
IDHAYA COLLEGE FOR WOMEN
KUMBAKONAM - 612 001

PG & RESEARCH DEPARTMENT OF COMPUTER

SCIENCE

ACADEMIC YEAR : 2019-2020
SEMESTER : II
CLASS : I - B.Sc (CS)
SUBJECT INCHARGE : J.SATHYA
SUBJECT NAME : PROGRAMMING IN C++
SUBJECT CODE : 16SCCCS2

Unit V

Standard Template Library – Manipulating Strings
– Object Oriented Systems Development

The C++ Standard Template Library

• What is STL?

• Generic Programming: Why Use STL?

• Overview of STL concepts & features
• e.g., helperclass & function templates, containers,

iterators, generic algorithms, function objects, adaptors

• A Complete STL Example

• References for More Information on STL

What is STL?

• The Standard Template Library provides a set of well structured

generic C++ components that work together in a seamless way.

What is STL (cont’d)?

A collection of composable class & function templates

• Helper class & function templates: operators, pair

• Container & iterator class templates

• Generic algorithms that operate over iterators

• Function objects

• Adaptors

Generic Programming: Why Use STL?

• Reuse: “write less, do more”

• STL hides complex, tedious & error prone details

• The programmer can then focus on the problem at hand

• Type-safe plug compatibility between STL components

• Flexibility

• Iterators decouple algorithms from containers

• Unanticipated combinations easily supported

• Efficiency

• Templates avoid virtual function overhead

• Strict attention to time complexity of algorithms

STL Features: Containers, Iterators, & Algorithms

Containers

• Sequential: vector, deque, list

• Associative: set, multiset, map, multimap

• Adapters: stack, queue, priority queue

Iterators

• Input, output, forward, bidirectional, & random access

• Each container declares a trait for the type of iterator it provides

Generic Algorithms

• Mutating, non-mutating, sorting, & numeric

Types of STL Containers

There are three types of containers

Sequential containers that arrange the data they contain in a linear
manner

• Element order has nothing to do with their value

• Similar to builtin arrays, but needn’t be stored contiguous

Associative containers that maintain data in structures suitable for
fast associative operations

• Supports efficient operations on elements using keys
ordered by operator

• Implemented as balanced binary trees

Adapters that provide different ways to access sequential &
associative containers

• e.g., stack, queue, & priority queue

STL Container Overview

STL containers are Abstract Data Types (ADTs)

All containers are parameterized by the type(s) they contain

Each container declares various traits

• e.g., iterator, const iterator, value type, etc.

Each container provides factory methods for creating iterators:

• begin()/end() for traversing from front to back

• rbegin()/rend() for traversing from back to front

STL Vector Sequential Container

A std::vector is a dynamic array that can grow & shrink at the end

• e.g., it provides (pre—re)allocation, indexed storage, push back(),
pop back()

• Supports random access

iterators

• Similar to—but more powerful than—built-in C/C++ arrays

• A std::deque (pronounced “deck”) is a double-ended queue

• It adds efficient insertion & removal at the beginning & end of the
sequence via push front() &

• pop front()

STL Associative Container: Map

An std::map associates a value with each unique key

• – a student’s id number

• Its value type is implemented as pair<const Key, Data>

STL Associative Container: Set

An std::set is an ordered collection of unique keys

• e.g., a set of student id numbers

#include <set>

int main ()

{

std::set<int> myset;

}

STL Associative Container: MultiSet & MultiMap

An std::multiset or an std::multimap can support multiple equivalent
(non-unique) keys

• e.g., student first names or last names

Uniqueness is determined by an equivalence relation

• e.g., strncmp() might treat last names that are distinguishable by
strcmp() as being the same

• performance

• Trade-off: does not offer a random access iterator

• Implemented as doubly-linked list

STL Associative Container: MultiSet Example

#include <set> #include <iostream> #include <iterator>

int main()

{

const int N = 10;

int a[N] = {4, 1, 1, 1, 1, 1, 0, 5, 1, 0};

int b[N] = {4, 4, 2, 4, 2, 4, 0, 1, 5, 5};

std::multiset<int> A(a, a + N); std::multiset<int> B(b, b + N); std::multiset<int> C;

std::cout << "Set A: ";

std::copy(A.begin(), A.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout <<
std::endl;

std::cout << "Set B: ";

std::copy(B.begin(), B.end(), std::ostream_iterator<int>(std::cout, " ")); std::cout <<
std::endl;

}

STL Iterator Categories

• Iterator categories depend on type parameterization rather than on
inheritance: allows algorithms to operate seamlessly on both native
(i.e., pointers) & user-defined iterator types.

• Iterator categories are hierarchical, with more refined categories
adding constraints to more general ones.

-Forward iterators are both input & output iterators, but not all input

or output iterators are forward iterators.

-Bidirectional iterators are all forward iterators, but not all forward

iterators are bidirectional iterators.

-All random access iterators are bidirectional iterators, but not all

• bidirectional iterators are random access iterators.

• Native types (i.e., pointers) that meet the requirements can be used as
iterators of various kinds.

STL Input Iterators

• Input iterators are used to read values from a sequence

• They may be dereferenced to refer to some object
& may be incremented to obtain the next iterator in a

sequence

• An input iterator must allow the following operations

✓Copy ctor & assignment operator for that same iterator type.

✓Operators == & != for comparison with iterators of that type.

(AND Operator)

✓Operators * (can be const) & ++ (both prefix & postfix).

STL Output Iterators

• Output iterator is a type that provides a mechanism for storing (but not
necessarily accessing) a sequence of values

• Output iterators are in some sense the converse of Input Iterators, but
have a far more restrictive interface:

• Operators = & == & != need not be defined (but could be)

• Must support non-const operator * (e.g., *iter = 3)

• Intuitively, an output iterator is like a tape where you can write a value
to the current location.

• And you can advance to the next location, but you cannot read values
& you cannot back up or rewind

STL Forward Iterators

➢Forward iterators must implement (roughly) the union of
requirements for input & output iterators, plus a default factor.

➢The difference from the input & output iterators is that for two.

➢forward iterators r & s, r==s implies ++r==++s.

➢A difference to the output iterators is that operator* is also valid on the
left side of operator= (*it = v is valid) & that the number of
assignments to a forward iterator is not restricted.

Ex:

// Copy a file to cout via a loop. std::ifstream ifile ("example_file"); int
tmp;

while (ifile >> tmp) std::cout << tmp;

//

STL Generic Algorithms

• Each container declares an iterator & const iterator as a trait.

❖vector & deque declare random access iterators.

❖list, map, set, multimap, & multiset declare bidirectional.

• Each container declares factory methods for its iterator type:

❖begin()

❖end()

❖rbegin()

❖rend()

• Composing an algorithm with a container is done simply by invoking
the algorithm with iterators for that container.

• Templates provide compile-time type safety for combinations of
containers, iterators, & algorithms.

Categorizing STL Generic Algorithms

• There are various ways to categorize STL algorithms, e.g.:

• Non-mutating, which operate using a range of iterators, but don.t
change the data elements found.

• Mutating, which operate using a range of iterators, but can change
the order of the data elements.

• Sorting & sets, which sort or searches ranges of elements & act on
sorted ranges by testing values.

• Numeric, which are mutating algorithms that produce numeric
results.

• In addition to these main types, there are specific algorithms within
each type that accept a predicate condition.

• Predicate names end with the if suffix to remind us that they
require an “if” test.s result (true or false), as an argument; these can
be the result of function calls.

Benefits of STL Generic Algorithms

• STL algorithms are decoupled from the particular containers they
operate on & are instead parameterized by iterators.

• All containers with the same iterator type can use the same algorithms.

• Since algorithms are written to work on iterators rather than
components, the software development effort is drastically reduced.

-e.g., instead of writing a search routine for each kind of container,
one only write one for each iterator type & apply it any container.

• Since different components can be accessed by the same iterators, just
a few versions of the search routine must be implemented.

STL Function Objects

• Function objects (aka functors) declare & define operator().

• STL provides helper base class templates unary function .

• binary function to facilitate user-defined function objects.

• STL provides a number of common-use function object class
templates:

✓Arithmetic: plus, minus, times, divides, modulus, negate.

✓comparison: equal to, not equal to, greater, less, greater equal, less
equal.

✓logical: logical and, logical or, logical not.

• A number of STL generic algorithms can take STL-provided or

user-defined function object arguments to extend algorithm behavior.

STL Function Objects Example

#include <vector>

#include <algorithm>

#include <iterator>

#include <functional>

#include <string>

int main (int argc, char *argv[])

{

std::vector <std::string> projects;

for (int i = 0; i < argc; ++i) projects.push_back (std::string (argv [i]));

std::greater<std::string> ());

return 0;

}

STL Adaptors

• STL adaptors implement the Adapter design pattern.
-i.e., they convert one interface into another interface
clients expect.

•Container adaptors include stack, queue, priority queue.

• Iterator adaptors include reverse iterators .

• back inserter() iterators.

• Function adaptors include negators & binders.

• STL adaptors can be used to narrow interfaces (e.g., a stack

adaptor for vector).

Strings:

• One of the most useful data types supplied in the C++ libraries is the string.

• A string is a variable that stores a sequence of letters or other characters,
such as "Hello" or "May 10th is my birthday!".

• Just like the other data types, to create a string we first declare it, then we
can store a value in it.

- string testString; testString = "This is a string.";

• We can combine these two statements into one line:

- string testString = "This is a string.";

• Often, we use strings as output, and cout works exactly like one would
expect:

cout << testString << endl;

will print the same result as

cout << "This is a string." << endl;

Passing, returning, assigning strings:

• C++ strings are designed to behave like ordinary primitive types with
regard to assignment.

• Assigning one string to another makes a deep copy of the character
sequence.

string str1 = "hello";

string str2 = str1; // makes a new copy str1[0] = 'y'; // changes str1,
but not str2.

• Passing and returning strings from functions clones the string.

• If you change a string parameter within a function, changes are not
seen in the calling function unless you have specifically passed the
string by reference (e.g. using that & trick we learned about in the
Queen Safety example.) .

Function & Purpose

1. strcpys1,s2;

• Copies string s2 into string s1.

2 .strcats1,s2;

• Concatenates string s2 onto the end of string s1.

3 .strlens1;

• Returns the length of string s1.

4 .strcmps1,s2;

• Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0
if s1>s2.

5 .strchrs1,ch;

• Returns a pointer to the first occurrence of character ch in string s1.

Object–Oriented Analysis

• Object–Oriented Analysis (OOA) is the procedure of identifying
software engineering requirements and developing software
specifications in terms of a software system’s object model, which
comprises of interacting objects.

• The main difference between object-oriented analysis and other forms
of analysis is that in object-oriented approach, requirements are
organized around objects, which integrate both data and functions.

• They are modelled after real-world objects that the system interacts
with.

• In traditional analysis methodologies, the two aspects - functions and
data - are considered separately.

Object–Oriented Design

• Object–Oriented Design (OOD) involves implementation of the
conceptual model produced during object-oriented analysis.

• In OOD, concepts in the analysis model, which are
technology−independent, are mapped onto implementing classes,
constraints are identified and interfaces are designed, resulting in a
model for the solution domain, i.e., a detailed description of how the
system is to be built on concrete technologies.

• The implementation details generally include:

➢Restructuring the class data (if necessary),

➢Implementation of methods, i.e., internal data structures and
algorithms.

Object–Oriented Analysis

• In this stage, the problem is formulated, user requirements are identified,
and then a model is built based upon real–world objects.

• The analysis produces models on how the desired system should function
and how it must be developed.

• The models do not include any implementation details so that it can be
understood and examined by any non–technical application expert.

Object

• An object is a real-world element in an object–oriented environment that
may have a physical or a conceptual existence. Each object has:

• Identity that distinguishes it from other objects in the system.

Class

• A class represents a collection of objects having same characteristic
properties that exhibit common behavior.

• It gives the blueprint or description of the objects that can be created
from it.

• Creation of an object as a member of a class is called instantiation.
Thus, object is an instance of a class.

• The constituents of a class are:

• A set of attributes for the objects that are to be instantiated from the
class.

• Generally, different objects of a class have some difference in the
values of the attributes.

Object–Oriented Design

• Object-oriented design includes two main stages, namely, system
design and object design.

System Design

• In this stage, the complete architecture of the desired system is designed.

• The system is conceived as a set of interacting subsystems that in turn is
composed of a hierarchy of interacting objects, grouped into classes.

• System design is done according to both the system analysis model and
the proposed system architecture.

• Here, the emphasis is on the objects comprising the system rather than
the processes in the system.

