d” , a1[i][j]);

}

printf(“\n”);

}

In char datatype, two dimension arrays are used to store more than one string values.

char names[10] [20];

names [10] [20] ={“INDIA’ , “BHARATH”, “GANDHIJI” , “Nethaji”};

here

 39

 names[0] => INDIA

names[1] => BHARATH.. and so on.

	UNIT IV
	History of C
	Importance of C :
	Evaluation of the Structure of a C program
	Example :

	Constants, Variables and Data Types :
	CHARACTER SET :
	Letters :
	Digits :
	Special Characters :
	White Space :
	Trigraph Characters :

	C Tokens :
	Key Words :
	Identifiers :
	Rules for Identifiers :

	Constants :
	Integer Constants :
	Real Constants :
	Single Character Constants :
	String Constants :

	VARIABLES :
	Rules for naming a variable :

	DATA TYPES:
	Primary Data Types:
	Integer types:
	Floating Point Type :
	Character Data Type:
	Void Type :

	Declaration of Variables:
	Primary Type Declaration :
	User - Defined data type Declaration :

	Operators :
	Arithmetic Operators :
	Relational Operators :
	Logical Operators :
	Assignment Operators :
	Increment and Decrement Operator :
	Conditional Operator :
	Bitwise Operator :
	Special Operators :
	Comma Operator :
	Sizeof Operator :

	Arithmetic Expressions:
	Evaluation of Expressions :
	Program :
	Precedence of arithmetic operator :
	Rules for evaluation of Expression:

	Type Conversion in Expression :
	Implicit Type Conversion :
	Explicit Conversion :

	Built-in Functions:
	UNIT V
	Data Input and Output Control Statements
	Output Operations:
	Unformated I/P and O/P Operations:
	Reading a Character :
	Writing a Character :

	Formatted I/P and O/P Operations:
	Formatted Input :
	Inputting Integer Numbers :
	Inputting Character Strings:
	Reading mixed datatype:

	Rules for scanf

	Formatted Output :
	Output of Integer Numbers:
	Output of Real Numbers:
	Printing A Single Character:
	Printing of strings :
	Mixed Data Output:

	Decision making and Branching :
	Selection (or) Branching :
	If :
	Simple if Statement :

	The IfElse Statement :
	The Switch Statement :
	Rules for Switch Statement:

	GoTo Statement:

	Decision Making (or) Looping:
	Entry controlled loop:
	Exit controlled loop:
	The While Statement:
	Do - While Statement:
	For Loop:
	Difference between while and do-while statement:
	Break Statement :
	The Continue Statement:
	Definition :
	Declaration Syntax :
	One – Dimensional Array:
	Initialize an Array:
	Accessing Array Element:
	Passing Arrays to Function:
	Multi - Dimensional Array:

