IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM

DEPARTMENT OF MATHEMATICS

CLASS	: II BBA
SUBJECT NAME	: OPERATIONS RESEARCH
SUBJECT CODE	: 16CCBB8
SEM	: IV
UNIT	: V (REPLACEMENT MODELS)
FACULTY NAME	: Mrs.R.INDRADEVI

UNIT - V

PART- A

1. What are the replacement situations?

The replacement situations may be divided in to four categories.

- i. Replacement of capital equipment that suffers heavy depreciation in the course of time,eg.,machines tools,planes,etc.
- ii. Group replacement of items that fails completely.eg.,light bulbs
- iii. Problems of mortality and staffing
- iv. Miscellaneous problems.

2. Write down the formula for Average annual total cost.

Average annual total cost,
$$A(N) = \frac{TC}{N} = \frac{C-S}{N} + \frac{1}{N} \int_0^n f(t) dt$$

where, TC = capital cost - scrap value + maintenance cost

C = capital cost

S = scarp value

N = number of years

F(t) = maintenance cost

3. what is money value?

Since money has a value over time, we often say money is worth 10 percent per year. If we borrow Rs.100 at a 10 percent rate of interest per year and spend this amount today, then we have to pay Rs.110 after one year.

4. Define present worth factor.

If r is the rate of interest, then $(1+r)^{-n}$ is called the **present worth factor** (**PWF**). The expression $(1+r)^{-n}$ is known as the payment **compound amount factor** (caf) of one rupee spent in n years duration.

5. Define Discount rate.

The present worth factor of unit amount to be spent after one year is given by $V = (1+r)^{-1}$, when r is called the rate of interest and V is called **discount rate**.

6. Write about the two types of replacement policies.

We shall consider the following two types of replacement policies.

(i)**Individual replacement policy:** Under this policy, an item is replaced immediately after it fails.

(ii)**Group replacement policy:** Under this policy, we take decisions as to when all the items must be replaced, irrespective of the fact that items have failed or not, with a provision that if any item fails before the optimal time, it may be individually replaced.

PART –B

1)The cost of a machine is Rs.61,000 and its scrap value is Rs.1,000.The maintenance costs found from the past experiences are as follows:

Year	1	2	3	4	5	6	7	8
Maintenance cost in	1000	2500	4000	6000	9000	12000	16000	20000
rupees								

When should the machine be replaced?

Solution:

Given , the cost of a machine = Rs.61,000 and its scrap value = Rs.1,000.We calculate an Average total cost using the following table.

Year	Running cost	Cumulative	Depreciation	Total cost	Average cost
		running cost	cost C-S	TC	A(n)
1	2	3	4	5=3+4	6=5/1
1	1000	1000	60000	61000	61000
2	2500	3500	60000	63500	31750
3	4000	7500	60000	67500	22500
4	6000	13500	60000	73500	18375
5	9000	22500	60000	82500	16500
6	12000	34500	60000	94500	<u>15750</u>
7	16000	50500	60000	110500	15785.71
8	20000	70500	60000	130500	16312.50

From the table, it is noted that the Average cost A(n) is minimum in the 6^{th} year (Rs.15750).Hence the machine should be replaced after every 6 years.

2)A	machine	costs Rs.10.000.It	s operating cost and	resale values are	given below:
<i></i>	macmine	COSIS 113.10,000.10	s operating cost and	i i coale values ale	given below.

Year	1	2	3	4	5	6	7	8
Operating	1000	1200	1400	1700	2000	2500	3000	3500
cost								
Resale	6000	4000	3200	2600	2500	2400	2000	1600
value								

Determine at what time it should be replaced.

Solution:

Given , the cost of a machine = Rs.10,000. We calculate an Average total cost using the following table.

Year	f(n)	$\sum f(\mathbf{n})$	S	C-S	ТС	A (n) =
1	2		4	5	6=3+5	TC/n
		3				7 = 6/1
1	1000	1000	6000	4000	5000	5000
2	1200	2200	4000	6000	8200	4100
3	1400	3600	3200	6800	10400	3466.70
4	1700	5300	2600	7400	12700	3175
5	2000	7300	2500	7500	14800	2960
6	2500	9800	2400	7600	17400	<u>2900</u>
7	3000	12800	2000	8000	20800	2971.4
8	3500	16300	1600	8400	24700	3087.5

From the table, it is noted that the Average cost A(n) is minimum at the end of 6^{th} year (Rs.2900).Hence the machine should be replaced at the end of 6^{th} year.

3) The cost pattern for two machines A and B, when money value is not considered is given in the table below.

Year	Cost at the beginning of						
	year						
	Machine A	Machine B					
1	900	1400					
2	600	100					
3	700	700					

Find the cost pattern for each machine when money is worth 10 percent per year and hence find which machine is less costly.

Solution:

The total outlay for the three years for machine A = 900 + 600 + 700 = 2200.

Also for machine B = 1400 + 100 + 700 = 2200.

The total outlay for both the machines is the same for 3 years.Both the machines appear to be equally good in this case.

Present worth factor = $(1+r)^{-n} = (1+\frac{10}{100})^{-1} = \left(\frac{110}{100}\right)^{-1} = \frac{100}{110}$

Year	Discount co	ost (10% rate)
	Machine A	Machine B
1	900	1400
2	$600 \times \frac{100}{110} = 545.45$	$100 \times \frac{100}{110} = 90.91$
3	$700 \times \left(\frac{100}{110}\right)^{-1} = 578.51$	$700 \times \left(\frac{100}{110}\right)^2 = 578.51$
Total outlay	Rs.2,023.96	Rs.2,069.42

The outlay of machine A is less that of machine B.Hence, machine A will be preferred.

PART-C

1) A machine costs Rs.15000.The running cost for the different years are given below.

Year	1	2	3	4	5	6	7
Running							

cost	2500	3000	4000	5000	6500	8000	10000
		-					

Find the optimum replacement period if the capital is worth 10 percent per annum and has no salvage value.

Solution:

Present worth factor = V =
$$(1 + r)^{-1} = (1 + \frac{10}{100})^{-1} = 0.9091$$
.

Weighted average cost = W(n) = $\frac{C + \sum R_n V^{n-1} - S_n V^n}{\sum_V n - 1}$

Year (n)	Running cost	<i>V</i> ^{<i>n</i>-1}	$\sum V^{n-1}$	$R_{n-1}V^{n-1}$	$\sum R_n V^{n-1}$	$c+\sum R_n V^{n-1}$	W(n)
	<i>R</i> _{<i>n</i>-1}						
1	2500	1	1	2500	2500	17500	17500
2	3000	0.9091	1.9091	2727.3	5227.30	20227.30	10595.2
3	4000	0.8265	2.7356	3306	8533.30	23533.30	8602.60
4	5000	0.75134	3.486	3756.68	12289.98	27289.98	7826.34
5	6500	0.6830	4.169	4439.76	16729.74	31729.74	7610.87
6	8000	0.6209	4.7899	4967.61	21697.35	36697.35	7661.40
7	10000	0.5645	5.3544	5645	27342.42	42342.43	7907.96

The weighted average cost is minimum at the end of 5^{th} year.

 $R_4 < W(5) < R_6$ 6500< 7610.87 <8000

Hence, the optimum replacement period is every 5th year.