
DISTRIBUTED TECHNOLOGIES

151

UNIT-V

WEB SERVICES

Definition of Web Services

A Web Service is a standards-based, language-agnostic software entity that accepts specially

formatted requests from other software entities on remote machines via vendor and transport

neutral communication protocols, producing application specific responses.

• Standards based

• Language agnostic

• Formatted requests

• Remote machines

• Vendor neutral

• Transport neutral

• Application specific responses

Web Services

• Web services are application components

• Web services communicate using open protocols

• Web services are self-contained and self-describing

• Web services can be discovered using UDDI

• Web services can be used by other applications

• HTTP and XML is the basis for Web services

Web Services have Two Types of Uses

Reusable application-components.

Web services can offer application-components like: currency conversion, weather reports, or

even language translation as services.

Connect existing software.

Web services can help to solve the interoperability problem by giving different applications a

way to link their data.

With Web services you can exchange data between different applications and different

platforms.

DISTRIBUTED TECHNOLOGIES

152

ROLE OF WEB SERVICES IN DISTRIBUTED COMPUTING

Enabling Technologies

To achieve the inter-operable loose coupling that Web Services requires, there must be a set

of standards that govern how communication between systems takes place. The likely

direction for a language to describe services and to encapsulate messages is the Extensible

Markup Language (XML).

 Developers using XML can take advantage of a common parser that drastically reduces

development time. With the current hype surrounding XML it is hard to believe that there are

alternative languages, but one such alternative is the DAML family of languages built around

the RDF specifications of the W3C.

DAML and RDF deliver advantages over XML such as description logic and inheritance. The

likely technology for the transport of XML messages over the Internet is the Simple Object

Access Protocol (SOAP).

SOAP is a better way to manage remote invocation over the Internet than distributed

technologies such as DCOM, RMI and IIOP because it packages XML messages into

“envelopes” and sends them over standard internet protocols such as HTTP and SMTP,

taking advantage of well defined data formats and making it easier to operate over firewalls,

which are normally already set up to cope with the standard HTTP port 80.

To implement discovery, there needs to be a way to define and query registries of Web

Services. Universal Description, Discovery and Integration (UDDI) are such a mechanism. It

uses SOAP messaging to publish, edit, browse and search a registry. The Web Services

Description Language (WDSL) is an XML standard for describing a Web Service.

DISTRIBUTED TECHNOLOGIES

153

WSDL: Describing Web Services

The Web Services Description Language (WSDL) is an XML schema format that defines an

extensible framework for describing Web services interfaces. WSDL was developed

primarily by Microsoft and IBM and was submitted to W3C by 25 companies.

WSDL is at the heart of the Web services framework, providing a common way in which to

represent the data types passed in messages, the operations to be performed on the messages,

and the mapping of the messages on to network transports.

WSDL is, like the rest of the Web services framework, designed for use with both procedure-oriented and

document-oriented interactions. As with the rest of the XML technologies, WSDL is so

extensible and has so many options that ensuring compatibility and interoperability across

differing implementations may be difficult. If the sender and the receiver of a message can

share and understand the same WSDL file the same way, however, interoperability can be ensured.

WSDL is the XML format that describes what a Web service consists of

 WSDL is divided into three major elements:

• Data type definitions

• Abstract operations

• Service bindings

WSDL has three major elements, according to level of abstraction

 Each major element can be specified in a separate XML document and imported in various combinations

to create a final Web services description, or they can all be defined together in a single

document. The data type definitions determine the structure and the content of the messages.

Abstract operations determine the operations performed on the message content, and service

bindings determine the network transport that will carry the message to its destination.

WSDL elements can be defined in separate documents

 Figure shows the elements of WSDL, layered according to their levels of abstraction, which are defined

independently of the transport, specifically so that multiple transports can be used for the same

service. For example, the same service might be accessible via SOAP over HTTP and SOAP over JMS.

Similarly, data type definitions are placed in a separate section so that they can be used by

multiple services. Major WSDL elements are broken into subparts.

DISTRIBUTED TECHNOLOGIES

154

Figure: WSDL consists of three major elements and seven parts.

The definition parts include data type definitions, messages, and abstract operations, which

are similar to interface definitions in CORBA or DCOM. Messages can have multiple parts and can be

defined for use with the procedure-oriented interaction style, the document-oriented

interaction style, or both. Through the abstraction layers, the same messages can be defined

and used for multiple port types. Like the other parts of WSDL, messages also include

extensibility components—for example, for including other message attributes.

WSDL interfaces are like CORBA or DCOM interfaces

WSDL data type definitions are based on XML schemas, but another, equivalent or similar type definition

system can be substituted. For example, CORBA Interface Definition Language (IDL) data types could be

used instead of XML schema data types. (If another type definition system is used, however,

both parties to a Web services interaction must be able to understand it.)

Web service data types are based on XML schemas but are extensible to any other mechanism

The service bindings map the abstract messages and operations onto specific transports, such

as SOAP. The binding extensibility components are used to include information specific to

SOAP and other mappings. Abstract definitions can be mapped to a variety of physical transports. The

WSDL specification includes examples of SOAP one-way mappings for SMTP (Simple Mail

Transfer Protocol), SOAP RPC mappings for HTTP, SOAP mappings to HTTP GET and

PO ST, and a mapping example for the MIME (multipurpose Internet messaging extensions)

multipart binding for SOAP.

DISTRIBUTED TECHNOLOGIES

155

 Abstract messages and operations are mapped to specific transports

XML namespaces are used to ensure the uniqueness of the XML element names used in each of the three

major WSDL elements. Of course, when the WSDL elements are developed separately and imported into

a single complete file, the namespaces used in the separate files must not overlap. Associated

schemas are used to validate both the WSDL file and the messages and operations defined within

the WSDL file.

 Namespaces ensure WSDL element names' uniqueness

It's safe to say that WSDL is likely to include many extensions, changes, and additions as

Web services mature. Like SOAP, WSDL is designed as an extensible XML framework that

can easily be adapted to multiple data type mappings, message type definitions, operations,

and transports. For example, IETF (Internet Engineering Task Force) working groups are

proposing a new protocol standard—Blocks Extensible Exchange Protocol (BEEP)—to

define a useful connection-oriented transport. (HTTP, by contrast, is inherently

connectionless, making it difficult to resolve quality-of-service problems at the transport level.)

Companies interested in using Web services for internal application or integration may choose to

extend WSDL to map to more traditional protocols, such as DCOM or IIOP (Internet Inter-

Orb Protocol).

SOAP: ACCESSING WEB SERVICES

So far, you have defined the data (XML) and expressed the abstraction of the service necessary to support

the communication and processing of the message (WSDL). You now need to define the way

in which the message will be sent from one computer to another and so be available for processing at the

target computer. The SOAP specification defines a messaging framework for exchanging

formatted XML data across the Internet. The messaging framework is simple, easy to

develop, and completely neutral with respect to operating system, programming language, or

distributed computing platform. SOAP is intended to provide a minimum level of transport on top of

which more complicated interactions and protocols can be built.

SOAP provides the communication mechanism to connect Web services

SOAP is fundamentally a one-way communication model that ensures that a coherent

message is transferred from sender to receiver, potentially including intermediaries that

can process part of or add to the message unit. The SOAP specification contains conventions

for adapting its one-way messaging for the request/response paradigm popular in RPC-style

communications and also defines how to transmit complete XML documents. SOAP defines

an optional encoding rule for data types, but the end points in a SOAP communication can

decide on their own encoding rules through private agreement. Communication often uses literal, or

native XML, encoding.

SOAP is the XML way of defining what information gets sent and how

As shown in Figure, SOAP is designed to provide an independent, abstract

communication protocol capable of bridging, or connecting, two or more businesses or two or

 more remote business sites. The connected systems can be built using any combination of ha

rdware andsoftware that supports Internet access to existing systems such as .NET and J2EE.

DISTRIBUTED TECHNOLOGIES

156

The existing systems typically also represent multiple infrastructures and packaged software

products. SOAP and the rest of the XML framework provide the means for any two or more business sites,

marketplaces, or trading partners to agree on a common approach for exposing services to the Web.

Figure: SOAP messages connect remote sites.

SOAP has several main parts:

•Envelope: Defines the start and the end of the message

•Header: Contains any optional attributes of the message used in processing the message,either

at an intermediary point or at the ultimate end point

•Body: Contains the XML data comprising the message being sent

•Attachment: Consists of one or more documents attached to the main message (SOAPwith

Attachments only)

•RPC interaction: Defines how to model RPC-style interactions with SOAP

•Encoding: Defines how to represent simple and complex data being transmitted in

themessage

SOAP messages contain an envelope, a header, and a body

Only the envelope and the body are required.

DISTRIBUTED TECHNOLOGIES

157

UDDI: PUBLISHING AND DISCOVERING WEB SERVICES

The UDDI framework defines a data model in XML and SOAP application programming

interfaces (APIs) for registering and discovering business information, including the Web

services a business publishes. UDDI is produced by an independent consortium of vendors,

founded by Microsoft, IBM, and Ariba, to develop an Internet standard for Web service

description registration and discovery. Microsoft, IBM, Hewlett-Packard, and SAP are

hosting the initial deployment of a public UDDI service, which is conceptually patterned after

DNS, the Internet domain name service that translates Internet host names into TCP

addresses. In reality, UDDI is much more like a replicated database service accessible over

the Internet.

UDDI registers and publishes Web service definitions

UDDI is similar in concept to a Yellow Pages directory. Businesses register their contact

information, including such details as phone and fax numbers, postal address, and Web site.

Registration includes category information for searching, such as geographical location,

industry type code, business type, and so on. Other businesses can search the information

registered in UDDI to find suppliers for parts, catering services, or auctions and

marketplaces. A business may also discover information about specific Web services in the

registry, typically finding a URL for a WSDL file that points to a supplier's Web service.

UDDI is a directory of Web services

Businesses use SOAP to register themselves or others with UDDI; then the registry clients

use the query APIs to search registered information to discover a trading partner. An initial

query may return several matches from which a single entry is chosen. Once a business entry

is chosen, a final API call is made to obtain the specific contact information for the business.

UDDI uses SOAP for registering and discovering information

Figure shows how a business would register Web service information, along with other,

more traditional contact information, with the UDDI registry. A business first generates a

WSDL file to describe the Web services supported by its SOAP processor (1) and uses UDDI

APIs to register the information with the repository (2). After a business submits its data to

the registry, along with other contact information, the registry entry contains a URL that

points to the SOAP server site's WSDL or other XML schema file describing the Web

service. Once another business's SOAP processor queries the registry (3) to obtain the WSDL

or other schema (4), the client can generate the appropriate message (5) to send to the

specified operation over the identified protocol (6). Of course, both client and server have to

be able to agree on the same protocol—in this example, SOAP over HTTP—and share the

same understanding, or semantic definition of the service, which in this example is

represented via WSDL. With the widespread adoption of these fundamental standards,

however, this common understanding of WSDL seems ensured.

DISTRIBUTED TECHNOLOGIES

158

Figure: The UDDI repository can be used to discover a Web service.

USING DATABASE WEB SERVICES

The following sections describe how to use database Web services:

• Overview of Database Web Services

• Type Mapping Between SQL and XML

• Developing Database Web Services Using Oracle JDeveloper

Overview of Database Web Services

In heterogeneous and disconnected environments, there is an increasing need to access stored

procedures, data and metadata, through Web service interfaces. Database Web service

technology enables Web services for databases. It works in two directions:

• Database Call-in—Access database resources as a Web service

• Database Call-out—Consuming external Web services from the database itself

Database Call-in

Turning the Oracle database into a Web service provider takes advantage of your investment

in Java stored procedures, PL/SQL packages, Advanced Queues, pre-defined SQL queries

and DML.

Note:

Creating Web services out of Query, Java, DML, and Advanced Queues is not supported in

this release.

DISTRIBUTED TECHNOLOGIES

159

Client applications can query and retrieve data from Oracle databases and invoke stored

procedures using standard Web service protocols. There is no dependency on Oracle specific

database connectivity protocols. Applications can employ any cached WebLogic Server

connection. This approach is very beneficial in heterogeneous, distributed, and non-

connected environments.

Since database Web services are a part of WebLogic Web Services, they can participate in a

consistent and uniform development and deployment environment. Messages exchanged

between the Web services exposed database and the Web service client can take advantage of

all of the management features provided by WebLogic Web Services, such as security,

reliability, auditing and logging.

The following figure illustrates Web service call-in.

Figure: Web Service Calling in to the Database

Description of "Figure: Web Service Calling in to the Database"

The following steps describe the process shown in the previous figure:

1. A request for a type of database service arrives at the application server. The service

endpoint implicitly specifies the type of service requested.

2. The JAX-RPC processing servlet references the SOAP libraries and XML parser to

decode the request.

3. The servlet passes the request to the classes that correspond to the exposed database

operations. The generated classes can represent PL/SQL packages, queries, DML, AQ

Streams, or Java classes in the database.

4. The database passes the response to the JAX-RPC processing servlet, which

references the SOAP libraries and XML parser to encode it.

5. A SOAP response formed in accordance with the WSDL is returned to the client.

DISTRIBUTED TECHNOLOGIES

160

Database Call-out

You can extend a relational database's storage, indexing, and searching capabilities to include

Web Services. By calling a Web Service, the database can track, aggregate, refresh, and

query dynamic data produced on-demand, such as stock prices, currency exchange rates, or

weather information. An example of using the database as a service consumer would be to

call an external Web service from a predefined database job to obtain inventory information

from multiple suppliers, then update your local inventory database. Another example is that

of a Web Crawler: a database job can be scheduled to collate product and price information

from a number of sources.

The following figure illustrates database call-out.

Figure: Calling Web Services from Within the Database

Description of "Figure: Calling Web Services from Within the Database"

The following steps describe the process shown in the previous figure:

• SQL and PL/SQL call specs—Invoke a Web service through a user-defined function

call either directly within a SQL statement or view, or through a variable.

• Dynamic Web service invocation using the UTL_DBWS PL/SQL package. A Call

object can be dynamically created based on a WSDL and subsequently, Web services

operations can be invoked.

Oracle Database PL/SQL Packages and Types Reference provides more information

on using the UTL_DBWS PL/SQL package.

• Pure Java static proxy class—Generate a client proxy class which uses JAX-RPC.

This method simplifies the Web service invocation as the location of the service is

already known without needing to look up the service in the UDDI registry. The client

proxy class does all of the work to construct the SOAP request, including marshalling

and unmarshalling parameters.

DISTRIBUTED TECHNOLOGIES

161

• Pure Java using DII (dynamic invocation interface) over JAX-RPC—Dynamic

invocation provides the ability to construct the SOAP request and access the service

without the client proxy.

Which method to use depends on whether you want to execute from SQL or PL/SQL, from

Java classes, or whether the service is known ahead of time (static invocation) or only at

runtime (DII).

Type Mapping Between SQL and XML

The following sections describe the type mappings between SQL and XML for call-ins and

call-outs when the Web service is known ahead of time (static invocation).

When the Web service is known at runtime you can use only the Dynamic Invocation

Interface (DII) or the UTL_DBWS PL/SQL package. For more information on using the

JAX-RPC DII, see the API at the following Web address:

http://java.sun.com/j2ee/1.4/docs/#api.

SQL to XML Type Mappings for Web Service Call-Ins

In a database Web service call-in, a SQL operation, such as a PL/SQL stored procedure or a

SQL statement, is mapped into one or more Web service operations. The parameters to the

SQL operation are mapped from SQL types into XML types.

Note:

The reason there may be more than one operation is because OracleAS Web Services may be

providing additional data representation choices for the SQL values in XML, such as

different representations of SQL result sets.

The following table illustrates the SQL-to-XML mappings for Web service call-ins. The first

column lists the SQL types. The second column of the table, XML Type (Literal), shows

SQL-to-XML type mappings for the default literal value of the use attribute. The third

column, XML Type (Encoded), shows the mappings for the encoded value of the use

attribute. The literal and encoded values refer to the rules for encoding the body of a SOAP

message.

Table:1 SQL-to-XML Type Mappings for Web Services Call-ins

SQL Type XML Type (Literal) XML Type (Encoded)

INT Int int

INTEGER Int int

DISTRIBUTED TECHNOLOGIES

162

SQL Type XML Type (Literal) XML Type (Encoded)

FLOAT double double

NUMBER decimal decimal

VARCHAR2 string string

DATE dateTime dateTime

TIMESTAMP dateTime dateTime

BLOB byte[] byte[]

CLOB String String

LONG String String

RAW byte[] byte[]

Primitive PL/SQL indexby table Array Array

PL/SQL Boolean boolean boolean

PL/SQL indexby table complexType complexType

PL/SQL record complexType complexType

REF CURSOR (nameBeans) Array Array

REF CURSOR

nameXML)

Any test_xml

REF CURSOR

nameMLRowSet

swaRef test_xml

SQL object complexType complexType

SQL table complexType complexType

SYS.XMLTYPE any test_xml

Note:

If National Language Support (also known as "NLS" or "Globalization Support") characters

are used in a SQL SYS.XMLTYPE value, they may not be properly handled.

A query or a PL/SQL function returning REF CURSOR will be mapped into the three

methods listed below, where name is the name of the query or the PL/SQL function.

DISTRIBUTED TECHNOLOGIES

163

• nameBeans—This method returns an array, where each element is an instance of an

XSD complex type that represents one row in the cursor. A complex type sub-element

corresponds to a column in that row.

• nameXMLRowSet—This method returns a swaRef or text_xml response that contains

an OracleWebRowSet instance in XML format.

• nameXML—this method returns an XML any or text_xml response that contains an

Oracle XDB row set.

Both OUT and IN OUT PL/SQL parameters are mapped to IN OUT parameters in the WSDL

file.

Note that Table -1 provides two different mappings: one for literal and another for encoded

use. The default mapping is literal. From a database Web service's perspective, there is no

special reason why encoded should be used. The mapping for encoded is provided in case

you encounter scenarios which call for the encoded use setting. All of the descriptions in this

chapter assume that you will be using the literal use setting unless otherwise specified.

XML-to-SQL Type Mapping for Web Service Call-outs

In database Web services call-outs, XML types are mapped into SQL types. The following

table lists the XML-to-SQL type mappings used in call-outs.

Table:2 XML-to-SQL Type Mappings for Web Service Call-outs

XML Type SQL Type

Int NUMBER

Float NUMBER

Double NUMBER

decimal NUMBER

dateTime DATE

String VARCHAR2

byte[] RAW

complexType SQL OBJECT

Array SQL TABLE

test_xml XML Type

DISTRIBUTED TECHNOLOGIES

164

ACCESSING A WEB SERVICE THROUGH ASP.NET

Introduction

Web services signal a new age of trivial distributed application development. While Web

services are not intended nor do they have the power to solve every distributed application

problem, they are an easy way to create and consume services over the Internet. One of the

design goals for Web Services is to allow companies and developers to share services with

other companies in a simple way over the Internet. Web services take Web applications to the

next level.

Using Web services, your application can publish its function or message to the rest of the

world.

Web services use XML to code and decode your data and SOAP to transport it using open

protocols.

With Web services, your accounting departments Win 2K servers' billing system can connect

with your IT suppliers UNIX server.

Using Web services, you can exchange data between different applications and different

platforms.

With Microsoft .NET platform, it is a simple task to create and consume Web Services. In

this article, I am going to show how to call a published Web service inside a Web project.

I use a test published Web service; Extentrix Web Services 2.0 Application Edition that

Extentrix published for the developer community to help them in testing and developing.

In general Extentrix Web Services for Citrix Presentation Server helps you get information

about a published application for a specific client with the specified details, server types, and

client types. It also returns the ICAfile description to be used to launch an application with a

given parameter and checks the user's credentials and returns true if they are valid.

Simple Steps to Consume a Web Service

1. Create a Web Site project

2. Add a Web Reference

3. Call the Web services APIs inside the code

DISTRIBUTED TECHNOLOGIES

165

First Step: Create a Web Site Project

1. To create a new Web Site project, choose New from File menu, then choose Web Site

as shown below:

2. Choose ASP.NET Web Site. Name the project and click OK:

Second Step: Add a Web Reference

After creating the Web Site project, it’s time to add a Web reference for our Web service.

DISTRIBUTED TECHNOLOGIES

166

1. In the solution explorer, right click the project node, choose Add Web Reference:

2. A new window with Add Web Reference title will be opened:

In the URL field, insert the URL for the Web service. In this tutorial, as I mentioned

before, I'll use the test published Web services from Extentrix: “Extentrix Web

Services 2.0 – Application Edition”.

After clicking the Go button, you will see the Web services APIs.

3. Set a name for your Web service reference in the Web reference name field and click

Add Reference:

DISTRIBUTED TECHNOLOGIES

167

Third Step: Call the Web Services APIs Inside the Code

After successfully adding to the Web service, now we are ready to call the Web services APIs

inside our project.

1. First we need to add the added Web reference to our class.

ExtentrixWS is the name of the added Web service from the previous step.

using ExtentrixWS;

2. Create a proxy object for our added Web service reference, where

ExtentrixWebServicesForCPS is the name of the Web Services.

//define a Web service proxy object.

private ExtentrixWS.ExtentrixWebServicesForCPS proxy;

3. As I explained before, we need credentials to pass to the Citrix Presentation Server.

We will pass these credentials through the Web services APIs:

//define a Citrix Presentation Server Credentials object

private Credentials credentials;

Initialize the proxy and the credentials objects:

//initialize objects

proxy = new ExtentrixWebServicesForCPS();

credentials = new Credentials();

DISTRIBUTED TECHNOLOGIES

168

4. Set the values for Citrix credentials. I set the credentials values for the test of

Extentrix Web Service:

//set credentials

//these values are according to Citrix testdrive presentation server

//for which Extentrix published a web service for developers to use it

//as a test web service.

 credentials.Password = "demo";

 credentials.UserName = "citrixdesktop";

 credentials.Domain = "testdrive";

//because it is a sample, we will use no encryption method.

//so the password will be sent as a clear text.

 credentials.PasswordEncryptionMethod = 0;

//set the domain type to windows domain

 credentials.DomainType = 0;

Now we can call any Web services available. It is as simple as calling any ordinary

function.

5. Call the GetApplicationsByCredentialsEx Web service. This web service takes the

following parameters:

o Credentials: Citrix Credential to access Citrix Presentation Server Farm

o Client Name: Pass your machine name

o Client IP: Pass your machine IP

o Desired Details : Details you asked for

o Server Types: Pass “all”

o Client Types: Pass “all”

This API returns an array of ApplicationItemEx. This class will be built for you once you add

the Web reference.

This class contains the published application properties. This Web service is used to get all

the published applications, and then create an ImageButton for each application.

// 1) Get all the published applications list by calling GetApplicationsByCredentialsEx

// web service.

// 2) create an ImageButton for each application

// 3) Create Image for the application

// 4) Add it to the AppList panel.

// 5) Set the event handler for each ImageButton, so when clicking it the associated

// application will run calling the web service

ApplicationItemEx[] items = proxy.GetApplicationsByCredentialsEx

 (credentials, Request.UserHostName,

Request.UserHostAddress, new string[] { "icon","icon-info"}, new string[]{ "all" },

new string[] { "all"});

DISTRIBUTED TECHNOLOGIES

169

//loop for each published application

for (int i = 0; i < items.Length; i++) {

//create the ImageButton

System.Web.UI.WebControls.ImageButton app = new

System.Web.UI.WebControls.ImageButton();

//set the Image URL to the created image

app.ImageUrl = createIcon(items[i].InternalName,items[i].Icon);

//set the ToolTip to the name of the published application

app.ToolTip = items[i].InternalName;

//add the ImageButton to the AppList panel

AppList.Controls.Add(app);

//set the event handler for the ImageButton.

app.Click += new

System.Web.UI.ImageClickEventHandler(this.OnApplicationClicked);

}

Finally, another example in calling a Web service is to launch the published application.

In this example, in the event handler of the applications ImageButtons we have to launch the

clicked application.

Get the ICA file content by calling LaunchApplication Web service. Then write the ICA file

content to the response to launch the application.

private

void OnApplicationClicked (object sender, System.EventArgs e)

{

 ServicePointManager.Expect100Continue = false;

 // Get the event source object.

 System.Web.UI.WebControls.ImageButton app =

 (System.Web.UI.WebControls.ImageButton)sender;

 //Get the file ICAfile content by calling LaunchApplication web service.

 string = proxy.LaunchApplication(app.ToolTip, credentials, Request.UserHostName,

 Request.UserHostAddress);

 //Set the response content type to "application/x-ica" to run the file.

 Response.ContentType = "application/x-ica";

 //Run the application by writing the file content to the response.

 Response.BinaryWrite(Response.ContentEncoding.GetBytes(ica));

 Response.End();

}

