
DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 1

What is a Functional Dependency?

Functional Dependency (FD) determines the relation of one attribute to another

attribute in a database management system (DBMS) system. Functional dependency helps

you to maintain the quality of data in the database. A functional dependency is denoted by an

arrow →. The functional dependency of X on Y is represented by X → Y. Functional

Dependency plays a vital role to find the difference between good and bad database design.

Example:

Employee

number

Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

In this example, if we know the value of Employee number, we can obtain Employee Name,

city, salary, etc. By this, we can say that the city, Employee Name, and salary are functionally

depended on Employee number.

• Key terms

• Rules of Functional Dependencies

• Types of Functional Dependencies

• Multivalued dependency in DBMS

• Trivial Functional dependency

• Non trivial functional dependency in DBMS

• Transitive dependency

• What is Normalization?

• Advantages of Functional Dependency

Key terms

Here, are some key terms for functional dependency:

Key Terms Description

https://www.guru99.com/dbms-functional-dependency.html#2
https://www.guru99.com/dbms-functional-dependency.html#3
https://www.guru99.com/dbms-functional-dependency.html#4
https://www.guru99.com/dbms-functional-dependency.html#5
https://www.guru99.com/dbms-functional-dependency.html#6
https://www.guru99.com/dbms-functional-dependency.html#7
https://www.guru99.com/dbms-functional-dependency.html#8
https://www.guru99.com/dbms-functional-dependency.html#9
https://www.guru99.com/dbms-functional-dependency.html#10

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 2

Axiom Axioms is a set of inference rules used to infer all the

functional dependencies on a relational database.

Decomposition It is a rule that suggests if you have a table that appears

to contain two entities which are determined by the

same primary key then you should consider breaking

them up into two different tables.

Dependent It is displayed on the right side of the functional

dependency diagram.

Determinant It is displayed on the left side of the functional

dependency Diagram.

Union It suggests that if two tables are separate, and the PK is

the same, you should consider putting them. together

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

• Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value

of Y.

• Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds.

That is adding attributes which do not change the basic dependencies.

• Transitivity rule: This rule is very much similar to the transitive rule in algebra if x ->

y holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that

determines y.

Types of Functional Dependencies

• Multivalued dependency

• Trivial functional dependency

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 3

• Non-trivial functional dependency

• Transitive dependency

Multivalued dependency in DBMS

Multivalued dependency occurs in the situation where there are multiple independent

multivalued attributes in a single table. A multivalued dependency is a complete constraint

between two sets of attributes in a relation. It requires that certain tuples be present in a

relation.

Example:

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

In this example, maf_year and color are independent of each other but dependent on

car_model. In this example, these two columns are said to be multivalue dependent on

car_model.

This dependence can be represented like this:

car_model -> maf_year

car_model-> colour

Trivial Functional dependency:

The Trivial dependency is a set of attributes which are called a trivial if the set of attributes

are included in that attribute.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 4

So, X -> Y is a trivial functional dependency if Y is a subset of X.

For example:

Emp_id Emp_name

AS555 Harry

AS811 George

AS999 Kevin

Consider this table with two columns Emp_id and Emp_name.

{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a subset of

{Emp_id,Emp_name}.

Non trivial functional dependency in DBMS

Functional dependency which also known as a nontrivial dependency occurs when A->B

holds true where B is not a subset of A. In a relationship, if attribute B is not a subset of

attribute A, then it is considered as a non-trivial dependency.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example:

(Company} -> {CEO} (if we know the Company, we knows the CEO name)

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 5

But CEO is not a subset of Company, and hence it's non-trivial functional dependency.

Transitive dependency:

A transitive is a type of functional dependency which happens when t is indirectly formed by

two functional dependencies.

Example:

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

{Company} -> {CEO} (if we know the compay, we know its CEO's name)

{CEO } -> {Age} If we know the CEO, we know the Age

Therefore according to the rule of rule of transitive dependency:

{ Company} -> {Age} should hold, that makes sense because if we know the company name,

we can know his age.

Note: You need to remember that transitive dependency can only occur in a relation of three

or more attributes.

What is Normalization?

Normalization is a method of organizing the data in the database which helps you to avoid

data redundancy, insertion, update & deletion anomaly. It is a process of analyzing the

relation schemas based on their different functional dependencies and primary key.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 6

Normalization is inherent to relational database theory. It may have the effect of duplicating

the same data within the database which may result in the creation of additional tables.

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not repeat at

multiple locations in that database

• It helps you to maintain the quality of data in the database

• It helps you to defined meanings and constraints of databases

• It helps you to identify bad designs

• It helps you to find the facts regarding the database design

Summary

• Functional Dependency is when one attribute determines another attribute in a DBMS

system.

• Axiom, Decomposition, Dependent, Determinant, Union are key terms for functional

dependency

• Four types of functional dependency are 1) Multivalued 2) Trivial 3) Non-trivial 4)

Transitive

• Multivalued dependency occurs in the situation where there are multiple independent

multivalued attributes in a single table

• The Trivial dependency occurs when a set of attributes which are called a trivial if the

set of attributes are included in that attribute

• Nontrivial dependency occurs when A->B holds true where B is not a subset of A

• A transitive is a type of functional dependency which happens when it is indirectly

formed by two functional dependencies

• Normalization is a method of organizing the data in the database which helps you to

avoid data redundancy

Normalization of Database

Database Normalization is a technique of organizing the data in the database.

Normalization is a systematic approach of decomposing tables to eliminate data

redundancy(repetition) and undesirable characteristics like Insertion, Update and Deletion

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 7

Anomalies. It is a multi-step process that puts data into tabular form, removing duplicated

data from the relation tables.

Normalization is used for mainly two purposes,

• Eliminating redundant (useless) data.

• Ensuring data dependencies make sense i.e data is logically stored.

Problems Without Normalization

If a table is not properly normalized and have data redundancy then it will not only eat

up extra memory space but will also make it difficult to handle and update the database,

without facing data loss. Insertion, Updation and Deletion Anomalies are very frequent if

database is not normalized. To understand these anomalies let us take an example of

a Student table.

rollno name branch hod office_tel

401 Akon CSE Mr. X 53337

402 Bkon CSE Mr. X 53337

403 Ckon CSE Mr. X 53337

404 Dkon CSE Mr. X 53337

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the

fields branch, hod (Head of Department) and office_tel is repeated for the students who are in

the same branch in the college, this is Data Redundancy.

Insertion Anomaly

Suppose for a new admission, until and unless a student opts for a branch, data of the student

cannot be inserted, or else we will have to set the branch information as NULL.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 8

Also, if we have to insert data of 100 students of same branch, then the branch information

will be repeated for all those 100 students.

These scenarios are nothing but Insertion anomalies.

Updation Anomaly

What if Mr. X leaves the college? or is no longer the HOD of computer science department?

In that case all the student records will have to be updated, and if by mistake we miss any

record, it will lead to data inconsistency. This is Updation anomaly.

Deletion Anomaly

In our Student table, two different informations are kept together, Student information and

Branch information. Hence, at the end of the academic year, if student records are deleted, we

will also lose the branch information. This is Deletion anomaly.

Normalization Rule

Normalization rules are divided into the following normal forms:

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form

First Normal Form (1NF)

For a table to be in the First Normal Form, it should follow the following 4 rules:

1. It should only have single(atomic) valued attributes/columns.

2. Values stored in a column should be of the same domain

3. All the columns in a table should have unique names.

4. And the order in which data is stored, does not matter.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 9

Second Normal Form (2NF)

For a table to be in the Second Normal Form,

1. It should be in the First Normal form.

2. And, it should not have Partial Dependency.

3. To understand what is Partial Dependency and how to normalize a table to 2nd

normal for, jump to the Second Normal Form.

Third Normal Form (3NF)

A table is said to be in the Third Normal Form when,

1. It is in the Second Normal form.

2. And, it doesn't have Transitive Dependency.

Boyce and Codd Normal Form (BCNF)

Boyce and Codd Normal Form is a higher version of the Third Normal form. This

form deals with certain type of anomaly that is not handled by 3NF. A 3NF table which does

not have multiple overlapping candidate keys is said to be in BCNF. For a table to be in

BCNF, following conditions must be satisfied:

• R must be in 3rd Normal Form

• and, for each functional dependency (X → Y), X should be a super Key.

Fourth Normal Form (4NF)

A table is said to be in the Fourth Normal Form when,

1. It is in the Boyce-Codd Normal Form.

Rules for First Normal Form

The first normal form expects you to follow a few simple rules while designing your

database, and they are:

https://www.studytonight.com/dbms/second-normal-form.php

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 10

Rule 1: Single Valued Attributes

Each column of your table should be single valued which means they should not contain

multiple values.

Rule 2: Attribute Domain should not change

This is more of a "Common Sense" rule. In each column the values stored must be of the

same kind or type.

For example: If you have a column dob to save date of births of a set of people, then you

cannot or you must not save 'names' of some of them in that column along with 'date of birth'

of others in that column. It should hold only 'date of birth' for all the records/rows.

Rule 3: Unique name for Attributes/Columns

This rule expects that each column in a table should have a unique name. This is to avoid

confusion at the time of retrieving data or performing any other operation on the stored data.

If one or more columns have same name, then the DBMS system will be left confused.

Rule 4: Order doesn't matters

This rule says that the order in which you store the data in your table doesn't matter.

Example

Although all the rules are self explanatory still let's take an example where we will create a

table to store student data which will have student's roll no., their name and the name of

subjects they have opted for.

Here is our table, with some sample data added to it.

roll_no name subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C, C++

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 11

Our table already satisfies 3 rules out of the 4 rules, as all our column names are unique, we

have stored data in the order we wanted to and we have not inter-mixed different type of data

in columns.

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And we

have stored the subject names in a single column. But as per the 1st Normal form each

column must contain atomic value.

How to solve this Problem?

It's very simple, because all we have to do is break the values into atomic values.

Here is our updated table and it now satisfies the First Normal Form.

roll_no name subject

101 Akon OS

101 Akon CN

103 Ckon Java

102 Bkon C

102 Bkon C++

By doing so, although a few values are getting repeated but values for the subject column are

now atomic for each record/row.

Using the First Normal Form, data redundancy increases, as there will be many columns with

Second Normal Form

For a table to be in the Second Normal Form, it must satisfy two conditions:

1. The table should be in the First Normal Form.

2. There should be no Partial Dependency.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 12

What is Dependency?

Let's take an example of a Student table with columns student_id, name, reg_no(registration

number), branch and address(student's home address).

student_id name reg_no branch address

In this table, student_id is the primary key and will be unique for every row, hence we can

use student_id to fetch any row of data from this table

Even for a case, where student names are same, if we know the student_id we can easily fetch

the correct record.

student_id name reg_no branch address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

Hence we can say a Primary Key for a table is the column or a group of columns(composite

key) which can uniquely identify each record in the table.

I can ask from branch name of student with student_id 10, and I can get it. Similarly, if I ask

for name of student with student_id 10 or 11, I will get it. So all I need is student_id and

every other column depends on it, or can be fetched using it.

This is Dependency and we also call it Functional Dependency.

What is Partial Dependency?

Now that we know what dependency is, we are in a better state to understand what partial

dependency is.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 13

For a simple table like Student, a single column like student_id can uniquely identfy all the

records in a table.

But this is not true all the time. So now let's extend our example to see if more than 1 column

together can act as a primary key.

Let's create another table for Subject, which will have subject_id and subject_name fields

and subject_id will be the primary key.

subject_id subject_name

1 Java

2 C++

3 Php

Now we have a Student table with student information and another table Subject for storing

subject information.

Let's create another table Score, to store the marks obtained by students in the respective

subjects. We will also be saving name of the teacher who teaches that subject along with

marks.

score_id student_id subject_id marks teacher

1 10 1 70 Java Teacher

2 10 2 75 C++ Teacher

3 11 1 80 Java Teacher

In the score table we are saving the student_id to know which student's marks are these

and subject_id to know for which subject the marks are for.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 14

Together, student_id + subject_id forms a Candidate Key(learn about Database Keys) for

this table, which can be the Primary key.

Confused, How this combination can be a primary key?

See, if I ask you to get me marks of student with student_id 10, can you get it from this table?

No, because you don't know for which subject. And if I give you subject_id, you would not

know for which student. Hence we need student_id + subject_id to uniquely identify any row.

But where is Partial Dependency?

Now if you look at the Score table, we have a column names teacher which is only dependent

on the subject, for Java it's Java Teacher and for C++ it's C++ Teacher & so on.

Now as we just discussed that the primary key for this table is a composition of two columns

which is student_id & subject_id but the teacher's name only depends on subject, hence

the subject_id, and has nothing to do with student_id.

This is Partial Dependency, where an attribute in a table depends on only a part of the

primary key and not on the whole key.

How to remove Partial Dependency?

There can be many different solutions for this, but out objective is to remove teacher's name

from Score table.

The simplest solution is to remove columns teacher from Score table and add it to the Subject

table. Hence, the Subject table will become:

subject_id subject_name teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

And our Score table is now in the second normal form, with no partial dependency.

score_id student_id subject_id marks

https://www.studytonight.com/dbms/database-key.php

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 15

1 10 1 70

2 10 2 75

3 11 1 80

Third Normal Form (3NF)

Third Normal Form is an upgrade to Second Normal Form. When a table is in the Second

Normal Form and has no transitive dependency, then it is in the Third Normal Form.

Let's use the same example, where we have 3 tables, Student, Subject and Score.

Student Table

student_id name reg_no branch address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

12 Bkon 09-WY IT Rajasthan

Subject Table

subject_id subject_name teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

Score Table

score_id student_id subject_id marks

1 10 1 70

2 10 2 75

3 11 1 80

In the Score table, we need to store some more information, which is the exam name and total

marks, so let's add 2 more columns to the Score table.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 16

score_id student_id subject_id marks exam_name total_marks

Requirements for Third Normal Form

For a table to be in the third normal form,

1. It should be in the Second Normal form.

2. And it should not have Transitive Dependency.

What is Transitive Dependency?

With exam_name and total_marks added to our Score table, it saves more data now. Primary

key for our Score table is a composite key, which means it's made up of two attributes or

columns → student_id + subject_id.

Our new column exam_name depends on both student and subject. For example, a

mechanical engineering student will have Workshop exam but a computer science student

won't. And for some subjects you have Prctical exams and for some you don't. So we can say

that exam_name is dependent on both student_id and subject_id.

And what about our second new column total_marks? Does it depend on our Score table's

primary key?

Well, the column total_marks depends on exam_name as with exam type the total score

changes. For example, practicals are of less marks while theory exams are of more marks.

But, exam_name is just another column in the score table. It is not a primary key or even a

part of the primary key, and total_marks depends on it.

This is Transitive Dependency. When a non-prime attribute depends on other non-prime

attributes rather than depending upon the prime attributes or primary key.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 17

How to remove Transitive Dependency?

Again the solution is very simple. Take out the columns exam_name and total_marks from

Score table and put them in an Exam table and use the exam_id wherever required.

Score Table: In 3rd Normal Form

score_id student_id subject_id marks exam_id

The new Exam table

exam_id exam_name total_marks

1 Workshop 200

2 Mains 70

3 Practicals 30

Advantage of removing Transitive Dependency

The advantage of removing transitive dependency is,

• Amount of data duplication is reduced.

• Data integrity achieved.

Boyce-Codd Normal Form (BCNF)

Boyce-Codd Normal Form or BCNF is an extension to the third normal form

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 18

Rules for BCNF

For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following two

conditions:

1. It should be in the Third Normal Form.

2. And, for any dependency A → B, A should be a super key.

The second point sounds a bit tricky, right? In simple words, it means, that for a dependency

A → B, A cannot be a non-prime attribute, if B is a prime attribute.

Example

Below we have a college enrolment table with columns student_id, subject and professor.

student_id subject professor

101 Java P.Java

101 C++ P.Cpp

102 Java P.Java2

103 C# P.Chash

104 Java P.Java

As you can see, we have also added some sample data to the table.

In the table above:

• One student can enrol for multiple subjects. For example, student

with student_id 101, has opted for subjects - Java & C++

• For each subject, a professor is assigned to the student.

• And, there can be multiple professors teaching one subject like we have for Java.

What do you think should be the Primary Key?

Well, in the table above student_id, subject together form the primary key, because

using student_id and subject, we can find all the columns of the table.

One more important point to note here is, one professor teaches only one subject, but one

subject may have two different professors.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 19

Hence, there is a dependency between subject and professor here, where subject depends on

the professor name.

This table satisfies the 1st Normal form because all the values are atomic, column names are

unique and all the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as their is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal

Form.

But this table is not in Boyce-Codd Normal Form.

Why this table is not in BCNF?

In the table above, student_id, subject form primary key, which means subject column is

a prime attribute.

But, there is one more dependency, professor → subject.

And while subject is a prime attribute, professor is a non-prime attribute, which is not

allowed by BCNF.

How to satisfy BCNF?

To make this relation(table) satisfy BCNF, we will decompose this table into two

tables, student table and professor table.

Below we have the structure for both the tables.

Student Table

student_id p_id

101 1

101 2

and so on...

And, Professor Table

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 20

p_id professor subject

1 P.Java Java

2 P.Cpp C++

and so on...

And now, this relation satisfy Boyce-Codd Normal Form. In the next tutorial we will learn

about the Fourth Normal Form.

A more Generic Explanation

In the picture below, we have tried to explain BCNF in terms of relations.

Fourth Normal Form (4NF)

Fourth Normal Form comes into picture when Multi-valued Dependency occur in any

relation. We will learn about Multi-valued Dependency, how to remove it and how to make

any table satisfy the fourth normal form.

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 21

Rules for 4th Normal Form

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

1. It should be in the Boyce-Codd Normal Form.

2. And, the table should not have any Multi-valued Dependency.

What is Multi-valued Dependency?

A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then

the table may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B,

then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued

dependency.

Example

Below we have a college enrolment table with columns s_id, course and hobby.

s_id course hobby

1 Science Cricket

1 Maths Hockey

2 C# Cricket

2 Php Hockey

As you can see in the table above, student with s_id 1 has opted for two

courses, Science and Maths, and has two hobbies, Cricket and Hockey.

You must be thinking what problem this can lead to, right?

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 22

Well the two records for student with s_id 1, will give rise to two more records, as shown

below, because for one student, two hobbies exists, hence along with both the courses, these

hobbies should be specified.

s_id course hobby

1 Science Cricket

1 Maths Hockey

1 Science Hockey

1 Maths Cricket

And, in the table above, there is no relationship between the columns course and hobby. They

are independent of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and other

anomalies as well.

How to satisfy 4th Normal Form?

To make the above relation satify the 4th normal form, we can decompose the table into 2

tables.

CourseOpted Table

s_id course

1 Science

1 Maths

2 C#

2 Php

DATABASE SYSTEMS UNIT-V

Department of Computer Science Page 23

And, Hobbies Table,

s_id hobby

1 Cricket

1 Hockey

2 Cricket

2 Hockey

Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that

case, the functionally dependent columns are moved in a separate table and the multi-valued

dependent columns are moved to separate tables.

If you design your database carefully, you can easily avoid these issues.

