IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM

DEPARTMENT OF MATHEMATICS

/		
(CLASS	: I B.Sc.,PHYSICS
	SUBJECT NAME	: ODE,PDE & LAPLACE TRANSFORMS
	SUBJECT CODE	: 16SACMM3
	SEM	: 11
	UNIT	: V (VECTOR ANALYSIS)
	FACULTY NAME	: Mrs.R.INDRADEVI
· /		

UNIT-V

PART -A

1. Define gradient.

Let $\varphi(x,y,z)$ be a scalar point function and is continuously differentiable, then the vector $\nabla \varphi = \vec{i} \frac{\partial \varphi}{\partial x} + \vec{j} \frac{\partial \varphi}{\partial y} + \vec{k} \frac{\partial \varphi}{\partial z}$ is called the **gradient** of the scalar function φ . Grad $\varphi = \nabla \varphi$.

2. Define Divergence.

The **divergence** of the vector function \vec{F} is defined as

$$\nabla \cdot \vec{F} = (\vec{\iota} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (F_1 \vec{\iota} + F_2 \vec{j} + F_3 \vec{k}).$$
$$= \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

3. Define curl.

The **curl or rotation** of \vec{F} is defined by

$$\nabla \times \vec{F} = (\vec{\iota} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \times (F_1 \vec{\iota} + F_2 \vec{j} + F_3 \vec{k})$$
$$= \begin{vmatrix} \vec{\iota} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$

4. Define solenoidal.

A vector \vec{F} is said to be **solenoidal** if its divergence is zero. That is, $\nabla \circ \vec{F} = 0$ or $div \vec{F} = 0$.

5. Define irrotational.

A vector \vec{F} is said to be **irrotational** if its curl is zero. That is, $\nabla \times \vec{F} = 0$ or curl $\vec{F} = 0$.

PART -B

1. Find the directional derivative of f = xyz at (1,1,1) in the direction of $\vec{\iota} + \vec{j} + \vec{k}$.

Solution:

Unit normal vector $\hat{n} = \frac{\vec{a}}{|a|} = \frac{\vec{l} + \vec{j} + \vec{k}}{\sqrt{3}}$

grad $f = \nabla f$

$$= \vec{i}\frac{\partial f}{\partial x} + \vec{j}\frac{\partial f}{\partial y} + \vec{k}\frac{\partial f}{\partial z}$$
$$= \vec{i}\frac{\partial}{\partial x}(xyz) + \vec{j}\frac{\partial}{\partial y}(xyz) + \vec{k}\frac{\partial}{\partial z}(xyz)$$
$$= \vec{i}(yz) + \vec{j}(xz) + \vec{k}(xy)$$

grad f (1,1,1) = $\vec{\iota} + \vec{j} + \vec{k}$

Directional derivative = grad f. \hat{n}

$$= (\vec{l} + \vec{j} + \vec{k}) \cdot \frac{\vec{l} + \vec{j} + \vec{k}}{\sqrt{3}}$$
$$= \frac{1+1+1}{\sqrt{3}} = \frac{3}{\sqrt{3}}$$

2. Find the normal derivative of f = xy + yz + zx at (-1,1,1).

Solution:

Normal derivative of f = |grad f|Given f = xy + yz + zxgrad $f = \nabla f$ $= \vec{i} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial f}{\partial z}$

 $=\vec{\imath}\frac{\partial}{\partial x}(xy+yz+zx)+\vec{j}\frac{\partial}{\partial y}(xy+yz+zx)+\vec{k}\frac{\partial}{\partial z}(xy+yz+zx)$

$$=\vec{\iota}(y+z) + \vec{j}(x+z) + \vec{k}(y+x)$$

grad f $_{(-1,1,1)} = \overrightarrow{2\iota} + 0 \overrightarrow{j} + 0 \overrightarrow{k}$

Normal derivative of f = |grad f|

$$= \sqrt{2^2 + 0^2 + 0^2} = 2$$

3. Find a unit vector normal to the surface $x^2 + y^2 - z = 10$ at (1,1,1).

Solution:

Unit normal vector = $\hat{n} = \frac{\nabla f}{|\nabla f|}$ f = $x^2 + y^2 - z - 10$ $\nabla f = \vec{l} \frac{\partial f}{\partial x} + \vec{j} \frac{\partial f}{\partial y} + \vec{k} \frac{\partial f}{\partial z}$ = $\vec{l} \frac{\partial}{\partial x} (x^2 + y^2 - z - 10) + \vec{j} \frac{\partial}{\partial y} (x^2 + y^2 - z - 10) + \vec{k} \frac{\partial}{\partial z} (x^2 + y^2 - z - 10)$ = $2x\vec{l} + 2y\vec{j} - \vec{k}$ $(\nabla f)_{(1,1,1)} = 2\vec{l} + 2\vec{j} - \vec{k}$ $|\nabla f|_{(1,1,1)} = \sqrt{4 + 4 + 1} = 3$ Unit normal vector = $\hat{n} = \frac{\nabla f}{|\nabla f|} = \frac{2\vec{l} + 2\vec{j} - \vec{k}}{3}$

4. If $\nabla \varphi = 2xyz\vec{\imath} + x^2z\vec{\jmath} + x^2y\vec{k}$, find the scalar potential φ .

Solution: Given $\nabla \varphi = 2xyz\vec{i} + x^2z\vec{j} + x^2y\vec{k}$ $\vec{i}\frac{\partial \varphi}{\partial x} + \vec{j}\frac{\partial \varphi}{\partial y} + \vec{k}\frac{\partial \varphi}{\partial z} = 2xyz\vec{i} + x^2z\vec{j} + x^2y\vec{k}$

Equating like coefficients on both sides we get,

$$\frac{\partial \varphi}{\partial x} = 2xyz \qquad \dots (1)$$

$$\frac{\partial \varphi}{\partial y} = x^2 z \qquad \dots (2)$$
$$\frac{\partial \varphi}{\partial z} = x^2 y \qquad \dots (3)$$

Integrating (1) we get, $\int \partial \varphi = \int 2xyz \ \partial x \implies \varphi = x^2yz + f(y,z) \dots(4)$ Integrating (2) we get, $\int \partial \varphi = \int x^2z \ \partial y \implies \varphi = x^2yz + f(x,z) \dots(5)$ Integrating (3) we get, $\int \partial \varphi = \int x^2y \ \partial z \implies \varphi = x^2yz + f(x,y) \dots(6)$ From (4),(5),(6) we get, $\varphi = x^2yz + c$

 $\nabla \stackrel{\circ}{\overrightarrow{F}}$ and $\nabla \times \stackrel{\overrightarrow{F}}{\overrightarrow{F}}$ 5. Find of the vector point function $\vec{F} = \mathbf{x}z^3 \vec{\iota} - 2x^2 yz \vec{j} + 2yz^4 \vec{k}$ at the point (1,-1,1). Solution: $\nabla \cdot \vec{F} = (\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (xz^3 \vec{i} - 2x^2 yz \vec{j} + 2yz^4 \vec{k})$ $=\frac{\partial}{\partial x}(xz^{3})+\frac{\partial}{\partial y}(-2x^{2}yz)+\frac{\partial}{\partial z}(2yz^{4})$ $= z^3 - 2x^2 z + 8z^3 v$ $(\nabla, \vec{F})_{(1-1)} = 1-2-8 = -9$ $\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz^3 & -2x^2 vz & 2vz^4 \end{vmatrix}$ $=\vec{\iota}\left[\frac{\partial}{\partial y}(2yz^4)+\frac{\partial}{\partial z}(2x^2 yz)\right]\cdot\vec{j}\left[\frac{\partial}{\partial x}(2yz^4)-\frac{\partial}{\partial z}(xz^3)\right]+\vec{k}\left[\frac{\partial}{\partial x}(-2x^2 yz)-\frac{\partial}{\partial z}(xz^3)\right]$ $\frac{\partial}{\partial y}(xz^3)$ $=\vec{\iota}(2z^4+2x^2 v) - \vec{\iota}(0-3xz^2) + \vec{k}(-4xyz-0)$

 $(\nabla \times \vec{F})_{(1,-1,1)} = \vec{\iota}(2-2) - \vec{j}(0-3) + \vec{k}(4)$ = $3 \vec{j} + 4\vec{k}$ 6. Show that the vector $\vec{F} = z\vec{\iota} + x\vec{\jmath} + y\vec{k}$ is solenoidal

Solution:

If div $\vec{F} = 0$, then \vec{F} is solenoidal. Now, div $\vec{F} = \nabla \cdot \vec{F}$ $= (\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}) \cdot (\vec{z} \cdot \vec{i} + x \cdot \vec{j} + y \cdot \vec{k})$ $= \frac{\partial}{\partial x} (z) + \frac{\partial}{\partial y} (x) + \frac{\partial}{\partial z} (y)$ = 0 + 0 + 0 = 0

Hence \overrightarrow{F} is solenoidal.

7. Show that the vector $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ is irrotational.

Solution:

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & zx & xy \end{vmatrix}$$
$$= \vec{i} \left[\frac{\partial}{\partial y} (xy) - \frac{\partial}{\partial z} (zx) \right] \cdot \vec{j} \left[\frac{\partial}{\partial x} (xy) - \frac{\partial}{\partial z} (yz) \right] + \vec{k} \left[\frac{\partial}{\partial x} (zx) - \frac{\partial}{\partial y} (yz) \right]$$
$$= \vec{i} (x - x) - \vec{j} (y - y) + \vec{k} (z - z)$$
$$= 0\vec{i} + 0\vec{j} + 0\vec{k} = 0$$

 $\nabla \times \overrightarrow{F} = 0.$

Therefore, the vector $\vec{F} = yz\vec{i} + zx\vec{j} + xy\vec{k}$ is irrotational.

PART-C

1. Find the value of the constant a,b,c so that the vector $\vec{F} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational.

Solution:

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x + 2y + az & bx - 3y - z & 4x + cy + 2z \end{vmatrix}$$

$$= \vec{\iota} \left[\frac{\partial}{\partial y} (4x + cy + 2z) - \frac{\partial}{\partial z} (bx - 3y - z) \right] \cdot \vec{j} \left[\frac{\partial}{\partial x} (4x + cy + 2z) - \frac{\partial}{\partial z} (x + 2y + az) \right]$$
$$= \vec{\iota} (c + 1) - \vec{j} (4 - a) + \vec{k} (b-2)$$

Given \overrightarrow{F} is irrotational.

That is, $\nabla \times \vec{F} = 0$.

That is, $\vec{\iota}(c+1) - \vec{j}(4-a) + \vec{k}(b-2) = 0.$

That is, each component should be zero.

That is, (c + 1) = 0; (a - 4) = 0; (b-2) = 0.

That is, c = -1, a = 4, b = 2.

2. (i)Prove that $\nabla . (\overrightarrow{F} \pm \overrightarrow{G}) = \nabla . \overrightarrow{F} \pm \nabla . \overrightarrow{G}$ (ii)Prove that $\nabla \times (\overrightarrow{F} \pm \overrightarrow{G}) = \nabla \times \overrightarrow{F} \pm \nabla \times \overrightarrow{G}$

Proof:

(i)
$$\nabla . (\vec{F} \pm \vec{G}) = \nabla . \vec{F} \pm \nabla . \vec{G}$$

 $\nabla . (\vec{F} \pm \vec{G}) = (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}). (\vec{F} \pm \vec{G})$
 $= \vec{i}\frac{\partial}{\partial x}(\vec{F} \pm \vec{G}) + \vec{j}\frac{\partial}{\partial y}(\vec{F} \pm \vec{G}) + \vec{k}\frac{\partial}{\partial z}(\vec{F} \pm \vec{G})$
 $= \vec{i}.(\frac{\partial\vec{F}}{\partial x} \pm \frac{\partial\vec{G}}{\partial x}) + \vec{j}.(\frac{\partial\vec{F}}{\partial y} \pm \frac{\partial\vec{G}}{\partial y}) + \vec{k}.(\frac{\partial\vec{F}}{\partial z} \pm \frac{\partial\vec{G}}{\partial z})$
 $= (\vec{i}.\frac{\partial\vec{F}}{\partial x} + \vec{j}.\frac{\partial\vec{F}}{\partial y} + \vec{k}.\frac{\partial\vec{F}}{\partial z}) \pm (\vec{i}.\frac{\partial\vec{G}}{\partial x} + \vec{j}.\frac{\partial\vec{G}}{\partial y} + \vec{k}.\frac{\partial\vec{G}}{\partial z})$

 $\nabla . (\vec{F} \pm \vec{G}) = \nabla . \vec{F} \pm \nabla . \vec{G}$

(ii) $\nabla \times (\vec{F} \pm \vec{G}) = \nabla \times \vec{F} \pm \nabla \times \vec{G}$ $\nabla \times (\vec{F} \pm \vec{G}) = (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}) \times (\vec{F} \pm \vec{G})$ $= \vec{i} \times \frac{\partial}{\partial x} (\vec{F} \pm \vec{G}) + \vec{j} \times \frac{\partial}{\partial y} (\vec{F} \pm \vec{G}) + \vec{k} \times \frac{\partial}{\partial z} (\vec{F} \pm \vec{G})$ $= \vec{i} \times \left(\frac{\partial \vec{F}}{\partial x} \pm \frac{\partial \vec{G}}{\partial x}\right) + \vec{j} \times \left(\frac{\partial \vec{F}}{\partial y} \pm \frac{\partial \vec{G}}{\partial y}\right) + \vec{k} \times \left(\frac{\partial \vec{F}}{\partial z} \pm \frac{\partial \vec{G}}{\partial z}\right)$ $= \vec{i} \times \frac{\partial \vec{F}}{\partial x} \pm \vec{i} \times \frac{\partial \vec{G}}{\partial x} + \vec{j} \times \frac{\partial \vec{F}}{\partial y} \pm \vec{j} \times \frac{\partial \vec{G}}{\partial y} + \vec{k} \times \frac{\partial \vec{F}}{\partial z} \pm \vec{k} \times \frac{\partial \vec{G}}{\partial z}$ $= \left(\vec{i} \times \frac{\partial \vec{F}}{\partial x} + \vec{j} \times \frac{\partial \vec{F}}{\partial y} + \vec{k} \times \frac{\partial \vec{F}}{\partial z}\right) \pm \left(\vec{i} \times \frac{\partial \vec{G}}{\partial x} + \vec{j} \times \frac{\partial \vec{G}}{\partial y} + \vec{k} \times \frac{\partial \vec{G}}{\partial z}\right)$ $\nabla \times (\vec{F} \pm \vec{G}) = \nabla \times \vec{F} \pm \nabla \times \vec{G}$