
 UNIT-1

 DATABASE

1.)What is Database?

The database is a collection of inter-related data which is used to retrieve, insert

and delete the data efficiently. It is also used to organize the data in the form of a

table, schema, views, and reports, etc.

Using the database, you can easily retrieve, insert, and delete the information.

For example: The college Database organizes the data about the admin, staff,

students and faculty etc.

Application and Uses of Database Management System (DBMS)

1.Railway Reservation System

Database is required to keep record of ticket booking, train’s departure and arrival

status. Also if trains get late then people get to know it through database update.

2.Library Management System

 There are thousands of books in the library so it is very difficult to keep record of

all the books in a copy or register. So DBMS used to maintain all the information

relate to book issue dates, name of the book, author and availability of the book.

3.Banking

We make thousands of transactions through banks daily and we can do this without

going to the bank. So how banking has become so easy that by sitting at home we

can send or get money through banks. That is all possible just because of DBMS

that manages all the bank transactions.

4.Universities and colleges

 Examinations are done online today and universities and colleges maintain all

these records through DBMS. Student’s registrations details, results, courses and

grades all the information are stored in database.

5. Credit card transactions

For purchase of credit cards and all the other transactions are made possible only

by DBMS. A credit card holder knows the importance of their information that all

are secured through DBMS.

7.Social Media Sites

We all are on social media websites to share our views and connect with our

friends. Daily millions of users signed up for these social media accounts like

facebook, twitter, pinterest and Google plus. But how all the information of users

are stored and how we become able to connect to other people, yes this all because

DBMS.

8.Telecommunications

Any telecommunication company cannot even think about their business without

DBMS. DBMS is must for these companies to store the call details and monthly

post paid bills.

9.Finance

Those days have gone far when information related to money was stored in

registers and files. Today the time has totally changed because there are lots f thing

to do with finance like storing sales, holding information and finance statement

management etc.

10.Military

Military keeps records of millions of soldiers and it has millions of files that should

be keep secured and safe. As DBMS provides a big security assurance to the

military information so it is widely used in militaries. One can easily search for all

the information about anyone within seconds with the help of DBMS.

11.Online Shopping

Online shopping has become a big trend of these days. No one wants to go to shops

and waste his time. Everyone wants to shop from home. So all these products are

added and sold only with the help of DBMS. Purchase information, invoice bills

and payment, all of these are done with the help of DBMS.

12.Human Resource Management

Big firms have many workers working under them. Human resource management

department keeps records of each employee’s salary, tax and work through DBMS.

13.Manufacturing

Manufacturing companies make products and sales them on the daily basis. To

keep records of all the details about the products like quantity, bills, purchase,

supply chain management, DBMS is used.

14.Airline Reservation system

Same as railway reservation system, airline also needs DBMS to keep records of

flights arrival, departure and delay status.

2.)PURPOSE OF A DATA BASE (or) need of DBMS?

Database systems are basically developed for large amount of data. When dealing

with huge amount of data, there are two things that require optimization: Storage

of data and retrieval of data.

Storage:

 According to the principles of database systems, the data is stored in such a

way that it acquires lot less space as the redundant data (duplicate data) has been

removed before storage.

Ex:

In a banking system, suppose a customer is having two accounts, one is saving

account and another is salary account. Let’s say bank stores saving account data at

one place and salary account data at another place, in that case if the customer

information such as customer name, address etc. are stored at both places then this

is just a wastage of storage (redundancy/ duplication of data), to organize the data

in a better way the information should be stored at one place and both the accounts

should be linked to that information somehow. The same thing we achieve in

DBMS.

Fast Retrieval of data:

 Along with storing the data in an optimized and systematic manner, it is

also important that we retrieve the data quickly when needed. Database systems

ensure that the data is retrieved as quickly as possible.

3.)Database Management System

➢ Database management system is a software which is used to manage the

database.

➢ DBMS provides an interface to perform various operations like database

creation, storing data in it, updating data, creating a table in the database and

a lot more.

➢ It provides protection and security to the database.

➢ In the case of multiple users, it also maintains data consistency

For example: MySQL, Oracle, etc are a very popular commercial database which

is used in different applications.

DBMS allows users the following tasks:

1.Data Definition: It is used for creation, modification, and removal of definition

that defines the organization of data in the database.

2.Data Updation: It is used for the insertion, modification, and deletion of the

actual data in the database.

3. Retrieval: It is used to retrieve the data from the database which can be used by

applications for various purposes.

4.User Administration: It is used for registering and monitoring users, maintain

data integrity, enforcing data security, dealing with concurrency control,

monitoring performance and recovering information corrupted by unexpected

failure.

Characteristics of DBMS

➢ It uses a digital repository established on a server to store and manage

the information.

➢ It can provide a clear and logical view of the process that manipulates

data.

➢ DBMS contains automatic backup and recovery procedures.

➢ It contains ACID properties which maintain data in a healthy state in

case of failure.

➢ It can reduce the complex relationship between data.

➢ It is used to support manipulation and processing of data.

➢ It is used to provide security of data.

➢ It can view the database from different viewpoints according to the

requirements of the user.

Advantages of DBMS

Mass Storage

DBMS can store a lot of data in it. So for all the big firms, DBMS is really ideal

technology to use. It can store thousands of records in it and one can fetch all that

data whenever it is needed.

Removes Duplicity

If you have lots of data then data duplicity will occur for sure at any instance.

DBMS guarantee it that there will be no data duplicity among all the records.

While storing new records, DBMS makes sure that same data was not inserted

before.

Multiple Users Access

No one handles the whole database alone. There are lots of users who are able to

access database. So this situation may happen that two or more users are accessing

database. They can change whatever they want, at that time DBMS makes it sure

that they can work concurrently.

Data Protection

 Information such as bank details, employee’s salary details and sale

purchase details should always be kept secured. Also all the companies need their

data secured from unauthorized use. DBMS gives a master level security to their

data. No one can alter or modify the information without the privilege of using that

data.

Data Back up and recovery

Sometimes database failure occurs so there is no option like one can say that all the

data has been lost. There should be a backup of database so that on database failure

it can be recovered. DBMS has the ability to backup and recover all the data in

database.

Integrity

Integrity means your data is authentic and consistent. DBMS has various validity

checks that make your data completely accurate and consistence.

Platform Independent

 One can run dbms at any platform. No particular platform is required to

work on database management system.

Disadvantages of DBMS

1.Cost of Hardware and Software:

 It requires a high speed of data processor and large memory

size to run DBMS software.

2.Size:

It occupies a large space of disks and large memory to run them efficiently.

3.Complexity:

 Database system creates additional complexity and requirements.

4.Higher impact of failure:

 Failure is highly impacted the database because in most of the organization, all

the data stored in a single database and if the database is damaged due to electric

failure or database corruption then the data may be lost forever.

4.)VIEWS OF DATA BASE

Abstraction is one of the main features of database systems. Hiding irrelevant

details from user and providing abstract view of data to users, helps in easy and

efficient user-database interaction.

The three level of DBMS architecture, The top level of that architecture is “view

level”. The view level provides the “view of data” to the users and hides the

irrelevant details such as data relationship, database schema, constraints, security

etc from the user.

1. Data abstraction

Database systems are made-up of complex data structures. To ease the user

interaction with database, the developers hide internal irrelevant details from users.

This process of hiding irrelevant details from user is called data abstraction.

Physical level:

 This is the lowest level of data abstraction. It describes how data is actually

stored in database. You can get the complex data structure details at this level.

At physical level these records can be described as blocks of storage (bytes,

gigabytes, terabytes etc.) in memory. These details are often hidden from the

programmers.

Logical level:

This is the middle level of 3-level data abstraction architecture. It describes what

data is stored in database. At the logical level these records can be described as

fields and attributes along with their data types, their relationship among each other

can be logically implemented. The programmers generally work at this level

because they are aware of such things about database systems

View level:

Highest level of data abstraction. This level describes the user interaction with

database system..At view level, user just interact with system with the help of GUI

and enter the details at the screen, they are not aware of how the data is stored and

what data is stored; such details are hidden from them.

2.Instance and schema

 schema:

 Design of a database is called the schema. Schema is of three types:

Physical schema, logical schema and view schema.

For example: In the following diagram, we have a schema that shows the

relationship between three tables: Course, Student and Section.

1. The design of a database at physical level is called physical schema, how

the data stored in blocks of storage is described at this level.

2. Design of database at logical level is called logical schema, programmers

and database administrators work at this level, at this level data can be

described as certain types of data records gets stored in data structures,

however the internal details such as implementation of data structure is

hidden at this level (available at physical level).

3. Design of database at view level is called view schema. This generally

describes end user interaction with database systems.

.

DBMS Instance

 The data stored in database at a particular moment of time is called instance

of database. Database schema defines the variable declarations in tables that

belong to a particular database; the value of these variables at a moment of

time is called the instance of that database.

5.)DATABASE LANGUAGE:

A DBMS has appropriate languages and interfaces to express database queries and

updates. Database languages can be used to read, store and update the data in the

database.

Types of Database Language

 1. Data Definition Language

o DDL stands for Data Definition Language. It is used to define database

structure or pattern.

o It is used to create schema, tables, indexes, constraints, etc. in the database.

o Using the DDL statements, you can create the skeleton of the database.

o Data definition language is used to store the information of metadata like the

number of tables and schemas, their names, indexes, columns in each table,

constraints, etc.

Here are some tasks that come under DDL:

o Create: It is used to create objects in the database.

o Alter: It is used to alter the structure of the database.

o Drop: It is used to delete objects from the database.

o Truncate: It is used to remove all records from a table.

o Rename: It is used to rename an object.

o Comment: It is used to comment on the data dictionary.

These commands are used to update the database schema that's why they come

under Data definition language.

2. Data Manipulation Language

DML stands for Data Manipulation Language. It is used for accessing and

manipulating data in a database. It handles user requests.

Here are some tasks that come under DML:

➢ Select: It is used to retrieve data from a database.

➢ Insert: It is used to insert data into a table.

➢ Update: It is used to update existing data within a table.

➢ Delete: It is used to delete all records from a table.

➢ Merge: It performs UPSERT operation, i.e., insert or update operations.

➢ Call: It is used to call a structured query language or a Java subprogram.

Explain Plan: It has the parameter of explaining data.

Lock Table: It controls concurrency.

3. Data Control Language

o DCL stands for Data Control Language. It is used to retrieve the stored or

saved data.The DCL execution is transactional. It also has rollback parameters.

Here are some tasks that come under DCL:

o Grant: It is used to give user access privileges to a database.

o Revoke: It is used to take back permissions from the user.

There are the following operations which have the authorization of Revoke:

CONNECT, INSERT, USAGE, EXECUTE, DELETE, UPDATE and SELECT.

4. Transaction Control Language

TCL is used to run the changes made by the DML statement. TCL can be grouped

into a logical transaction.

Here are some tasks that come under TCL:

o Commit: It is used to save the transaction on the database.

o Rollback: It is used to restore the database to original since the last Commit.

6.)Components of DBMS

The database management system can be divided into five major components, they

are:

1. Hardware

2. Software

3. Data

4. Procedures

5. Database Access Language

 Hardware

When we say Hardware, we mean computer, hard disks, I/O channels for data, and

any other physical component involved before any data is successfully stored into

the memory.

When we run MySQL on our personal computer, then our computer's Hard Disk,

our Keyboard using which we type in all the commands, our computer's RAM,

ROM all become a part of the DBMS hardware.

 Software

 This is the main component, as this is the program which controls

everything. The DBMS software is more like a wrapper around the physical

database, which provides us with an easy-to-use interface to store, access and

update data.

The DBMS software is capable of understanding the Database Access Language

and interpret it into actual database commands to execute them on the DB.

 Data

 Data is that resource, for which DBMS was designed. The motive

behind the creation of DBMS was to store and utilise data.

In a typical Database, the user saved Data is present and meta data is stored.

Metadata is data about the data. This is information stored by the DBMS to better

understand the data stored in it.

 Procedures

Procedures refer to general instructions to use a database management system. This

includes procedures to setup and install a DBMS. To login and logout of DBMS

software, to manage databases, to take backups, generating reports etc.

Database Access Language

Database Access Language is a simple language designed to write commands to

access, insert, update and delete data stored in any database.

User:

A user can write commands in the Database Access Language and submit it to the

DBMS for execution, which is then translated and executed by the DBMS.

User can create new databases, tables, insert data, fetch stored data, update data

and delete the data using the access language.

7.)DATABASE MANAGEMENT SYSTEM & ITS FUNCTIONS

➢ Database Management System (DBMS) refers to the technology solution

used to optimize and manage the storage and retrieval of data from databases.

➢ DBMS offers a systematic approach to manage databases via an interface for

users as well as workloads accessing the databases via apps. The management

responsibilities for DBMS encompass information within the databases, the

processes applied to databases (such as access and modification), and the

database’s logic structure.

➢ DBMS also facilitates additional administrative operations such as change

management, disaster recovery, compliance, and performance monitoring,

among others.

Functions of, DBMS has the following key components:

Software.

 DBMS is primarily a software system that can be considered as a management

console or an interface to interact with and manage databases. The interfacing also

spreads across real-world physical systems that contribute data to the backend

databases. The OS, networking software, and the hardware infrastructure is involved

in creating, accessing, managing, and processing the databases.

Data.

DBMS contains operational data, access to database records and metadata as a

resource to perform the necessary functionality. The data may include files with such

as index files, administrative information, and data dictionaries used to represent data

flows, ownership, structure, and relationships to other records or objects.

Procedures.

 While not a part of the DBMS software, procedures can be considered as

instructions on using DBMS. The documented guidelines assist users in

designing, modifying, managing, and processing databases.

Database languages.

These are components of the DBMS used to access, modify, store, and retrieve data

items from databases; specify database schema; control user access; and perform other

associated database management operations. Types of DBMS languages include Data

Definition Language (DDL), Data Manipulation Language (DML), Database Access

Language (DAL) and Data Control Language (DCL).

Query processor.

The query processor acts as an intermediary between users and the DBMS data engine

in order to communicate query requests. When users enter an instruction in SQL

language, the command is executed from the high-level language instruction to a low-

level language that the underlying machine can understand and process to perform the

appropriate DBMS functionality. In addition to instruction parsing and translation, the

query processor also optimizes queries to ensure fast processing and accurate results.

Runtime database manager.

 A centralized management component of DBMS that handles functionality

associated with runtime data, which is commonly used for context-based database

access. This component checks for user authorization to request the query; processes

the approved queries; devises an optimal strategy for query execution; supports

concurrency so that multiple users can simultaneously work on same databases; and

ensures integrity of data recorded into the databases.

Database manager.

 The database manager performs DBMS functionality associated with the data

within databases. Database manager allows a set of commands to perform different

DBMS operations that include creating, deleting, backup, restoring, cloning, and other

database maintenance tasks. The database manager may also be used to update the

database ..

Database engine.

This is the core software component within the DBMS solution that performs the

core functions associated with data storage and retrieval. A database engine is

also accessible via APIs that allow users or apps to create, read, write, and delete

records in databases.

Reporting.

The report generator extracts useful information from DBMS files and displays it

in structured format based on defined specifications. This information may be

used for further analysis, decision making, or business intelligence.

Benefits of DBMS

 DBMS was designed to solve the fundamental problems associated

with storing, managing, accessing, securing, and auditing data in traditional file

systems. Traditional database applications were developed on top of the databases,

which led to challenges such as data redundancy, isolation, integrity constraints, and

difficulty managing data access.

Data security.

 The DBMS system is also responsible to maintain optimum performance of querying

operations while ensuring the validity, security and consistency of data items updated

to a database.

Data sharing.

Fast and efficient collaboration between users.

Data access and auditing.

Controlled access to databases. Logging associated access activities allows

organizations to audit for security and compliance.

Data integration.

Instead of operating island of database resources, a single interface is used to manage

databases with logical and physical relationships.

Abstraction and independence.

Organizations can change the physical schema of database systems without

necessitating changes to the logical schema that govern database relationships. As a

result, organizations can upgrade storage and scale the infrastructure without

impacting database operations. Similarly, changes to the logical schema can be

applied without altering the apps and services that access the databases

Uniform management and administration.

 A single console interface to perform basic administrative tasks makes the

job easier for database admins and IT users.

8.)DATABASE DESIGN

Designing of database is most important responsibility of the software

professionals who are dealing with the database related projects. For this they

follow the Design Methodology. It helps the designer to plan, manage, control, and

evaluate database development projects.

Design methodology:

➢ A structured approach that uses procedures, techniques, tools, and

documentation aids to support and facilitate the process of design.

➢ A design methodology consists of phases each containing a number of steps,

which guide the designer in the techniques appropriate at each stage of the

project.

Phases of Design Methodology

The database design methodology is divided into three main phases. These are:

 • Conceptual database design

• Logical database design

• Physical database design

Conceptual database design

 The process of constructing a model of the information used in an

enterprise, independent of all physical considerations.

The conceptual database design phase begins with the creation of a conceptual data

model of the enterprise, which is entirely independent of implementation details

such as the target DBMS, application programs, programming languages, hardware

platform, performance issues, or any other physical considerations.

Logical database design

It is a process of constructing a model of the information used in an enterprise

based on specific data model, but independent of a particular DBMS and other

physical considerations.

The logical database design phase maps the conceptual model on to a logical

model, which is influenced by the data model for the target database (for example,

the relational model). The logical data model is a source of information for the

physical design phase.

The output of this process is a global logical data model consisting of an Entity-

Relationship diagram, relational schema, and supporting documentation that

describes this model, such as a data dictionary.

Physical database design

 It is a description of the implementation of the database on secondary

storage. it describes the base relations, file organizations, and indexes used to

achieve efficient access to the data, and any associated integrity constraints and

security measures.

 The physical database design phase allows the designer to make decisions on how

the database is to be implemented.

For example, decisions taken during physical for improving performance, such as

merging relations together, might affect the structure of the logical data model,

which will have an associated effect on the application design.

One of the main objectives of physical database design is to store data in an

efficient way. There are a number of factors that we may use to measure

efficiency:

Transaction throughput:

This is the number of transactions that can be processed in a given time interval. In

some systems, such as airline reservations, high transaction throughput is critical to

the overall success of the system.

 Disk storage:

This is the amount of disk space required to store the database files. The designer

may wish to minimize the amount of disk storage used.

Response time

It is the time required for the completion of a single transaction. From a user's

point of view, we want to minimize response time as much as possible.

9.)Structure of DBMS

Applications:

 It can be considered as a user friendly web page where the user enters the

requests. Here he simply enters the details that he needs and presses buttons to

get the data.

End User:

They are the real users of the database. They can be developers, designers,

administrator or the actual users of the database.

DDL:

Data Definition Language (DDL) is a query fired to create database, schema,

tables, mappings etc in the database. These are the commands used to create the

objects like tables, indexes in the database for the first time. In other words, they

create structure of the database.

DDL Compiler:

This part of database is responsible for processing the DDL commands. That

means these compiler actually breaks down the command into machine

understandable codes. It is also responsible for storing the metadata information

like table name, space used by it, number of columns in it, mapping information

etc.

DML Compiler:

 When the user inserts, deletes, updates or retrieves the record from the database,

he will be sending request which he understands by pressing some buttons. But

for the database to work/understand the request, it should be broken down to

object code. This is done by this compiler. One can imagine this as when a

person is asked some question, how this is broken down into waves to reach the

brain!

Query Optimizer:

When user fires some request, he is least bothered how it will be fired on the

database. He is not all aware of database or its way of performance. But

whatever be the request, it should be efficient enough to fetch, insert, update or

delete the data from the database.

The query optimizer decides the best way to execute the user request which is

received from the DML compiler. It is similar to selecting the best nerve to carry

the waves to brain!

Stored Data Manager:

This is also known as Database Control System. It is one the main central system

of the database. It is responsible for various tasks

It converts the requests received from query optimizer to machine

understandable form. It makes actual request inside the database. It is like

fetching the exact part of the brain to answer.

It helps to maintain consistency and integrity by applying the constraints. That

means, it does not allow inserting / updating / deleting any data if it has child

entry. Similarly it does not allow entering any duplicate value into database

tables.

It controls concurrent access. If there is multiple users accessing the database at

the same time, it makes sure, all of them see correct data. It guarantees that there

is no data loss or data mismatch happens between the transactions of multiple

users.

It helps to backup the database and recover data whenever required. Since it is a

huge database and when there is any unexpected exploit of transaction, and

reverting the changes are not easy. It maintains the backup of all data, so that it

can be recovered.

Data Files:

It has the real data stored in it. It can be stored as magnetic tapes, magnetic disks

or optical disks.

Compiled DML:

Some of the processed DML statements (insert, update, delete) are stored in it so

that if there is similar requests, it will be re-used.

Data Dictionary:

It contains all the information about the database. As the name suggests, it is the

dictionary of all the data items. It contains description of all the tables, view,

materialized views, constraints, indexes, triggers etc.

10.)What is a Database Transaction?

A transaction is a logical unit of processing in a DBMS which entails one or more

database access operation. In a nutshell, database transactions represent real-world

events of any enterprise.

All types of database access operation which are held between the beginning and

end transaction statements are considered as a single logical transaction. During

the transaction the database is inconsistent. Only once the database is committed

the state is changed from one consistent state to another.

Database Transactions

• A transaction is a program unit whose execution may or may not change the

contents of a database.

• The transaction is executed as a single unit.

• If the database operations do not update the database but only retrieve data,

this type of transaction is called a read-only transaction.

• A successful transaction can change the database from one consistent state to

another

• DBMS transactions must be atomic, consistent, isolated and durable

• If the database were in an inconsistent state before a transaction, it would

remain in the inconsistent state after the transaction.

 Concurrency in Transactions

A database is a shared resource accessed. It is used by many users and processes

concurrently. For example, the banking system, railway, and air reservations

systems, stock market monitoring, supermarket inventory, and checkouts, etc.

If concurrent access is not managed it may create issues like Hardware failure and

system crashes. Concurrent execution of the same transaction, deadlock, or slow

performance

State Transition Diagram

States of Transactions

Active State :

A transaction enters into an active state when the execution process begins. During

this state read or write operations can be performed.

Partially Committed:

A transaction goes into the partially committed state after the end of a transaction.

Committed State:

When the transaction is committed to state, it has already completed its execution

successfully. Moreover, all of its changes are recorded to the database

permanently.

Failed State :

A transaction considers failed when any one of the checks fails or if the transaction

is aborted while it is in the active state.

Terminated State:

State of transaction reaches terminated state when certain transactions which are

leaving the system can't be restarted.

 ACID Properties

For maintaining the integrity of data, the DBMS system you have to ensure ACID

properties. ACID stands for Atomicity, Consistency, Isolation, and Durability.

• Atomicity:

A transaction is a single unit of operation. You either execute it entirely or

do not execute it at all. There cannot be partial execution.

• Consistency:

 Once the transaction is executed, it should move from one consistent state

to another.

• Isolation:

Transaction should be executed in isolation from other transactions . During

concurrent transaction execution, intermediate transaction results from

simultaneously executed transactions should not be made available to each

other.

• Durability:

 After successful completion of a transaction, the changes in the database

should persist. Even in the case of system failures.

11.)DATABASE ARCHITECTURE

Database architecture can be 2-tier or 3 tier architecture based on how users are

connected to the database to get their request done.

They can either directly connect to the database or their request is received by

intermediary layer, which synthesizes the request and then it sends to database.

2-tier Architecture

In 2-tier architecture, application program directly interacts with the database.

There will not be any user interface or the user involved with database interaction.

 In this case, the application will directly interact with the database and retreive all

required data. Here no inputs from the user are required. This involves 2-tier

architecture of the database.

Let us consider another example of two tier architecture.

 Consider a railway ticket reservation system. How does this work? Imagine

a person is reserving the ticket from Delhi to Goa on particular day. At the same

time another person in some other place of Delhi is also reserving the ticket to Goa

on the same day for the same train. Now there is a requirement for two tickets, but

for different persons. What will reservation system do? It takes the request from

both of them, and queues the requests entered by each of them. Here the request

entered to application layer and request is sent to database layer. Once the request

is processed in database, the result is sent back to application layer for the user.

Advantages of 2-tier Architecture

• Easy to understand as it directly communicates with the database.

• Requested data can be retrieved very quickly, when there is less number of

users.

• Easy to modify – any changes required, directly requests can be sent to

database

• Easy to maintain – When there are multiple requests, it will be handled in a

queue and there will not be any chaos.

Disadvantages of 2-tier architecture:

• It would be time consuming, when there is huge number of users. All the

requests will be queued and handed one after another. Hence it will not respond to

multiple users at the same time.

• This architecture would little cost effective.

3-tier Architecture

3-tier architecture is the most widely used database architecture. It can be viewed

as below.

Presentation layer / User layer

 In this, the layer where user uses the database. He does not have any

knowledge about underlying database. He simply interacts with the database as

though he has all data in front of him. You can imagine this layer as a registration

form where you will be inputting your details.

After pressing ‘submit’ button where the data goes? . You just know that your

details are saved. This is the presentation layer where all the details from the user

are taken, sent to the next layer for processing.

Application layer:

 In this layer ,it is the underlying program which is responsible for saving the

details that you have entered, and retrieving your details to show up in the page.

This layer has all the business logics like validation, calculations and

manipulations of data, and then sends the requests to database to get the actual

data. If this layer sees that the request is invalid, it sends back the message to

presentation layer. It will not hit the database layer at all.

Data layer or Database layer :

Database layer are where actual database resides. In this layer, all the tables, their

mappings and the actual data present. When you save you details from the front

end, it will be inserted into the respective tables in the database layer, by using the

programs in the application layer. When you want to view your details in the web

browser, a request is sent to database layer by application layer. The database layer

fires queries and gets the data. These data are then transferred to the browser

(presentation layer) by the programs in the application layer.

 Advantages of 3-tier architecture:

1. Easy to maintain and modify

 Any changes requested will not affect any other data in the database.

Application layer will do all the validations.

2. Improved security.

 Since there is no direct access to the database, data security is

increased. There is no fear of mishandling the data. Application layer filters out all

the malicious actions.

3. Good performance.

 Since this architecture cache the data once retrieved, there is no need to hit

the database for each request. This reduces the time consumed for multiple

requests and hence enables the system to respond at the same time.

Disadvantages 3-tier Architecture

 It is little more complex and little more effort is required in terms of hitting the

database.

12.)Types (or)Models of Database Management Systems

 To satisfy the needs of data storage, processing and retrieval, database models of

varying degrees of sophistication were devised.

 Large enterprises needed to build many independent data files containing

related and different data. Data-processing activities frequently required the

linking of data from several files necessitating designing data structures and

database management systems that supported the automatic linkage of files.

Four database models and their corresponding management programs were

developed to support the linkage of records of these types. The following database

models and their management systems are in common use:

1. Hierarchical databases.

2. Network databases.

3. Relational databases.

4. Object-oriented databases

Hierarchical Database Management System:

 This database model organises data into a tree-like-structure, with a

single root, to which all the other data is linked. The heirarchy starts from

the Root data, and expands like a tree, adding child nodes to the parent nodes.

In this model, a child node will only have a single parent node.

A hierarchical database is a one in which the data elements have a one-to-many

relationship (1:N). The schema for a hierarchy has a single root. This kind of

database model uses a tree-like structure which links a number of dissimilar

elements to one primary record – the "owner" or "parent".

Each record in a hierarchical database contains information about a group of parent

child relationships. The data are stored as records, each of which is a collection of

fields containing only one value. The records are connected to each other through

links. The structure implies that a record can have a data element repeated.

Hierarchical models make the most sense where the primary focus of information

gathering is on a concrete hierarchy such as a list of business departments, assets or

people that will all be associated with specific higher-level primary data elements.

They are very simple and fast. In the hierarchical database model the user must

have some prior information about the database. Hierarchical databases were

popular in early database design.

The idea behind hierarchical database models is useful for a certain type of data

storage, but it is not extremely versatile. They are confined to some very specific

uses.

For example, where each individual person in a company may report to a given

department, the department can be used as a parent record and the individual

employees will represent secondary records, each of which links back to that one

parent record in a hierarchical structure.

Advantage:

Hierarchical databases relate well to anything that works through a one-to-many

relationship. They can be accessed and updated rapidly because in this model, the

data structure is like that of a tree, and the relationships between records are

defined in advance.

These databases allow easy addition and deletion of records. These databases are

good for hierarchies such as employees in an organization or an inventory of plant

specimen in a museum. Data at the top of the hierarchy is accessed with great

speed.

Disadvantage:

This type of database structure permits each child a relationship with only one

parent, and relationships or linkages between children are not permitted, even if

they make sense from a logical standpoint.

This limitation is circumvented by a repetition of data, which adds to the size of

the database.

Searching for specific data requires the DBMS to run through the entire data from

top to bottom until the required information is found, making queries very slow.

The lower the required data in the hierarchy, the longer it takes to retrieve it.

Adding a new field or record requires the entire database to be redefined.

Network Database Management System:

Network model is an extension of the Hierarchical model. In this model data is

organised more like a graph, and are allowed to have more than one parent node.

In this database model data is more related as more relationships are established in

this database model. Also, as the data is more related, hence accessing the data is

also easier and fast. This database model was used to map many-to-many data

relationships.This was the most widely used database model.

A network database model is one in which multiple member records or files are

linked to multiple owner files and vice versa. The network database model can be

viewed as a net-like form where a single element can point to multiple data

elements and can itself be pointed to by multiple data elements.

 The network database model allows each record to have multiple parents

as well as multiple child records, which can be visualized as a web-like structure of

networked records.

The network model is quite similar to the hierarchical model – the hierarchical

model being a subset of the network model. However, instead of using a single-

parent tree hierarchy, the network model uses set theory to provide a tree-like

hierarchy with the exception that child tables are allowed to have more than one

parent. It supports many-to-many relationships and can be visualized as a

interconnected network of records.

Advantages:

1. A Network database is conceptually simple and easy to design.

2. The data access is easier and more flexible as compared to a hierarchical model.

3. It does not allow a member to exist without a parent.

4. The main advantage of a network database is that it can handle more complex

data because of its many-to-many relationship.

5. It allows for a more natural modeling of relationships between records or

entities, as opposed to the hierarchical model. Because of its flexibility, it is easier

to navigate and search for information in a network database.

Disadvantages:

1.The main disadvantage is that all the records in the database need to be

maintained using pointers, making the whole database structure very complex.

 2..The insertion, deletion and updating operations of any record require an

adjustment of a large number of pointers.

3. Network databases are difficult to use by first time users.

4.Structural changes to the database are very difficult to implement.

5.Difficulties are encountered while making alterations to the database because

entering new data may necessitate altering the entire database.

Relational Databases Management System:

A relational database is one in which data is stored in the form of tables, using

rows and columns. This arrangement makes it easy to locate and access specific

data within the database.

 It is “relational”because the data within each table are related to each other.

Tables may also be related to other tables. In relational databases, tables or files

containing data are called relations (tuples), and are defined by rows (orrecords),

and columns (or attributes) referred to as fields. Each table has a key field that

mainly identifies each record (row), and on the basis of which records in different

tables are related (or linked).

This kind of a relational structure makes it possible to run queries that need to

retrieve data from multiple tables simultaneously. An RDBMS may also provide a

visual representation of the data. For example, it may display data in a spreadsheet-

like table, allowing you to view and even edit individual data elements in the table.

Some RDMBS programs allow you to create forms that can streamline entering,

editing, and deleting data.

Relational DBMS software is available for large mainframe systems as well as

workstations and personal computers. The need for more powerful and flexible

data models to support scientific and business applications has led to extended

relational data models in which table entries are no longer simple values but can be

programs, text, unstructured data in the form of large binary, or in any other format

which the end user needs.

Advantages:

1.Any data organized as tables consisting of rows and columns is much easier to

understand.

2.Data can be stored in separate tables or files containing logically related

attributes, so that huge amounts of data are segmented, making management and

retrieval easier and faster.

 3.Different tables from which information has to be linked and extracted can be

easily managed.

4.Security and authorization control can also be implemented more easily by

moving sensitive data in a given database to a separate relation with its own

authorization controls.

5. Data independence is easily achieved in a relational database than in the more

complicated tree or network structure.

 6.Redundancy and replication of data can be minimized.

7.RDBMS offers the possibility of responding to queries by means of a language

based on relational algebra and relational calculus.

8.It offers logical database independence i.e. data can be viewed in different ways

by the different users.

9.Multiple users can access the database simultaneously which is not possible in

other kinds of databases.

10.RDBMS also offers better backup and recovery options.

Disadvantages:

1.A major constraint, and therefore disadvantage of RDBMS is its reliance on

machine performance. If the number of tables between which relationships are to

be established is large, then the performance in responding to the SQL queries is

affected.

2.The required hardware is complex and software expensive, increasing the overall

cost of implementing RDBMS.

Object-Oriented Database Management System:

 In object-oriented databases, all data are objects. Objects may be linked to each

other by an “is-part-of” relationship to represent larger, composite objects.

Classes of objects may form a hierarchy in which individual objects may inherit

properties from objects higher up in the hierarchy.

 Multimedia databases, in which voice, music, and video are stored along with the

traditional textual information, provide a justification for viewing data as objects.

Such object oriented databases are becoming increasingly important, since their

structure is most flexible and adaptable. The same is true of databases of pictures,

images, photographs or maps. The future of database technology is generally

perceived to be an integration of the relational and object-oriented database

models.

Advantages:

➢ Object oriented databases combine the object oriented principle with the

database management principle to give a hybrid system that is more

powerful than the conventional relational database management system.

➢ The principles of object orientation like consistency, isolation, durability,

and atomicity are supported along with the principles of database systems.

➢ In OODBMS, working with objects in the programming language is similar

to working with objects in the database. Each object is the database is

identified by an object identifier called the OID which is generated by the

system.

➢ The OODBMS is more powerful than the RDBMS if you are used to object

oriented programming.

➢ Another advantage of using the OODBMS is that when your application

requests for an object, it is sent by the database to the memory, and you

work with the in-memory object.

➢ Any update or deletion is done to the in-memory object and these changes

can later be saved to the database. This helps to avoid the frequent access to

the database while updating, deleting, etc.

Disadvantages:

1.The use of object oriented database is relatively limited because we do not yet

have the level of experience that we have with traditional systems.

 2. The increased functionality provided by the OODBMS makes the system more

complex than the traditional DBMSs.

 3.object oriented database does not provide adequate security mechanisms – the

database manager cannot grant access rights on individual objects or classes.

Entity-relationship Model

In this database model, relationships are created by dividing object of interest into

entity and its characteristics into attributes.

Different entities are related using relationships.

E-R Models are defined to represent the relationships into pictorial form to make it

easier for different stakeholders to understand.

This model is good to design a database, which can then be turned into tables in

relational model.

Let's take an example, If we have to design a School Database, then Student will be

an entity with attributes name, age, address etc. As Address is generally complex,

it can be another entity withattributes street name, pincode, city etc, and there will

be a relationship between them.

13.)Database Users and Administrators

 A primary goal of a database system is to retrieve information from and

store new information in the database. People who work with a database can be

categorized as database users or database administrators.

1) Database Users and User Interfaces

 There are four different types of database-system users, differentiated

by the way they expect to interact with the system. Different types of user

interfaces have been designed for the different types of users:

Naive users are unsophisticated users who interact with the system by invoking

one of the application programs that have been written previously.

 For example, a bank teller who needs to transfer $50 from account Ato

account B invokes a program called transfer. This program asks the teller for the

amount of money to be transferred, the account from which the money is to be

transferred, and the account to which the money is to be transferred.

The typical user interface for naive users is a forms interface, where the user can

fill in appropriate fields of the form. Naive users may also simply read reports

generated from the database.

Application programmers are computer professionals who write application

programs. Application programmers can choose from many tools to develop user

interfaces. Rapid application development (RAD)tools are tools that enable an

application programmer to construct forms and reports without writing a program.

Sophisticated users interact with the system without writing programs. Instead,

they form their requests in a database query language. They submit each such

query to a query processor, whose function is to break down DML statements into

instructions that the storage manager understands. Analysts who submit queries to

explore data in the database fall in this category.

Specialized users are sophisticated users who write specialized database

applications that do not fit into the traditional data-processing framework. Among

these applications are computer-aided design systems, knowledge base and expert

systems, systems that store data with complex data types (for example, graphics

data and audio data), and environment-modeling systems.

2 Database Administrators:

One of the main reasons for using DBMSs is to have central control of both the

data and the programs that access those data. A person who has such central

control over the system is called a database administrator(DBA).

The functions of a DBA include:

A database administrator's (DBA) primary job is to ensure that data is available,

protected from loss and corruption, and easily accessible as needed.

Below are some of the chief responsibilities.

1. Software installation and Maintenance

 A DBA often collaborates on the initial installation and configuration of a

new Oracle, SQL Server etc database. The system administrator sets up hardware

and deploys the operating system for the database server, then the DBA installs the

database software and configures it for use. As updates and patches are required,

the DBA handles this on-going maintenance.

2. Data Extraction, Transformation, and Loading

Known as ETL, data extraction, transformation, and loading refers to efficiently

importing large volumes of data that have been extracted from multiple systems

into a data warehouse environment.

This external data is cleaned up and transformed to fit the desired format so that it

can be imported into a central repository.

3. Specialised Data Handling

Today’s databases can be massive and may contain unstructured data types such as

images, documents, or sound and video files. Managing a very large database

(VLDB) may require higher-level skills and additional monitoring and tuning to

maintain efficiency.

4. Database Backup and Recovery

In the case of a server failure or other form of data loss, the DBA will use existing

backups to restore lost information to the system. Different types of failures may

require different recovery strategies, and the DBA must be prepared for any

eventuality. With technology change, it is becoming ever more typical for a DBA

to backup databases to the cloud.

5. Security

 A DBA needs to know potential weaknesses of the database software and

the company’s overall system and work to minimise risks.

6. Authentication

 Setting up employee access is an important aspect of database security.

DBAs control who has access and what type of access they are allowed. For

instance, a user may have permission to see only certain pieces of information, or

they may be denied the ability to make changes to the system.

7. Capacity Planning

 The DBA needs to know how large the database currently is and how fast it

is growing in order to make predictions about future needs. Storage refers to how

much the database takes up in server and backup space. Capacity refers to usage

level.

8. Performance Monitoring

Monitoring databases for performance issues is part of the on-going system

maintenance a DBA performs. If some part of the system is slowing down

processing, the DBA may need to make configuration changes to the software or

add additional hardware capacity.

9. Database Tuning

Performance monitoring shows where the database should be tweaked to operate as

efficiently as possible. The physical configuration, the way the database is indexed,

and how queries are handled can all have a dramatic effect on database

performance.

With effective monitoring, it is possible to proactively tune a system based on

application and usage instead of waiting until a problem develops.

10. Troubleshooting

DBAs are on call for troubleshooting in case of any problems. Whether they need

to quickly restore lost data or correct an issue to minimize damage, a DBA needs

to quickly understand and respond to problems when they occur.

 Types of DBA

1.Administrative DBA

 Work on maintaining the server and keeping it running. Concerned with backups,

security, patches, replication, etc. Things that concern the actual server software.

2.Development DBA

 works on building queries, stored procedures, etc. that meet business needs. This

is the equivalent of the programmer. You primarily write T-SQL.

3.Architect

Design schemas. Build tables, FKs, PKs, etc. Work to build a structure that meets

the business needs in general. The design is then used by developers and

development DBAs to implement the actual application.

4.Data Warehouse DBA

 Newer role, but responsible for merging data from multiple sources into a data

warehouse. May have to design warehouse, but cleans, standardizes, and scrubs

data before loading. In SQL Server, this DBA would use DTS heavily.

5.OLAP DBA

 Builds multi-dimensional cubes for decision support or OLAP systems. The

primary language in SQL Server is MDX, not SQL here.

6.Application DBA

 Application DBAs straddle the fence between the DBMS and the application

software and are responsible for ensuring that the application is fully optimized for

the database and vice versa. They usually manage all the application components

that interact with the database and carry out activities such as application

installation and patching, application upgrades, database cloning, building and

running data cleanup routines, data load process management, etc.

 UNIT-2

 RELATIONAL ALGEBRA & CALCULUS

1. STRUCTURE OF RELATIONAL MODEL

 Relational data model is the primary data model, which is used widely for

data storage and processing. This model is simple and it has all the properties and

capabilities required to process data with storage efficiency.

In Relational model has the following :

Tables

 In relational data model, relations are saved in the format of Tables. This

format stores the relation among entities. A table has rows and columns, where

rows represent records and columns represent the attributes.

Tuple

 A single row of a table, which contains a single record for that relation is called a

tuple.

Relation instance

 A finite set of tuples in the relational database system represents relation

instance. Relation instances do not have duplicate tuples.

Relation schema

 A relation schema describes the relation name (table name), attributes, and their

names.

Relation key

 Each row has one or more attributes, known as relation key, which can

identify the row in the relation (table) uniquely.

Attribute domain

Every attribute has some pre-defined value scope, known as attribute domain.

Constraints

Every relation has some conditions that must hold for it to be a valid relation.

These conditions are called Relational Integrity Constraints. There are three

main integrity constraints −

• Key constraints

• Domain constraints

• Referential integrity constraints

Key Constraints

 There must be at least one minimal subset of attributes in the

relation, which can identify a tuple uniquely. This minimal subset of attributes is

called key for that relation. If there are more than one such minimal subset, these

are called candidate keys.

Key constraints force that −

• In a relation with a key attribute, no two tuples can have identical values for

key attributes.

• A key attribute cannot have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

 Attributes have specific values in real-world scenario.

For example, age can only be a positive integer. The same constraints have been

tried to employ on the attributes of a relation. Every attribute is bound to have a

specific range of values. For example, age cannot be less than zero and telephone

numbers cannot contain a digit outside 0-9.

Referential integrity Constraints

 Referential integrity constraints work on the concept of Foreign

Keys. A foreign key is a key attribute of a relation that can be referred in other

relation.

Referential integrity constraint states that if a relation refers to a key attribute of a

different or same relation, then that key element must exist.

Database Schema

A database schema is the skeleton structure that represents the logical view of the

entire database. It defines how the data is organized and how the relations among

them are associated. It formulates all the constraints that are to be applied on the

data.

 A database schema defines its entities and the relationship among

them. It contains a descriptive detail of the database, which can be depicted by

means of schema diagrams. It’s the database designers who design the schema to

help programmers understand the database and make it useful.

A database schema can be divided broadly into two categories −

• Physical Database Schema –

 This schema pertains to the actual storage of data and its

form of storage like files, indices, etc. It defines how the data will be stored

in a secondary storage.

• Logical Database Schema :

 It defines all the logical constraints that need to be applied on the

data stored. It defines tables, views, and integrity constraints.

Database Instance

 A database instance is a state of operational database with data at any

given time. It contains a snapshot of the database. Database instances tend to

change with time.

 A DBMS ensures that its every instance (state) is in a valid state, by

diligently following all the validations, constraints, and conditions that the

database designers have imposed.

 Relational Algebra in DBMS

 Relational algebra is a procedural query language that works on relational

model. The purpose of a query language is to retrieve data from database or

perform various operations such as insert, update, delete on the data.

Types of operations in relational algebra

We have divided these operations in two categories:

1. Basic Operations

2. Derived Operations

Basic/Fundamental Operations:

1. Select (σ)

2. Project (∏)

3. Union (∪)

4. Set Difference (-)

5. Cartesian product (X)

6. Rename (ρ)

Select Operator (σ)

Select Operator is denoted by sigma (σ) and it is used to find the tuples (or rows) in

a relation (or table) which satisfy the given condition.

If you understand little bit of SQL then you can think of it as a where clause in

SQL, which is used for the same purpose.

Syntax of Select Operator (σ)

σ Condition/Predicate(Relation/Table name)

Select Operator (σ) Example

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

----------- ------------- -------------

C10100 ARUN Agra

C10111 RAJESH Agra

C10115 CHARLES Noida

C10117 AJIT Delhi

C10118 DAVID Delhi

Query:

σ Customer_City="Agra" (CUSTOMER)

Output:

Customer_Id Customer_Name Customer_City

----------- ------------- -------------

C10100 ARUN Agra

C10111 RAJESH Agra

Project Operator (∏)

Project operator is denoted by ∏ symbol and it is used to select desired columns

(or attributes) from a table (or relation).

Project operator in relational algebra is similar to the Select statement in SQL.

Syntax

∏ column_name1, column_name2,, column_nameN(table_name)

Example

In this example, we have a table CUSTOMER with three columns, we want to

fetch only two columns of the table, which we can do with the help of Project

Operator ∏.

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

----------- ------------- -------------

C10100 ARUN Agra

C10111 RAJESH Agra

C10115 CHARLES Noida

C10117 AJIT Delhi

C10118 KUMAR Delhi

Query:

∏ Customer_Name, Customer_City (CUSTOMER)

Output:

Customer_Name Customer_City

------------- -------------

ARUNS Agra

RAJESH Agra

CHARLES Noida

AJIT Delhi

KUMAR Delhi

Union Operator (∪)

Union operator is denoted by ∪ symbol and it is used to select all the rows (tuples)

from two tables (relations).

we have two relations R1 and R2 both have same columns and we want to select

all the tuples(rows) from these relations then we can apply the union operator on

these relations.

 The rows (tuples) that are present in both the tables will only appear once in the

union set. There are no duplicates present after the union operation.

Syntax :

table_name1 ∪ table_name2

Example:

Table 1: COURSE

Course_Id Student_Name Student_Id

--------- ------------ ----------

C101 ARUN S901

C104 ARUN S901

C106 RAJESH S911

C109 KUMAR S921

C115 DAVID S931

Table 2: STUDENT

Student_Id Student_Name Student_Age

------------ ---------- -----------

S901 ARUN 19

S911 RAJESH 18

S921 KUMAR 19

S931 DAVID 17

S941 CHARLES 16

S951 RAMESH 18

Query:

∏ Student_Name (COURSE) ∪ ∏ Student_Name (STUDENT)

Output:

Student_Name

ARUN

CHARLES

KUMAR

DAVID

RAMES

RAJESH

Intersection Operator (∩)

Intersection operator is denoted by ∩ symbol and it is used to select common rows

(tuples) from two tables (relations).

 we have two relations R1 and R2 both have same columns and we want to select

all those tuples(rows) that are present in both the relations, then in that case we can

apply intersection operation on these two relations R1 ∩ R2.

Syntax :

table_name1 ∩ table_name2

 Example

Table 1: COURSE

Course_Id Student_Name Student_Id

--------- ------------ ----------

C101 ARUN S901

C104 ARUN S901

C106 CHARLES S911

C109 DAVID S921

C115 RAJESH S931

Table 2: STUDENT

Student_Id Student_Name Student_Age

------------ ---------- -----------

S901 ARUN 19

S911 CHARLES 18

S921 DAVID 19

S931 KUMAR 17

S941 AJIT 16

S951 MOHAN 18

Query:

∏ Student_Name (COURSE) ∩ ∏ Student_Name (STUDENT)

Output:

Student_Name

ARUN

CHARLES

DAVID

KUMAR

Set Difference (-)

Set Difference is denoted by – symbol. Lets say we have two relations R1 and R2

and we want to select all those tuples(rows) that are present in Relation R1

but not present in Relation R2, this can be done using Set difference R1 – R2.

Syntax of Set Difference (-)

table_name1 - table_name2

 Example

Lets take the same tables COURSE and STUDENT that we have seen above.

Query:

Lets write a query to select those student names that are present in STUDENT

table but not present in COURSE table.

∏ Student_Name (STUDENT) - ∏ Student_Name (COURSE)

Output:

Student_Name

CHARLES

RAJESH

Cartesian product (X)

 Cartesian Product is denoted by X symbol. we have two relations R1 and

R2 then the cartesian product of these two relations (R1 X R2) would combine

each tuple of first relation R1 with the each tuple of second relation R2.

Syntax:

R1 X R2

Example:

Table 1: R

Col_A Col_B

----- ------

AA 100

BB 200

CC 300

Table 2: S

Col_X Col_Y

----- -----

XX 99

YY 11

ZZ 101

Query:

 Cartesian product of table R and S.

R X S

Output:

Col_A Col_B Col_X Col_Y

----- ------ ------ ------

AA 100 XX 99

AA 100 YY 11

AA 100 ZZ 101

BB 200 XX 99

BB 200 YY 11

BB 200 ZZ 101

CC 300 XX 99

CC 300 YY 11

CC 300 ZZ 101

 The number of rows in the output will always be the cross product of number of

rows in each table. In our example table 1 has 3 rows and table 2 has 3 rows so the

output has 3×3 = 9 rows.

Rename (ρ)

Rename (ρ) operation can be used to rename a relation or an attribute of a relation.

Rename (ρ) Syntax:

ρ(new_relation_name, old_relation_name)

 Example

Lets have a table customer, we are fetching customer names and we are renaming

the resulted relation to CUST_NAMES.

Table: CUSTOMER

Customer_Id Customer_Name Customer_City

----------- ------------- -------------

C10100 ARUN Agra

C10111 DAVID Agra

C10115 CHARLES Noida

C10117 AJIT Delhi

C10118 SURESH Delhi

Query:

ρ(CUST_NAMES, ∏(Customer_Name)(CUSTOMER))

Output:

CUST_NAMES

ARUN

DAVID

CHARLES

AJIT

SURESH

Relational Calculus

Relational calculus is a non-procedural query language that tells the system what

data to be retrieved but doesn’t tell how to retrieve it.

Types of Relational Calculus

1. Tuple Relational Calculus (TRC)

 Tuple relational calculus is used for selecting those tuples that satisfy the

given condition.

Table: Student

First_Name Last_Name Age

---------- --------- ----

ARUN KUMAR 30

BALA KUMAR 31

Raj KUMAR 27

SANTHOSH Raj 28

Lets write relational calculus queries.

Query to display the last name of those students where age is greater than 30

{ t.Last_Name | Student(t) AND t.age > 30 }

In the above query you can see two parts separated by | symbol. The second part is

where we define the condition and in the first part we specify the fields which we

want to display for the selected tuples.

The result of the above query would be:

Last_Name

KUMAR

Query to display all the details of students where Last name is ‘KUMAR’

{ t | Student(t) AND t.Last_Name = 'KUMAR' }

Output:

First_Name Last_Name Age

---------- --------- ----

ARUN KUMAR 30

BALA KUMAR 31

RAJ KUMAR 27

2. Domain Relational Calculus (DRC)

In domain relational calculus the records are filtered based on the domains.

Table: Student

First_Name Last_Name Age

---------- --------- ----

ARUN KUMAR 30

BALA KUMAR 31

Raj KUMAR 27

Santhosh RAJ 28

Query to find the first name and age of students where student age is greater than

27

{< First_Name, Age > | ∈ Student ∧ Age > 27}

Note:

The symbols used for logical operators are: ∧ for AND, ∨ for OR and ┓ for NOT.

Output:

First_Name Age

---------- ----

ARUN 30

BALA 31

santhosh 28

Extended Operators in Relational Algebra

 In Relational Algebra, Extended Operators are those operators that are

derived from the basic operators. There are mainly three types of Extended

Operators, namely:

1.Intersection

2.Divide

3.Join

Let us consider two tables named as A and B.

A –

RollNo Name Marks

1 ARUN 98

3 BALA 79

4 DAVID 88

B –

RollNo Name Marks

1 ARUN 98

2 CHARLES 87

3 BALA 79

4 DAVID 88

1) Intersection

 Intersection works on the relation as 'this and that'. In relational

algebra, A ∩ B returns a relation instance that contains every tuple that occurs in

relation to instance A and relation instance B (both together). Here, A and B need

to be union-compatible, and the schema of both result and A must be identical.

Syntax:

 SELECT * FROM A INTERSECT SELECT * FROM B;

 Roll No Name Marks

 1 ARUN 98

 3 BALA 79

 4 DAVID 88

2) Divide

Divide operator is used for the queries that contain the keyword ALL.

For e.g. – Find all the students who has chosen additional subjects C and JAVA.

Student –

Student Name Subject

ARUN C

ARUN JAVA

DAVID Network Security

DAVID Data Mining

KUMAR Network Security

KUMAR DATABASE

CHARLES C

CHARLES JAVA

Subject –

Subject Name

 C

 JAVA

Output: Student ÷ Subject

Student

ARUN

CHARLES

 UNIT -3

 SQL

1. SQL

 Structured Query Language (SQL) is the standard language for data

manipulation in a DBMS.

 Following are types of SQL Statements

1. Data Definition Language (DDL) allows you to create objects like Schemas,

Tables in the database

2. Data Control Language (DCL) allows you to manipulate and manage access

rights on database objects

3. Data Manipulation Language (DML) is used for searching, inserting,

updating, and deleting data, which will be partially covered in this

programming tutorial.

Why SQL?

SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in a relational database.

SQL is the standard language for Relational Database System. All the Relational

Database Management Systems (RDMS) like MySQL, MS Access, Oracle,

Sybase, Informix, Postgres and SQL Server use SQL as their standard database

language.

Applications of SQL

 SQL is one of the most widely used queries language over the databases.SQL

has the following applications:

• Allows users to access data in the relational database management systems.

• Allows users to describe the data.

• Allows users to define the data in a database and manipulate that data.

• Allows to embed within other languages using SQL modules, libraries &

pre-compilers.

• Allows users to create and drop databases and tables.

• Allows users to create view, stored procedure, functions in a database.

• Allows users to set permissions on tables, procedures and views.

Advantages of SQL

There are the following advantages of SQL:

High speed

 Using the SQL queries, the user can quickly and efficiently retrieve a

large amount of records from a database.

No coding needed

 In the standard SQL, it is very easy to manage the database

system. It doesn't require a substantial amount of code to manage the database

system.

Well defined standards

 Long established are used by the SQL databases that are being

used by ISO and ANSI.

Portability

 SQL can be used in laptop, PCs, server and even some mobile phones.

Interactive language

 SQL is a domain language used to communicate with the database.

It is also used to receive answers to the complex questions in seconds.

Multiple data view

 Using the SQL language, the users can make different views

of the database structure.

2.SQL Commands

o SQL commands are instructions. It is used to communicate with the

database. It is also used to perform specific tasks, functions, and queries of

data.

o SQL can perform various tasks like create a table, add data to tables, drop

the table, modify the table, set permission for users.

 SQL languages & its types:

1. Data Definition Language (DDL)

➢ DDL changes the structure of the table like creating a table, deleting a

table, altering a table, etc.

➢ All the command of DDL are auto-committed that means it

permanently save all the changes in the database.

Here are some commands that come under DDL:

o CREATE

o ALTER

o DROP

o TRUNCATE

a. CREATE It is used to create a new table in the database.

Syntax:

CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);

b. DROP:

 It is used to delete both the structure and record stored in the table.

Syntax

DROP TABLE ;

c. ALTER:

 It is used to alter the structure of the database. This change could be

either to modify the characteristics of an existing attribute or to add a new

attribute.

Syntax:

To add a new column in the table

 ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify existing column in the table:

 ALTER TABLE MODIFY(COLUMN DEFINITION....);

d. TRUNCATE:

 It is used to delete all the rows from the table and free the space containing

the table.

Syntax:

 TRUNCATE TABLE table_name;

2. Data Manipulation Language

➢ DML commands are used to modify the database. It is responsible for

all form of changes in the database.

➢ The command of DML is not auto-committed that means it can't

permanently save all the changes in the database. They can be

rollback.

Here are some commands that come under DML:

o INSERT

o UPDATE

o DELETE

a. INSERT:

The INSERT statement is a SQL query. It is used to insert data into the row

of a table.

Syntax:

INSERT INTO TABLE_NAME(col1, col2, col3,.... col N) VALUES (value1, val

ue2, value3, valueN);

Or

INSERT INTO TABLE_NAME VALUES (value1, value2, value3, valueN);

UPDATE:

 This command is used to update or modify the value of a column in the

table.

Syntax:

 UPDATE table_name SET [column_name1= value1,...column_nameN = valueN]

[WHERE CONDITION]

DELETE:

It is used to remove one or more row from a table.

Syntax:

DELETE FROM table_name [WHERE condition];

3. Data Control Language

DCL commands are used to grant and take back authority from any database user.

Here are some commands that come under DCL:

1.Grant

2.Revoke

a. Grant:

 It is used to give user access privileges to a database.

b.Revoke:

It is used to take back permissions from the user.

4. Transaction Control Language

 TCL commands can only use with DML commands like INSERT,

DELETE and UPDATE only.

These operations are automatically committed in the database that's why they

cannot be used while creating tables or dropping them.

Here are some commands that come under TCL:

o COMMIT

o ROLLBACK

o SAVEPOINT

a. Commit:

Commit command is used to save all the transactions to the database.

Syntax:

COMMIT;

b. Rollback:

 Rollback command is used to undo transactions that have not already been

saved to the database.

Syntax: ROLLBACK;

c. SAVEPOINT:

 It is used to roll the transaction back to a certain point without rolling back

the entire transaction.

Syntax:

SAVEPOINT SAVEPOINT_NAME;

5. Data Query Language

DQL is used to fetch the data from the database.

It uses only one command:

SELECT

a. SELECT:

 This is the same as the projection operation of relational algebra. It is

used to select the attribute based on the condition described by WHERE

clause.

Syntax:

SELECT expressions FROM TABLES WHERE conditions;

3.SQL SELECT Statement

 Select statement is used to fetch data from relational database. A relational

database is organized collection of data.

 SQL select statement or SQL select query is used to fetch data from one

or more than one tables. We can fetch few columns, few rows or entire table using

SELECT Query based on the requirement.

Example: we have a table EMPLOYEES with the following data:

+------+----------+---------+----------+

| SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 101 | DINESH | 23 | 9000.00 |

| 102 | ARUN | 24 | 2550.00 |

| 103 | RAMESH | 19 | 2444.00 |

| 104 | VIMAL | 29 | 6588.00 |

| 105 | CHARLES | 21 | 1400.00 |

| 106 | RAM | 24 | 8900.00 |

| 107 | DAVID | 20 | 18300.00 |

+------+----------+---------+----------+

SELECT Syntax

Select Statement Example – Retrieve single column

Syntax:

SELECT column_name FROM table_name;

Query:

SELECT EMP_NAME FROM EMPLOYEES;

 Here column_name is the name of the column for which we need to

fetch data and table_name is the name of the table in the database.

Output of the above Query:

+----------+

| EMP_NAME |

+------+---+

| DINESH |

| ARUN |

| RAMESH |

| VIMAL |

| CHARLES |

| RAM |

| DAVID |

+----------+

More than one columns:

Syntax:

SELECT column_name_1, column_name_2, ... FROM table_name;

 To fetch multiple columns SSN & EMP_NAME from the above

table EMPLOYEES, we can write the SELECT Query like this:

Query:

SELECT SSN, EMP_NAME FROM EMPLOYEES;

Output of the above query:

+------+----------+

| SSN | EMP_NAME |

+------+----------+

| 101 | DINESH |

| 102 | ARUN |

| 103 | RAMESH |

| 104 | VIMAL |

| 105 | CHARLES |

| 106 | RAM |

| 107 | DAVID |

+------+----------+

For fetching entire table:

SELECT * FROM table_name;

Query:

SELECT * FROM EMPLOYEES;

Result:

+------+----------+---------+----------+

|SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 101 | DINESH | 23 | 9000.00 |

| 102 | ARUN | 24 | 2550.00 |

| 103 | RAMESH | 19 | 2444.00 |

| 104 | VIMAL | 29 | 6588.00 |

| 105 | CHARLES | 21 | 1400.00 |

| 106 | RAM | 24 | 8900.00 |

| 107 | DAVID | 20 | 18300.00 |

+------+----------+---------+----------+

4.SQL USING SELECT CLAUSE

SELECT statement Clause

 If we want to fetch only few rows or want the rows in an particular order

or grouped rows etc.

 These clauses are optional but they are frequently used in SQL statements

in the real world database operations.

WHERE Clause in SQL:

 WHERE clause filters the records, with the help of this clause we

specify a condition in the SQL statement and only those records that fulfill the

condition are retrieved from database.

ORDER BY Clause in SQL:

 ORDER BY clause is used to return the rows in ascending or

descending order of the data.

GROUP BY Clause in SQL:

 GROUP BY clause groups the rows with same data, this is often

used along with the aggregate functions.

HAVING Clause in SQL:

 HAVING clause filters the records, just like WHERE clause, however it

is used along with the GROUP BY clause so it filters the records from the output

set of rows produced by GROUP BY clause

5.SQL WHERE Clause

 Where clause is used to fetch a particular row or set of rows from a

table. This clause filters records based on given conditions and only those row(s)

comes out as result that satisfies the condition defined in WHERE clause of the

SQL query.

SQL Where Clause Syntax

SELECT Column_name1, Column_name2,

FROM Table_name

WHERE Condition;

Here we have used the where clause with the SQL SELECT statement, however we

can use this clause with other SQL statements as well such as UPDATE, DELETE

etc.

Example – SQL WHERE Clause

We have a table EMPLOYEES:

+------+----------+---------+----------+

|SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 101 | DINESH | 23 | 9000.00 |

| 102 | ARUN | 24 | 2550.00 |

| 103 | RAMESH | 19 | 2444.00 |

| 104 | VIMAL | 29 | 6588.00 |

| 105 | CHARLES | 21 | 1400.00 |

| 106 | RAM | 24 | 8900.00 |

| 107 | DAVID | 20 | 18300.00 |

+------+----------+---------+----------+

To fetch the name of the employees who are more than 23 years old. The SQL

statement would look like this –

https://beginnersbook.com/2018/11/sql-select/

Query:

 SELECT EMP_NAME FROM EMPLOYEES WHERE EMP_AGE > 23;

Result:

+----------+

| EMP_NAME |

+----------+

| ARUN |

| VIMAL |

| RAM |

+----------+

Fetch all the details of employees having salary greater than 6000.

Query:

 SELECT * FROM EMPLOYEES WHERE EMP_SALARY > 6000;

Result:

+------+----------+---------+----------+

|SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 101 | DINESH | 23 | 9000.00 |

| 104 | VIMAL | 29 | 6588.00 |

| 106 | RAM | 24 | 8900.00 |

| 107 | DAVID | 20 | 18300.00 |

+------+----------+---------+----------+

SQL where clause with multiple conditions

Lets take the same table:

+------+----------+---------+----------+

|SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 101 | DINESH | 23 | 9000.00 |

| 102 | ARUN | 24 | 2550.00 |

| 103 | RAMESH | 19 | 2444.00 |

| 104 | VIMAL | 29 | 6588.00 |

| 105 | CHARLES | 21 | 1400.00 |

| 106 | RAM | 24 | 8900.00 |

| 107 | DAVID | 20 | 18300.00 |

+------+----------+---------+----------+

Lets fetch the employee details where employee age is greater than 23 and salary is

greater than 5000. For such query we have to use multiple conditions in where

clause.

Query:

SELECT * FROM EMPLOYEES WHERE EMP_SALARY > 5000 AND

EMP_AGE > 23;

 Result:

+------+----------+---------+----------+

|SSN | EMP_NAME | EMP_AGE |EMP_SALARY|

+------+----------+---------+----------+

| 104 | VIMAL | 29 | 6588.00 |

| 106 | RAM | 24 | 8900.00 |

+------+----------+---------+----------+

Another multiple conditions example:

 Fetch the employee names, where either employee age is less than 20 or salary is

less than 5000.

Query:

SELECT EMP_NAME

FROM EMPLOYEES

WHERE EMP_SALARY < 5000 OR EMP_AGE < 20;

Result:

+----------+

| EMP_NAME |

+----------+

| RAMESH |

| ARUN |

| CHARLES |

+----------+

6.SQL AND, OR and NOT Operators

SQL AND Operator

 When multiple conditions are joined using AND operator, only those rows

will be fetched from the database which meets all the conditions.

AND Operator Syntax

SELECT column_name1, column_name2, ...

FROM table_name

WHERE condition_1 AND condition_2 ...;

Example

Table: STUDENT

+----+--------------+-----+-----------+----------+

| ID | STU_NAME | AGE | ADDRESS | BRANCH |

+----+--------------+-----+-----------+----------+

| 11 | ARUN | 22 | Agra | ECE |

| 12 | BALA | 23 | Delhi | CSE |

| 13 | MAHESHe | 23 | Gurgaon | CL |

| 14 | CHARLES | 24 | Noida | ME |

| 15 | DAVID | 26 | Delhi | EE |

+----+--------------+-----+-----------+----------+

 SQL statements to fetch the name of the students where student age is “greater

than 23” and address is “Delhi”

Query:

SELECT STU_NAME

FROM STUDENT

WHERE AGE > 23 AND ADDRESS = 'Delhi';

Result:

+----------+

| STU_NAME |

+----------+

| DAVID |

+----------+

SQL OR Operator

When multiple conditions are joined using OR operator, all those rows will be

fetched from the database which meet any of the given conditions.

OR Operator Syntax

SELECT column_name1, column_name2, ...

FROM table_name

WHERE condition_1 OR condition_2 ...;

SQL OR Example

Table: EMPLOYEE

+----+--------------+-----+-----------+----------+

| ID | EMP_NAME | AGE | ADDRESS | SALARY |

+----+--------------+-----+-----------+----------+

| 90 | David | 30 | Agra | 10000 |

| 91 | DINESH | 31 | Delhi | 9000 |

| 92 | DAVID | 29 | Gurgaon | 11000 |

| 93 | RAHUL | 33 | Noida | 19000 |

| 94 | PRAKASH | 35 | Agra | 9900 |

+----+--------------+-----+-----------+----------+

 SQL statements to fetch the details of the employees, where either employee age

is “greater than 30” or address is “Agra”.

Query:

SELECT *

FROM EMPLOYEE

WHERE AGE > 30 OR ADDRESS = 'Agra';

Result:

+----+--------------+-----+-----------+----------+

| ID | EMP_NAME | AGE | ADDRESS | SALARY |

+----+--------------+-----+-----------+----------+

| 90 | David | 30 | Agra | 10000 |

| 91 | DINESH | 31 | Delhi | 9000 |

| 93 | RAHUL | 33 | Noida | 19000 |

| 94 | PRAKASH | 35 | Delhi | 9900 |

+----+--------------+-----+-----------+----------+

SQL NOT Operator

 When a NOT operator is used with a condition, only those rows will

fetched from database which do not meet the given condition.

NOT Operator Syntax

SELECT column_name1, column_name2, ...

FROM table_name

WHERE NOT condition;

SQL NOT Example

Table: ORDER

+----+--------------+-----+-----------+----------+

| ID | CUSTOMER_NAME| AGE | ADDRESS | AMOUNT |

+----+--------------+-----+-----------+----------+

| 70 | RAM | 30 | Sector121 | 11000 |

| 71 | KUMAR | 31 | Sector122 | 900 |

| 72 | SATHIS | 29 | Sector62 | 1000 |

| 73 | DAVID | 33 | Sector61 | 1000 |

| 74 | MAHESH | 35 | Sector121 | 500 |

+----+--------------+-----+-----------+----------+

The following SQL statement selects all the order id and customer name where

address is NOT Sector121.

Query:

SELECT ID, CUSTOMER_NAME

FROM ORDER

WHERE NOT ADDRESS = 'Sector121';

Result:

+----+--------------+

| ID | CUSTOMER_NAME|

+----+--------------+

| 71 | KUMAR |

| 72 | SATHIS |

| 73 | DAVID |

+----+--------------+

7. SQL PROCESS/SQL STRUCTURE

 When you want to execute an SQL command for any DBMS system,

you need to find the best method to carry out your request, and SQL engine

determines how to interpret that specific task.

Query processor

 A query processor is one of the major components of a relational database or

an electronic database in which data is stored in tables of rows and columns.

 A user, or an applications program, interacts with the query processor and the

query processor, in turn interacts with the storage engine. The query processor

receives an instruction or instructions written in Structured Query Language

(SQL), chooses a plan for executing the instructions and carries out the plan.

Query processors come with the following components,

DDL Interpreter:

 It interprets the DDL statements and records the definitions in data dictionary.

DML Compiler:

 It translates the DML statements in a query language into an evaluation

plan consisting of low-level instructions that the query evaluation understands.

Optimization

 The SQL syntax is transformed into a series of operations that can be

performed on data and its indices. The raw query plan, as it is known, is optimized

to make it more efficient before it is executed.

Database Engine

 A database engine is composed of the component of the system that

actually stores and retrieves data.

Physical Database:

 Physical database design translates the logical data model into a set of

SQL statements that define the database. For relational database systems, it is

relatively easy to translate from a logical data model into a physical database.

Rules for translation: Entities become tables in the physical database.

In the above diagram,

• The first step is to transform the query into a standard form.

• A query is translated into SQL and into a relational algebraic expression. During

this process, Parser checks the syntax and verifies the relations and the attributes

which are used in the query.

• The second step is Query Optimizer. In this, it transforms the query into

equivalent expressions that are more efficient to execute.

• The third step is Query evaluation. It executes the above query execution plan and

returns the result.

8.SQL Set Operation

The SQL Set operation is used to combine the two or more SQL SELECT

statements.

Types of Set Operation

1. Union

2. UnionAll

3. Intersect

4. Minus

Union

➢ The SQL Union operation is used to combine the result of two or more SQL

SELECT queries.

➢ In the union operation, all the number of data type and columns must be

same in both the tables on which UNION operation is being applied.

➢ The union operation eliminates the duplicate rows from its result set.

Syntax

SELECT column_name FROM table1

UNION

SELECT column_name FROM table2;

Example:

First

ID NAME

1 ARUN

2 BALA

3 DINESH

 Second

ID NAME

3 DINESH

4 RAMESH

5 David

Union SQL query will be:

SELECT * FROM First

UNION

SELECT * FROM Second;

The result set table will look like:

ID NAME

1 ARUN

2 BALA

3 DINESH

4 RAMESH

5 David

2. Union All

Union All operation is equal to the Union operation. It returns the set without

removing duplication and sorting the data.

Syntax:

SELECT column_name FROM table1

UNION ALL

SELECT column_name FROM table2;

Query:

SELECT * FROM First

UNION ALL

SELECT * FROM Second;

The result set table will look like:

ID NAME

1 ARUN

2 BALA

3 DINESH

3 DINESH

4 RAMESH

5 David

3. Intersect

➢ It is used to combine two SELECT statements. The Intersect operation

returns the common rows from both the SELECT statements.

➢ In the Intersect operation, the number of datatype and columns must be the

same.

➢ It has no duplicates and it arranges the data in ascending order by default.

Syntax

SELECT column_name FROM table1

INTERSECT

SELECT column_name FROM table2;

Example:

Using the above First and Second table.

Intersect query will be:

SELECT * FROM First

INTERSECT

SELECT * FROM Second;

The result set table will look like:

ID NAME

3 DINESH

4. Minus

➢ It combines the result of two SELECT statements. Minus operator is

used to display the rows which are present in the first query but absent

in the second query.

➢ It has no duplicates and data arranged in ascending order by default.

Syntax:

SELECT column_name FROM table1

MINUS

SELECT column_name FROM table2;

Example

Using the above First and Second table.

Minus query will be:

SELECT * FROM First

MINUS

SELECT * FROM Second;

The result set table will look like:

ID NAME

1 ARUN

2 BALA

9. SQL Aggregate Functions

SQL aggregation function is used to perform the calculations on multiple rows of a

single column of a table. It returns a single value.

It is also used to summarize the data.

Types of SQL Aggregation Function

1.Count()

2.Sum()

3.Avg()

4.Max()

5.Min()

1. COUNT FUNCTION

COUNT function is used to Count the number of rows in a database table. It can

work on both numeric and non-numeric data types.

COUNT function uses the COUNT(*) that returns the count of all the rows in a

specified table. COUNT(*) considers duplicate and Null.

Syntax:

COUNT(*) or COUNT([ALL|DISTINCT] expression)

PRODUCT_MAST

 COUNT()

SELECT COUNT(*) FROM PRODUCT_MAST;

Output:

10

 COUNT with WHERE

SELECT COUNT(*) FROM PRODUCT_MAST WHERE RATE>=20;

Output:

7

 COUNT() with DISTINCT

SELECT COUNT(DISTINCT COMPANY) FROM PRODUCT_MAST;

Output:

3

 COUNT() with GROUP BY

SELECT COMPANY COUNT(*) FROM PRODUCT_MAST GROUP BY

COMPANY;

Output:

Com1 5

Com2 3

Com3 2

 COUNT() with HAVING

 SELECT COMPANY COUNT(*) FROM PRODUCT_MAST GROUP BY

COMPANY HAVING COUNT(*)>2;

Output:

Com1 5

Com2 3

2. SUM Function

Sum function is used to calculate the sum of all selected columns. It works on

numeric fields only.

Syntax

SUM() or SUM([ALL|DISTINCT] expression)

 SUM()

SELECT SUM(COST) FROM PRODUCT_MAST;

Output:

670

 SUM() with WHERE

SELECT SUM(COST) FROM PRODUCT_MAST WHERE QTY>3;

Output:

320

 SUM() with GROUP BY

SELECT SUM(COST) FROM PRODUCT_MAST WHERE QTY>3 GROUP BY

COMPANY;

Output:

Com1 150

Com2 170

 SUM() with HAVING

 SELECT COMPANY, SUM(COST) FROM PRODUCT_MAST GROUP

BY COMPANY HAVING SUM(COST)>=170;

Output:

Com1 335

Com3 170

3. AVG function

The AVG function is used to calculate the average value of the numeric type. AVG

function returns the average of all non-Null values.

Syntax

AVG()

or

AVG([ALL|DISTINCT] expression)

Example:

SELECT AVG(COST) FROM PRODUCT_MAST;

Output:

67.00

4. MAX Function

MAX function is used to find the maximum value of a certain column. This

function determines the largest value of all selected values of a column.

Syntax

MAX()

or

MAX([ALL|DISTINCT] expression)

Example:

SELECT MAX(RATE) FROM PRODUCT_MAST;

30

5. MIN Function

MIN function is used to find the minimum value of a certain column. This function

determines the smallest value of all selected values of a column.

Syntax

MIN()

or

MIN([ALL|DISTINCT] expression)

Example:

SELECT MIN(RATE) FROM PRODUCT_MAST;

Output:

10

10. SQL NULL

The SQL NULL is the term used to represent a missing value. A NULL value in a

table is a value in a field that appears to be blank.

A field with a NULL value is a field with no value. It is very important to

understand that a NULL value is different than a zero value or a field that contains

spaces.

Syntax

The basic syntax of NULL while creating a table.

SQL> CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25) ,

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

Here, NOT NULL signifies that column should always accept an explicit value of

the given data type. There are two columns where we did not use NOT NULL,

which means these columns could be NULL.

A field with a NULL value is the one that has been left blank during the record

creation.

Example

The NULL value can cause problems when selecting data. However, because

when comparing an unknown value to any other value, the result is always

unknown and not included in the results. You must use the IS NULL or IS NOT

NULL operators to check for a NULL value.

Consider the following CUSTOMERS table having the records as shown below.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | RAMESH | 32 | AGRA | 2000.00 |

| 2 | DINESH | 25 | Delhi | 1500.00 |

| 3 | CHARLES | 23 | CALCUTTTA | 2000.00 |

| 4 | DINESH | 25 | Mumbai | 6500.00 |

| 5 | GANESH | 27 | Bhopal | 8500.00 |

| 6 | KAMAL | 22 | CHENNAI | |

| 7 | VIMAL | 24 | BANGLORE | |

+----+----------+-----+-----------+----------+

 IS NOT NULL:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM CUSTOMERS

 WHERE SALARY IS NOT NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | AGRA | 2000.00 |

| 2 | DINESH | 25 | Delhi | 1500.00 |

| 3 | CHARLES | 23 | CALCUTTA | 2000.00 |

| 4 | DINESH | 25 | Mumbai | 6500.00 |

| 5 | GANESH | 27 | Bhopal | 8500.00 |

+----+----------+-----+-----------+----------+

 IS NULL:

SQL> SELECT ID, NAME, AGE, ADDRESS, SALARY

 FROM CUSTOMERS

 WHERE SALARY IS NULL;

This would produce the following result −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 6 | KAMAL | 22 | CHENNAI | |

| 7 | MAHESH | 24 | BANGLORE | |

+----+----------+-----+-----------+----------+

11.SQL Sub Query

A Sub query is a query within another SQL query and embedded within the

WHERE clause.

Important Rule:

➢ A subquery can be placed in a number of SQL clauses like WHERE

clause, FROM clause, HAVING clause.

➢ You can use Subquery with SELECT, UPDATE, INSERT, DELETE

statements along with the operators like =, <, >, >=, <=, IN,

BETWEEN, etc.

➢ A subquery is a query within another query. The outer query is known

as the main query, and the inner query is known as a subquery.

➢ Sub queries are on the right side of the comparison operator.

➢ A subquery is enclosed in parentheses.

➢ In the Subquery, ORDER BY command cannot be used. But GROUP

BY command can be used to perform the same function as ORDER

BY command.

1. Sub queries with the Select Statement

SQL subqueries are most frequently used with the Select statement.

Syntax

SELECT column_name

FROM table_name

WHERE column_name expression operator

(SELECT column_name from table_name WHERE ...);

Example

Consider the EMPLOYEE table have the following records:

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 ARJUN 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

6 Harry 42 China 4500.00

7 Jackson 25 Mizoram 10000.00

The sub query with a SELECT statement will be:

SELECT * FROM EMPLOYEE

WHERE ID IN (SELECT ID FROM EMPLOYEE

 WHERE SALARY > 4500);

 Result:

ID NAME AGE ADDRESS SALARY

4 ARJUN 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

7 Jackson 25 Mizoram 10000.00

2. Subqueries with the INSERT Statement

➢ SQL sub query can also be used with the Insert statement. In the insert

statement, data returned from the sub query is used to insert into

another table.

➢ In the sub query, the selected data can be modified with any of the

character, date functions.

Syntax:

INSERT INTO table_name (column1, column2, column3....)

SELECT * FROM table_name WHERE VALUE OPERATOR

Example

Consider a table EMPLOYEE_BKP with similar as EMPLOYEE.

Now use the following syntax to copy the complete EMPLOYEE table into the

EMPLOYEE_BKP table.

INSERT INTO EMPLOYEE_BKP

 SELECT * FROM EMPLOYEE

WHERE ID IN (SELECT ID FROM EMPLOYEE);

3. Subqueries with the UPDATE Statement

The subquery of SQL can be used in conjunction with the Update statement. When

a subquery is used with the Update statement, then either single or multiple

columns in a table can be updated.

Syntax

UPDATE table SET column_name = new_value WHERE VALUE OPERATOR

(SELECT COLUMN_NAME

 FROM TABLE_NAME WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of

EMPLOYEE table. The given example updates the SALARY by .25 HARIes in

the EMPLOYEE table for all employee whose AGE is greater than or equal to 29.

UPDATE EMPLOYEE SET SALARY = SALARY * 0.25 WHERE AGE IN (SE

LECT AGE FROM CUSTOMERS_BKP WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the

following records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 1625.00

5 Kathrin 34 Bangalore 2125.00

6 Harry 42 China 1125.00

7 Jackson 25 Mizoram 10000.00

4. Subqueries with the DELETE Statement

The subquery of SQL can be used in conjunction with the Delete statement just

like any other statements mentioned above.

Syntax

DELETE FROM TABLE_NAME WHERE VALUE OPERATOR (SELECT CO

LUMN_NAME FROM TABLE_NAME

 WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of

EMPLOYEE table. The given example deletes the records from the EMPLOYEE

table for all EMPLOYEE whose AGE is greater than or equal to 29.

DELETE FROM EMPLOYEE WHERE AGE IN (SELECT AGE FROM EMPLO

YEE_BKP WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the

following records.

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

7 Jackson 25 Mizoram 10000.00

12.SQL VIEWS:

➢ A view is nothing more than a SQL statement that is stored in the database

with an associated name.

➢ A view is actually a composition of a table in the form of a predefined SQL

query.

➢ A view can contain all rows of a table or select rows from a table.

➢ A view can be created from one or many tables which depends on the

written SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:

➢ Structure data in a way that users or classes of users find natural or intuitive.

➢ Restrict access to the data such that a user can see and modify exactly what

they need and no more.

➢ Summarize data from various tables which can be used to generate reports.

Creating Views:

 Database views are created using the CREATE VIEW statement. Views can

be created from a single table,multiple tables, or another view.

To create a view, a user must have the appropriate system privilege according to

the specific implementation.

The basic CREATE VIEW syntax is as follows:

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

Example:

Consider the CUSTOMERS table having the following records

ID

NAME

AGE

ADDRESS

SALARY

1

Ramesh 32 Ahmedabad 2000.00

2

Arun 25 Delhi 1500.00

3

 Balaji 23 Calcutta 2000.00

4

Charles 25 Mumbai 6500.00

 Hari 27 Banglore 8500.00

5

6

Kamal 22 CHENNAI 4500.00

7

Mahesh 24 Andra 10000.00

 To create a view from CUSTOMERS table. This view would be used to have

customer name and age from CUSTOMERS table:

SQL > CREATE VIEW CUSTOMERS_VIEW

SELECT name, age FROM CUSTOMERS;

 OUTPUT :

SQL > SELECT * FROM CUSTOMERS_VIEW;

ID

NAME

AGE

1

Ramesh 32

2

Arun 25

3

 Balaji 23

4

Charles 25

5

Hari 27

 Kamal 22

6

7

Mahesh 24

Updating a View:

Example: QUERY to update the age of Ramesh:

SQL > UPDATE CUSTOMERS_VIEW SET AGE = 35 WHERE

name='Ramesh';

ID

NAME AGE ADDRESS SALARY

1

Ramesh 35 Ahmedabad 2000.00

2

Arun 25 Delhi 1500.00

3

 Balaji 23 Calcutta 2000.00

4

Charles 25 Mumbai 6500.00

5

Hari 27 Banglore 8500.00

6

Kamal 22 CHENNAI 4500.00

7

Mahesh 24 Andra 10000.00

Inserting Rows into a View:

 Rows of data can be inserted into a view. The same rules that

apply to the UPDATE command also apply to the INSERT command.

Here, we cannot insert rows in CUSTOMERS_VIEW because we have not

included all the NOT NULL columns in this view, otherwise you can insert rows in

a view in similar way as you insert them in a table.

Deleting Rows into a View:

 Rows of data can be deleted from a view. The same rules that apply to the

UPDATE and INSERT commands apply to the DELETE command.

Following is an example to delete a record having AGE= 22.

SQL > DELETE FROM CUSTOMERS_VIEW WHERE age = 22;

This would delete a row from the base table CUSTOMERS and same would

reflect in the view itself.

ID

NAME AGE ADDRESS SALARY

1

Ramesh 35 Ahmedabad 2000.00

2

Arun 25 Delhi 1500.00

3

 Balaji 23 Calcutta 2000.00

4

Charles 25 Mumbai 6500.00

 Hari 27 Banglore 8500.00

5

7

Mahesh 24 Andra 10000.00

Dropping Views:

To drop CUSTOMERS_VIEW from CUSTOMERS table:

DROP VIEW CUSTOMERS_VIEW

13.Join Operations:

A Join operation combines related tuples from different relations, if and only if a

given join condition is satisfied. It is denoted by ⋈.

Example:

EMPLOYEE

EMP_CODE EMP_NAME

101 Stephan

102 Jack

103 Harry

SALARY

Operation: (EMPLOYEE ⋈ SALARY)

EMP_CODE EMP_NAME SALARY

101 Stephan 50000

102 Jack 30000

103 Harry 25000

Types of Join operations:

1. Natural Join:

➢ A natural join is the set of tuples of all combinations in R and S that are

equal on their common attribute names.

➢ It is denoted by ⋈.

Example: Let's use the above EMPLOYEE table and SALARY table:

Input: EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

EMP_CODE SALARY

101 50000

102 30000

103 25000

Output:

EMP_NAME SALARY

Stephan 50000

Jack 30000

Harry 25000

2. Outer Join:

The outer join operation is an extension of the join operation. It is used to deal with

missing information.

Example:

 EMPLOYEE

EMP_NAME STREET CITY

Ram Civil line Mumbai

Shyam Park street Kolkata

Ravi M.G. Street Delhi

Hari Nehru nagar Hyderabad

FACT_WORKERS

EMP_NAME BRANCH SALARY

Ram Infosys 10000

Shyam Wipro 20000

Kuber HCL 30000

Hari TCS 50000

Input: (EMPLOYEE ⋈ FACT_WORKERS)

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru nagar Hyderabad TCS 50000

An outer join is basically of three types:

a. Left outer join

b. Right outer join

c. Full outer join

a. Left outer join:

➢ Left outer join contains the set of tuples of all combinations in R and

S that are equal on their common attribute names.

➢ In the left outer join, tuples in R have no matching tuples in S.

➢ It is denoted by ⋈ .

Example: EMPLOYEE

EMP_NAME STREET CITY

Ram Civil line Mumbai

Shyam Park street Kolkata

Ravi M.G. Street Delhi

Hari Nehru nagar Hyderabad

FACT_WORKERS

EMP_NAME BRANCH SALARY

Ram Infosys 10000

Shyam Wipro 20000

Kuber HCL 30000

Hari TCS 50000

Input:

EMPLOYEE ⋈ FACT_WORKERS

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

b. Right outer join:

o Right outer join contains the set of tuples of all combinations in R and S that

are equal on their common attribute names.

o In right outer join, tuples in S have no matching tuples in R.

o It is denoted by .

Example:

Input: EMPLOYEE ⋈ FACT_WORKERS

Output:

EMP_NAME BRANCH SALARY STREET CITY

Ram Infosys 10000 Civil line Mumbai

Shyam Wipro 20000 Park street Kolkata

Hari TCS 50000 Nehru street Hyderabad

Kuber HCL 30000 NULL NULL

c. Full outer join:

Full outer join is like a left or right join except that it contains all rows from both

tables.

In full outer join, tuples in R that have no matching tuples in S and tuples in S that

have no matching tuples in R in their common attribute name.

It is denoted by .

Example:

Input: EMPLOYEE ⋈ FACT_WORKERS

Output:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

Kuber NULL NULL HCL 30000

3. Equi join:

 It is also known as an inner join. It is the most common join. It is based on

matched data as per the equality condition. The equi join uses the comparison

operator(=).

Example:

CUSTOMER RELATION

CLASS_ID NAME

1 John

2 Harry

3 Jackson

PRODUCT

PRODUCT_ID CITY

1 Delhi

2 Mumbai

3 Noida

Input: CUSTOMER ⋈ PRODUCT

Output:

CLASS_ID NAME PRODUCT_ID CITY

1 John 1 Delhi

2 Harry 2 Mumbai

3 Harry 3 Noida

14.Integrity Constraints

o Integrity constraints are a set of rules. It is used to maintain the quality of

information.

o Integrity constraints ensure that the data insertion, updating, and other

processes have to be performed in such a way that data integrity is not

affected.

o Thus, integrity constraint is used to guard against accidental damage to the

database.

Types of Integrity Constraint

1. Domain constraints

➢ Domain constraints can be defined as the definition of a valid set of

values for an attribute.

➢ The data type of domain includes string, character, integer, date,

currency, etc. The value of the attribute must be available in the

corresponding domain.

Example:

2. Entity integrity constraints

➢ The entity integrity constraint states that primary key value can't be

null.

➢ This is because the primary key value is used to identify individual

rows in relation and if the primary key has a null value, then we can't

identify those rows.

➢ A table can contain a null value other than the primary key field.

Example:

3. Referential Integrity Constraints

➢ A referential integrity constraint is specified between two tables.

➢ In the Referential integrity constraints, if a foreign key in Table 1

refers to the Primary Key of Table 2, then every value of the Foreign

Key in Table 1 must be null or be available in Table 2.

Example:

4. Key constraints

➢ Keys are the entity set that is used to identify an entity within its entity

set uniquely.

➢ An entity set can have multiple keys, but out of which one key will be

the primary key. A primary key can contain a unique and null value in

the relational table.

Example:

Next Topic

 UNIT -4

 RELATIONAL DATA BASE DESIGN

1.What is Database Design?

➢ Database Design is a collection of processes that facilitate the designing,

development, implementation and maintenance of enterprise data management

systems.

➢ Properly designed database are easy to maintain, improves data consistency and

are cost effective in terms of disk storage space.

➢ The database designer decides how the data elements are relates with each others

and what data must be stored.

 The main objectives of database designing are to produce logical and physical designs

models of the proposed database system.

 The logical model concentrates on the data requirements and the data to be stored

independent of physical considerations. It does not concern itself with how the data will

be stored or where it will be stored physically.

 The physical data design model involves translating the logical design of the database

onto physical media using hardware resources and software systems such as database

management systems (DBMS).

 Importance of design:

➢ It helps to meet the requirements of the users

➢ Using database design the system have high performance.

➢ Database designing is crucial to high performance database system.

Database development life cycle

Requirements analysis

• Planning :

 This stages concerns with planning of entire Database Development Life

Cycle. It takes into consideration the Information Systems strategy of the

organization.

• System definition :

 This stage defines the scope and boundaries of the proposed database

system.

Database designing

• Logical model :

 This stage is concerned with developing a database model based on

requirements. The entire design is on paper without any physical implementations

or specific DBMS considerations.

• Physical model :

 This stage implements the logical model of the database taking into account

the DBMS and physical implementation factors.

https://www.guru99.com/images/DatabaseDesignProcess(1).png

Implementation

• Data conversion and loading :

 This stage is concerned with importing and converting data from the old

system into the new database.

• Testing :

 This stage is concerned with the identification of errors in the newly implemented

system .It checks the database against requirement specifications.

2. RELATIONAL DATA BASE DESIGN

 Relational database design (RDD) models information and data into a set

of tables with rows and columns. Each row of a relation/table represents a record, and

each column represents an attribute of data.

 The Structured Query Language (SQL) is used to manipulate relational

databases. The design of a relational database is composed of four stages, where the data

are modeled into a set of related tables. The stages are:

• Define relations/attributes

• Define primary keys

• Define relationships

• Normalization

Relational Database Design (RDD)

➢ Relational databases differ from other databases in their approach to organizing

data and performing transactions.

➢ In an RDD, the data are organized into tables and all types of data access are

carried out via controlled transactions.

➢ Relational database design satisfies the ACID (atomicity, consistency, integrity and

durability) properties required from a database design.

➢ Relational database design mandates the use of a database server in applications

for dealing with data management problems.

The four stages of an RDD are as follows:

• Relations and attributes:

 The various tables and attributes related to each table are identified. The

tables represent entities, and the attributes represent the properties of the respective

entities.

• Primary keys:

 The attribute or set of attributes that help in uniquely identifying a record

is identified and assigned as the primary key.

• Relationships:

 The relationships between the various tables are established with the

help of foreign keys. Foreign keys are attributes occurring in a table that are

primary keys of another table. The types of relationships that can exist between the

relations (tables) are:

o One to one

o One to many

o Many to many

 Relationships can be understand easily by using, an entity-relationship

diagram, which can be used to describe the entities, their attributes and the relationship in

a diagrammatic way.

3. Entity-Relationship Diagrams (or) E-R Diagram:

 Entity relationship diagram displays the relationships of entity set stored in a

database. ER diagrams help you to explain the logical structure of databases.

 An ER diagram looks very similar to the flowchart. However, ER Diagram includes

many specialized symbols, and its meanings make this model unique.

➢ ER model allows you to draw Database Design.

➢ It is an easy to use graphical tool for modeling data.

➢ Widely used in Database Design.

➢ It is a GUI representation of the logical structure of a Database.

➢ It helps you to identify the entities which exist in a system and the relationships

between those entities.

Applications of E-R Diagram:

The main reasons for using the ER Diagram

• Helps you to define terms related to entity relationship modeling.

• Provide a preview of how all your tables should connect, what fields are going to

be on each table.

• Helps to describe entities, attributes, relationships.

• ER diagrams are translatable into relational tables which allow you to build

databases quickly.

• ER diagrams can be used by database designers as a blueprint for implementing

data in specific software applications.

• The database designer gains a better understanding of the information to be

contained in the database with the help of ER diagram.

• ERD is allowed you to communicate with the logical structure of the database to

users

Components of Entity Relationship Model

ER Model is used to model the logical view of the system from data perspective which

consists of these components:

➢ Entity

➢ Entity Type,

➢ Entity Set

ENTITY:

 An entity can be place, person, object, event or a concept, which stores data in

the database. The characteristics of entities are must have an attribute, and a unique key.

Every entity is made up of some 'attributes' which represent that entity.

Examples of entities:

• Person: Employee, Student, Patient

Entity set:

 An entity set is a group of similar kind of entities. It may contain entities with

attribute sharing similar values. Entities are represented by their properties, which also

called attributes. All attributes have their separate values.

For example,

A student entity may have a name, age, class, as attributes.

Attribute(s):

Attributes are the properties which define the entity type. For example, Roll_No, Name,

DOB, Age, Address, Mobile_No are the attributes which defines entity type Student. In

ER diagram, attribute is represented by an oval.

 1.Key Attribute :

The attribute which uniquely identifies each entity in the entity set is called key attribute.

 For example, Roll_No will be unique for each student. In ER diagram, key attribute

is represented by an oval with underlying lines.

2.Composite Attribute :

An attribute composed of many other attribute is called as composite attribute. For

example, Address attribute of student Entity type consists of Street, City, State, and

Country. In ER diagram, composite attribute is represented by an oval comprising of

ovals.

3.Multivalued Attribute :

An attribute consisting more than one value for a given entity. For example, Phone_No

(can be more than one for a given student). In ER diagram, multivalued attribute is

represented by double oval.

4.Derived Attribute :

An attribute which can be derived from other attributes of the entity type is known as

derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, derived attribute

is represented by dashed oval.

 The complete entity type Student with its attributes can be represented as:

Relationship Type :

A relationship type represents the association between entity types.

 For example, ‘Enrolled in’ is a relationship type that exists between entity type

Student and Course. In ER diagram, relationship type is represented by a diamond and

connecting the entities with lines.

Relationship Set:

 A set of relationships of same type is known as relationship set. The

following relationship set depicts S1 is enrolled in C2, S2 is enrolled in C1 and S3 is

enrolled in C3.

Degree of a relationship set:

The number of different entity sets participating in a relationship set is called as degree of

a relationship set.

1.Unary Relationship :

When there is only ONE entity set participating in a relation, the relationship is called as

unary relationship. For example, one person is married to only one person.

2.Binary Relationship :

When there are TWO entities set participating in a relation, the relationship is called as

binary relationship.For example, Student is enrolled in Course.

3.n-ary Relationship :

 When there are n entities set participating in a relation, the relationship is called as

n-ary relationship.

Cardinality:

 The number of times an entity of an entity set participates in a relationship set

is known as cardinality. Cardinality can be of different types:

1.One to one :

When each entity in each entity set can take part only once in the relationship, the

cardinality is one to one. Let us assume that a male can marry to one female and a

female can marry to one male. So the relationship will be one to one.

 Using Sets, it can be represented as:

2.Many to one :

 When entities in one entity set can take part only once in the relationship set and

entities in other entity set can take part more than once in the relationship set,

cardinality is many to one.

Example:

 A student can take only one course but one course can be taken by many

students. So the cardinality will be n to 1. It means that for one course there can be n

students but for one student, there will be only one course.

 Using Sets, it can be represented as:

In this case, each student is taking only 1 course but 1 course has been taken by many

students.

3.Many to many:

 When entities in all entity sets can take part more than once in the relationship

cardinality is many to many.

Example:

 A student can take more than one course and one course can be taken by many

students. So the relationship will be many to many.

 Using sets, it can be represented as:

Participation Constraint:

Participation Constraint is applied on the entity participating in the relationship set.

1.Total Participation:

 Each entity in the entity set must participate in the relationship. If each student

must enroll in a course, the participation of student will be total. Total participation is

shown by double line in ER diagram.

2.Partial Participation :

 The entity in the entity set may or may NOT participate in the relationship. If some

courses are not enrolled by any of the student, the participation of course will be partial.

 The diagram depicts the ‘Enrolled in’ relationship set with Student Entity set

having total participation and Course Entity set having partial participation.

 Using set, it can be represented as,

Weak Entity Type and Identifying Relationship:

 An entity type has a key attribute which uniquely identifies each entity in the

entity set. Some entity type for which key attribute can’t be defined. These are called

Weak Entity type.

 A weak entity type is represented by a double rectangle. The participation of

weak entity type is always total. The relationship between weak entity type and its

identifying strong entity type is called identifying relationship and it is represented by

double diamond.

For example,

 A company may store the information of dependants (Parents, Children, Spouse) of

an Employee. But the dependents don’t have existence without the employee. So

Dependent will be weak entity type and Employee will be Identifying Entity type for

Dependant.

4.DATA ABSTRACTION:

Generalization, Specialization and Aggregation in ER model are used for data abstraction

in which abstraction mechanism is used to hide details of a set of objects.

Generalization :

 Generalization is the process of extracting common properties from a set of entities

and create a generalized entity from it.

It is a bottom-up approach in which two or more entities can be generalized to a

higher level entity if they have some attributes in common.

For Example, STUDENT and FACULTY can be generalized to a higher level entity

called PERSON as shown in Figure.

 In this case, common attributes like P_NAME, P_ADD become part of higher

entity (PERSON) and specialized attributes like S_FEE become part of specialized

entity(STUDENT).

Specialization :

 In specialization, an entity is divided into sub-entities based on their

characteristics. It is a top-down approach where higher level entity is specialized into two

or more lower level entities.

 For Example, EMPLOYEE entity in an Employee management system can be

specialized into DEVELOPER, TESTER etc. as shown in Figure.

 In this case, common attributes like E_NAME, E_SAL etc. become part of higher

entity (EMPLOYEE) and specialized attributes like TES_TYPE become part of

specialized entity (TESTER).

Aggregation :

 An ER diagram is not capable of representing relationship between an entity

and a relationship which may be required in some scenarios. In those cases, a relationship

with its corresponding entities is aggregated into a higher level entity.

 For Example, Employee working for a project may require some machinery. So,

REQUIRE relationship is needed between relationship WORKS_FOR and entity

MACHINERY. Using aggregation, WORKS_FOR relationship with its entities

EMPLOYEE and PROJECT is aggregated into single entity and relationship REQUIRE

is created between aggregated entity and MACHINERY

5.DATABASE KEYS

Keys

➢ Keys play an important role in the relational database.

➢ It is used to uniquely identify any record or row of data from the table. It is

also used to establish and identify relationships between tables.

For example: In Student table, ID is used as a key because it is unique for each student.

In PERSON table, passport_number, license_number, SSN are keys since they are unique

for each person.

Types of keys:

1. Primary key

 Primary key is the first key which is used to identify one and only one

instance of an entity uniquely.

➢ An entity can contain multiple keys as we saw in PERSON table. The

key which is most suitable from those lists become a primary key.

➢ In the EMPLOYEE table, ID can be primary key since it is unique for

each employee. In the EMPLOYEE table, we can even select

License_Number and Passport_Number as primary key since they are

also unique.

➢ For each entity, selection of the primary key is based on requirement

and developers.

2. Candidate key

A candidate key is an attribute or set of an attribute which can uniquely identify a

tuple.

➢ The remaining attributes except for primary key are considered as a

candidate key. The candidate keys are as strong as the primary key.

For example:

 In the EMPLOYEE table, id is best suited for the primary key. Rest of the

attributes like SSN, Passport_Number, and License_Number, etc. are considered as a

candidate key.

3. Super Key

 Super key is a set of an attribute which can uniquely identify a tuple. Super key

is a superset of a candidate key.

For example:

 In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME) the

name of two employees can be the same, but their EMPLYEE_ID can't be the same.

Hence, this combination can also be a key.

The super key would be EMPLOYEE-ID, (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

4. Foreign key

 Foreign keys are the column of the table which is used to point to the primary key

of another table.

Example:

In a company, every employee works in a specific department, and employee and

department are two different entities. So we can't store the information of the

department in the employee table. That's why we link these two tables through the

primary key of one table.

o We add the primary key of the DEPARTMENT table, Department_Id as a new

attribute in the EMPLOYEE table.

o Now in the EMPLOYEE table, Department_Id is the foreign key, and both the

tables are related.

 Unit-5

 NORMALIZATION

Normalization in DBMS:

 Normalization is a process of organizing the data in database to avoid data

redundancy, insertion anomaly, update anomaly & deletion anomaly.

Anomalies in DBMS

 There are three types of anomalies that occur when the database is not

normalized. These are – Insertion, update and deletion anomaly.

Example:

 a manufacturing company stores the employee details in a table named employee that

has four attributes: emp_id for storing employee’s id, emp_name for storing

employee’s name, emp_address for storing employee’s address and emp_dept for

storing the department details in which the employee works. At some point of time the

table looks like this:

The above table is not normalized. We will see the problems that we face when a table

is not normalized.

Update anomaly:

 In the above table we have two rows for employee Arun as he belongs

to two departments of the company. If we want to update the address of Arun then we

have to update the same in two rows or the data will become inconsistent. If somehow,

the correct address gets updated in one department but not in other then as per the

database, Arun would be having two different addresses, which is not correct and

would lead to inconsistent data.

Insert anomaly:

 Suppose a new employee joins the company, who is under training and

currently not assigned to any department then we would not be able to insert the data

into the table if emp_dept field doesn’t allow nulls.

Delete anomaly:

Suppose, if at a point of time the company closes the department D890 then deleting

the rows that are having emp_dept as D890 would also delete the information of

employee David since she is assigned only to this department.

To overcome these anomalies we need to normalize the data.

Normalization

Here are the most commonly used normal forms:

• First normal form(1NF)

• Second normal form(2NF)

• Third normal form(3NF)

• Boyce & Codd normal form (BCNF)

First normal form (1NF)

 An attribute (column) of a table cannot hold multiple values. It should hold only

atomic values.

Example: Suppose a company wants to store the names and contact details of its

employees. It creates a table that looks like this:

Two employees (John & Ram) are having two mobile numbers so the company stored

them in the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic

(single) values”, the emp_mobile values for employees John & Ram violates that rule.

 emp_id emp_name emp_address emp_mobile

 101 Hari New Delhi 8912312390

 102 John Kanpur

8812121212

9900012222

 103 Ravi Chennai 7778881212

 104 Ram Bangalore

9990000123

8123450987

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

 101 Hari New Delhi 8912312390

 102 John Kanpur 8812121212

 102 John Kanpur 9900012222

 103 Ravi Chennai 7778881212

 104 Ram Bangalore 9990000123

 104 Ram Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

• Table is in 1NF (First normal form)

• No non-prime attribute is dependent on the proper subset of any candidate key of

table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example:

 A school wants to store the data of teachers and the subjects they teach. They create a

table that looks like this: Since a teacher can teach more than one subjects, the table

can have multiple rows for a same teacher.

 teacher_id subject teacher_age

 111 Maths 38

 111 Physics 38

 222 Biology 38

 333 Physics 40

 333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in

2NF because non prime attribute teacher_age is dependent on teacher_id alone which

is a proper subset of candidate key. This violates the rule for 2NF as the rule says

“no non-prime attribute is dependent on the proper subset of any candidate key of the

table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

 teacher_id teacher_age

 111 38

 222 38

 333 40

teacher_subject table:

 teacher_id subject

 111 Maths

 111 Physics

 222 Biology

 333 Physics

 333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

• Table must be in 2NF

• Transitive functional dependency of non-prime attribute on any super key should

be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for

each functional dependency X-> Y at least one of the following conditions hold:

• X is a super key of table

• Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example:

 Suppose a company wants to store the complete address of each employee, they

create a table named employee_details that looks like this:

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/
https://beginnersbook.com/2015/04/super-key-in-dbms/

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part

of any candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is

dependent on emp_id that makes non-prime attributes (emp_state, emp_city &

emp_district) transitively dependent on super key (emp_id). This violates the rule of

3NF.

To make this table complies with 3NF we have to break the table into two tables to

remove the transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Arun 222008

1006 Sathis 282007

1101 Leo 292008

1201 Sathis 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter

than 3NF. A table complies with BCNF if it is in 3NF and for every functional

dependency X->Y, X should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one

department. They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/
https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning

D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table:

 emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Functional Dependency:

What is a Functional Dependency?

 Functional Dependency (FD) determines the relation of

one attribute to another attribute in a database management system (DBMS) system.

Functional dependency helps you to maintain the quality of data in the database.

 A functional dependency is denoted by an arrow →. The functional

dependency of X on Y is represented by X → Y. Functional Dependency plays a vital

role to find the difference between good and bad database design.

Example:

Employee number Employee Name Salary City

1 Dana 50000 San Francisco

2 Francis 38000 London

3 Andrew 25000 Tokyo

, city, salary, etc. By this, we can say that the city, Employee Name, and salary are

functionally depended .In this example, if we know the value of Employee number,

we can obtain Employee Name on Employee number.

Rules of Functional Dependencies

Below given are the Three most important rules for Functional Dependency:

• Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a

value of Y.

• Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also

holds. That is adding attributes which do not change the basic dependencies.

• Transitivity rule: This rule is very much similar to the transitive rule in algebra

if x -> y holds and y -> z holds, then x -> z also holds. X -> y is called as

functionally that determines y.

Types of Functional Dependencies

• Multivalued dependency:

• Trivial functional dependency:

• Non-trivial functional dependency:

• Transitive dependency:

Multivalued dependency in DBMS

 Multivalued dependency occurs in the situation where

there are multiple independent multivalued attributes in a single table. A multivalued

dependency is a complete constraint between two sets of attributes in a relation. It

requires that certain tuples be present in a relation.

Example:

Car_model Maf_year Color

H001 2017 Metallic

H001 2017 Green

H005 2018 Metallic

H005 2018 Blue

H010 2015 Metallic

H033 2012 Gray

In this example, maf_year and color are independent of each other but dependent on

car_model. In this example, these two columns are said to be multivalue dependent on

car_model.

This dependence can be represented like this:

car_model -> maf_year and car_model-> colour.

Trivial Functional dependency:

The Trivial dependency is a set of attributes which are called a trivial if the set of

attributes are included in that attribute.

So, X -> Y is a trivial functional dependency if Y is a subset of X.

For example:

Consider this table with two columns Emp_id and Emp_name.

{Emp_id, Emp_name} -> Emp_id is a trivial functional dependency as Emp_id is a

subset of {Emp_id,Emp_name}.

Non trivial functional dependency :

 Functional dependency which also known as a nontrivial dependency occurs

when A->B holds true where B is not a subset of A. In a relationship, if attribute B is

not a subset of attribute A, then it is considered as a non-trivial dependency.

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Apple Tim Cook 57

Example:

(Company} -> {CEO} (if we know the Company, we knows the CEO name)

But CEO is not a subset of Company, and hence it's non-trivial functional

dependency.

Transitive dependency:

A transitive is a type of functional dependency which happens when it is indirectly

formed by two functional dependencies.

Example:

Company CEO Age

Microsoft Satya Nadella 51

Google Sundar Pichai 46

Alibaba Jack Ma 54

{Company} -> {CEO} (if we know the compay, we know its CEO's name)

{CEO } -> {Age} If we know the CEO, we know the Age

According to the rule of rule of transitive dependency:

{ Company} -> {Age} should hold, that makes sense because if we know the

company name, we can know his age.

 Hints:Transitive dependency can only occur in a relation of three or more attributes.

Advantages of Functional Dependency

• Functional Dependency avoids data redundancy. Therefore same data do not

repeat at multiple locations in that database

• It helps you to maintain the quality of data in the database

• It helps you to defined meanings and constraints of databases

• It helps you to identify bad designs

• It helps you to find the facts regarding the database edsign

