IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM

DEPARTMENT OF MATHEMATICS

UNIT-V

PART -A

1. Define gradient.

Let $\varphi(x,y,z)$ be a scalar point function and is continuously differentiable, then the vector $\nabla \varphi = \vec{l} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$ is called the **gradient** of the scalar function φ . Grad $\varphi = \nabla \varphi$.

2. Define Divergence.

The **divergence** of the vector function \vec{F} is defined as

$$
\nabla. \overrightarrow{F} = (\overrightarrow{i} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}).(F_1 \overrightarrow{i} + F_2 \overrightarrow{j} + F_3 \overrightarrow{k}).
$$

$$
= \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}
$$

3. Define curl.

The **curl or rotation** of \overrightarrow{F} is defined by

$$
\nabla \times \vec{F} = (\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \times (F_1 \vec{i} + F_2 \vec{j} + F_3 \vec{k})
$$

$$
= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}
$$

4. Define solenoidal.

A vector \vec{F} is said to be **solenoidal** if its divergence is zero. That is, $\nabla^{\circ} \vec{F} = 0$ or $div \vec{F} = 0$.

5. Define irrotational.

A vector \vec{F} is said to be **irrotational** if its curl is zero. That is, $\nabla \times \vec{F} = 0$ or *curl* $\vec{F} = 0$.

PART –B

1. Find the directional derivative of $f = xyz$ at $(1,1,1)$ in the direction of $\vec{i} + \vec{j} + \vec{k}$.

Solution:

Unit normal vector $\hat{n} = \frac{\vec{a}}{4\pi}$ $\frac{\vec{a}}{|a|} = \frac{\vec{l} + \vec{j} + \vec{k}}{\sqrt{3}}$ $\sqrt{}$

grad $f = \nabla f$

$$
= \vec{i} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial f}{\partial z}
$$

$$
= \vec{i} \frac{\partial}{\partial x} (xyz) + \vec{j} \frac{\partial}{\partial y} (xyz) + \vec{k} \frac{\partial}{\partial z} (xyz)
$$

$$
= \vec{i} (yz) + \vec{j} (xz) + \vec{k} (xy)
$$

grad f $_{(1,1,1)} = \vec{i} + \vec{j} + \vec{k}$

Directional derivative = grad f. \hat{n}

$$
= (\vec{l} + \vec{j} + \vec{k}), \frac{\vec{l} + \vec{j} + \vec{k}}{\sqrt{3}}
$$

$$
= \frac{1 + 1 + 1}{\sqrt{3}} = \frac{3}{\sqrt{3}}
$$

2. Find the normal derivative of $f = xy + yz + zx$ at $(-1,1,1)$.

Solution:

Normal derivative of $f = |grad f|$ Given $f = xy + yz + zx$

grad $f = \nabla f$

$$
= \vec{i}\frac{\partial f}{\partial x} + \vec{j}\frac{\partial f}{\partial y} + \vec{k}\frac{\partial f}{\partial z}
$$

$$
= \vec{i}\frac{\partial}{\partial x}(xy + yz + zx) + \vec{j}\frac{\partial}{\partial y}(xy + yz + zx) + \vec{k}\frac{\partial}{\partial z}(xy + yz + zx)
$$

$$
= \vec{t}(y+z) + \vec{j}(x+z) + \vec{k}(y+x)
$$

grad f $_{(-1,1,1)} = \overrightarrow{2i} + 0 \overrightarrow{j} + 0 \overrightarrow{k}$

Normal derivative of $f = |grad f|$

$$
= \sqrt{2^2 + 0^2 + 0^2} = 2
$$

3. Find a unit vector normal to the surface $x^2 + y^2 - z = 10$ at (1,1,1).

Solution:

Unit normal vector = $\hat{n} = \frac{\nabla}{\nabla n}$ $\frac{v_1}{|\nabla f|}$ $f = x^2 + y^2$ $\nabla f = \vec{l} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial}{\partial y}$ ∂ $=\vec{l}\frac{\partial}{\partial n}$ д $x^2 + y^2 - z - 10 + j\frac{\partial}{\partial x}$ д $x^2 + y^2 - z - 10$) + \vec{k} $\frac{\partial}{\partial z}$ д $2 \perp \sqrt{2}$ $= 2x\vec{i} + 2y\vec{j} - \vec{k}$ $(\nabla f)_{(1,1,1)} = 2\vec{i} + 2\vec{j} - \vec{k}$ $|\nabla f|_{(1,1,1)} = \sqrt{4+4+1} = 3$ Unit normal vector = $\hat{n} = \frac{\nabla}{\nabla n}$ $\frac{\nabla f}{|\nabla f|} = \frac{\overrightarrow{2i} + \overrightarrow{2j} - \overrightarrow{k}}{3}$ $\frac{2j - \kappa}{3}$

4. If $\nabla \varphi = 2xyz\vec{i} + x^2z\vec{j} + x^2y\vec{k}$, find the scalar potential φ .

Solution:

Given
$$
\nabla \varphi = 2xyz \vec{\imath} + x^2z \vec{\jmath} + x^2y \vec{k}
$$

\n $\vec{\imath} \frac{\partial \varphi}{\partial x} + \vec{\jmath} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z} = 2xyz \vec{\imath} + x^2z \vec{\jmath} + x^2y \vec{k}$

Equating like coefficients on both sides we get ,

$$
\frac{\partial \varphi}{\partial x} = 2xyz \qquad \dots (1)
$$

$$
\frac{\partial \varphi}{\partial y} = x^2 z \qquad ...(2)
$$

$$
\frac{\partial \varphi}{\partial z} = x^2 y \qquad ...(3)
$$

Integrating (1) we get, $\int \partial \varphi = \int 2xyz \, \partial x \implies \varphi = x^2yz + f(y,z)$...(4) Integrating (2) we get, $\int \partial \varphi = \int x^2 z \quad \partial y \implies \varphi = x^2 y z + f(x, z) \quad ...(5)$ Integrating (3) we get, $\int \partial \varphi = \int x^2 y \ \partial z \implies \varphi = x^2 yz + f(x,y) \dots (6)$ From (4),(5),(6) we get, $\varphi = x^2yz +c$

5. Find $\nabla^{\circ} \vec{F}$ and $\nabla \times \vec{F}$ of the vector point function $\vec{F} = xz^3 \vec{\i} - 2x^2 yz \vec{\j} + 2yz^4 \vec{k}$ at the point (1,-1,1). **Solution:** $\nabla \cdot \vec{F} = (\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (xz^3 \vec{i} - 2x^2 yz \vec{j} + 2yz^4 \vec{k})$ $=\frac{\partial}{\partial x}$ ∂ 3) + $\frac{\partial}{\partial}$ ∂ ² yz) + $\frac{\partial}{\partial z}$ (2yz⁴) $= z^3 - 2x^2 z + 8z^3$ $(\nabla. \overrightarrow{F})_{(1,-1,1)} = 1 - 2 - 8 = -9$ $\nabla \times \vec{F} =$ \vec{l} \vec{l} \vec{k} д д д д д д xz^3 $-2x^2 yz$ $2yz^4$ | $= \vec{i} \left[\frac{\partial}{\partial x} \right]$ $\frac{\partial}{\partial y}(2yz^4) + \frac{\partial}{\partial z}$ $\frac{\partial}{\partial z}(2x^2 yz)\Big]$ - $\vec{j}\Big[\frac{\partial}{\partial z}$ $\frac{\partial}{\partial x}(2yz^4) - \frac{\partial}{\partial z}$ ∂ $\left[\frac{3}{2}\right]+ \vec{k}\left[\frac{\partial}{\partial x}\right]$ ∂ $\overline{\mathbf{c}}$ д д 3) $= \vec{i}(2z^4 + 2x^2 y) - \vec{j}(0 - 3xz^2) + \vec{k}(-4xyz-0)$

 $(\nabla \times \vec{F})_{(1,-1,1)} = \vec{i}(2-2)$) – $\vec{j}(0-3) + \vec{k}(4)$ $=3\vec{i} + 4\vec{k}$

6. Show that the vector $\vec{F} = z\vec{i} + x\vec{j} + y\vec{k}$ **is solenoidal**

Solution:

If div $\vec{F} = 0$, then \vec{F} is solenoidal. Now, div $\vec{F} = \nabla \cdot \vec{F}$ $= (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}) \cdot (\vec{z} + \vec{x} + \vec{j} + \vec{y} \cdot \vec{k})$ $=\frac{\partial}{\partial x}$ ∂ ∂ ∂ $\frac{\partial}{\partial z}(y)$ $= 0+0+0 = 0$

Hence \vec{F} is solenoidal.

7. Show that the vector $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ **is irrotational.**

Solution:

$$
\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & zx & xy \end{vmatrix}
$$

= $\vec{i} \left[\frac{\partial}{\partial y} (xy) - \frac{\partial}{\partial z} (zx) \right] - \vec{j} \left[\frac{\partial}{\partial x} (xy) - \frac{\partial}{\partial z} (yz) \right] + \vec{k} \left[\frac{\partial}{\partial x} (zx) - \frac{\partial}{\partial y} (yz) \right]$
= $\vec{i} (x - x) - \vec{j} (y - y) + \vec{k} (z - z)$
= $0\vec{i} + 0\vec{j} + 0\vec{k} = 0$

 $\nabla \times \vec{F} = 0.$

Therefore, the vector $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ is irrotational.

PART-C

1. **Find the value of the constant a,b,c** so that the vector $\vec{F} = (x + 2y +$ $az\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.

Solution:

$$
\nabla \times \overrightarrow{F} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + 2y + az & bx - 3y - z & 4x + cy + 2z \end{vmatrix}
$$

$$
= \vec{t} \left[\frac{\partial}{\partial y} (4x + cy + 2z) - \frac{\partial}{\partial z} (bx - 3y - z) \right] - \vec{j} \left[\frac{\partial}{\partial x} (4x + cy + 2z) - \frac{\partial}{\partial z} (x + 2y + az) \right]
$$

$$
= \vec{t} (c + 1) - \vec{j} (4 - a) + \vec{k} (b - 2)
$$

Given \vec{F} is irrotational.

That is, $\nabla \times \vec{F} = 0$.

That is, $\vec{i}(c + 1)$) – $\vec{j}(4 - a) + \vec{k}(b-2) = 0$.

That is,each component should be zero.

That is, $(c + 1) = 0$; $(a - 4) = 0$; $(b-2) = 0$.

That is, $c = -1$, $a = 4$, $b = 2$.

2. (i)Prove that $\nabla \cdot (\vec{F} \pm \vec{G}) = \nabla \cdot \vec{F} \pm \nabla \cdot \vec{G}$ (ii)Prove that $\nabla \times (\vec{F} \pm \vec{G}) = \nabla \times \vec{F} \pm \nabla \times \vec{G}$

Proof:

(i) $\nabla \cdot (\overrightarrow{F} \pm \overrightarrow{G}) = \nabla \cdot \overrightarrow{F} \pm \nabla \cdot \overrightarrow{G}$

$$
\nabla \cdot (\vec{F} \pm \vec{G}) = (\vec{\iota} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (\vec{F} \pm \vec{G})
$$

\n
$$
= \vec{\iota} \frac{\partial}{\partial x} (\vec{F} \pm \vec{G}) + \vec{j} \frac{\partial}{\partial y} (\vec{F} \pm \vec{G}) + \vec{k} \frac{\partial}{\partial z} (\vec{F} \pm \vec{G})
$$

\n
$$
= \vec{\iota} \cdot (\frac{\partial \vec{F}}{\partial x} \pm \frac{\partial \vec{G}}{\partial x}) + \vec{j} \cdot (\frac{\partial \vec{F}}{\partial y} \pm \frac{\partial \vec{G}}{\partial y}) + \vec{k} \cdot (\frac{\partial \vec{F}}{\partial z} \pm \frac{\partial \vec{G}}{\partial z})
$$

\n
$$
= (\vec{\iota} \cdot \frac{\partial \vec{F}}{\partial x} + \vec{j} \cdot \frac{\partial \vec{F}}{\partial y} + \vec{k} \cdot \frac{\partial \vec{F}}{\partial z}) \pm (\vec{\iota} \cdot \frac{\partial \vec{G}}{\partial x} + \vec{j} \cdot \frac{\partial \vec{G}}{\partial y} + \vec{k} \cdot \frac{\partial \vec{G}}{\partial z})
$$

 $\nabla. (\overrightarrow{F} \pm \overrightarrow{G}) = \nabla. \overrightarrow{F} \pm \nabla. \overrightarrow{G}$

 $\nabla \times (\vec{F} \pm \vec{G}) = (\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \times (\vec{F} \pm \vec{G})$ = $\vec{i} \times \frac{\partial}{\partial x}(\vec{F} \pm \vec{G}) + \vec{j} \times \frac{\partial}{\partial y}(\vec{F} \pm \vec{G}) + \vec{k} \times \frac{\partial}{\partial z}(\vec{F} \pm \vec{G})$ $= \vec{l} \times \left(\frac{\partial \vec{F}}{\partial x} \pm \frac{\partial \vec{G}}{\partial x}\right) + \vec{J} \times \left(\frac{\partial \vec{F}}{\partial y} \pm \frac{\partial \vec{G}}{\partial y}\right) + \vec{k} \times \left(\frac{\partial \vec{F}}{\partial z} \pm \frac{\partial \vec{G}}{\partial z}\right)$ $= \vec{i} \times \frac{\partial \vec{F}}{\partial x} \pm \vec{i} \times \frac{\partial \vec{G}}{\partial x} + \vec{j} \times \frac{\partial \vec{F}}{\partial y} \pm \vec{j} \times \frac{\partial \vec{G}}{\partial y} + \vec{k} \times \frac{\partial \vec{F}}{\partial z} \pm \vec{k} \times \frac{\partial \vec{G}}{\partial z}$ = $(\vec{i} \times \frac{\partial \vec{F}}{\partial x} + \vec{j} \times \frac{\partial \vec{F}}{\partial y} + \vec{k} \times \frac{\partial \vec{F}}{\partial z}) \pm (\vec{i} \times \frac{\partial \vec{G}}{\partial x} + \vec{j} \times \frac{\partial \vec{G}}{\partial y} + \vec{k} \times \frac{\partial \vec{G}}{\partial z})$ $\nabla \times (\overrightarrow{F} \pm \overrightarrow{G}) = \nabla \times \overrightarrow{F} \pm \nabla \times \overrightarrow{G}$

(ii) $\nabla \times (\vec{F} \pm \vec{G}) = \nabla \times \vec{F} \pm \nabla \times \vec{G}$