
DISTRIBUTED TECHNOLOGIES

111

Unit-IV

ADVANCED FEATURES OF ASP.NET

ASP.NET is a unified Web development model that includes the services necessary for you to

build enterprise-class Web applications with a minimum of coding. ASP.NET is part of the

.NET Framework, and when coding ASP.NET applications you have access to classes in the

.NET Framework. You can code your applications in any language compatible with the

common language runtime (CLR), including Microsoft Visual Basic, C#, JScript .NET, and J#.

These languages enable you to develop ASP.NET applications that benefit from the common

language runtime, type safety, inheritance, and so on.

ASP.NET includes:

• A page and controls framework

• The ASP.NET compiler

• Security infrastructure

• State-management facilities

• Application configuration

• Health monitoring and performance features

• Debugging support

• An XML Web services framework

• Extensible hosting environment and

application life cycle management

• An extensible designer environment

Page and Controls Framework

The ASP.NET page and controls framework is a programming framework that runs on a Web

server to dynamically produce and render ASP.NET Web pages. ASP.NET Web pages can be

requested from any browser or client device, and ASP.NET renders markup (such as HTML) to

the requesting browser. As a rule, you can use the same page for multiple browsers, because

ASP.NET renders the appropriate markup for the browser making the request. However, you

can design your ASP.NET Web page to target a specific browser, such as Microsoft Internet

Explorer 6, and take advantage of the features of that browser. ASP.NET supports mobile

controls for Web-enabled devices such as cellular phones, handheld computers, and personal

digital assistants (PDAs).

ASP.NET Web pages are completely object-oriented. Within ASP.NET Web pages you can

work with HTML elements using properties, methods, and events. The ASP.NET page

framework removes the implementation details of the separation of client and server inherent in

Web-based applications by presenting a unified model for responding to client events in code

that runs at the server. The framework also automatically maintains the state of a page and the

controls on that page during the page processing life cycle.

ASP.NET Compiler

All ASP.NET code is compiled, which enables strong typing, performance optimizations, and

early binding, among other benefits. Once the code has been compiled, the common language

runtime further compiles ASP.NET code to native code, providing improved performance.

DISTRIBUTED TECHNOLOGIES

112

ASP.NET includes a compiler that will compile all your application components including

pages and controls into an assembly that the ASP.NET hosting environment can then use to

service user requests.

Security Infrastructure

In addition to the security features of .NET, ASP.NET provides an advanced security

infrastructure for authenticating and authorizing user access as well as performing other

security-related tasks. You can authenticate users using Windows authentication supplied by

IIS, or you can manage authentication using your own user database using ASP.NET forms

authentication and ASP.NET membership. Additionally, you can manage the authorization to

the capabilities and information of your Web application using Windows groups or your own

custom role database using ASP.NET roles. You can easily remove, add to, or replace these

schemes depending upon the needs of your application.

ASP.NET always runs with a particular Windows identity so you can secure your application

using Windows capabilities such as NTFS Access Control Lists (ACLs), database permissions,

and so on.

State-Management Facilities

ASP.NET provides intrinsic state management functionality that enables you to store

information between page requests, such as customer information or the contents of a shopping

cart. You can save and manage application-specific, session-specific, page-specific, user-

specific, and developer-defined information. This information can be independent of any

controls on the page.

ASP.NET offers distributed state facilities, which enable you to manage state information

across multiple instances of the same application on one computer or on several computers.

ASP.NET Configuration

ASP.NET applications use a configuration system that enables you to define configuration

settings for your Web server, for a Web site, or for individual applications. You can make

configuration settings at the time your ASP.NET applications are deployed and can add or

revise configuration settings at any time with minimal impact on operational Web applications

and servers. ASP.NET configuration settings are stored in XML-based files. Because these

XML files are ASCII text files, it is simple to make configuration changes to your Web

applications. You can extend the configuration scheme to suit your requirements.

Health Monitoring and Performance Features

ASP.NET includes features that enable you to monitor health and performance of your

ASP.NET application. ASP.NET health monitoring enables reporting of key events that

provide information about the health of an application and about error conditions. These events

show a combination of diagnostics and monitoring characteristics and offer a high degree of

flexibility in terms of what is logged and how it is logged.

DISTRIBUTED TECHNOLOGIES

113

ASP.NET supports two groups of performance counters accessible to your applications:

• The ASP.NET system performance counter

group

• The ASP.NET application performance

counter group

Debugging Support

ASP.NET takes advantage of the run-time debugging infrastructure to provide cross-language

and cross-computer debugging support. You can debug both managed and unmanaged objects,

as well as all languages supported by the common language runtime and script languages.

In addition, the ASP.NET page framework provides a trace mode that enables you to insert

instrumentation messages into your ASP.NET Web pages.

XML Web Services Framework

ASP.NET supports XML Web services. An XML Web service is a component containing

business functionality that enables applications to exchange information across firewalls using

standards like HTTP and XML messaging. XML Web services are not tied to a particular

component technology or object-calling convention. As a result, programs written in any

language, using any component model, and running on any operating system can access XML

Web services.

Extensible Hosting Environment and Application Life-Cycle Management

ASP.NET includes an extensible hosting environment that controls the life cycle of an

application from when a user first accesses a resource (such as a page) in the application to the

point at which the application is shut down. While ASP.NET relies on a Web server (IIS) as an

application host, ASP.NET provides much of the hosting functionality itself. The architecture

of ASP.NET enables you to respond to application events and create custom HTTP handlers

and HTTP modules.

Extensible Designer Environment

ASP.NET includes enhanced support for creating designers for Web server controls for use

with a visual design tool such as Visual Studio. Designers enable you to build a design-time

user interface for a control, so that developers can configure your control's properties and

content in the visual design tool.

USING THE NEW SECURITY CONTROLS IN ASP.NET 2.0

Implementing security in a site has the following aspects:

• Authentication â€“ it is the process of ensuring the user’s identity and authenticity.

ASP.Net allows four types of authentication system:

o Windows Authentication

DISTRIBUTED TECHNOLOGIES

114

o Forms Authentication

o Passport Authentication

o Custom Authentication

• Authorization â€“ it is the process of defining and allotting specific roles to specific

users.

• Confidentiality â€“ it involves encrypting the channel between the client’s browser and

the web server.

• Integrity â€“ it involves maintaining the integrity of data. For example, implementing

digital signature.

ASP.NET comes with several new security controls (located under the Login tab in the

Toolbox; see Figure 1) that greatly simplify the life of a Web developer. Using the new security

controls, we can now perform tasks such as user logins, registration, password changes, and

more, with no more effort than dragging and dropping controls onto Web form.

Figure 1: The new security controls in ASP.NET 2.0.

To begin, lets explore using the LoginView, LoginStatus and LoginName controls. First, let's

build a Web project using Visual Studio 2005 Beta 2, so go ahead and launch the Visual Studio

IDE. From the File menu, click New Web Site to create a new Web project. Name the project

C:\SecurityControls.

You need to set the ContinueDestinationPageURL property of the

CreateUserWizard control so that when the Continue button is clicked the user can

be redirected to another page, such as a welcome page.

In the Default.aspx Web form, drag and drop the LoginView control. The LoginView control

is a container control that displays different information depending on whether the user is

logged in or not.

Populate the LoginView control with the text shown in Figure 2. Also, drag and drop the

Login control onto the LoginView control. The text that you have just typed will be displayed

DISTRIBUTED TECHNOLOGIES

115

when the user is not yet authenticated (anonymous). The Login control displays a link to allow

the user to be redirected to another page to log into the application.

Figure 2: Populating the LoginView control.

In the Smart Tasks menu of the LoginView control, change the Views to "LoggedInTemplate"

(Figure 3).

Figure 3: Changing the view of the

LoginView control.

With the view changed, enter the text shown in Figure 4 into the LoginView control. This text

will be displayed once the user has been authenticated. Drag and drop the LoginName control

onto the LoginView control. The LoginName control will display the name of the user that is

used to log into the application.

Figure 4: This text will display when the user is authenticated.

Using the Login Control

Let's now add a new Web form to the project (right-click on project name in Solution Explorer

and select Add New Item...) and name it Login.aspx. Your application will use this form to let

users log into the application.

Drag and drop the Login control onto Login.aspx. You can apply formatting to the Login

control to make it look more professional. Click on the Smart Tag of the Login control and

select the Auto Format...link (Figure 5).

DISTRIBUTED TECHNOLOGIES

116

Figure 5: Applying auto format to the Login control.

 Select the Colorful scheme and the Login control should now look like Figure 6.

Figure 6: The new look of the Login control after applying the Colorful scheme.

By default, ASP.NET 2.0 uses Windows authentication, which is not very flexible if you are

targeting Internet users. And so you will change the default authentication mode from

Windows to Forms.

Add a Web.config file to your project (right-click on project name in Solution Explorer and

select Add New Item.... From the list of available choices select Web Configuration File).

In Web.config, change the authentication mode from Windows to Forms by adding the

following line of code. You use forms authentication so that you can add users to your Web site

without needing to create the user accounts in Windows.

<system.web>

 <authentication mode="Forms"/>

...

Adding a New User to Your Application

Before you proceed to test the application, you need to create a new user for the application.

You can use the ASP.NET Web Site Administration Tool (WAT) to add a new user to your

application. To invoke the WAT, select Website and then choose ASP.NET Configuration

(Figure 7).

DISTRIBUTED TECHNOLOGIES

117

Figure 7: Invoking the WAT.

The WAT will be displayed in a new Web page. Click the Security link to go to the Security

tab(fig.8)

Figure8:The WAT.

The Security tab allows you to perform tasks such as creating and deleting users as well as

creating roles and access rules for your application. Click on the Create user link to add a new

user to your application (Figure 9).

DISTRIBUTED TECHNOLOGIES

118

Figure 9: The Security tab in the WAT.

Supply the required information for the new user account (Figure 10). Note that the password

must have a combination of numeric, alphabetical, and special characters. Be sure to supply at

least seven characters for the password. Click Create User to add the new user.

Figure 10: Adding a new user account to your application.

You are now ready to test the application. Select Default.aspx in Solution Explorer and press

F5. Click the Login link to log into the application and then enter the account information.

When you have successfully logged into the application, the Login link changes to Logout.

Figure 11 shows the sequence of events.

DISTRIBUTED TECHNOLOGIES

119

Figure 11: Logging in to the application.

Creating New Users

Besides creating user accounts for users, you can also allow users to create new accounts

themselves. This is useful in scenarios where you allow users to create free accounts in order to

access your application, such as in a discussion forum.

To allow users to create new accounts, use the CreateUserWizard control. Drag and drop the

CreateUserWizard control onto Default.aspx and apply the Colorful scheme. The control

should now look like Figure 12.

Figure 12: Creating new user accounts using the CreateUserWizard control.

DISTRIBUTED TECHNOLOGIES

120

To test the application, press F5. You can now create a new user account yourself (Figure 13).

Supply the needed information and click Create user

 Figure 13: Creating a new user account.

When the user is created successfully, you will see the screen as shown in Figure 14.

Figure 14: A new account is successfully created.

Where Is the User's Information Stored?

So far you have seen how to create users using the WAT as well as using the

CreateUserWizard control. You're probably wondering where this information is stored. If you

now examine the Solution Explorer and refresh the App_Data folder (right-click on it and

select Refresh Folder), you will see an item named ASPNETDB.MDF (Figure 15).

DISTRIBUTED TECHNOLOGIES

121

Figure 15: The ASPNETDB.MDF database file.

The ASPNETDB.MDF is a SQL Server 2005 Express database that ASP.NET 2.0 uses by

default to store application-related data such as user accounts, profiles, etc. To examine the

database, double-click it and you'll see its content displayed in the Database Explorer (Figure

16). Specifically, the aspnet_Membership and aspnet_Users tables will store the user accounts

information that you have just created in the previous sections. To view the content of the

tables, right-click on the table name and select Show Table Data.

Figure 16: Examining the ASPNETDB.MDF database.

One really nice feature of ASP.NET 2.0 is that there is no need to create custom databases to

store your users' information. And you don't even need to worry about hashing the users'

password to store them securely. ASP.NET 2.0 does this automatically for you.

DISTRIBUTED TECHNOLOGIES

122

Figure 17: The Membership Provider model.

Recovering Lost Passwords

Recovering/resetting lost passwords is a common task that you need to perform as an

administrator. The PasswordRecovery control allows users to perform this mundane task

themselves by automatically retrieving the password and then sending it to the user via e-mail.

Password recovery makes sense only if you store the password as plain text and not its hashed

value. However, by default, the settings in the machine.config file specify that all passwords be

hashed before they are stored in the member database. Machine.config also disables password

retrieval by default.

To store the user's password in plain text, add the following entry in Web.config.

...

<system.web>

 <membership

 defaultProvider="SqlProvider"

 userIsOnlineTimeWindow="15">

 <providers>

 <clear />

 <add name="SqlProvider type="System.Web.Security.SqlMembershipProvider"

connectionStringName="LocalSqlServer"

DISTRIBUTED TECHNOLOGIES

123

applicationName="SecurityControls"

enablePasswordRetrieval="true"

enablePasswordReset="true"

requiresQuestionAndAnswer="true"

requiresUniqueEmail="true"

passwordFormat="Clear" /> </providers> </membership>

...

Specifically, you are clearing all the Membership Providers and then adding a new

SqlMembershipProvider. Note that you need to set the enablePasswordRetrieval (to true)

and passwordFormat (to Clear) attributes in order to allow passwords to be retrieved.

If you set the passwordFormat as Hashed, then you must set enablePasswordReset to false.

Now drag and drop the PasswordRecovery control onto Default.aspx and then apply the

Colorful scheme. The PasswordRecovery control now looks like Figure 18.

Figure 18: The PasswordRecovery control.

In the Properties window of the PasswordRecovery control, set the From and Subject fields

under the MailDefinition property as shown in Figure 19.

Figure 19 : Configuring the PasswordRecovery control.

You also need to have SMTP service configured on your machine for the PasswordRecovery

control to send an e-mail. To configure SMTP service on your machine, start WAT, choose

Application, then choose Configure SMTP e-mail settings.

DISTRIBUTED TECHNOLOGIES

124

To test the application, press F5. You will be prompted for your user name and then your

security question. If the answer to the security question is correct, the password will be e-

mailed to you; otherwise you will get an error message on the page like that shown in Figure

20.

Figure 20 : Recovering lost password.

For security reasons, it is not a good idea to send a user's password through e-mail. Hence, you

really need to consider using this option very carefully.

Changing Passwords

Besides recovering lost passwords, you also need to allow users to change their passwords. In

ASP.NET 2.0, you can do so using the ChangePassword control.

Since a user can only change their password after they have logged in, you will now create a

new folder in your application that is accessible to only authenticated users.

DISTRIBUTED TECHNOLOGIES

125

You can add a new folder to your application by right-clicking on the project name in Solution

Explorer, choose Add Folder, and then choose Regular Folder. Name the folder "Members."

Now add a new Web form to this new folder (right-click on Members and then select Add New

Item...). Name the new Web form ChangePassword.aspx (Figure 21).

Figure 21 : Adding a new folder to the project.

To restrict accesses to the Members folder, add the following <location> element to

Web.config.

...

</system.web>

 <location path="Members">

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

 </location>

</configuration>

Essentially, pages within the Members folder are only accessible to authorized users (all

anonymous users (?) will be denied access).

Drag and drop the ChangePassword control onto ChangePassword.aspx and apply the

Colorful scheme (Figure 22).

DISTRIBUTED TECHNOLOGIES

126

Figure 22: The ChangePassword control.

To test the application, in Solution Explorer select the ChangePassword.aspx file in the

Members folder and press F5. You will first be redirected to the login.aspx page (for

authentication) and once authenticated the ChangePassword.aspx page will be loaded. You can

now change your password (Figure 23).

Figure 23: Changing passwords using the ChangePassword control.

STATE MANAGEMENT

HTTP is a stateless protocol. Once the server serves any request from the user, it cleans up all

the resources used to serve that request. These resources include the objects created during that

request, the memory allocated during that request, etc. For a guy coming from a background of

Windows application development, this could come as a big surprise because there is no way

he could rely on objects and member variables alone to keep track of the current state of the

application.

If we have to track the users' information between page visits and even on multiple visits of the

same page, then we need to use the State management techniques provided by ASP.NET. State

management is the process by which ASP.NET let the developers maintain state and page

information over multiple request for the same or different pages.

DISTRIBUTED TECHNOLOGIES

127

Types of State Management

There are mainly two types of state management that ASP.NET provides:

1. Client side state management

2. Server side state management

When we use client side state management, the state related information will be stored on client

side. This information will travel back and forth with every request and response. This can be

visualized as:

Note: Image taken from Microsoft press' Book.

The major benefit of having this kind of state management is that we relieve the server from the

burden of keeping the state related information, it saves a lot of server memory. The downside

of client side state management is that it takes more bandwidth as considerable amount of data

is traveling back and forth. But there is one more problem which is bigger than the bandwidth

usage problem. The client side state management makes the information travel back and forth

and hence this information can be intercepted by anyone in between. So there is no way we can

store the sensitive information like passwords, creditcard number and payable amount on client

side, we need server side state management for such things.

Server side state management, in contrast to client side, keeps all the information in user

memory. The downside of this is more memory usage on server and the benefit is that users'

confidential and sensitive information is secure.

Note: Image taken from Microsoft press' Book.

We cannot say that we will use any one type of state management in our application. We will

have to find a mix of client side and server side state management depending on the type and

DISTRIBUTED TECHNOLOGIES

128

size of information. Now let us look at what are the different ways we can manage state on

client side and server side.

Client side state management techniques

• View State

• Control State

• Hidden fields

• Cookies

• Query Strings

Server side state management techniques

• Application State

• Session State

View State

ASP.NET uses this mechanism to track the values of the controls on the web page between

page request for same page. We can also add custom values to view state. ASP.NET

framework takes care of storing the information of controls in view state and retrieving it back

from viewstate before rendering on postback.

If we need to use viewstate to store our information, we just need to remember that the

viewstate is a dictionary object. We can have our data stored as key value pair in viewstate (see

code below). The controls information is also being hashed into this dictionary during request

and populated back during response.

Since this information is stored in the web page itself, ASP.NET encrypts the information. We

can tweak the encryption related parameters from web.config.

<Configuration>

 <system.web>

 <pages viewStateEncryptionMode="Always"/>

 </system.web>

</configuration>

or page declarative:

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Default.aspx.cs" Inherits="_Default" ViewStateEncryptionMode="Always"%>

Let us now look at a small implementation for viewstate. We have a simple web page with a

textbox and a button. The idea is that we will write something in the text box and see how

ASP.NET stores this information in view state. We will store our own information in the view

state too. When we run the page and write my name in the textbox and press the button, a

postback occurs but my name still remains in the textbox. Viewstate made that possible so after

postback, the page looks like:

DISTRIBUTED TECHNOLOGIES

129

When we look at the source, the view state looks like:

<input type="hidden" name="__VIEWSTATE"

id="__VIEWSTATE"

value="/wEPDwUKMTkwNjc4NTIwMWRkfIZa4Yq8wUbdaypyAjKouH5Vn1Y=" />

Now let us try to add our own information in the viewstate. Let's keep track of users' postback

on this page. Whenever user will hit a button, we will add 1 to the stored pot back value. The

way to do would be:

protected void Page_Load(object sender, EventArgs e)

{

 if(IsPostBack == true)

 {

 if (ViewState["number"] != null) //Lets retrieve, increase and store again

 {

 ViewState["number"] = Convert.ToInt32(ViewState["number"]) + 1;

 }

 else //First postback, lets store the info

 {

 ViewState["number"] = 1;

 }

 Label1.Text = ViewState["number"].ToString();

 }

}

When we run the page and hit the button to do a postback, the web will show us the postbacks

being done so far which is being stored in viewstate:

View State is enabled by default, but we can disable it by setting the EnableViewState property

for each web control to false. This reduces the server processing time and decreases page size.

Control State

We now know what a viewstate is and we also know that we can disable viewstate for controls

on the page. But imagine if we are developing a custom control and we internally are using

viewstate to store some information but the user of the control can disable the viewstate for our

DISTRIBUTED TECHNOLOGIES

130

control. To avoid this problem, we can have viewstate like behavior which cannot be disabled

by control users and it is called ControlState. Control states lies inside custom controls and

work the same as viewstate works.

To use control state in a custom control, we have to override the OnInit method and call the

RegisterRequiresControlState method during initialization. Then we have to override the

SaveControlState and LoadControlState methods.

Hidden Fields

Hidden field are the controls provided by the ASP.NET and they let use store some information

in them. The only constraint on hidden filed is that it will keep the information when HTTP

post is being done, i.e., button clicks. It will not work with HTTP get. Let us do the same

exercise of keeping track of postbacks using HiddenFields now.

(Note: ViewState also uses hidden field underneath.)

//Store in Hidden Field ---

int newVal = Convert.ToInt32(HiddenField1.Value) + 1; //Hidden field default value was 0

HiddenField1.Value = newVal.ToString();

Label2.Text = HiddenField1.Value;

When we run the page and hit the button to do a postback, the web will show us the postbacks

being done so far which is being stored in Hiddenfields (See code for details).

Cookies

There are scenarios when we need to store the data between page requests. So far, the

techniques we have discussed store the data for the single page requests. Now we look at the

techniques that store information between page requests.

Cookies are small pieces of information that can be stored in a text file on users' computer. The

information can be accessed by the server and can be utilized to store information that is

required between page visits and between multiple visits on the same page by the user. Let us

do the same exercise of keeping track of postback by using cookies.

int postbacks = 0;

if (Request.Cookies["number"] != null) //Lets retrieve, increase and store again

{

DISTRIBUTED TECHNOLOGIES

131

 postbacks = Convert.ToInt32(Request.Cookies["number"].Value) + 1;

}

else //First postback, lets store the info

{

 postbacks = 1;

}

Response.Cookies["number"].Value = postbacks.ToString();

Label3.Text = Response.Cookies["number"].Value;

We cannot keep track of postbacks using cookies as cookies will stay on user machine, so

essentially we are looking at the number of times user POSTED back on their page so far since

the beginning.

When we run the page and hit the button to do a postback, the web will show us the postbacks

being done so far which is being stored in Cookies (see code for details). The cookies can have

various parameters like how long they are valid and when should they expire. These parameters

can be manipulated as:

Response.Cookies["number"].Expires = DateTime.Now.AddDays(1);

This cookie will expire after 1 day of its creation.

Query Strings

Query strings are commonly used to store variables that identify specific pages, such as search

terms or page numbers. A query string is information that is appended to the end of a page

URL. They can be used to store/pass information from one page to another to even the same

page. Let us work on storing the postback information in querystrings now:

//GetDataItem from querystring

if (Request.QueryString["number"] != null) //Lets retrieve, increase and store again

{

 Label4.Text = Request.QueryString["number"];

}

//set in query string

int postbacks = 0;

DISTRIBUTED TECHNOLOGIES

132

if (Request.QueryString["number"] != null) //Lets retrieve, increase and store again

{

 postbacks = Convert.ToInt32(Request.QueryString["number"]) + 1;

}

else //First postback, lets store the info

{

 postbacks = 1;

}

Response.Redirect("default.aspx?number=" + postbacks);

One thing to notice here is that we can no way store the postback information in the query

string we are dealing with same page. The reason is that the query string creates a new URL

each time and it will be a fresh request each time we use query strings. SO we are now

essentially tracking number of click here. The idea behind query string is to pass small

information to OTHER pages that can be used to populate information on that page.

NOTE: The use of cookies and querystring here are just for the purpose of demonstration. In

real scenarios, they should never be used to store information required for same page. The

Querystrings should be used to store the information between multiple page visits. Cookies

should be used to store information between multiple visits to our website from the same

computer.

Application State

ASP.NET allows us to save values using application state. A global storage mechanism that is

accessible from all pages in the Web application. Application state is stored in the Application

key/value dictionary. This information will also be available to all the users of the website. In

case we need user specific information, then we better use sessionstate.

ASP.NET provides three events that enable you to initialize Application variables (free

resources when the application shuts down) and respond to Application errors:

DISTRIBUTED TECHNOLOGIES

133

• Application_Start: Raised when the application starts. This is the perfect place to initialize

Application variables.

• Application_End: Raised when an application shuts down. Use this to free application

resources and perform logging.

• Application_Error: Raised when an unhandled error occurs. Use this to perform error logging.

Let us now store the information of postbacks in application state:

//global.asax

void Application_Start(object sender, EventArgs e)

{

 Application["number"] = 0;

}

//In web pages

Application.Lock();

Application["number"] = Convert.ToInt32(Application["number"]) + 1;

Application.UnLock();

Label5.Text = Application["number"].ToString();

When we run the page and hit the button to do a postback, the web will show us the postbacks

being done so far which is being stored in ApplicationState. We can use this object to keep

track of clicks by all users on the entire website (see code for details).

Session State

Like Application state, this information is also in a global storage that is accessible from all

pages in the Web application. Session state is stored in the Sessionkey/value dictionary. This

information will be available to the current user only, i.e., current session only.

DISTRIBUTED TECHNOLOGIES

134

//global.asax

void Session_Start(object sender, EventArgs e)

{

 // Code that runs when a new session is started

 Session["number"] = 0;

}

// Web forms

Session["number"] = Convert.ToInt32(Session["number"]) + 1;

Label6.Text = Session["number"].ToString();

When we run the page and hit the button to do a postback, the web will show us the postbacks

being done so far which is being stored in SessionState. We can use this object to keep track of

clicks by the current user, i.e., who owns the session for the entire website (see code for

details).

Advantages of Client Side State Management

• Better scalability

• Support for multiple browser

Advantages of Server Side State Management

• Better security

• Reduced bandwidth

DISTRIBUTED TECHNOLOGIES

135

MOBILE APPLICATION DEVELOPMENT IN ASP.NET

Introduction

Mobile application development in ASP.NET is similar to traditional ASP.NET web

application development. And it is very easy for ASP.NET developer to develop mobile

application. All mobile web pages are inherit from MobilePage class which exists in

System.Web.UI.MobileControls namespace.ASP.NET exposes a System.Web.Mobile

namespace is for specifically to Web development.

Background

In this demonstration, you will create a mobile web page that dedicated to mobile device. The

page will show a loan repament calculator and after passing valid parameter it will show

repament amount of a pricipal amount with terms and rate.

Creating Web Application in ASP.NET

1. Click to open Microsoft Visual Studio 2008

2. On the File menu , choose New, and then choose Web Site.

The New Web Site dialog box appears.

3. Under Visual Studio installed templates, select ASP.NET Web Site.

4. Click Browse .

The Choose Location dialog box appears.

5. Location File System and LRC

6. Language Visual C#

7. Click OK button

A Default.aspx is added in your solution and it is traditional ASP.NET page which is inherited

from System.Web.UI.Page. But you need to create page which inherit from MobilePage class

in System.Web.UI.MobileControls namespace. In this demonstration, you will use controls

from the System.Web.Mobile namespace that are specifically designed for devices that cannot

display as much information as a desktop browser.

Creating Mobile Web Page in Application

1. Right-click the Default.aspx page in Solution Explorer and choose Delete.

2. Click OK in the dialog box.

3. Right-click the application in Solution Explorer and choose Add New Item

4. Choose Mobile Web Form under Visual Studio installed templates.

DISTRIBUTED TECHNOLOGIES

136

Figure 1

Dowanload(Download MobileWebFromTemplate.zip - 16.12 KB) mobile page template if you

do not have mobile form template in Add New Item box and place tempalate according to

instruction provided in readme file. After extrating MobileWebFromTemplate.rar file you will

get two folder a 'Web Application' and another is 'Web Site'. Place RAR files in Web

Application folder to '[My Documents]\Visual Studio 2008\Templates\ItemTemplates\Visual

C#' and RAR files in Web Site folder to '[My Documents]\Visual Studio

2008\Templates\ItemTemplates\Visual Web Developer'. Now you will get Mobile Web Form

template.

5. Name Loan_RepaymentCalculator.aspx

6. Choose Language Visual C#

7. Check Place code in separate file.

8. Click Add in the dialog box

Right click on Loan_RepaymentCalculator.aspx choose View Code define namespace for

Loan_RepaymentCalculator class.

namespace STL.Web.Mobile.UI

{

 public partial class Loan_RepaymentCalculator :

System.Web.UI.MobileControls.MobilePage

 {

DISTRIBUTED TECHNOLOGIES

137

 }

}

Set Inherits attribute value STL.Web.Mobile.UI.Loan_RepaymentCalculator in page directive

of Loan_RepaymentCalculator's source file.

Collapse | Copy Code

<%@ Page Language="C#" AutoEventWireup="true"

CodeFile="Loan_RepaymentCalculator.aspx.cs"

 Inherits="STL.Web.Mobile.UI.Loan_RepaymentCalculator" %>

Design Mobile Web Page

In solution explorer double click on Loan_RepaymentCalculator.aspx to view source code

and you will find mobile form form1 rename it as frmInput.From the Mobile Web Forms

folder of the Toolbox, drag controls onto frmInput and set their properties as defined in the

following.

 1. Label control

 a. ID = "lblHeading"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Wrapping = "Wrap"

 e. StyleReference="StyleHeader"

 2. Label control

 a. ID = "lblPrincipal"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Text = "1. Amount"

 e. StyleReference="StyleLabel"

 3. TextBox control

 a. ID = "PrincipalAmount"

 b. Runat = "Server"

 c. Numeric = "True"

 d. MaxLength = "12"

 e. Size = "10"

 f. Title = "Principal Amount"

 g. StyleReference="StyleTextBox"

 4. RequiredFieldValidator control for validating principal amount that expect input from

user.

 a. ID = "rfvPrincipal"

 b. Runat = "Server"

 c. ControlToValidate ="PrincipalAmount"

DISTRIBUTED TECHNOLOGIES

138

 d. ErrorMessage = "Amount Empty!"

 e. StyleReference="StyleValidation"

 5. RegularExpressionValidator control for validating principal amount that expect only

numeric(fractional) value from user .

 a. ID = "revPrincipal"

 b. Runat = "Server"

 c. ControlToValidate = "PrincipalAmount"

 d. ErrorMessage = "Invalid Amount!"

 e. ValidationExpression = "^([0-9]+)?\.?\d{1,2}"

 f. StyleReference="StyleValidation"

 6. Label control

 a. ID = "lblTerm"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Text = "2. Term(Year)"

 e. StyleReference="StyleLabel"

 7. TextBox control

 a. ID = "Term"

 b. Runat = "Server"

 c. Numeric = "True"

 d. MaxLength = "6"

 e. Size = "10"

 f. Title = "Term"

 g. StyleReference="StyleTextBox"

8.RequiredFieldValidator control for validating term that expect input from user.

 a. ID = "rfvTerm"

 b. Runat = "Server"

 c. ControlToValidate ="Term"

 d. ErrorMessage ="Term Empty!"

 e. StyleReference="StyleValidation"

 9. RegularExpressionValidator control for validating term that expect only numeric(not

fractional) value from user .

 a. ID = "revTerm"

 b. Runat = "Server"

 c. ControlToValidate = "Term"

 d. ErrorMessage = "Invalid Amount!"

 e. ValidationExpression = "^[1-9]([0-9]+)?"

 f. StyleReference="StyleValidation"

 10. Label control

 a. ID = "lblRate"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Text = "3. Rate(%)"

 e. StyleReference="StyleLabel"

DISTRIBUTED TECHNOLOGIES

139

 11. TextBox control

 a. ID = "Rate"

 b. Runat = "Server"

 c. Numeric = "True"

 d. MaxLength = "5"

 e. Size = "10"

 f. Title = "Rate"

 g. StyleReference="StyleTextBox"

 12. RequiredFieldValidator control for validating rate that expect input from user.

 a. ID = "rfvRate"

 b. Runat = "Server"

 c. ControlToValidate ="Rate"

 d. ErrorMessage ="Rate Empty!"

 e. StyleReference="StyleValidation"

 13. RangeValidatorcontrol for validating rate that expect only numeric value between 1 to

100 from user.

 a. ID = "rvRate"

 b. Runat = "Server"

 c. Type="Double"

 d. ControlToValidate = "Rate"

 e. ErrorMessage = "Invalid Rate!"

 f. MinimumValue="0"

 g. MaximumValue="100"

 h. StyleReference="StyleValidation"

 14. Command control

 a. ID = "cmdRepayment"

 b. Runat = "Server"

 e. Text = "Repayment"

 f. OnClick="cmdRepayment_Click"

The Command control provides a way to invoke ASP.NET event handlers from UI elements,

thus posting user input from UI elements back to the server. The command is for calculate

repayment. Event OnClick of cmdRepayment is bind with cmdPayment_Click event procedure,

it will disscus later in this demonestration.

The Form mobile control enables you to break up complex pages into a collection of forms on a

mobile Web page. With this ability, you can minimize the effort required to port Web-based

applications to mobile devices.

ASP.NET mobile web page can contain more than one form control and mobile application

displays only one form at a time. And a form control cannot be a inner element of another form

control.

Add second form control into Loan_RepaymentCalculator.aspx page after frmInput from

the Mobile Web Forms folder of the Toolbox, and define form control ID is frmResult

DISTRIBUTED TECHNOLOGIES

140

Now from the Mobile Web Forms folder of the Toolbox, drag controls onto frmResult and

set their properties as defined in the following.

 1. Label control

 a. ID = "lblHeadingResult"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Wrapping = "Wrap"

 e. StyleReference="StyleHeader"

 2. TextView control to display result

 a. ID = "tvLoanDetails"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. StyleReference="StyleLabelResult"

 3. Command control it is a navigation button to go previous form control

 a. ID = "cmdBack"

 b. Runat = "Server"

 e. Text = "Back"

 f. OnClick="cmdBack_Click"

Event OnClick of the cmdBack command button bind with cmdBack_Click event procedure

will discuss later in this demonstration.

Add last form control into Loan_RepaymentCalculator.aspx page after frmResult from the

Mobile Web Forms folder of the Toolbox, and define form control ID is frmError. If runtime

error occurs application will show this error form.

Now from the Mobile Web Forms folder of the Toolbox, drag controls onto frmError and set

their properties as defined in the following.

 1. Label control

 a. ID = "lblHeadingError"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Wrapping = "Wrap"

 e. StyleReference="StyleHeader"

 2. TextView control to display error

 a. ID = "tvError"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Text ="Sorry For Inconvenience!"

 e. StyleReference="StyleError"

 3. Command control it is a navigation button to go previous form control

 a. ID = "cmdHome"

DISTRIBUTED TECHNOLOGIES

141

 b. Runat = "Server"

 e. Text = "Home"

 f. OnClick="cmdBack_Click"

Event OnClick of the cmdBack command button bind with cmdBack_Click event procedure

will disscuss later in this demonstration.

StyleSheet

StyleSheet can be internal or external in mobile ASP.NET application. External stylesheet is

for entire application while internal stylesheet only for page specific. The stylesheet control is

need to implement style in application. Stylesheet control can contain any number of style

elements, or elements that inherits from the style element. Each style element must have a

unique name property. You can use the Name property to refer to each Style element in the

StyleSheet control from other controls on the same MobilePage object.

To create the external style sheet, you create a user control, in an .ascx file, and place a single

style-sheet control with a set of styles in it. Then, to refer to this file, you place a style-sheet

control on the page and set its ReferencePath property to the relative URL of the user control.

Now add a StyleSheet folder in LRC Application. To do this follow the below steps:

 1. Right Click on LRC application

 2. Choose New Folder

 3. Rename it StyleSheet

Add Mobile Web User Control in StyleSheet folder. Follow the below steps:

 1. Right Click on StyleSheet folder in LRC application

 2. Choose Add New Item

 Add New Item dialogbox appear as below,

Figure 2

 3. Name LRC_StyleSheet.ascx

 4. Labguage Visual C#

 5. Click Add in the dialog box.

DISTRIBUTED TECHNOLOGIES

142

set STL.Web.Mobile.UI namespace for LRC_StyleSheet class in LRC_StyleSheet.ascx.cs file

and Set

Inherit="STL.Web.Mobile.UI.LRC_StyleSheet" in control directive of LRC_StyleSheet's

source file.

To define style sheet you need to add a StyleSheet control on the page from Toolbox under

Mobile Web Forms Folder. And define styles as bellow:

 <mobile:StyleSheet ID="StyleSheet1" runat="server">

 <mobile:Style Name="StyleForm" Font-Size="Small">

 </mobile:Style>

 <mobile:Style Name="StyleHeader" ForeColor="#999966" Font-Size="Small" Font-

Bold="True">

 </mobile:Style>

 <mobile:Style Name="StyleLabel" ForeColor="#cc3399" Font-Size="Small" Font-

Bold="False">

 </mobile:Style>

 <mobile:Style Name="StyleTextBox" ForeColor="#cc3399" Font-Size="Small" Font-

Bold="False">

 </mobile:Style>

 <mobile:Style Name="StyleValidation" ForeColor="Red" Font-Size="Small" Font-

Bold="False">

 </mobile:Style>

 <mobile:Style Name="StyleLabelResult" ForeColor="#cc0066" Font-Size="Small" Font-

Bold="False">

 </mobile:Style>

 <mobile:Style Name="StyleError" ForeColor="Red" Font-Size="Small">

 </mobile:Style>

 </mobile:StyleSheet>

To add style reference from this external StyleSheet into Loan_RepaymentCalculator.aspx,

Just go to the source of this page and add a StyleSheet control from the

Toolbox under Mobile Web Froms add set

ReferencePath="~/StyleSheet/LRC_StyleSheet.ascx"

 <mobile:StyleSheet ID="StyleSheet1" runat="server"

ReferencePath="~/StyleSheet/LRC_StyleSheet.ascx">

 </mobile:StyleSheet>

Now you can a add StyleReference in elements of a mobile web page.

 <mobile:Label ID="lblHeading" runat="server" EnableViewState="False"

StyleReference="StyleHeader" Wrapping="Wrap">

 </mobile:Label>

DISTRIBUTED TECHNOLOGIES

143

Class

Add a class under STL.Web.Mobile.UI namespace in LRC Application for UI constants

 Steps:
 1. Right Click on the App_Code folder

 2. Choose Add New Item

 3. Choose Class

 4. Name UIConstant.cs

 5. Click Add in the dialog box.

Figure 3

Add constants in UIConstant.cs files

namespace STL.Web.Mobile.UI

{

 public class UIConstant

 {

 private UIConstant()

 {

 }

 public const String TITLE_BAR="Loan Payment Calculator";

 public const String PAGE_TITLE = "Loan Payment Calculator";

 }}

DISTRIBUTED TECHNOLOGIES

144

Events

Add Microsoft.VisualBasic.dll reference in application to calculate monthly payment using

Financial.Pmt method.

 Steps:
 1. Right Click on the LRC Application

 2. Choose Add Reference

 3. Choose Microsoft.VisualBasic

 4. Click Add in the dialog box.

Figure 4

Using Microsoft.VisualBasic namespace in Loan_RepaymentCalculator.aspx.cs file

using Microsoft.VisualBasic;

OnClick event of cmdRepayment command in frmInput form is as bellow

 protected void cmdRepayment_Click(object sender, EventArgs e)

 {

 if (!Page.IsValid) return;

 try

 {

 Double dblPrincipal = double.Parse(this.PrincipalAmount.Text);

 Double dblApr = double.Parse(this.Rate.Text);

DISTRIBUTED TECHNOLOGIES

145

 Double dblMonthlyInterest = (Double)(dblApr / (12 * 100));

 Int64 intTermInMonths = Int64.Parse(this.Term.Text) * 12;

 Double dblMonthlyPayment;

 //Calculate monthly payment

 dblMonthlyPayment = Microsoft.VisualBasic.Financial.Pmt(dblMonthlyInterest,

intTermInMonths, -dblPrincipal, 0,

Microsoft.VisualBasic.DueDate.BegOfPeriod);

 this.ActiveForm = this.frmResult;

 StringBuilder sbDetailsSpec = new StringBuilder("");

 sbDetailsSpec.Append(String.Format("{0} @ {1}% for {2} years

 Payment: ", dblPrincipal.ToString ("C0"), dblApr.ToString(),

this.Term.Text));

 sbDetailsSpec.Append("" + dblMonthlyPayment.ToString("C") + "");

 this.tvLoanDetails.Text = sbDetailsSpec.ToString();

 }

 catch

 {

 //If runtime error occurs then go to error form.

 this.ActiveForm = frmError;

 }

 }

OnClick event of cmdBack command in frmInput form is as bellow

 protected void cmdBack_Click(object sender, EventArgs e)

 {

 //To back to input form

 this.ActiveForm = this.frmInput;

 }

Initialize user method to initialize elements in the mobile web page

 private void Initialize()

 {

 this.frmInput.Title = UIConstant.TITLE_BAR;

 this.frmResult.Title = UIConstant.TITLE_BAR;

 this.frmError.Title = UIConstant.TITLE_BAR;

 this.lblHeading.Text = UIConstant.PAGE_TITLE;

 this.lblHeadingResult.Text = UIConstant.PAGE_TITLE;

 this.lblHeadingError.Text = UIConstant.PAGE_TITLE;

 }

Load event of the page

DISTRIBUTED TECHNOLOGIES

146

 protected void Page_Load(object sender, EventArgs e)

 {

 Initialize();

 }

Application Level Errors

To handle application level error you need to add a error page. To add page

 Steps:

 1. Right click on the LRC application

 2. Choose Add New Item

 3. Name ErrorPage.aspx

 4. Click Add in the dialog

Set Inherits="STL.Web.Mobile.UI.ErrorPage" in page directive of ErrorPage.aspx. And

define STL.Web.Mobile.UI namespace for

ErrorPage

 namespace STL.Web.Mobile.UI

 {

 public partial class ErrorPage : System.Web.UI.MobileControls.MobilePage

 {

 }

 }

Add a StyleSheet control in the page and set

ReferencePath="~/StyleSheet/LRC_StyleSheet.ascx"

Add a form control in the ErrorPage and set ID="frmError"

Add control in frmError that is defined as following:

 1. Label control

 a. ID = "lblHeadingError"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Wrapping = "Wrap"

 e. StyleReference="StyleHeader"

 2. TextView control to display error

 a. ID = "tvError"

 b. Runat = "Server"

 c. EnableViewState = "False"

 d. Text ="Sorry For Inconvenience!"

 e. StyleReference="StyleError"

DISTRIBUTED TECHNOLOGIES

147

 3. Command control it is a navigation button to go previous form control

 a. ID = "cmdHome"

 b. Runat = "Server"

 e. Text = "Home"

 f. OnClick="cmdBack_Click"

Code of the ErrorPage file is as follows:

public partial class ErrorPage : System.Web.UI.MobileControls.MobilePage

 {

 #region Event

 protected void Page_Load(object sender, EventArgs e)

 {

 Intitalize();

 }

 protected void cmdHome_Click(object sender, EventArgs e)

 {

 //To redirect to Loan_RepaymentCalculator page

 Response.Redirect("~/Loan_RepaymentCalculator.aspx");

 }

 #endregion Event

 #region Method

 private void Intitalize()

 {

 this.frmError.Title = UIConstant.TITLE_BAR;

 this.lblHeadingError.Text = UIConstant.PAGE_TITLE;

 }

 #endregion Method

 }

Web.config

You nedd to change configuration in Web.config file to redirect to Error Page when application

level error is occured.

set mode="on" and defaultRedirect="~/ErrorPage.aspx" in customErros element under

System.Web element.

Test Application

DISTRIBUTED TECHNOLOGIES

148

To test the application you can use Microsoft Mobile Explorer 3.0 . If not avilable Microsoft

Mobile Explorer 3.0 you can use your desktop browser or free download it

from net. Install Microsoft Mobile Explorer 3.0 in your system.

To browse with Microsoft Mobile Explorer 3.0 you need to do as follows:

 1. Right click on Loan_RepaymentCalculator.aspx file

 2. Choose Browse With

 (If Microsoft Mobile Explorer 3.0 is not avilable in Browsers list of Browse With dialog,

you need add it)

 3. Click Add

 4. Browse your location where you installed Microsoft Mobile Explorer 3.0 (mmeemu.exe)

 5. Select Microsoft Mobile Explorer

 6. Click Set as Default in the dialog box.

Figure 5

Press F5 to run the application. Microsoft Mobile Explorer Emulator will appear. Click

ASP.NET Development Server icon in the system tray to get application URL name and its

port. It may be different in your system.

DISTRIBUTED TECHNOLOGIES

149

Figure 6

In the Microsoft Mobile Explorer Emulator type URL as

http://localhost:1439/LRC/Loan_RepaymentCalculator.aspx

Figure 7

DISTRIBUTED TECHNOLOGIES

150

Enter Amount, Term & Rate. Click on Repayment button in the screen. You will get result

like bellow,

Figure 8

Tools

For testing application in Mobile Emulator

http://devhood.com/tools/tool_details.aspx?tool_id=52

