
IDHAYA COLLEGE FOR WOMEN

KUMBAKONAM

PG & RESEARCH DEPARTMENT OF

COMPUTER SCIENCE

ACADEMIC YEAR : 2019 – 2020

SEMESTER : IV

CLASS : II – B.Sc (CS)

SUBJECT IN-CHARGE : N. AARTHI

SUBJECT NAME : DATABASE SYSTEMS

SUBJECT CODE : 16SCCCS4

UNIT – V

RELATIONAL DATABASE DESIGN

Features of Good Relational Designs, Atomic

Domains and First Normal Form, Decomposition Using

Functional Dependencies, Functional-Dependency Theory,

Decomposition Using Functional Dependencies

Decomposition Using Multi-valued Dependencies, More

Normal Forms, Database Design Process

Relational Database Design

❖ Features of Good Relational Design

❖ Atomic Domains and First Normal Form

❖ Decomposition Using Functional Dependencies

❖ Functional DependencyTheory

❖ Algorithms for Functional Dependencies

❖ Decomposition Using MultivaluedDependencies

❖ More Normal Form

❖ Database-DesignProcess

❖ Modeling Temporal Data

Combine Schemas?

❖ Suppose we combine instructor and department into inst_dept

▪ (No connection to relationship set inst_dept)

❖ Result is possible repetition of information

A Combined Schema Without Repetition

❖ Consider combining relations

▪ sec_class(sec_id, building, room_number) and

▪ section(course_id, sec_id, semester, year)

into one relation

▪ section(course_id, sec_id,

semester, year, building,
room_number)

❖ No repetition in this case

What About SmallerSchemas?

❖ Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?
❖ Write a rule ―ifthere were a schema (dept_name, building, budget), then

dept_name would be a candidate key‖

❖ Denote as a functional dependency:

dept_name → building, budget

❖ In inst_dept, because dept_name is not a candidate key, the buildingand

budget of a department may have to be repeated.
l This indicates the need to decompose inst_dept

❖ Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary) into

employee1 (ID, name)

employee2 (name, street, city, salary)

❖ The next slide shows how we lose information -- we cannotreconstruct

the original employee relation -- and so, this is a lossy decomposition.

A LossyDecomposition

Example of Lossless-Join Decomposition

❖ Lossless join decomposition
❖ Decomposition of R = (A, B, C)

R = (A, B) R = (B, C)
1 2

First Normal Form

❖ Domain is atomic if its elements are considered to be indivisible units

▪ Examples of non-atomic domains:

✓ Set of names, composite attributes

✓ Identification numbers like CS101 that can be brokenup

into parts
❖ Arelational schema R is in first normal form if the domains of all

attributes of R are atomic

❖ Non-atomic values complicate storage and encourageredundant

(repeated) storage of data

▪ Example: Set of accounts stored with each customer, and set of

owners stored with each account
▪ We assume all relations are in first normal form (and revisit this in

Chapter 22: Object Based Databases)

First Normal Form (Cont’d)

❖ Atomicity is actually a property of how the elements of the domain are

used.

• Example: Strings would normally be considered indivisible

• Suppose that students are given roll numbers which are stringsof

the form CS0012 or EE1127

• If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.

• Doing so is a bad idea: leads to encoding of informationin

application program rather than in the database.

Goal — Devise a Theory for the Following

❖ Decide whether a particular relation R is in ―god‖form.

❖ In the case that a relation R is not in ―go d‖form, decompose it into a set

1 2 n
of relations {R , R , ..., R } such that

• each relation is in good form

• the decomposition is a lossless-join decomposition

❖ Our theory is based on:

• functional dependencies

• multivalued dependencies

Functional Dependencies

❖ Constraints on the set of legal relations.

❖ Require that the value for a certain set of attributes determines uniquely

the value for another set of attributes.
❖ A functional dependency is a generalization of the notion of akey.

Functional Dependencies (Cont.)

Functional Dependencies (Cont.)

Use of Functional Dependencies

❖ We use functional dependencies to:

▪ test relations to see if they are legal under a given set of functional

dependencies.
✓ If a relation r is legal under a set F offunctional

dependencies, we say that r satisfiesF.

▪ specify constraints on the set of legal relations

✓ We say that F holds on R if all legal relations on Rsatisfy

the set of functional dependencies F.
❖ Note: A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on all legal

instances.

▪ For example, a specific instance of instructor may, by chance,

satisfy
name → ID.

Functional Dependencies (Cont.)

❖ A functional dependency is trivial if it is satisfied by all instances of a

relation
• Example:

✓ ID, name → ID

✓ name → name

• In general, α → β is trivial if β ⊆ α

Closure of a Set of Functional Dependencies

❖ Given a set F of functional dependencies, there are certainother

functional dependencies that are logically implied by F.
▪ For example: If A → B and B → C, then we can infer that A →

C

❖ The set of all functional dependencies logically implied by F is theclosure

of F.
+

❖ We denote the closure of F by F .
+

❖ F is a superset ofF.

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional
+

dependencies if for all functional dependencies in F of the form

α → β

where α ⊆R and β ⊆R, at least one of the following holds:

❖ α → β is trivial (i.e., β ⊆ α)

❖ α is a superkey for R

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name→ building, budget
holds on instr_dept, but dept_name is not asuperkey

Decomposing a Schema into BCNF

❖ Suppose we have a schema R and a non-trivial dependency α →β causesa
violation of BCNF.

We decompose R into:
• (α U β)
• (R - (β - α))

❖ In our example,
• α = dept_name

• β = building, budget

and inst_dept is replaced by
• (α U β) = (dept_name, building, budget)

• (R - (β - α)) = (ID, name, salary, dept_name)

BCNF and DependencyPreservation

❖ Constraints, including functional dependencies, are costly to checkin

practice unless they pertain to only one relation

❖ If it is sufficient to test only those dependencies on eachindividual

relation of a decomposition in order to ensure that all functional

dependencies hold, then that decomposition is dependency preserving.

❖ Because it is not always possible to achieve both BCNF and dependency

preservation, we consider a weaker normal form, known as thirdnormal

form.

Third Normal Form

❖ A relation schema R is in third normal form (3NF) if forall:
+

α → β in F

at least one of the following holds:

• α → β is trivial (i.e., β ∈α)

• α is a superkey for R

• Each attribute A in β – α is contained in a candidate key forR.

(NOTE: each attribute may be in a different candidate key)

❖ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).
❖ Third condition is a minimal relaxation of BCNF to ensuredependency

preservation (will see why later).

Goals of Normalization

❖ Let R be a relation scheme with a set F of functional dependencies.

❖ Decide whether a relation scheme R is in ―god‖form.

❖ In the case that a relation scheme R is not in ―go d‖form, decompose it

1 2 n
into a set of relation scheme {R , R , ..., R } such that

• each relation scheme is in good form

• the decomposition is a lossless-join decomposition

• Preferably, the decomposition should be dependency preserving.

How good is BCNF?

❖ There are database schemas in BCNF that do not seem to besufficiently

normalized
❖ Consider a relation

inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and canhave

multiple children

Howgood is BCNF? (Cont.)

❖ There are no non-trivial functional dependencies and therefore the

relation is in BCNF

❖ Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we

need to add two tuples

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

Functional-DependencyTheory

❖ We now consider the formal theory that tells us which functional

dependencies are implied logically by a given set of functional

dependencies.

❖ We then develop algorithms to generate lossless decompositions into

BCNF and 3NF

❖ We then develop algorithms to test if a decomposition is dependency-

preserving

Closure of a Set of Functional Dependencies

❖ Given a set F set of functional dependencies, there are certain other

functional dependencies that are logically implied by F.

• For e.g.: If A → B and B → C, then we can infer that A → C

❖ The set of all functional dependencies logically implied by F is theclosure

of F.
+

❖ We denote the closure of F by F .

Closure of a Set of Functional Dependencies

+,

❖ We can find F the closure of F, by repeatedly applying Armstrong’s

Axioms:
(reflexivity)

(augmentation)
• if β ⊆ α, then α →β

• if α → β, then γ α → γ β

• if α → β, and β → γ, then α → γ (transitivity)

❖ These rules are

• sound (generate only functional dependencies that actuallyhold),

and

• complete (generate all functional dependencies that hold).

Example

❖ R = (A, B, C, G, H, I)

F = { A → B

A → C

CG → H

CG → I
B → H}

+

❖ some members of F

• A → H

✓ by transitivity from A → B and B → H

• AG → I

✓ by augmenting A → C with G, to get AG →CG

and then transitivity with CG → I

• CG → HI

✓ by augmenting CG → I to infer CG → CGI,

and augmenting of CG → H to infer CGI → HI,

and then transitivity

+

1 2
for each pair of functional dependencies f and f in F

Procedure for Computing F

❖ To compute the closure of a set of functional dependencies F:
+

F = Frepeat
+

for each functional dependency f in F
apply reflexivity and augmentation rules on f

+

add the resulting functional dependencies to F
+

1 2
if f and f can be combined using transitivity

+ +

doesthen add the resulting functional dependency to F until F

not change any further

NOTE: We shall see an alternative procedure for this task later

Closure of Functional Dependencies (Cont.)

❖ Additional rules:

• If α → β holds and α → γ holds, then α → β γ holds(union)

• If α → β γ holds, then α → β holds and α → γ holds

(decomposition)

• If α → β holds and γ β → δ holds, then α γ → δholds

(pseudotransitivity)

The above rules can be inferred from Armstrong’saxioms.

Closure of AttributeSets

+

❖ Given a set of attributes α, define the closure of α under F (denoted by α)
as the set of attributes that are functionally determined by α underF

+

❖ Algorithm to compute α , the closure of α underF

result := α;

while (changes to result) do

for each β → γ in Fdo
begin

if β ⊆ result then result := result ∪ γ

end

Example of Attribute SetClosure

❖ R = (A, B, C, G, H, I)
❖ F = {A → B

A → C
CG →H
CG → I
B →H}

+

❖ (AG)

1. result = AG

2. result = ABCG (A → C and A →B)

3. result = ABCGH (CG → H and CG ⊆AGBC)

(CG → I and CG ⊆AGBCH)4. result = ABCGHI
❖ Is AG a candidate key?

1. Is AG a superkey?
+

+

1. Does AG → R? == Is (AG) ⊇ R

2. Is any subset of AG asuperkey?

1. Does A → R? == Is (A) ⊇R
+

1. Does G → R? == Is (G) ⊇ R

Uses of AttributeClosure

There are several uses of the attribute closure algorithm:

❖ Testing for superkey:
+, +

• To test if α is a superkey, we compute α and check if α contains

all attributes of R.

❖ Testing functional dependencies

• To check if a functional dependency α → β holds (or, in other
+ +

words, is in F), just check if β ⊆ α .
+

• That is, we compute α by using attribute closure, and then check

if it containsβ.
• Is a simple and cheap test, and very useful

❖ Computing closure of F
+ +

• For each γ ⊆R, we find the closure γ , and for each S ⊆ γ , we

output a functional dependency γ → S.

Canonical Cover

❖ Sets of functional dependencies may have redundant dependenciesthat

can be inferred from the others

• For example: A → C is redundant in: {A → B, B → C, A→ C}

• Parts of a functional dependency may be redundant

✓ E.g.: on RHS: {A → B, B → C, A → CD} can be

simplified to
{A → B, B → C, A →D}

✓ E.g.: on LHS: {A → B, B → C, AC → D} canbe

simplified to

{A → B, B → C, A →D}

❖ Intuitively, a canonical cover of F is a ―minimal‖set of functional

dependencies equivalent to F, having no redundant dependenciesor

redundant parts of dependencies

ExtraneousAttributes

❖ Consider a set F of functional dependenciesand the functional

dependency α → β in F.
• AttributeA is extraneous in α if A∈α

and F logically implies (F – {α → β}) ∪ {(α – A) →β}.

• Attribute A is extraneous in β if A ∈β

and the set of functional dependencies
(F – {α → β}) ∪ {α →(β – A)} logically implies F.

❖ Note: implication in the opposite direction is trivial in each of the cases

above, since a ―stronger‖ functional dependency always implies a weaker

one
❖ Example: Given F = {A → C, AB → C }

• B is extraneous in AB → C because {A → C, AB→ C} logically

implies A → C (I.e. the result of dropping B from AB →C).
❖ Example: Given F = {A → C, AB → CD}

• C is extraneous in AB → CD since AB → C can be inferredeven

after deleting C

Testing if an Attribute isExtraneous

❖ Consider a set F of functional dependenciesand the functional

dependency α → β in F.
❖ To test if attributeA∈α is extraneous inα

+

1. compute ({α} – A) using the dependencies inF
+

1. check that ({α} – A) contains β; if it does, A is extraneous in α
❖ To test if attribute A ∈β is extraneous inβ

+

1. compute α using only the
dependencies in F’ = (F – {α → β})
∪ {α →(β –A)},

+

1. check that α contains A; if it does, A is extraneous inβ

Canonical Cover

c
❖ A canonical cover for F is a set of dependencies F such that

c,

c

• F logically implies all dependencies in F and

• F logically implies all dependencies in F,and
c

• No functional dependency in F contains an extraneous attribute,
c

and

• Each left side of functional dependency in F is unique.

❖ To compute a canonical cover for F:repeat

Use the union rule to replace any dependencies in F
α → β and α → β with α → β β

1 1 1 2 1 1 2

Find a functional dependency α → β with an
extraneous attribute either in α or inβ
/* Note: test for extraneous attributes done using F

c
n

,
otF*/

If an extraneous attribute is found, delete it from α → β untilF

does not change

❖ Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

1 2

Computing a Canonical Cover

❖ R = (A, B, C)
F = {A →BC

B → C

A → B

AB →C}
❖ Combine A → BC and A → B into A → BC

• Set is now {A → BC, B → C, AB → C}

❖ A is extraneous in AB → C

• Check if the result of deleting A from AB → C is implied by the other

dependencies
4 Yes: in fact, B → C is already present!

• Set is now {A → BC, B → C}

❖ C is extraneous in A → BC

• Check if A → C is logically implied by A → B and the other dependencies

4 Yes: using transitivity on A → B and B → C.
– Can use attribute closure of A in more complex cases

❖ The canonical cover is: A → B

B → C

Lossless-join Decomposition

❖ For the case of R = (R , R), we require that for all possible relations r on schema R
1 2

r = ∏R1 (r) ∏R(2r)

❖ A decomposition of R into R and R is lossless join if at leastone of thefollowing
+

dependencies is in F :
• R ∩ R → R

1 2 1

• R ∩ R → R
1 2 2

❖ The above functional dependencies are a sufficient condition for lossless join

decomposition; the dependencies are a necessary condition only if all constraintsare

functional dependencies

Example

DependencyPreservation

+

i i
❖ Let F be the set of dependencies F that include only attributes in R.

✓ A decomposition is dependency preserving,if

1 2 n
(F ∪ F ∪ … ∪ F) = F

+ +

✓ If it is not, then checking updates for violation offunctional

dependencies may require computing joins, which is

expensive.

Testing for Dependency Preservation

❖ To check if a dependency α → β is preserved in a decomposition of R into
R , R , …, R we apply the following test (with attribute closuredonewith

1 2 n

respect to F)

• result = αwhile (changes to result)do

i
for each R in thedecomposition

+

t = (result ∩ R) ∩R
i i

result = result ∪ t

• If result contains all attributes in β, then the functionaldependency

α → β is preserved.

❖ We apply the test on all dependencies in F to check if a decompositionis

dependency preserving
❖ This procedure takes polynomial time, instead of the exponential time

1 2 n
required to compute F and (F ∪ F ∪ … ∪ F)

+ +

Example

1 2

❖ R = (A, B, C)

F = {A → B

B →C}

Key = {A}
❖ R is not in BCNF

❖ Decomposition R = (A, B), R = (B, C)

1 2
• R and R in BCNF

• Lossless-join decomposition

• Dependency preserving

Testing for BCNF

❖ To check if a non-trivial dependency α →β causes a violation of BCNF
+

1. compute α (the attribute closure of α),and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

❖ Simplified test: To check if a relation schema R is in BCNF, it suffices to
check only the dependencies in the given set F for violation ofBCNF,

+

rather than checking all dependencies in F .

• If none of the dependencies in F causes a violation of BCNF, then
+

none of the dependencies in F will cause a violation of BCNF
either.

❖ However, simplified test using only F is incorrect when testing arelation
in a decomposition of R

• Consider R = (A, B, C, D, E), with F = { A → B, BC → D}

1 2
✓ Decompose R into R = (A,B) and R = (A,C,D,E)

✓ Neither of the dependencies in F contain onlyattributes
from

2
(A,C,D,E) so we might be mislead into thinking R satisfies

BCNF.
+

2
✓ In fact, dependency AC → D in F shows R is not inBCNF.

Testing Decomposition for BCNF

i
❖ To check if a relation R in a decomposition of R is in BCNF,

• Either test R for BCNF with respect to the restriction of F to R
i i

+

(that is, all FDs in F that contain only attributes from R)
i

• or use the original set of dependencies F that hold on R, butwith

the following test:
+

– for every set of attributes α ⊆R , check that α (the
i

attribute closure of α) either includes no attribute of
R - α, or includes all attributes of R .

i i

✓ If the condition is violated by some α → β in F, the

dependency
+

α → (α - α) ∩ R can be shown to hold on R , andR
i i i

violates BCNF.
✓ We use above dependency to decomposeR

i

BCNF DecompositionAlgorithm

Example of BCNFDecomposition

❖ R = (A, B, C)

F = {A → B

B →C}

Key = {A}

❖ R is not in BCNF (B → C but B is not superkey)

❖ Decomposition

1
• R = (B, C)

2
• R = (A,B)

Example of BCNFDecomposition

❖ class (course_id, title, dept_name, credits, sec_id, semester, year,building,
room_number, capacity, time_slot_id)

❖ Functional dependencies:
• course_id→ title, dept_name, credits

• building, room_number→capacity

• course_id, sec_id, semester, year→building,room_number,

time_slot_id

❖ A candidate key {course_id, sec_id, semester,year}.

❖ BCNFDecomposition:

• course_id→ title, dept_name, credits holds
✓ but course_id is not a superkey.

• We replace class by:
✓ course(course_id, title, dept_name, credits)
✓ class-1 (course_id, sec_id, semester, year,

building, room_number, capacity,
time_slot_i

18FatimahAL-Shaikh

BCNF Decomposition(Cont.)

❖ course is in BCNF

• How do we know this?

❖ building, room_number→capacity holds on class-1

• but {building, room_number} is not a superkey forclass-1.

• We replace class-1 by:

✓ classroom (building, room_number, capacity)

✓ section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)
❖ classroom and section are in BCNF.

BCNF and DependencyPreservation

It is not always possible to get a BCNF decomposition that is

dependency preserving
❖ R = (J, K, L)

F = {JK →L

L → K }

Two candidate keys = JK and JL

❖ R is not in BCNF

❖ Any decomposition of R will fail to preserve

JK → L

This implies that testing for JK → L requires a join

Third Normal Form: Motivation

❖ There are some situations where

• BCNF is not dependency preserving,and

• efficient checking for FD violation on updates is important

❖ Solution: define a weaker normal form, called Third Normal

Form (3NF)

• Allows some redundancy (with resultant problems; we will see

examples later)

• But functional dependencies can be checked onindividual

relations without computing a join.

• There is always a lossless-join,dependency-preserving

decomposition into 3NF.

3NFExample

❖ Relation dept_advisor:

• dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name → i_ID, i_ID →dept_name}

• Two candidate keys: s_ID, dept_name, and i_ID, s_ID

• R is in 3NF

✓ s_ID, dept_name → i_ID s_ID

– dept_name is a superkey

✓ i_ID → dept_name

– dept_name is contained in a candidatekey

Redundancy in 3NF

Testing for 3NF

+

❖ Optimization: Need to check only FDs in F, need not check all FDs in F .

❖ Use attribute closure to check for each dependency α → β, if α is a

superkey.
❖ If α is not a superkey, we have to verify if each attribute in β iscontained

in a candidate key of R

• this test is rather more expensive, since it involve finding candidate

keys

• testing for 3NF has been shown to be NP-hard

• Interestingly, decomposition into third normal form (described

shortly) can be done in polynomialtime

3NF DecompositionAlgorithm

3NF Decomposition Algorithm(Cont.)

❖ Above algorithm ensures:

• each relation schema R
i
is in 3NF

• decomposition is dependency preserving and lossless-join

• Proof of correctness is at end of this presentation (click here)

3NF Decomposition: AnExample

❖ Relation schema:

cust_banker_branch = (customer_id, employee_id, branch_name, type)

❖ The functional dependencies for this relation schema are:

1. customer_id, employee_id → branch_name, type

2. employee_id → branch_name

3. customer_id, branch_name → employee_id

❖ We first compute a canonical cover
st

1. branch_name is extraneous in the r.h.s. of the 1 dependency
2. No other attribute is extraneous, so we get F =

C

customer_id, employee_id → type

employee_id → branch_name

customer_id, branch_name → employee_id

3NF Decompsition Example (Cont.)

❖ The for loop generates following 3NFschema:

(customer_id, employee_id, type)

(employee_id, branch_name)

(customer_id, branch_name, employee_id)

• Observe that (customer_id, employee_id, type) contains a candidate
key of the original schema, so no further relation schema needs be
added

❖ At end of for loop, detect and delete schemas, such as (employee_id,

branch_name), which are subsets of otherschemas

• result will not depend on the order in which FDs are considered

❖ The resultant simplified 3NF schema is:

(customer_id, employee_id, type)

(customer_id, branch_name, employee_id)

Comparison of BCNF and3NF

❖ It is always possible to decompose a relation into a set of relationsthat

are in 3NF such that:

• the decomposition is lossless

• the dependencies are preserved

❖ It is always possible to decompose a relation into a set of relations thatare

in BCNF such that:

• the decomposition is lossless

•it may not be possible to preserve dependencies. Design

Goals

❖ Goal for a relational database design is:

• BCNF.

• Lossless join.

• Dependency preservation.

❖ If we cannot achieve this, we accept oneof

• Lack of dependency preservation

• Redundancy due to use of 3NF

❖ Interestingly, SQL does not provide a direct way of specifying functional

dependencies other than superkeys.

Can specify FDs using assertions, but they are expensive to test, (and

currently not supported by any of the widely used databases!)
❖ Even if we had a dependency preserving decomposition, using SQL we

would not be able to efficiently test a functional dependency whose left

hand side is not a key.

Example

❖ Let R be a relation schema with a set of attributes that are partitioned

into 3 nonempty subsets.

Y, Z, W

❖ We say that Y →→ Z (Y multidetermines Z)if and only if for allpossible

relations r (R)

< y , z , w > ∈r and < y , z , w > ∈r
1 1 1 1 2 2

then

< y , z , w > ∈r and < y , z , w > ∈r
1 1 2 1 2 1

❖ Note that since the behavior of Z and W are identical it followsthat

Y →→ Z if Y →→ W

Example (Cont.)

❖ In our example:

ID →→ child_name

ID →→ phone_number

❖ The above formal definition is supposed to formalize the notion thatgiven

a particular value of Y (ID) it has associated with it a set of values of Z

(child_name) and a set of values of W (phone_number), and these two sets

are in some sense independent of each other.
❖ Note:

• If Y → Z then Y →→ Z
• Indeed we have (in above notation) Z = Z The claim follows.

1 2

Use of Multivalued Dependencies

❖ We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a given

set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We shall thus

concern ourselves only with relations that satisfy a given set of

functional and multivalued dependencies.

❖ If a relation r fails to satisfy a given multivalued dependency, we can

construct a relations r′ that does satisfy the multivalued dependencyby

adding tuples to r.

Theory of MVDs

❖ From the definition of multivalued dependency, we can derive the

following rule:

• If α → β, then α →→ β

That is, every functional dependency is also a multivalued dependency
+

❖ The closure D of D is the set of all functional and multivalued
dependencies logically implied by D.

+

• We can compute D from D, using the formal definitionsof

functional dependencies and multivalued dependencies.

• We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice

• For complex dependencies, it is better to reason about setsof

dependencies using a system of inference rules (see AppendixC).

Fourth Normal Form

❖ A relation schema R is in 4NF with respect to a set D of functionaland
+

multivalued dependencies if for all multivalued dependencies in D of the

form α →→ β, where α ⊆R and β ⊆R, at least one of the following hold:

• α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)

• α is a superkey for schema R

❖ If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

i i
n The restriction of D to R is the set D consisting of

+

i
l All functional dependencies in D that include only attributes of R

l All multivalued dependencies of the form

α →→ (β ∩ R)
i

where α ⊆R and α →→ β is in D
+

i

4NF DecompositionAlgorithm

+

result: = {R};done := false;compute D ;
+

Let D denote the restriction of D toR
i i

while (not done)
if (there is a schema R in result that is not in 4NF) then

i

begin

let α →→ β be a nontrivial multivalued dependency that holds

i i i
on R such that α → R is not in D , andα∩β=φ;

i i
result := (result - R) ∪ (R - β) ∪ (α, β); end else done:= true;

Note: each R is in 4NF, and decomposition is lossless-join
i

Example

❖ R =(A, B, C, G, H, I) F

={ A →→B

B →→ HI

CG →→ H }
❖ R is not in 4NF since A →→ B and A is not a superkey for R

❖ Decomposition

1

3

a) R = (A, B)
1

(R is in4NF)

b) R = (A, C, G, H, I)
2

(R is not in 4NF, decompose into R and R)
2 3 4

c) R = (C, G, H)
3

(R is in4NF)

d) R = (A, C, G, I)
4

(R is not in 4NF, decompose into R and R)
4 5 6

4

• A →→ B and B →→ HI ➔ A →→ HI, (MVD
transitivity), and

• and hence A →→ I (MVD restriction to R)

5
e) R = (A, I)

5
(R is in 4NF)

6
f)R = (A, C, G)

6
(R is in 4NF)

Further Normal Forms

❖ Join dependencies generalize multivalued dependencies

• lead to project-join normal form (PJNF) (also called

fifth normal form)

❖ A class of even more general constraints, leads to a normalform

called domain-key normal form.

❖ Problem with these generalized constraints: are hard to reason

with, and no set of sound and complete set of inference rules exists.

Hence rarely used

Overall Database Design Process

❖ We have assumed schema R is given

• R could have been generated when converting E-R diagram to a

set of tables.

• R could have been a single relation containing all attributesthat

are of interest (called universal relation).

• Normalization breaks R into smaller relations.

• R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.

ER Model and Normalization

❖ When an E-R diagram is carefully designed, identifying all entities

correctly, the tables generated from the E-R diagram should not need

further normalization.

❖ However, in a real (imperfect) design, there can be functional

dependencies from non-key attributes of an entity to other attributesof

the entity

• Example: an employee entity with attributes

department_name and building,

and a functional dependency
department_name→ building

• Good design would have made department an entity

❖ Functional dependencies from non-key attributes of a relationshipset

possible, but rare --- most relationships are binary

Denormalization for Performance

Other Design Issues

•

❖ Some aspects of database design are not caught by normalization

❖ Examples of bad database design, to beavoided:

Instead of earnings (company_id, year, amount), use

• earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).

✓ Above are in BCNF, but make querying across years

difficult and needs new table each year

company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)

✓ Also in BCNF, but also makes querying across years

difficult and requires new attribute each year.
✓ Is an example of a crosstab, where values for oneattribute

become column names

✓ Used in spreadsheets, and in data analysis tools

Modeling Temporal Data

❖ Temporal data have an association time interval during which the data
are valid.

❖ A snapshot is the value of the data at a particular point in time
❖ Several proposals to extend ER model by adding valid time to

• attributes, e.g., address of an instructor at different points in time

• entities, e.g., time duration when a student entity exists

• relationships, e.g., time during which an instructor wasassociated
with a student as an advisor.

❖ But no accepted standard
❖ Adding a temporal component results in functional dependencies like

ID → street, city

not to hold, because the address varies overtime

❖ A temporal functional dependency X → Y holds on schema R if the
functional dependency X → Y holds on all snapshots for all legal
instances r (R).

Modeling Temporal Data (Cont.)

❖ In practice, database designers may add start and end time attributes to

relations

• E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)

✓ Constraint: no two tuples can have overlapping valid times

– Hard to enforce efficiently

❖ Foreign key references may be to current version of data, or to data at a

point in time

• E.g., student transcript should refer to course information at the

time the course was taken

End of Chapter

Proof of Correctness of 3NF DecompositionAlgorithm

Correctness of 3NF DecompositionAlgorithm

❖ 3NF decomposition algorithm is dependency preserving (since there is a

c
relation for every FD in F)

❖ Decomposition is lossless

• A candidate key (C) is in one of the relations R indecomposition
i

• Closure of candidate key under F must contain all attributes in R.
c

• Follow the steps of attribute closure algorithm to show there is

only one tuple in the join result for each tuple in R
i

Correctness of 3NF Decomposition Algorithm(Cont’d.)

Claim: if a relation R is in the decomposition generated bythe
i

above algorithm, then R satisfies3NF.
i

i
❖ Let R be generated from the dependency α →β

i
❖ Let γ → B be any non-trivial functional dependency on R . (We needonly

c

consider FDs whose right-hand side is a single attribute.)

❖ Now, B can be in either β or α but not in both. Consider eachcase

separately.

❖ Case 1: If B in β:

• If γ is a superkey, the 2nd condition of 3NF issatisfied
• Otherwise α must contain some attribute not in γ

+

• Since γ → B is in F it must be derivable from F , byusing

attribute closure on γ.

• Attribute closure not have used α →β. If it had been used, αmust

be contained in the attribute closure of γ, which is not possible,

since we assumed γ is not a superkey.

• Now, using α→ (β- {B}) and γ → B, we can derive α →B

(since γ ⊆ α β, and B ∉γ since γ → B isnon-trivial)

• Then, B is extraneous in the right-hand side of α →β; which is not

possible since α →β is in F.
c

• Thus, if B is in β then γ must be a superkey, and the second

condition of 3NF must be satisfied.

Correctness of 3NF Decomposition (Cont’d.)

❖ Case 2: B is in α.

• Since α is a candidate key, the third alternative in the definition of

3NF is trivially satisfied.

• In fact, we cannot show that γ is asuperkey.

• This shows exactly why the third alternative is present inthe

definition of 3NF.

Q.E.D.

Figure 8.02

Figure 8.03

Figure 8.04

Figure 8.05

Figure 8.06

Figure 8.14

Figure 8.15

Figure 8.17

Thank You

