
DISTRIBUTED TECHNOLOGIES

72

Unit-III

ADVANCED ASP.NET

Active Server Pages Framework (.aspx) is a server side programming language capable of
building powerful web applications. Asp.Net has built in capabilities which make easier for
programmers to build applications. With Asp.net you can create dynamic web pages, access
databases, send emails, and manage file system and much more.

Language Selection

Asp.net requires a support language. The .Net Framework has support for several
programming languages with the following as the most popular ones:

- VB (Visual Basic)

- C# (C Sharp)

- JScript

To specify the selected language a Page Directive is included on an Asp.Net document:

<%@ Page Language=”VB” %>

Active Server Pages or ASP, as it is more commonly known, is a technology that enables you
to make dynamic and interactive web pages.

ASP uses server-side scripting to dynamically produce web pages that are not affected by the
type of browser the web site visitor is using.

The default scripting language used for writing ASP is VBScript, although you can use other
scripting languages like JScript (Microsoft's version of JavaScript).

ASP pages have the extension .asp instead of .htm, when a page with the extension .asp is
requested by a browser the web server knows to interpret any ASP contained within the web
page before sending the HTML produced to the browser. This way all the ASP is run on the
web server and no ASP will ever be passed to the web browser.

Any web pages containing ASP cannot be run by just simply opening the page in a web
browser. The page must be requested through a web server that supports ASP, this is why
ASP stands for Active Server Pages, no server, no active pages.

Asp.net Webserver Controls

Server controls are objects placed on a page with the purpose of read and write data. These
objects have a consistent programming model and their properties (attributes) can be accessed

DISTRIBUTED TECHNOLOGIES

73

programmatically. A Server Control starts with <asp: followed by the object name
<asp:textbox . They must contain two other properties, ID which must be unique and
runat=”server” which tells the web server to give the control server side processing. They
can be self closed by having a forward slash (/) before the ending tag or have a closing tag:

<asp:textbox id=”txt” runat=”server” />
<asp:textbox id=”txt” runat=”server” ></asp:textbox>

After a control is processed by the web server, a standard HTML tag is sent to the browser
for displaying. The above example will be rendered as:

<input type=”text” name=”txt” id=”txt” />

Button <asp:button/>

Post back control for form submission.

Properties:

Example: <asp:button id=”btn” runat=”server” text=”Search”/>

 Checkbox <asp:checkbox/>

Selection control (multiple selections).

Properties:

Example: <asp:checkbox id=”ck” runat=”server” text=”Diploma”/>

 DropdownList <asp:dropdownlist>…</asp:dropdownlist>

Single selection control that displays a collection of list items.

Properties:

Id=”btn”

Runat=”server”

Text=”Search”

Enabled=”true/false”

Creates an unique identifier
Sets the button for server side processing
Displays text on the button
Enables or Disables the button

Id=”ck”

Runat=”server”

Text=”Diploma”

Checked=”true/false”

Creates an unique identifier
Sets the checkbox for server side processing
Displays text on checkbox
Checks or Uncheck the checkbox

Id=”lb”

Runat=”server”

Creates an unique identifier
Sets the button for server side processing
Set auto submission on item selected

DISTRIBUTED TECHNOLOGIES

74

Example: <asp:dropdownlist id="countries" runat="server">
 <asp:listitem Text="Select" Value=""/>
 <asp:listitem Text="UK" Value="UK"/>
 <asp:listitem Text="Ireland" Value="Ireland"/>

 </asp:dropdownlist>

Hyperlink <asp:hyperlink/>

Navigation control to move from page to page.

Properties:

Example: <asp:image id=”img” runat=”server” ImageURL=”ImageName.gif”/>

Image <asp:image/>

Displays image defined as ImageUrl

Properties:

Example: <asp:image id=”img” runat=”server” ImageURL=”ImageName.gif”/>

 Label <asp:label/>

Output control used to display text at a specific location on a page.

Properties:

Example: <asp:label id=”msg” runat=”server” text=”Welcome to ASP.Net”/>

AutoPostBack=”true,false”

Id=”hl”

Runat=”server”

NavigateURL=”controls.aspx”

Text=”Asp.Net Controls”

Creates an unique identifier
Sets the image for server side processing
Maps the file to link to
Creates the text link

Id=”img”

Runat=”server”

ImageURL=”hello.gif”

Width=”200”

Height=”200”

ToolTip=”Hello Message”

Creates an unique identifier
Sets the image for server side processing
Maps the image file to display
Sets Image width
Sets image height
Display text when mouse is over

Id=”msg”

Runat=”server”

Text=”some text”

Creates an unique identifier
Sets the textbox for server side processing
Displays text inside the box

DISTRIBUTED TECHNOLOGIES

75

 Link Button <asp:linkbutton>

Post back control for form submission. It renders as a link.

Properties:

Example: <asp:linkbutton id=”btn” runat=”server” text=”Search”/>

 Listbox <asp:listbox>…</asp:listbox>

Multiple selection control that displays a collection of list items.

Properties:

Example: <asp:listbox id="countries" runat="server">
 <asp:listitem Text="UK" Value="UK"/>
 <asp:listitem Text="Ireland" Value="Ireland"/>

 </asp:lisbox>

 Panel <asp:panel>…</asp:panel>

Container for other controls.

Properties:

Example: <asp:panel id="pn" runat="server" visible=”true”>
 <asp:label id=”msg2” runat=”server” text=”Control inside a panel”/>
 </asp:panel>

Id=”lb”

Runat=”server”

Text=”Search”

Enabled=”true/false”

Creates an unique identifier
Sets the button for server side processing
Displays text on the button
Enables or Disables the button

Id=”lb”

Runat=”server”

CssClass=”box”

Rows=”Number”

SelectionMode=”single/multiple”

Creates an unique identifier
Sets the button for server side processing
Sets a Stylesheet class
Sets the visible number of rows
Sets single or multiple selection

Id=”pn”

Runat=”server”

Visible=”true/false”

Creates an unique identifier
Sets the panel for server side processing
Sets its visibility

DISTRIBUTED TECHNOLOGIES

76

 Radio Button <asp:radiobutton/>

Single selection control belonging to a group.

Properties:

Example:

<asp:radiobutton id=”rb” runat=”server” GroupName=”gender” text=”Female”
checked=”true”/>

<asp:radiobutton id=”rb2” runat=”server” text=”Male” />

Table <asp:table>…</asp:table>

Builds up a HTML table.

Properties:

Table Row <asp:tablerow>…</asp:tablerow>

Creates table rows.

Properties:

Id=”lb”

Runat=”server”

CssClass=”box”

Text=”Female”

GroupName=”gender”

Checked=”true/false”

Creates an unique identifier
Sets the radiobutton for server side processing
Sets a Stylesheet class
Displays text on radiobutton
Sets a group it belongs to
Checks or Uncheck the radiobutton

Id=”lb”

Runat=”server”

BackColor=”#f6f6da”

Cellspacing=”2”

Cellpadding=”2”

Width=”500”

Height=”500”

HorizontalAlign=”center/right”

GridLines=”both/none/vertical/horizontal”

BorderWidth=”1”

Creates an unique identifier
Sets the table for server side processing
Sets a background colour
Sets distance between cells
Sets distance around the cells’ contents
Set table width
Sets table height
Sets table alignment
Sets what borders to display
Sets border height

BackColor=”#f6f6da”

Width=”500”

Height=”500”

HorizontalAlign=”center/right”

Sets a background colour
Set table row width
Sets table row height
Sets table row alignment

DISTRIBUTED TECHNOLOGIES

77

Table Header Cell <asp:tableheadercell>…</asp:tableheadercell>

Creates table heading.

Properties:

Table Cell <asp:tablecell>…</asp:tablecell>

Creates table data.

Properties:

 Example:

<asp:table id="tbl" runat="server" GridLines="Both" BorderWidth="1"
CellPadding="1" CellSpacing="1" BackColor="#FFFFCC" Width="100" Height="100">
 <asp:tablerow>
 <asp:tableheadercell>Prices</asp:tableheadercell>
 </asp:tablerow>
 <asp:tablerow>
<asp:tablecell HorizontalAlign="Center" VerticalAlign="Middle" ColumnSpan="1"
RowSpan="1">500</asp:tablecell>
 </asp:tablerow>
</asp:table>

Text Box <asp:textbox >

Single or multiline textbox for data input.

Properties:

BackColor=”#f6f6da”

Width=”500”

Height=”500”

HorizontalAlign=”center/right”

VerticalAlign=”top/bottom”

ColumnSpan=”2”

Sets a background colour
Set table header width
Sets table header height
Sets table header alignment
Sets table header vertical alignment
Merge Columns

BackColor=”#f6f6da”

Width=”500”

Height=”500”

HorizontalAlign=”center/right”

VerticalAlign=”top/bottom”

ColumnSpan=”2”

RowSpan=”2”

Sets a background colour
Set table data width
Sets table data height
Sets table data alignment
Sets table data vertical alignment
Merge Columns
Merge Rows

Id=”txt”

Runat=”server”

Creates an unique identifier
Sets the textbox for server side processing
Sets the maximum number of characters allowed

DISTRIBUTED TECHNOLOGIES

78

Example:

<asp:textbox id=”txt” runat=”server” columns=”30”/>
<asp:textbox id=”txtpwd” runat=”server” columns=”30” TextMode=”Password”/>
<asp:textbox id=”txtarea” runat=”server” columns=”30” Rows=”3” TextMode=”Multiline”/>

ADROTATOR CONTROL

The AdRotator control randomly selects banner graphics from a list, which is specified in an
external XML schedule file. This external XML schedule file is called the advertisement file.

The AdRotator control allows you to specify the advertisement file and the type of window
that the link should follow in AdvertisementFile and Target property respectively.

The basic syntax of adding an AdRotator is as follows:

<asp:AdRotator runat = "server"
 AdvertisementFile = "adfile.xml"
 Target = "_blank" />

Before going into details of the AdRotator control and its properties, let us look into the
construction of the advertisement file.

The Advertisement File:

The advertisement file is an XML file, which contains the information about the
advertisements to be displayed.

Extensible Markup Language (XML) is a W3C standard for text document markup. It is a
text-based markup language that enables you to store data in a structured format by using
meaningful tags. The term 'extensible' implies that you can extend you ability to describe a
document by defining meaningful tags for your application.

XML is not a language in itself, like HTML but, a set of rules for creating new markup
languages. It is a meta-markup language. It allows developers to create custom tag sets for
special uses. It structures, stores and transport information.

MaxLength=”10”

CssClass=”box”

Readonly=”true/false”

Text=”some text”

Columns=”20”

Rows=”3”

TextMode=”Password/MultiLine”

Sets a Stylesheet class
Sets only read capability (contents can’t be changed)
Displays text inside the box
Sets the width of textbox
Sets the number of lines (textarea)
Changes mode to password or textarea

DISTRIBUTED TECHNOLOGIES

79

Following is an example of XML file:

<BOOK>
<NAME> Learn XML </NAME>
<AUTHOR> Samuel Peterson </AUTHOR>
<PUBLISHER> NSS Publications </PUBLISHER>
<PRICE> $30.00</PRICE>
</BOOK>

Like all XML files, the advertisement file needs to be a structured text file with well-defined
tags delineating the data. There are the following standard XML elements that are commonly
used in the advertisement file:

Element Description

Advertisements Encloses the advertisement file

Ad Delineates separate ad

ImageUrl The image that will be displayed

NavigateUrl
The link that will be followed when the user

clicks the ad

AlternateText
The text that will be displayed instead of the

picture if it cannot be displayed

Keyword
Keyword identifying a group of

advertisements. This is used for filtering

Impressions
The number indicating how often an

advertisement will appear

Height Height of the image to be displayed

Width Width of the image to be displayed

Apart from these tags, customs tags with custom attributes could also be included. The
following code illustrates an advertisement file ads.xml:

DISTRIBUTED TECHNOLOGIES

80

<Advertisements>
<Ad>
<ImageUrl>rose1.jpg</ImageUrl>
<NavigateUrl>http://www.1800flowers.com</NavigateUrl>
<AlternateText>
 Order flowers, roses, gifts and more
</AlternateText>
<Impressions>20</Impressions>
<Keyword>flowers</Keyword>
</Ad>

<Ad>
<ImageUrl>rose2.jpg</ImageUrl>
<NavigateUrl>http://www.babybouquets.com.au</NavigateUrl>
<AlternateText>Order roses and flowers</AlternateText>
<Impressions>20</Impressions>
<Keyword>gifts</Keyword>
</Ad>

<Ad>
<ImageUrl>rose3.jpg</ImageUrl>
<NavigateUrl>http://www.flowers2moscow.com</NavigateUrl>
<AlternateText>Send flowers to Russia</AlternateText>
<Impressions>20</Impressions>
<Keyword>russia</Keyword>
</Ad>

<Ad>
<ImageUrl>rose4.jpg</ImageUrl>
<NavigateUrl>http://www.edibleblooms.com</NavigateUrl>
<AlternateText>Edible Blooms</AlternateText>
<Impressions>20</Impressions>
<Keyword>gifts</Keyword>
</Ad>
</Advertisements>

Properties and events of the AdRotator Class:

The AdRotator class is derived from the WebControl class and inherits its properties. Apart
from those the AdRotator class has the following properties:

Properties Description

AdvertisementFile The path to the advertisement file.

AlternateTextFeild The element name of the field where alternate text is provided;

DISTRIBUTED TECHNOLOGIES

81

default value is AlternateText.

DataMember
The name of the specific list of data to be bound when

advertisement file is not used.

DataSource Control from where it would retrieve data.

DataSourceID Id of the control from where it would retrieve data.

Font
Specifies the font properties associated with the advertisement

banner control.

ImageUrlField
The element name of the field where the URL for the image is

provided; default value is ImageUrl.

KeywordFilter For displaying the keyword based ads only.

NavigateUrlField
The element name of the field where the URL to navigate to is

provided; default value is NavigateUrl.

Target
The browser window or frame that displays the content of the

page linked.

UniqueID
Obtains the unique, hierarchically qualified identifier for the

AdRotator control.

Following are the important events of the AdRotator Class:

Events Description

AdCreated
It is raised once per round trip to the server after creation of the

control, but before the page is rendered

DataBinding Occurs when the server control binds to a data source.

DataBound Occurs after the server control binds to a data source.

Disposed Occurs when a server control is released from memory, which is

the last stage of the server control lifecycle when an ASP.NET

DISTRIBUTED TECHNOLOGIES

82

page is requested

Init
Occurs when the server control is initialized, which is the first

step in its lifecycle.

Load Occurs when the server control is loaded into the Page object.

PreRender Occurs after the Control object is loaded but prior to rendering.

Unload Occurs when the server control is unloaded from memory.

Working with the AdRotator Control

Create a new web page and place an AdRotator control on it.

<form id="form1" runat="server">
<div>
 <asp:AdRotator ID="AdRotator1"
 runat="server" AdvertisementFile ="~/ads.xml"
 onadcreated="AdRotator1_AdCreated" />

</div>
</form>

The ads.xml file and the image files should be located in the root directory of the web site.

Try to run the above application an dobserve that each time the page is reloaded, the ad is
changed.

MULTIVIEW CONTROL

MultiView and View controls allow you to divide the content of a page into different groups,
displaying only one group at a time. Each View control manages one group of content and all
the View controls are held together in a MultiView control.

The MultiView control is responsible for displaying one View control at a time. The View
displayed is called the active view.

The syntax for a MultiView control is:

<asp:MultView ID= "MultiView1" runat= "server"></asp:MultiView>

DISTRIBUTED TECHNOLOGIES

83

The syntax for a View control is:

<asp:View ID= "View1" runat= "server"></asp:View>

However, the View control cannot exist on its own. It would render error if you try to use it
stand-alone. It is always used with a Multiview control as:

<asp:MultView ID= "MultiView1" runat= "server">
<asp:View ID= "View1" runat= "server"> </asp:View>
</asp:MultiView>

Properties of the View and MultiView controls

Both the View and MultiView controls are derived from Control class and inherits all its
properties, methods and events. The most important property of the View control is Visible
property of type Boolean, which sets the visibility of a view.

The MultiView control has the following important properties:

Properties Description

Views Collection of View controls within the MultiView

ActiveViewIndex
A zero based index that denotes the active view; if no view is

active then the index is -1.

The CommandName attribute of the Button controls associated with the navigation of the
MultiView control are associated with some related field of the MultiView control.

For example, if a Button control with CommandName value as NextView is associated with
the navigation of the multiview, it automatically navigates to the next view when the button is
clicked.

The following table shows the default command names for the above properties:

Properties Description

NextViewCommandName NextView

PreviousViewCommandName PrevView

SwitchViewByIDCommandName SwitchViewByID

DISTRIBUTED TECHNOLOGIES

84

SwitchViewByIndexCommandName SwitchViewByIndex

The following are the important methods of the MultiView control:

Methods Description

SetActiveview Sets the active view

GetActiveview Retrieves the active view

Every time a view is changed, the page is posted back to the server and a number of events
are raised. Some important events are:

Events Description

ActiveViewChanged Raised when a view is changed

Activate Raised by the active view

Deactivate Raised by the inactive view

Apart from the above mentioned properties, methods and events, multi view control inherits
the members of the control and object class.

Example:

The example page has three views. Each view has two button for navigating through the
views.

The content file is as follows:

<%@ Page Language="C#"
 AutoEventWireup="true"
 CodeBehind="Default.aspx.cs"
 Inherits="multiviewdemo._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
<title>Untitled Page</title>

DISTRIBUTED TECHNOLOGIES

85

</head>
<body>
<form id="form1" runat="server">
<div>

<h2>MultiView and View Controls</h2>
 <asp:DropDownList ID="DropDownList1"
 runat="server"
 onselectedindexchanged="DropDownList1_SelectedIndexChanged">
</asp:DropDownList>
<hr />
<asp:MultiView ID="MultiView1"
 runat="server"
 ActiveViewIndex="2"
 onactiveviewchanged="MultiView1_ActiveViewChanged" >
<asp:View ID="View1" runat="server">

<h3>This is view 1</h3>

<asp:Button CommandName="NextView" ID="btnnext1"
 runat="server" Text = "Go To Next" />

<asp:Button CommandArgument="View3"
 CommandName="SwitchViewByID" ID="btnlast"
 runat="server" Text = "Go To Last" />
</asp:View>
<asp:View ID="View2" runat="server">

<h3>This is view 2</h3>
<asp:Button CommandName="NextView" ID="btnnext2"
 runat="server" Text = "Go To Next" />
<asp:Button CommandName="PrevView" ID="btnprevious2"
 runat="server" Text = "Go To Previous View" />
</asp:View>
<asp:View ID="View3" runat="server">

<h3> This is view 3</h3>

<asp:Calendar ID="Calender1" runat="server"></asp:Calendar>

<asp:Button CommandArgument="0"
 CommandName="SwitchViewByIndex" ID="btnfirst"
 runat="server" Text = "Go To Next" />
<asp:Button CommandName="PrevView" ID="btnprevious"
runat="server" Text = "Go To Previous View" />
</asp:View>
</asp:MultiView>
</div>
</form>

DISTRIBUTED TECHNOLOGIES

86

</body>
</html>

Observe the following:

The MultiView.ActiveViewIndex determines which view will be shown. This is the only
view rendered on the page. The default value for the ActiveViewIndex is -1, when no view is
shown. Since the ActiveViewIndex is defined as 2 in the example, it shows the third view
when executed.

WIZARD CONTROL

The wizard - a standard user interface element in desktop applications - takes the user

through a series of discrete steps in order to accomplish some task. A wizard step typically

includes instructions, input controls, and an interface for moving between the wizard's steps

(typically Next and Previous buttons, with a Finish button at the last step). Furthermore,

wizards often include different steps depending on the inputs chosen in previous steps.

ASP.NET 2.0 makes creating wizard interfaces a lot less work thanks to its new Wizard
control. With the Wizard control, we can define a series of Wizard steps and specify the
content - static HTML and Web controls - that belongs in each step along with the function of
the step, whether it's the first step, one step in the series of steps, the final step, or a summary
step to appear after the wizard has completed. The Wizard control automatically includes the
appropriate navigation elements for each step, remembers the values entered into the Web
controls in each step, and includes a rich event model from which programmatic logic can be
added to perform the desired task upon finishing the wizard (among other tasks).

Specifying the Wizard Control's Steps

DISTRIBUTED TECHNOLOGIES

87

The Wizard control is useful for breaking down a complex task into a sequence of simpler

steps. Each step in the Wizard control can include the following information:

• A Title - along with each step, the Wizard control can optionally include a side bar
that lists the available steps in the wizard and allows the user to quickly jump from
one step to another. The title, if provided, is what appears in the side bar for the step.

• A StepType - the navigation controls displayed in each step depend upon the value of
the step's StepType property. This property can be assigned one of the following
values:

o Start - the Start step includes just a Next button
o Step - Step steps include both a Next and Previous button
o Finish - the Finish step includes Next, Previous, and Finish buttons
o Complete - the Complete step, if provided, displays a summary of the task

performed after the Finish button has been clicked from the Finish step.
o Auto - (the default) the navigation controls rendered are automatically

determined based on the index of the step itself. That is, the first step in the
wizard is assumed to be the Start step, the last step the Finish step, and all
other steps are considered Step steps; no step is automatically considered a
Complete step (if you want a Complete step, it must be explicitly specified).

• Content - each step can be composed of static HTML and Web controls. Often, steps
will include Web controls for collecting user input, which is then used to perform the
desired task after the Finish button has been clicked.

When you add a Wizard to an ASP.NET page you can specify the steps through the Designer

or directly through the declarative syntax. From the Designer, click on the Wizard control,

then go to the Properties window and scroll down to the WizardSteps property. Clicking on

that property will bring up the WizardStep Collection Editor, from which you can add or

remove steps, reorder them, and alter their properties.

To add content to a step, select the step from the Wizard's smart tag and then simply type in
the text or add the Web controls from the Toolbox that you want to appear in the step.

DISTRIBUTED TECHNOLOGIES

88

The steps can also be examined and modified through the declarative syntax. The Wizard
control specifies its steps through the <WizardSteps> element, with each step implemented as
an <asp:WizardStep> or <asp:TemplatedWizardStep>. The Title and StepType properties can
be specified through attributes in the <asp:WizardStep> or <asp:TemplatedWizardStep> tags;
the actual content for the step is placed within the tags.

<asp:Wizard ID="AddEmployeeWizard" runat="server" CellPadding="5"
Width="95%">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Step 1" StepType="Start">
 ... Content for Step ...
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Step 2" StepType="Step">
 ... Content for Step ...
 </asp:WizardStep>
 ...
 <asp:WizardStep runat="server" Title="Step 3" StepType="Finish">
 ... Content for Step ...
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

Creating a Wizard for Inserting a New Record

To illustrate how to use the Wizard control, I've whipped up a demo (which can be

downloaded from the end of this article) that provides a wizard for collecting information that

is, at wizard's completion, inserted into a database. In particular, this demo inserts data into

an Access database that has an Employees table; this table has the following schema:

Employees

Column Data Type Comments

EmployeeID AutoNumber
Primary Key / Auto-Increment ID

value

FirstName Text Required

LastName Text Required

Salary Currency Required

HireDate Date/Time Required

DISTRIBUTED TECHNOLOGIES

89

Phone Text Optional

Street Text Optional

City Text Optional

Email Text Optional

Rather than having one screen that prompts the user for all of these inputs at once, let's
instead have a Wizard control where each step asks for a subset of the input values. The
following screen shots illustrate this goal:

DISTRIBUTED TECHNOLOGIES

90

To create such an interface we need a wizard with at least three steps (one for the name
information, one for salary and hire date, and one for the contact information). In addition to
these three steps, let's also add an "Introduction" step that includes instructions. In the
"Introduction" step, I have just text (and HTML) explaining the task about to be performed.
In the other three steps, I include Web controls for collecting user input - a Calendar control
for the HireDate field and TextBoxes for the other seven fields.

Let's look at the declarative syntax for this Wizard control. Since it's rather lengthy, let's first
just focus on the overall structure and then dive into each step's content:

<asp:Wizard ID="AddEmployeeWizard" runat="server" Width="95%">
 <WizardSteps>
 <asp:WizardStep runat="server" Title="Introduction">
 ...
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Name">
 ...
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Salary & Hire Date">
 ...
 </asp:WizardStep>
 <asp:WizardStep runat="server" Title="Contact Information">
 ...
 </asp:WizardStep>
 </WizardSteps>
</asp:Wizard>

I've omitted virtually all style-related markup for brevity. However, I did leave in the
Width="95%" setting in the <asp:Wizard> tag. If you don't set the Width for the entire
Wizard control each step's width will be adjusted based on the content in the step. Therefore,
you may want to set the Width of the Wizard control to some explicit value, either in pixels
or as a percentage of the screen width; similarly, you may want to also set the Height
property, if you also want a fixed height.

Note that for each <asp:WizardStep> I've omitted the StepType property. If you omit this
property, the StepType is determined by the ordinal index of the step. Therefore, the

DISTRIBUTED TECHNOLOGIES

91

"Introduction" step is made a Start step, the "Contact Information" step a Finished step, and
the "Name" and "Salary & Hire Date" steps are made Step steps.

Let's look at the "Name" step's content. Here, I've added two TextBoxes (and an HTML
<table> for positioning purposes) to collect the new employee's FirstName and LastName
values.

<asp:WizardStep runat="server" Title="Name">
 <h3>Employee Name Information</h3>
 <table border="0">
 <tr>
 <td class="InputLabel">First Name:</td>
 <td class="InputControl">
 <asp:TextBox ID="FirstName" runat="server" />
 </td>
 </tr>
 <tr>
 <td class="InputLabel">Last Name:</td>
 <td class="InputControl">
 <asp:TextBox ID="LastName" runat="server" />
 </td>
 </tr>
 </table>
</asp:WizardStep>

The other steps include the appropriate markup and Web control syntax to collect the needed
input. Note that for each step we do not need to specify the navigation controls. The
appropriate Start, Next, Previous, and Finish buttons are automatically added based on the
step's StepType setting.

Accessing the Content Defined in a Wizard Step

Eventually, after the Finish button has been clicked, we'll need to process the user's input and

perform the desired task (in this case, inserting a record into the Employees table). At this

point - or perhaps earlier in the Wizard life cycle - we may want to programmatically access

the values entered by the user into the user controls. This can be accomplished by referencing

the control's directly via their ID values in the code behind class, just like you would had the

controls been defined outside of the Wizard control.

In order to insert a record when the finished button is clicked, we'll need to do one of two
things:

• Write ADO.NET code that connects to the database and issues the appropriate
INSERT statement, passing in the values entered by the user in the Web controls

• Add an AccessDataSource or SqlDataSource control to the page and specify its
InsertCommand property. We can then use a series of <asp:ControlParameter> values
in the InsertParameters collection to read the values entered by the user and use those

DISTRIBUTED TECHNOLOGIES

92

values in the actual INSERT statement. With this approach the only code we have to
write is one line - we must invoke the data source control's Insert() method once the
Finish button is clicked.

Let's use the second option (see the Accessing and Updating Data in ASP.NET 2.0 article

series for more information on working with data source controls). The one subtlety here is

that the <asp:ControlParameter> cannot see the controls in the <asp:WizardStep> unless it's

placed within one of the <asp:WizardStep>s. I've put this control in the final step, along with

the markup and Web controls for collecting the user's contact information:

<asp:WizardStep runat="server" Title="Contact Information">

 <h3>Employee Contact Information</h3>

 <table border="0">

 <tr>

 <td class="InputLabel">Street:</td>

 <td class="InputControl">

 <asp:TextBox ID="Street" runat="server" MaxLength="100"

Columns="25"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td class="InputLabel">City:</td>

 <td class="InputControl">

 <asp:TextBox ID="City" runat="server" MaxLength="25"

Columns="15"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td class="InputLabel">Phone:</td>

 <td class="InputControl">

 <asp:TextBox ID="Phone" runat="server" MaxLength="25"

Columns="12"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td class="InputLabel">Email:</td>

 <td class="InputControl">

 <asp:TextBox ID="Email" runat="server" MaxLength="100"

Columns="25"></asp:TextBox>

 </td>

 </tr>

 </table>

DISTRIBUTED TECHNOLOGIES

93

 <asp:AccessDataSource ID="InsertEmployeeDataSource" runat="server"

DataFile="~/App_Data/Employees.mdb"

 InsertCommand="INSERT INTO [Employees] ([FirstName], [LastName], [Salary],

[HireDate], [Phone], [Street], [City], [Email]) VALUES (?, ?, ?, ?, ?, ?, ?, ?)">

 <InsertParameters>

 <asp:ControlParameter Name="FirstName" Type="String"

ControlID="FirstName" PropertyName="Text" />

 <asp:ControlParameter Name="LastName" Type="String"

ControlID="LastName" PropertyName="Text" />

 <asp:ControlParameter Name="Salary" Type="Decimal" ControlID="Salary"

PropertyName="Text" />

 <asp:ControlParameter Name="HireDate" Type="DateTime"

ControlID="HireDate" PropertyName="SelectedDate" />

 <asp:ControlParameter Name="Phone" Type="String" ControlID="Phone"

PropertyName="Text" />

 <asp:ControlParameter Name="Street" Type="String" ControlID="Street"

PropertyName="Text" />

 <asp:ControlParameter Name="City" Type="String" ControlID="City"

PropertyName="Text" />

 <asp:ControlParameter Name="Email" Type="String" ControlID="Email"

PropertyName="Text" />

 </InsertParameters>

 </asp:AccessDataSource>

</asp:WizardStep>

The Wizard Control Event Model

When the user moves from one wizard step to another, the Wizard control raises one or more

events. The ActiveStepChanged event fires anytime one step is about to transition to another.

The NextButtonClick and PreviousButtonClick events fire when the user clicks the Next or

Previous button, respectively. The FinishButtonClick event is raised when the Finish button

is clicked. In this demo we'll only examine one of these events, FinishButtonClick. We'll

create an event handler for this event to insert the employee record. The other events are

useful for performing server-side validation of user input or implementing a non-linear

workflow (for example, if, after clicking Next, the Next step depends on the user's input in

this step or a previous one).

The event handler for the FinishButtonClick event for our demo is painfully simply - we just
need to invoke the AccessDataSource control's Insert() method. At that point, the
AccessDataSource control will grab the values from the specified controls and issue the
INSERT statement. After inserting the data, the event handler redirects the user back to the
site's homepage.

DISTRIBUTED TECHNOLOGIES

94

'This event handler fires when the user clicks Finish. We need to insert the new

employee record into the database

Protected Sub AddEmployeeWizard_FinishButtonClick(ByVal sender As Object, ByVal

e As System.Web.UI.WebControls.WizardNavigationEventArgs) Handles

AddEmployeeWizard.FinishButtonClick

 'Insert the employee into the database

 InsertEmployeeDataSource.Insert()

 'Send the user back to the homepage

 Response.Redirect("~/Default.aspx")

End Sub

IMAGEMAP CONTROL IN ASP.NET

ImageMap control is used to create an image that contains clickable hotspot region. When
user click on the region, the user is either sent to a URL or a sub program is called
Imagemap. When it is rendered on the page, it is implemented through HTML tag.

Hot spots features:

o There is no limit on number of hotspots each image may contain.
o Each hotspot is characterized by various attributes like shape, location and size.
o Overlapping hotspots are perfectly valid.
o Hot spots are defined using x and y coordinates.
o Hot spots can be assigned Image URL's and are capable of postback.

Different types of hot spots:

There are three different types of hot spots offered by ImageMap control. They are:

o CircleHotspot
o RectangleHotspot
o PolygonHotspot

CircleHotspot: CircleHotspot defines circle shaped hot spot region in an ImageMap control.
To define the region for a circle hot spot, we should define X and Y coordinates for circle as
well as radius property which usually is the distance from the center of circle to the edge.

RectangleHotspot: RectangleHotspot defines rectangle shaped hot spot region in an
ImageMap control. To define the region for a Rectangle hot spot, we define Top, Bottom,
Left and Right coordinates. Similar is the case for the Polygon hot spot.

DISTRIBUTED TECHNOLOGIES

95

Rightclick On Imagemap Control :

Example:

if you click the left side of the image you see below image

.

if you click the Right side of the image you see below image

DISTRIBUTED TECHNOLOGIES

96

MASTER PAGES

Master pages provide templates for other pages on your web site.

Master pages allow you to create a consistent look and behavior for all the pages (or group of
pages) in your web application.

A master page provides a template for other pages, with shared layout and functionality. The
master page defines placeholders for the content, which can be overridden by content pages.
The output result is a combination of the master page and the content page.

The content pages contain the content you want to display.

When users request the content page, ASP.NET merges the pages to produce output that
combines the layout of the master page with the content of the content page.

Master Page Example

<%@ Master %>

<html>

<body>

<h1>Standard Header From Masterpage</h1>

<asp:ContentPlaceHolder id="CPH1" runat="server">

</asp:ContentPlaceHolder>

</body>

</html>

The master page above is a normal HTML page designed as a template for other pages.

The @ Master directive defines it as a master page.

The master page contains a placeholder tag <asp:ContentPlaceHolder> for individual
content.

The id="CPH1" attribute identifies the placeholder, allowing many placeholders in the same
master page.

This master page was saved with the name "master1.master".

Note: The master page can also contain code, allowing dynamic

content.

DISTRIBUTED TECHNOLOGIES

97

Content Page Example

<%@ Page MasterPageFile="master1.master" %>

<asp:Content ContentPlaceHolderId="CPH1" runat="server">

 <h2>Individual Content</h2>

 <p>Paragraph 1</p>

 <p>Paragraph 2</p>

</asp:Content>

The content page above is one of the individual content pages of the web.

The @ Page directive defines it as a standard content page.

The content page contains a content tag <asp:Content> with a reference to the master page
(ContentPlaceHolderId="CPH1").

This content page was saved with the name "mypage1.aspx".

When the user requests this page, ASP.NET merges the content page with the master page.

Mypage1.aspx

Note: The content text must be inside the <asp:Content> tag. No content is allowed

outside the tag.

DISTRIBUTED TECHNOLOGIES

98

Content Page With Controls

<%@ Page MasterPageFile="master1.master" %>

<asp:Content ContentPlaceHolderId="CPH1" runat="server">
 <h2>W3Schools</h2>
 <form runat="server">
 <asp:TextBox id="textbox1" runat="server" />
 <asp:Button id="button1" runat="server" text="Button" />
 </form>
</asp:Content>

The content page above demonstrates how .NET controls can be inserted into the content
page just like an into an ordinary page.

 Mypage2.aspx

SITE NAVIGATION

You can use ASP.NET site-navigation features to provide a consistent way for users to
navigate your site. As your site grows, and as you move pages around in the site, it can
become difficult to manage all of the links. ASP.NET site navigation enables you to store
links to all of your pages in a central location, and render those links in lists or navigation
menus on each page by including a specific Web server control.

To create a consistent, easily managed navigation solution for your site, you can use
ASP.NET site navigation. ASP.NET site navigation offers the following features:

• Site maps You can use a site map to describe the logical structure of your site. You
can then manage page navigation by modifying the site map as pages are added or
removed, instead of modifying hyperlinks in all of your Web pages.

• ASP.NET controls You can use ASP.NET controls to display navigation menus on
your Web pages. The navigation menus are based on the site map.

DISTRIBUTED TECHNOLOGIES

99

• Programmatic control You can work with ASP.NET site navigation in code to create
custom navigation controls or to modify the location of information that is displayed
in a navigation menu.

• Access rules You can configure access rules that display or hide a link in your
navigation menu.

• Custom site-map providers You can create custom site-map providers that allow you
to work with your own site-map back end (for example, a database where you store
link information) and plug your provider into the ASP.NET site-navigation system.

• With ASP.NET site navigation, you describe the layout of your site as a hierarchy.
For example, a fictional online computer store might have a site comprised of eight
pages, which are laid out in the following manner.

Home
 Products
 Hardware
 Software
 Services
 Training
 Consulting
 Support

• To use site navigation, start by creating a site map, or a representation of your site.
You can describe the hierarchy of your site in an XML file, but other options are also
available. For more information and an example, see ASP.NET Site Maps.

• After you create a site map, you can display the navigation structure on an ASP.NET
page by using a site-navigation control.

Site-Map Load Process

The default ASP.NET site-map provider loads site-map data as an XML document and
caches it as static data when the application starts. An excessively large site-map file can use
a lot of memory and CPU power at load time. The ASP.NET site-navigation features depend
on file notifications to keep navigation data up-to-date. When a site-map file is changed,
ASP.NET reloads the site-map data. Make sure you configure any virus-scanning software so
that it does not modify site-map files.

 Site Navigation Controls

Creating a site map that reflects the structure of your site is one part of the ASP.NET site-
navigation system. The other part is to display your navigation structure in your ASP.NET
Web pages so that users can move easily around your site. You can easily build navigation
into your pages by using the following ASP.NET site-navigation controls:

The SiteMapPath control displays a navigation path, which is also known as a breadcrumb,

or eyebrow, that shows the current page location and displays links as a path back to the

home page.

DISTRIBUTED TECHNOLOGIES

100

Note:

If an .aspx page contains a SiteMapPath control, the .aspx page must be listed in the
Web.sitemap file for the control to render.

On a Web page, the SiteMapPath control displays something like the following if the user is
browsing the Training page:

Home > Services > Training

The TreeView control displays a tree structure that users can traverse for links to different
pages in your site. A node that contains child nodes can be expanded or collapsed by clicking
it. When it is first rendered, the TreeView control is fully expanded. On a Web page, the
TreeView control displays something like the following:

- Home

 - Services

 Training

 Consulting

The Menu control displays an expandable menu that users can traverse for links to different
pages in your site. A node that contains child nodes is expanded when the cursor hovers over
the menu item. For a code example that displays a site map in a Menu control

To use these site-navigation controls, you must describe the structure of your Web site in a
Web.sitemap file.

To create a Web.sitemap file

1. Create a file in the root directory of your Web site called Web.sitemap.
2. Open the Web.sitemap file and add the following code.
3. <?xml version="1.0" encoding="utf-8" ?>
4. <siteMap>
5. <siteMapNode title="Home" >
6. <siteMapNode title="Services" >
7. <siteMapNode title="Training" url="~/Training.aspx"/>
8. <siteMapNode title="Consulting" url=""/>
9. </siteMapNode>
10. </siteMapNode>
11. </siteMap>
12. Later in this topic, you will create the Training.aspx page.
13. Save your file and then close it.

DISTRIBUTED TECHNOLOGIES

101

To add site navigation to a Web page

Ads by save netAd Options

1. Create a file in the root directory of your Web site called Training.aspx.
2. Open Training.aspx and add the following code.

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">
</script>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Simple Navigation Controls</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <h2>Using SiteMapPath</h2>
 <asp:SiteMapPath ID="SiteMapPath1" Runat="server">
 </asp:SiteMapPath>

 <asp:SiteMapDataSource ID="SiteMapDataSource1" Runat="server" />

 <h2>Using TreeView</h2>
 <asp:TreeView ID="TreeView1" Runat="Server"
DataSourceID="SiteMapDataSource1">
 </asp:TreeView>

 <h2>Using Menu</h2>
 <asp:Menu ID="Menu2" Runat="server" DataSourceID="SiteMapDataSource1">
 </asp:Menu>

 <h2>Using a Horizontal Menu</h2>
 <asp:Menu ID="Menu1" Runat="server" DataSourceID="SiteMapDataSource1"
 Orientation="Horizontal"
 StaticDisplayLevels="2" >
 </asp:Menu>
 </div> </form></body></html>

3. Save and close the file, and then you can view your file in a browser to see how the
controls display the navigation structure of your Web site.

DISTRIBUTED TECHNOLOGIES

102

WEB PARTS

Introduction

Web Parts is a framework built into ASP.NET 2.0 for building highly customizable portal-
style pages. End users can customize Web Parts pages by changing the page layout, adding
and removing Web Parts, editing Web Parts properties, establishing connections between
Web Parts, and more. Changes made to a Web Parts page are persisted by the Web Parts
framework.

The Web Parts framework is often compared to Microsoft SharePoint Portal Server because
both can be used to produce rich portal-style applications. The chief difference between them
is that Web Parts is an application framework, whereas SharePoint Portal Server is an
application featuring tools and components for building portal sites.

Building Web Parts

There are two basic ways to create a Web Part. You can treat any standard Microsoft
ASP.NET control as a Web Part or you can build a custom control that derives from the base
WebPart class.

You are not required to modify a control in any way to use it as a Web Part. Standard
ASP.NET controls (such as the Calendar and GridView controls), Web User Controls, and
even custom controls can all be used as Web Parts. When you treat a standard control as a
Web part, the control is represented in the Web Part framework with the GenericWebPart
class.

Alternatively, you can build a custom Web Part control by building a new control that derives
from the base WebPart class. The advantage of this second method of creating a Web Part is
that it provides you with additional options for customizing the appearance and behavior of
the Web Part. Custom Web parts allow adding verbs to their verbs menus. Sample WebPart
application is shown below:

Note: I have provided the source code for Web Parts application. Kindly download the
source code and run the application to for web parts demonstration.

DISTRIBUTED TECHNOLOGIES

103

WebPart Controls

WebPartManager
WebPartManager is the most important of all the Web Part controls, responsible for
managing and coordinating all controls inside WebPartZones. The Web Parts framework
doesn't work without it, so every page that uses Web Parts must have an instance of
WebPartManager declared, and it must be declared before other Web Parts controls.
WebPartManager has no UI, so it's not visible on the page. It also exposes a very rich API for
adding Web Parts to the page, closing Web Parts, connecting Web Parts, and more.

WebPartZone
WebPartZone is arguably the second most important Web Part control. It's used to define
zones, which serve as containers for Web Parts. There is no practical limit to the number of
WebPartZones a page can contain, and no limit to the number of Web Parts that a zone can
contain. A WebPartZone control can host controls that do not derive from the WebPart class,
by wrapping them with a GenericWebPart control at run time.

WebParts 'Welcome' and 'Calendar' are in WebPartZone 1 and WebPartZone 2 respectively
in figure below:

User can drag and drop web parts from one WebPartZone to another WebPartZone in Design
mode.

DISTRIBUTED TECHNOLOGIES

104

Catalog Zone
One of the chief benefits to building pages from Web Parts is that the content of these pages
can be interactively configured by the user. It's a simple matter, for example, to enable users
to restore closed Web Parts to the page by including a CatalogZone in the page.

The purpose of the CatalogZone control is to allow end users to customize Web Parts pages
by adding Web Parts to them. Web Parts can come from three sources: Web Parts that were
previously present in the page but were closed, Web Parts that don't appear on the page by
default but that can be added, and Web Parts imported from .WebPart files.

A CatalogZone control becomes visible only when a user switches a Web page to catalog
display mode (CatalogDisplayMode) as shown below:

CatalogPart:
CatalogPart controls provide the UIs for adding Web Parts to the page. A CatalogZone can
contain any combination of CatalogParts.

A CatalogZone can contain several types of CatalogPart controls. The following list
summarizes the CatalogPart controls provided with the Web Parts control set:

• PageCatalogPart
• DeclarativeCatalogPart
• ImportCatalogPart

PageCatalogPart
The PageCatalogPart class serves one very specific purpose on a Web Parts page: it acts as a
page catalog to contain any controls previously added to the page that a user has closed, and
that the user can add back to the page. Add a PageCatalogPart control to your page if you
want to provide users with the flexibility of closing and reopening controls. If your page does

DISTRIBUTED TECHNOLOGIES

105

not allow users to close controls at all, there is no need to add a PageCatalogPart control to
your page.

DeclarativeCatalogPart
The DeclarativeCatalogPart control provides a way for developers to add a set of server
controls declaratively to a catalog on a Web page. A catalog, in the Web Parts control set, is
simply a list of WebPart or other server controls that is visible when a page is in catalog
display mode. A user can select controls from the list and add them to the Web page, which
effectively gives users the ability to change the set of controls and the functionality on a page,
as shown below:

ImportCatalogPart
The ImportCatalogPart control enables users to import a description file that describes
settings on a WebPart control or server control that a user wants to add to a Web page. After
the user has imported the description file, the WebPart control referenced in the file appears
within the ImportCatalogPart control when the page is in catalog mode, and a user can then

DISTRIBUTED TECHNOLOGIES

106

add the control to the page. User can view the ImportCatalogPart in Catalog Display mode, as
shown below. User can browse the web part file and then upload by clicking Upload button.

Editor Zone
The purpose of the EditorZone control is to allow end users to customize Web Parts pages by
editing the properties of the page's Web Parts. Editing UIs are provided by EditorPart
controls, which divide Web Part properties into four categories:

Properties that affect appearance, Properties that affect behavior, Properties that affect layout
and Custom properties added by Web Part developers.

An EditorZone can contain any combination of EditorParts. EditorZones are only visible
when the display mode is EditDisplayMode. User can click the Edit verb from webpart to
open the Editor Zone.

Editor Zone with AppearanceEditorPart

DISTRIBUTED TECHNOLOGIES

107

Editor Zone with BehaviorEditorPart

Editor Zone with LayoutEditorPart

Web Parts can and often do implement custom properties to complement the built-in
properties provided by the Web Parts framework. A Web Part that shows stock prices, for
example, might implement a public property named "Stocks" to enable end users to specify
which stock prices are shown. PropertyGridEditorParts provide UIs for editing custom
properties. Attributing a property [WebBrowsable] enables that property to appear in a

DISTRIBUTED TECHNOLOGIES

108

PropertyGridEditorPart. Of course, the PropertyGridEditorPart must be declared in an
EditorZone if it's to appear on the page.

WebPart Connection
Connections enable Web Parts to share data. A classic example is a Web Part control that
shows the current weather and allows the user to enter a zip code so the weather can be
localized. Another Web Part on that page--perhaps one that shows news headlines--might
want that zip code so it, too, can localize content. Rather than require the user to enter the zip
code twice, you can connect the two Web Parts so that one can get the zip code from the
other. Connections can be defined statically by page developers, or they can be created
dynamically by end users. The ConnectionsZone control provides a UI for creating
connections dynamically.

Connection Provider
Writing a connection provider is no more difficult than writing a method that returns an
interface reference and attributing that method [ConnectionProvider]. The first parameter to
[ConnectionProvider] assigns a friendly name to the provider connection point and is
displayed by the ConnectionsZone UI. The second parameter assigns a unique ID to the
provider connection point. A provider can implement multiple provider connection points if
desired. Each provider connection point must be assigned a unique ID.

ConnectionConsumer
Writing a connection consumer is a matter of writing a method that receives an interface
reference and attributing that method [ConnectionConsumer]. The first parameter to
[ConnectionConsumer] assigns a friendly name to the consumer connection point and is
displayed by the ConnectionsZone UI. The second parameter assigns a unique ID to the
consumer connection point.

The mechanics underlying Web Part connections is simple. In each page request, the
WebPartManager enumerates the connections that are defined. Then, for each connection, it
calls the connection provider's [ConnectionProvider] method to retrieve an interface and
passes the interface to the corresponding connection consumer by calling the consumer's
[ConnectionConsumer] method. The connection consumer then makes calls through the
supplied interface to fetch data from the connection provider, as shown in figure above.

Each <asp:Connection> element defines one connection. A connection is characterized by the

DISTRIBUTED TECHNOLOGIES

109

Web Parts at either end of the connection (the provider and the consumer) and by the
connection point IDs on each Web Part.

ConnectionZone
You can allow users to dynamically create connections between Web Parts. The
ConnectionZone control provides a UI for making connections. Note there are no
"ConnectionsPart" controls as there are EditorParts and CatalogParts; simply declaring a
ConnectionZone and setting the display mode to ConnectDisplayMode is sufficient to display
a connection UI.

Customizations applied to Web Parts pages by users--for example, changes to the page layout
and changes to Web Part properties--are persisted using the Web Parts personalization
service. The service is provider-based, and it can be accessed programmatically using the
methods and properties of the
System.Web.UI.WebControls.WebParts.PersonalizationAdministration class. The
personalization service also persists custom properties that are attributed [Personalizable].

The fact that Web Parts personalization is provider-based adds a lot of flexibility to where
Web Parts properties are persisted.

First add the 'Provider Web Part' to WebPartZone 1 and 'Consumer Web Part' to
WebPartZone 2. Click the Connections link in browser window. Then click the Connect verb
from Provider Web Part as shown in figure below.

Clicking on Connect verb displays the Connections Zone, as shown in figure below.

Click on 'Create a connection to a Consumer' in Connections Zone, select the web part to
connect to (Consumer Web Part) and click Connect to create connection between Provider
Web Part and Consumer Web Part.

DISTRIBUTED TECHNOLOGIES

110

Once connection is established, user can type text in Provider Web Part and click Transmit
button to transmit the text to Consumer Web Part.

Export WebPart

You can export a Web Part to a .WebPart file by selecting the Export command from the
Web Part's verbs menu. That command only appears in the verbs menu if the Web Part's
ExportMode property is set to WebPartExportMode.All or
WebPartExportMode.NonSensitiveData. A .WebPart file contains an XML representation of
the Web Part's state at the time it was exported. Properties not attributed [Personalizable]
aren't persisted to .WebPart files. In addition, if
ExportMode=WebPartExportMode.NonSensitiveData, only "nonsensitive" properties
attributed [Personalizable] are exported. You can use specify whether a property is sensitive
in the [Personalizable] attribute. Examples of sensitive properties that perhaps should not be
exported are passwords and social security numbers.

A Web Part exported to a .WebPart file can be imported using an ImportCatalogPart.

