IDHAYA COLLEGE FOR WOMEN
KUMBAKONAM - 612 001

PG & RESEARCH DEPARTMENT OF COMPUTER

SCIENCE
ACADEMIC YEAR : 2019-2020
SEMESTER |
CLASS : 1 - B.Sc (CS)
SUBJECT INCHARGE :J.SATHYA
SUBJECT NAME : PROGRAMMING IN C++

SUBJECT CODE : 16SCCCS2

Unit Vv

Standard Template Library — Manipulating Strings
— Object Oriented Systems Development

The C++ Standard Template Library

* What 1s STL?
 Generic Programming: Why Use STL?

* Overview of STL concepts & features

*e.g., helperclass & function templates, containers,
Iterators, generic algorithms, function objects, adaptors

* A Complete STL Example
* References for More Information on STL

What is STL?

» The Standard Template Library provides a set of well structured
generic C++ components that work together in a seamless way.

What is STL (cont’d)?

A collection of composable class & function templates
 Helper class & function templates: operators, pair
 Container & iterator class templates
 Generic algorithms that operate over iterators
 Function objects
 Adaptors

Generic Programming: Why Use STL?

* Reuse: “write less, do more”
« STL hides complex, tedious & error prone details
 The programmer can then focus on the problem at hand
* Type-safe plug compatibility between STL components
 Flexibility
* Iterators decouple algorithms from containers
 Unanticipated combinations easily supported

 Efficiency
« Templates avoid virtual function overhead
« Strict attention to time complexity of algorithms

STL Features: Containers, Iterators, & Algorithms

Containers
 Sequential: vector, deque, list
* Associative: set, multiset, map, multimap
 Adapters: stack, queue, priority queue

Iterators
* Input, output, forward, bidirectional, & random access
 Each container declares a trait for the type of iterator it provides

Generic Algorithms
« Mutating, non-mutating, sorting, & numeric

Types of STL Containers

There are three types of containers

Sequential containers that arrange the data they contain in a linear
manner

* Element order has nothing to do with their value
 Similar to builtin arrays, but needn’t be stored contiguous

Associative containers that maintain data in structures suitable for
fast associative operations

 Supports efficient operations on elements using keys
ordered by operator

 Implemented as balanced binary trees

Adapters that provide different ways to access sequential &
assoclative containers

* .., stack, queue, & priority queue

STL Container Overview

STL containers are Abstract Data Types (ADTSs)
All containers are parameterized by the type(s) they contain

Each container declares various traits
* e.g., Iterator, const iterator, value type, etc.

Each container provides factory methods for creating iterators:
* begin()/end() for traversing from front to back
* rbegin()/rend() for traversing from back to front

STL Vector Sequential Container

A std::vector Is a dynamic array that can grow & shrink at the end

* e.g., It provides (pre—re)allocation, indexed storage, push back(),
pop back()
* Supports random access

Iterators
 Similar to—but more powerful than—built-in C/C++ arrays
* Astd::deque (pronounced “deck”) is a double-ended queue

* |t adds efficient insertion & removal at the beginning & end of the
sequence via push front() &

* pop_front()

STL Associative Container: Map

An std::map associates a value with each unigue key

e — a student’s 1d number

* |ts value type Is Implemented as pair<const Key, Data>
STL Associative Container: Set

An std::set is an ordered collection of unique keys
* e.g., a set of student id numbers

#include <set>
Int main ()

{

std::set<int> myset;

STL Associative Container: MultiSet & MultiMap

An std::multiset or an std::multimap can support multiple equivalent
(non-unique) keys

* e.g., student first names or last names
Unigueness Is determined by an equivalence relation

* e.g., strncmp() might treat last names that are distinguishable by
strcmp() as being the same

* performance
* Trade-off: does not offer a random access iterator
 Implemented as doubly-linked list

STL Associative Container: MultiSet Example

#include <set> #include <iostream> #include <iterator>
Int main()

{

const int N = 10:
inta[N]={4,1,1,1,1,1,0,5, 1, 0};
intb[N]1={4,4,2,4,2,4,0,1,5, 5}

std:
std:

std:
std:

std:

std:
std:

¥

:multiset<int> A(a, a + N); std::multiset<int> B(b, b + N); std::multiset<int> C;
cout << "Set A: "

.copy(A.begin(), A.end(), std::ostream_iterator<int>(std::cout, " "')); std::cout <<
-endl;

cout<<"SetB: "

.copy(B.begin(), B.end(), std::ostream_iterator<int>(std::.cout, " ")); std::cout <<
-endl;

STL Iterator Cateqories

* [terator categories depend on type parameterization rather than on
Inheritance: allows algorithms to operate seamlessly on both native
(1.e., pointers) & user-defined iterator types.

* |terator categories are hierarchical, with more refined categories
adding constraints to more general ones.

-Forward iterators are both input & output iterators, but not all input

or output iterators are forward Iterators.
-Bidirectional iterators are all forward iterators, but not all forward

iterators are bidirectional iterators.
-All random access Iterators are bidirectional iterators, but not all

* bidirectional iterators are random access Iterators.

 Native types (I.e., pointers) that meet the requirements can be used as
Iterators of various Kinds.

STL Input Iterators

* [nput iterators are used to read values from a sequence

 They may be dereferenced to refer to some object
& may Dbe incremented to obtain the next iterator in a
sequence

* An input iterator must allow the following operations
v’ Copy ctor & assignment operator for that same iterator type.
v'Operators == & != for comparison with iterators of that type.
(AND Operator)
v'Operators * (can be const) & ++ (both prefix & postfix).

STL Output Iterators

 Qutput iterator is a type that provides a mechanism for storing (but not
necessarily accessing) a sequence of values

 Output iterators are in some sense the converse of Input Iterators, but
have a far more restrictive interface:
 Operators = & == & != need not be defined (but could be)
« Must support non-const operator * (e.g., *iter = 3)

* Intuitively, an output iterator is like a tape where you can write a value
to the current location.

» And you can advance to the next location, but you cannot read values
& you cannot back up or rewind

STL Forward lterators

» Forward iterators must implement (roughly) the union of
requirements for input & output iterators, plus a default factor.

» The difference from the input & output iterators is that for two.
»forward iterators r & s, r==s implies ++r==++s.

» A difference to the output iterators is that operator™ is also valid on the
left side of operator= (*it = v is valid) & that the number of
assignments to a forward iterator is not restricted.

EX:

// Copy a file to cout via a loop. std::ifstream ifile ("example file"); int
tmp;

while (ifile >> tmp) std::cout << tmp;
Il

STL Generic Algorithms

 Each container declares an iterator & const iterator as a trait.
ssvector & deque declare random access iterators.
“*list, map, set, multimap, & multiset declare bidirectional.

 Each container declares factory methods for its iterator type:
“*begin()
“send()
“srbegin()
ssrend()
« Composing an algorithm with a container is done simply by invoking
the algorithm with iterators for that container.

» Templates provide compile-time type safety for combinations of
containers, iterators, & algorithms.

Cateqorizing STL Generic Algorithms

 There are various ways to categorize STL algorithms, e.g.:

* Non-mutating, which operate using a range of iterators, but don.t
change the data elements found.

« Mutating, which operate using a range of iterators, but can change
the order of the data elements.

 Sorting & sets, which sort or searches ranges of elements & act on
sorted ranges by testing values.

* Numeric, which are mutating algorithms that produce numeric
results.

* In addition to these main types, there are specific algorithms within
each type that accept a predicate condition.

* Predicate names end with the if suffix to remind us that they
require an “if” test.s result (true or false), as an argument; these can
be the result of function calls.

Benefits of STL Generic Algorithms

« STL algorithms are decoupled from the particular containers they
operate on & are instead parameterized by iterators.

* All containers with the same iterator type can use the same algorithms.

* Since algorithms are written to work on iterators rather than
components, the software development effort is drastically reduced.

-e.g., Instead of writing a search routine for each kind of container,
one only write one for each iterator type & apply It any container.

* Since different components can be accessed by the same iterators, just
a few versions of the search routine must be implemented.

STL Function Objects

 Function objects (aka functors) declare & define operator().
« STL provides helper base class templates unary function .
* binary_function to facilitate user-defined function objects.

« STL provides a number of common-use function object class
templates:
v’ Arithmetic: plus, minus, times, divides, modulus, negate.

v’comparison: equal to, not equal to, greater, less, greater equal, less
equal.

v’logical: logical and, logical or, logical not.
* A number of STL generic algorithms can take STL-provided or
user-defined function object arguments to extend algorithm behavior.

STL Function Objects Example
#include <vector>

#include <algorithm>

#include <iterator>

#include <functional>

#include <string>

Int main (int argc, char *argv|])

{
std::vector <std::string> projects;

for (int 1 =0; I <argc; ++1) projects.push_back (std::string (argv [i]));
std:.greater<std::string> ());

return 0O;

¥

STL Adaptors

« STL adaptors implement the Adapter design pattern.

-1.e., they convert one Interface into another interface
clients expect.

 Container adaptors include stack, queue, priority queue.

* [terator adaptors include reverse iterators .

* pack_inserter() Iterators.

 Function adaptors include negators & binders.

« STL adaptors can be used to narrow interfaces (e.g., a stack
adaptor for vector).

Strings:
 One of the most useful data types supplied in the C++ libraries is the string.

» Asstring Is a variable that stores a sequence of letters or other characters,
such as "Hello" or "May 10th is my birthday!".

« Just like the other data types, to create a string we first declare it, then we
can store a value in it.

- string testString; testString = "This Is a string.";
* \We can combine these two statements into one line:
- string testString = "This Is a string.";

 Often, we use strings as output, and cout works exactly like one would
expect:

cout << testString << endl;
will print the same result as
cout << "This Is a string." << endl;

Passing, returning, assigning strings:

« C++ strings are designed to behave like ordinary primitive types with
regard to assignment.

* Assigning one string to another makes a deep copy of the character
sequence.

string strl = "hello";

string str2 = strl; // makes a new copy str1[0] ="y'; // changes strl,
but not str2.

* Passing and returning strings from functions clones the string.

* |f you change a string parameter within a function, changes are not
seen In the calling function unless you have specifically passed the
string by reference (e.g. using that & trick we learned about In the
Queen Safety example.) .

Function & Purpose

1. strcpysl,s2;

* Copies string s2 into string s1.

2 .strcatsl,s2;

 Concatenates string s2 onto the end of string s1.
3 .strlensl,

* Returns the length of string s1.

4 .strcmpsl,s2;

* Returns O If s1 and s2 are the same; less than O If s1<s2; greater than 0
If s1>s2.

5 .strchrsl,ch;
 Returns a pointer to the first occurrence of character ch in string s1.

Object—Oriented Analysis

* Object—Oriented Analysis (OOA) is the procedure of identifying
software engineering requirements and developing software
specifications in terms of a software system’s object model, which
comprises of interacting objects.

« The main difference between object-oriented analysis and other forms
of analysis Is that in object-oriented approach, requirements are
organized around objects, which integrate both data and functions.

* They are modelled after real-world objects that the system interacts
with.

* In traditional analysis methodologies, the two aspects - functions and
data - are considered separately.

Object—Oriented Design

 Object-Oriented Design (OOD) involves implementation of the
conceptual model produced during object-oriented analysis.

* In OOD, concepts in the analysis model, which are
technology—independent, are mapped onto implementing classes,
constraints are identified and interfaces are designed, resulting in a
model for the solution domain, 1.e., a detailed description of how the
system is to be built on concrete technologies.

* The implementation details generally include:

» Restructuring the class data (if necessary),

» Implementation of methods, I.e., internal data structures and
algorithms.

Object—Oriented Analysis

* In this stage, the problem is formulated, user requirements are identified,
and then a model is built based upon real-world objects.

 The analysis produces models on how the desired system should function
and how It must be developed.

* The models do not include any implementation details so that it can be
understood and examined by any non—technical application expert.

Object

* An object is a real-world element in an object—oriented environment that
may have a physical or a conceptual existence. Each object has:

* ldentity that distinguishes it from other objects in the system.

Class

* A class represents a collection of objects having same characteristic
properties that exhibit common behavior.

* [t gives the blueprint or description of the objects that can be created
from It.

* Creation of an object as a member of a class iIs called instantiation.
Thus, object is an instance of a class.

* The constituents of a class are:

* A set of attributes for the objects that are to be instantiated from the
class.

 Generally, different objects of a class have some difference in the
values of the attributes.

Object—Oriented Design

 Object-oriented design includes two main stages, namely, system
design and object design.

System Design
* In this stage, the complete architecture of the desired system Is designed.

* The system Is concelived as a set of interacting subsystems that in turn is
composed of a hierarchy of interacting objects, grouped into classes.

 System design iIs done according to both the system analysis model and
the proposed system architecture.

 Here, the emphasis Is on the objects comprising the system rather than
the processes In the system.

