IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM.

DEPARTMENT OF MATHEMATICS

/		
(CLASS	: I BSc., IT
	SUBJECT NAME	: NUMERICAL ANALYSIS & STATISTICS
	SUBJECT CODE	: 16SACMA2
	SEMESTER	: 11
	UNIT	: V (CORRELATION & REGRESSION)
	FACULTY NAME	: DR. C. KAYALVIZHI

UNIT V

1. Correlation:

Correlation is a statistical technique which shows the relationship b/w two or more variables. The relationship b/w two series when measured quantitatively is known as correlation.

2. The types of correlation:

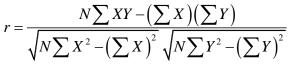
3 types:

- 1. Positive and Negative Correlation
- 2. Linear and Non-Linear Correlation
- 3. Simple and Multiple Correlation

3. Properties of correlation coefficient:

- 1. The correlation coefficient is unaffected by change of origin of reference and scale of reference.
- 2. The value of correlation coefficient lied between -1 and +1. $(-1 \le r \le +1)$

4. Karl Pearson's Co-efficients of Correlation:



5. The merits of coefficient of correlation:

- 1. It is superior to other methods. It is used calculated directly from the numerical values of each and every pair. Even if one value changes, r changes.
- 2. The population correlation coefficient can be estimated from the sample value.
- 3. The significance of the sample correlation coefficient can be tested.
- 4. Many formulae are available for its calculation. From certain scientific calculators, the value of r can be read out.

6. Spearman's Rank Correlation:

$$\rho = 1 - \left[\frac{6\sum d^2}{N(N^2 - 1)}\right]$$

6. Repeated Rank Correlation:

$$\rho = 1 - \left[\frac{6\sum d^2 + \frac{m_1(m_1^2 - 1)}{12} + \frac{m_2(m_2^2 - 1)}{12} + \dots}{N(N^2 - 1)}\right]$$

8. Merits and Demerits of Rank Correlation:

Merits:

- 1. It is easy to calculate.
- 2. It is simple to understand.
- 3. It can be applied to any type of data. Qualitative or quantitative. Hence correlation with qualitative data such as honesty, beauty can be found.
- 4. This is most suitable in case there are two attributes.

Demerits:

Therefore

- 1. It is only an approximately calculated measure as actual values are not used for calculations.
- 2. For large samples it is not convenient method.
- 3. Combined r of different series cannot be obtained as in case of mean and standard deviation.
- 4. It cannot be treated further algebraically.

9. Calculate the correlation co-efficient from following data:

X:	10	6	9	10	12	13	11	9
Y:	9	4	6	9	11	13	8	4

Solution:

Co	Coefficient of correlation: $r = \frac{N\sum XY - (\sum X)(\sum Y)}{\sqrt{N\sum X^2 - (\sum X)^2} \sqrt{N\sum Y^2 - (\sum Y)^2}}$										
	X	Y	XY	X^2	Y^2						
	10	9	90	100	81						
	6	4	24	36	16						
	9	6	54	81	36						
	10	9	90	100	81						
	12	11	132	144	121						
	13	13	169	169	169						
	11	8	88	121	64						
	9	4	36	81	16						
	$\sum X = 80$	$\sum Y = 64$	$\sum XY = 683$	$\sum X^2 = 832$	$\sum Y^2 = 584$						

Here, N = 8

$$r = \frac{8(683) - (80)(64)}{\sqrt{8(832) - (80)^2} \sqrt{8(584) - (64)^2}}$$

$$= \frac{5464 - 5120}{\sqrt{6656 - 6400} \sqrt{4672 - 4096}}$$

$$= \frac{344}{\sqrt{256} \sqrt{576}}$$

$$= \frac{344}{(16)(24)}$$

$$= \frac{344}{384}$$

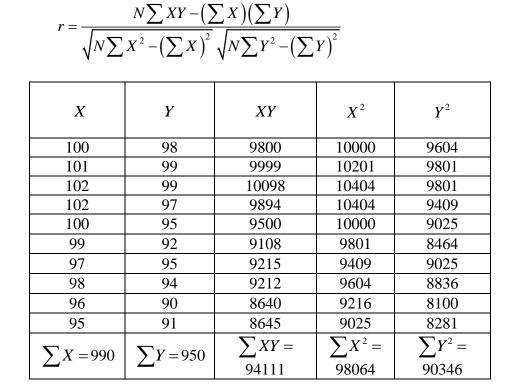
$$r = 0.896$$

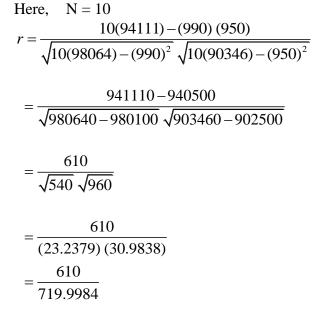
X:	100	101	102	102	100	99	97	98	96	95
Y:	98	99	99	97	95	92	95	94	90	91

10. Find Karl Pearson's coefficient of correlation from following data:

Solution:

Karl Pearson's coefficient of correlation:





Therefore r = 0.8472.

11. Find out the rank correlation	co-efficient from	following data:
-----------------------------------	-------------------	-----------------

Marks in Maths:	95	55	63	42	72	88	65	49	54	50
Marks in Statistics:	63	55	47	60	48	42	69	70	51	45

Solution:

Rank correlation:
$$\rho = 1 - \left[\frac{6\sum d^2}{N(N^2 - 1)}\right].$$

			´ _		
Maths: X	Statistics: Y	Rank X	Rank Y	d = X - Y	d^2
95	63	1	3	-2	4
55	55	6	5	1	1
63	47	5	8	-3	9
42	60	10	4	6	36
72	48	3	7	-4	16
88	42	2	10	-8	64
65	69	4	2	2	2
49	70	9	1	8	64
54	51	7	6	1	1
50	45	8	9	1	1

Here N = 10,
$$\sum d^2 = 200$$

 $\rho = 1 - \left[\frac{6(200)}{10(100^2 - 1)}\right]$
 $= 1 - \left[\frac{1200}{10(100 - 1)}\right]$
 $= 1 - \left[\frac{1200}{10(99)}\right]$
 $= 1 - \left[\frac{1200}{990}\right]$
 $= 1 - 1.2121$

Therefore $\rho = 0.2121$.

12. Find out the rank correlations co-efficient from following data:

x:	48	33	40	9	16	16	65	24	16	57
y:	13	13	24	6	15	4	20	9	6	19

Solution:

Repeated Rank correlations: $\rho = 1 - \left[\frac{6\sum d^2 + \frac{m_1(m_1^2 - 1)}{12} + \frac{m_2(m_2^2 - 1)}{12}}{N(N^2 - 1)} \right]$

X	Y	Rank X	Rank Y	d = X - Y	d^2
48	13	3	5.5	-2.5	6.25
33	13	5	5.5	-0.5	0.25
40	24	4	1	3	9
9	6	10	8.5	1.5	2.25
16	15	8	4	4	16
16	4	8	10	-2	4
65	20	1	2	-1	1
24	9	6	7	-1	1
16	6	8	8.5	-0.5	0.25
57	19	2	3	-1	1

Here N = 10,
$$\sum d^2 = 41$$
, $m_1 = 3$, $m_2 = 2$

$$\rho = 1 - \left[\frac{6(41) + \frac{3\left[(3)^2 - 1\right]}{12} + \frac{2\left[(2)^2 - 1\right]}{12}}{10(10^2 - 1)} \right]$$
$$= 1 - \left[\frac{256 + \frac{3\left[9 - 1\right]}{12} + \frac{2\left[4 - 1\right]}{12}}{10(100 - 1)} \right]$$
$$= 1 - \left[\frac{256 + \frac{3(8)}{12} + \frac{2(3)}{12}}{10(99)} \right]$$
$$= 1 - \left[\frac{256 + \frac{24}{12} + \frac{6}{12}}{990} \right]$$
$$= 1 - \left[\frac{256 + 2 + \frac{1}{2}}{990} \right]$$
$$= 1 - \left[\frac{\frac{256 + 2 + \frac{1}{2}}{990}}{990} \right]$$

$$=1 - \left[\frac{\frac{517}{2}}{\frac{990}{990}}\right]$$
$$=1 - \left[\frac{258.5}{990}\right]$$
$$=1 - 0.2611$$

Therefore $\rho = 0.7389$.

13. Regression:

The term regression analysis refers to the methods by which estimates are made of the value of a variable from a knowledge of the values of one or more other variables and to the measurement of the errors involved in this estimation process.

14. The uses of Regression:

- 1. Prediction of unknown value is made possible by regression analysis.
- 2. Nature of relationship: The regression device is useful in establishing and estimating the nature of the relationship b/w two variables.
- 3. Policy formulation.
- 4. Touch stone of hypothesis.

15. Write regression equations:

(1) The regression equation of Y on X:

$$(Y-Y) = b_{yx}(X-X)$$

Where b_{YX} is called the regression co-efficient of Y on X.

$$b_{YX} = r \frac{\sigma_X}{\sigma_Y}$$
$$b_{YX} = \frac{N \sum XY - (\sum X) (\sum Y)}{N \sum X^2 - (\sum X)^2}$$

(2) The regression equation of X on Y:

$$(\mathbf{X} \!-\! \mathbf{X}) \!=\! b_{XY}(Y \!-\! Y)$$

Where b_{XY} is called the regression co-efficient of X on Y.

$$b_{XY} = r \frac{\sigma_Y}{\sigma_X}$$
$$b_{XY} = \frac{N \sum XY - (\sum X) (\sum Y)}{N \sum Y^2 - (\sum Y)^2}$$

16. Properties of Rregression Co-efficients:

1. The correlation coefficient is the geometric mean between the two regression coefficients.

$$b_{YX} = r \frac{\sigma_X}{\sigma_Y}$$
$$b_{XY} = r \frac{\sigma_Y}{\sigma_X}$$
$$b_{YX} \cdot b_{XY} = r^2$$
$$r = \pm \sqrt{b_{YX} \cdot b_{XY}}$$

r is positive if the two regression coefficient are positive.

r is negative if the two regression coefficient are negative.

2. If one regression coefficient is greater than one, the other regression coefficient is less than one

$$r^{2} \leq 1$$
$$b_{YX} \cdot b_{XY} \leq 1$$
$$b_{YX} \leq \frac{1}{b_{XY}}$$

Therefore, if one regression coefficient is greater than one, the other regression coefficient is less than one.

17. When $\overline{X} = 40$, $\overline{Y} = 60$, $\sigma_X = 10$, $\sigma_Y = 15$ and r = 0.7 give the regression equation of Y on X.

Solution:

Given: $\overline{X} = 40, \overline{Y} = 60, \sigma_X = 10, \sigma_Y = 15 \text{ and } r = 0.7.$ **To find:** The regression equation of Y on X: $(Y - \overline{Y}) = b_{YX}(X - \overline{X})$

Where
$$b_{YX} = r \frac{\sigma_X}{\sigma_Y}$$

= 0.7 $\frac{10}{15}$
= 0.7(0.6666)
= 0.4666
(Y-60) = 0.4666(X-40)
(Y-60) = 0.4666X-18.664
Y = 0.4666X-18.664+60
Y = 0.4666X-41.336