IDHAYA COLLEGE FOR WOMEN
KUMBAKONAM

PG & RESEARCH DEPARTMENT OF

COMPUTER SCIENCE
ACADEMIC YEAR : 2019 — 2020
SEMESTER : IV
CLASS : Il - B.Sc (CS)
SUBJECT IN-CHARGE N. AARTHI
SUBJECT NAME : DATABASE SYSTEMS

SUBJECT CODE : 16SCCCS4

UNIT -V

RELATIONAL DATABASE DESIGN

Features of Good Relational Designs, Atomic
Domains and First Normal Form, Decomposition Using
Functional Dependencies, Functional-Dependency Theory,
Decomposition Using Functional Dependencies
Decomposition Using Multi-valued Dependencies, More
Normal Forms, Database Design Process

Relational Database Design

e

*¢

Features of Good Relational Design

Atomic Domains and First Normal Form
Decomposition Using Functional Dependencies
Functional Dependency Theory

Algorithms for Functional Dependencies
Decomposition Using Multivalued Dependencies
More Normal Form

Database-Design Process

Modeling Temporal Data

53

*

/
X4

L)

>

R/
S

53

*

3

*

K/
L X4

53

*

3

*

Combine Schemas?

% Suppose we combine instructor and department into inst_dept
(No connection to relationship set inst_dept)
% Result is possible repetition of information

| 1D I nanie | salary l dept_name | building | budget |
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 Finance Painter 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. | Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan | 65000 Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
15151 | Mozart 40000 Music Packard 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter 120000

A Combined Schema Without Repetition

% Consider combining relations
sec_class(sec_id, building, room_number) and
section(course_id, sec_id, semester, year)

into one relation
section(course_id, sec_id,
semester, year, building,
room_number)
% No repetition in this case

What About Smaller Schemas?

% Suppose we had started with inst_dept. How would we know to split up

(decompose) it into instructor and department?
% Write a rule —ifthere were a schema (dept_name, building, budget), then

dept_name would be a candidate ks
% Denote as a functional dependency:

dept_name — building, budget
% Ininst_dept, because dept_name is not a candidate key, the buildingand

budget of a department may have to be repeated.
This indicates the need to decompose inst_dept

% Not all decompositions are good. Suppose we decompose
employee(ID, name, street, city, salary) into

employeel (1D, name)

employee2 (name, street, city, salary)
%+ The next slide shows how we lose information -- we cannotreconstruct
the original employee relation -- and so, this is a lossy decomposition.

A Lossy Decomposition

I 1D l name l street l city salary
57766 Kim Main Perryridge 75000
98776 Kim North | Hampton 67000
employee
Y
1D name name street city salary
57766 Kim Kim Main Perryridge 75000
98776 Kim Kim North | Hampton 67000
\ natural join /
I 1D [name [street [city l salary
57766 Kim Main Perryridge 75000
57766 Kim North Hampton 67000
98776 Kim Main Perryridge 75000
98776 Kim North Hampton 67000

Example of Lossless-Join Decomposition

% Lossless join decomposition
% Decomposition of R = (A, B, C)
R=(A,B) R=(B,C)
1 2

[5] c |
a | A a 7 1 A
= =2 B sl =2 2 B
2 MasAn Maedn
TLa (b4 TIs IR
a 1 A
V<s 2 | B

First Normal Form

% Domain is atomic if its elements are considered to be indivisible units
Examples of non-atomic domains:
v" Set of names, composite attributes
v"ldentification numbers like CS101 that can be brokenup

into parts
% Arelational schema R is in first normal form if the domains of all
attributes of R are atomic
% Non-atomic values complicate storage and encourageredundant
(repeated) storage of data
Example: Set of accounts stored with each customer, and set of

owners stored with each account
We assume all relations are in first normal form (and revisit thisin

Chapter 22: Object Based Databases)

First Normal Form (Cont’d)

% Atomicity is actually a property of how the elements of the domainare
used.

Example: Strings would normally be considered indivisible
Suppose that students are given roll numbers which are stringsof
the form CS0012 or EE1127
If the first two characters are extracted to find the department, the
domain of roll numbers is not atomic.
Doing so is a bad idea: leads to encoding of informationin
application program rather than in the database.

Goal — Devise a Theory for the Following

Decide whether a particular relation R is in —godiform.
In the case that a relation R is not in —godiform,decompose it into a set
of relations {Rl, R2 . R :q’ such that

each relation is in good form

the decomposition is a lossless-join decomposition
% Our theory is based on:

functional dependencies

multivalued dependencies

K/
0‘0
R/
%*

Functional Dependencies

>

*,

» Constraints on the set of legal relations.

» Require that the value for a certain set of attributes determines uniquely
the value for another set of attributes.
% Afunctional dependency is a generalization of the notion of akey.

)

>

*,

*,

Functional Dependencies (Cont.)

< Let R be a relation schema
ac R and S R
< The functional dependency

a — pGholds on Rif and only if for any legal relations AR),
whenever any two tuples £ and % of ragree on the attributes a,
they also agree on the attributes 6. That is,

flal =Lla] = 4F] = £[F]

< Example: Consider AA,B) with the following instance of .

1 4
1 &
3 7

<+ On this instance, A — B does NOT hold, but 88— A4 does hold.

Functional Dependencies (Cont.)

’,
»

> Kis a superkey for relation schema Rifand only if K — /R
<+ Kis a candidate key for /R if and only if

K— R, and

fornoac Ka—- R~

<+ Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

inst_dept (/D. name, salary. dept name. building, budget).
We expect these functional dependencies to hold:
dept _name— bullding
and D — building
but would not expect the folliowing to hold:
dept _name — salary

Use of Functional Dependencies

% We use functional dependencies to:
test relations to see if they are legal under a given set of functional
dependencies.
If a relation r is legal under a set F offunctional
dependencies, we say that r satisfiesF
specify constraints on the set of legal relations
We say that F holds on R if all legal relations on Rsatisfy
the set of functional dependencies F
% Note: A specific instance of a relation schema may satisfy a functional

dependency even if the functional dependency does not hold on all legal
instances.

For example, a specific instance of instructor may, by chance,
satisfy
name — ID.

Functional Dependencies (Cont.)

% Afunctional dependency is trivial if it is satisfied by all instances of a
relation
Example:

ID, name — ID
name — name
In general, a — gistrivial if C a

Closure of a Set of Functional Dependencies

% Given a set F of functional dependencies, there are certainother
functional dependencies that are logically implied by F.

For example: If A— B and B — C, then we can infer that A —
C

% The set of all functional dependencies logically implied by F is theclosure
of F.

+
“ We denote the closure of F by F .

% Fisasuperset of F.

Boyce-Codd Normal Form

Acrelation schema R is in BCNF with respect to a set F of functional
+

dependencies if for all functional dependencies in F of the form

o—f

where o € R and # € R, at least one of the following holds:

% a— gistrivial (i.e.,, f S a)
% ais a superkey forR

Example schema not in BCNF:

instr_dept (LD, name, salary,_dept_name, building, budget)
because dept_name— building, budget
holds on instr_dept, but dept_name is not asuperkey

Decomposing a Schema into BCNF

% Suppose we have a schema R and a non-trivial dependency a —f causesa
violation of BCNF.
We decompose R into:

(aUP)
(R-(f-a))

% In ourexample,
o = dept_name
p = building, budget

and inst_dept is replaced by

(a U B)= (dept_name, building, budget)
(R-(p-a))=(ID, name, salary, dept_name)

BCNF and Dependency Preservation

% Constraints, including functional dependencies, are costly to checkin
practice unless they pertain to only one relation

% If itis sufficient to test only those dependencies on eachindividual
relation of a decomposition in order to ensure that all functional
dependencies hold, then that decomposition is dependency preserving.

%+ Because it is not always possible to achieve both BCNF and dependency
preservation, we consider a weaker normal form, known as thirdnormal
form.

Third Normal Form
% Arelation schema R is in third normal form (3NF) if forall:

a— pinF
at least one of the following holds:
a — gistrivial (i.e., § €a)
a is a superkey for R
Each attribute A in # — a is contained in a candidate key forR.

(NOTE: each attribute may be in a different candidate key)
If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).
% Third condition is a minimal relaxation of BCNF to ensuredependency

preservation (will see why later).

A X4

Goals of Normalization

Let R be a relation scheme with a set F of functional dependencies.
Decide whether a relation scheme R is in —go dliform.

In the case that a relation scheme R is not in —godiform,decompose it
into a set of relation scheme {R ,1R 1o R }nsuch that

each relation scheme is in good form
the decomposition is a lossless-join decomposition
Preferably, the decomposition should be dependency preserving.

R/
A X4

e

*

o0

How good is BCNF?

% There are database schemas in BCNF that do not seem to besufficiently

normalized
«» Consider a relation

inst_info (ID, child_name, phone)
where an instructor may have more than one phone and can have
multiple children

/D child_name phone
512-555-1234

|

el 512-555-1234
99999 William 512-555-4321
99999 Willian

inst_info

Howgood is BCNF? (Cont.)

K/

% There are no non-trivial functional dependencies and therefore the
relation is in BCNF

% Insertion anomalies —i.e., if we add a phone 981-992-3443 to 99999, we

need to add two tuples

(99999, David, 981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

<= Therefore, it is better to decompose /st _info into:

| D | child_name

inst_child 99999 David

99999 David

99999 William

99999 Willian

/D phone

> 512-555-1234
inst_phone 99999

99999 512-555-4321

512-555-1234

99999 512-555.4321

99999

This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later.

Functional-Dependency Theory

% We now consider the formal theory that tells us which functional
dependencies are implied logically by a given set of functional
dependencies.

% We then develop algorithms to generate lossless decompositionsinto
BCNF and 3NF

% We then develop algorithms to test if a decomposition is dependency-
preserving

Closure of a Set of Functional Dependencies

% Given a set F set of functional dependencies, there are certain other
functional dependencies that are logically implied by F.
Fore.g.: If A— B and B — C, then we can infer that A— C
% The set of all functional dependencies logically implied by F is theclosure
of F.

% We denote the closure of F by F .

Closure of a Set of Functional Dependencies

% Wecan find F the closure of F, by repeatedly applying Armstrong’s
Axioms:
if # € a, then a —f (reflexivity)
ifo— g, thenya —vyp (augmentation)
if o — f, and g — vy, then a — y (transitivity)
% These rulesare
sound (generate only functional dependencies that actuallyhold),
and
complete (generate all functional dependencies that hold).
Example

“ R=(AB,C,GH,I
F={A—>B
A—C
CG—>H

CG -l
B — H}

% some members of F
A—-H
by transitivity from A— B and B —H
AG — |
by augmenting A — C with G, to get AG —CG
and then transitivity with CG — |
CG — HlI
by augmenting CG — 1 to infer CG — CGl,

and augmenting of CG — H to infer CGI — Hl,

and then transitivity

+

Procedure for Computing F

% Tocompute the closure of a set of functional dependencies F:
+

F = Frepeat

for each functional dependency finF
apply reflexivity and augmentation rules on f

+

add the resulting functional dependencies to F

+

for each pair of functional dependencies fland f i2n F
if fland f gan be combined using transitivity

+

then add the resulting functional dependency to F until F does
not change any further

NOTE: We shall see an alternative procedure for this task later

Closure of Functional Dependencies (Cont.)

% Additional rules:
If a — g holds and a — 7y holds, then a — £y holds(union)
If @ — gy holds, then a — g holds and a — y holds
(decomposition)
If @ — g holds and y # — & holds, then oy — dholds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.
Closure of Attribute Sets
+

% Given a set of attributes a, define the closure of a under F (denoted by a)
as the set of attributes that are functionally determined by o under F
+

% Algorithm to compute a , the closure of a underF

result := a;
while (changes to result) do
for each p — y in Fdo
begin
if p < result then result :=result U y
end
Example of Attribute SetClosure

R=(A B,C,G,H,I)

A X4

“ F={A—>B
A—C
CG —H
CG—1
. B —H}
% (AG)
1. result=AG

2. result=ABCG (A— CandA—B)
3. result=ABCGH (CG — H and CG € AGBC)

4. result=ABCGHI (CG — 1 and CG S AGBCH)
% Is AG a candidate key?
Is AG a superkey?

1. DoesAG — R?==Is (AG) 2 R
Is any subset of AG asuperkey?
1. DoessA—R?==1Is(A) 2R

1. DoesG—R?==1Is(G) 2R

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
% Testing for superkey:

+

N
To test if a is a superkey, we compute a and check if o contains
all attributes of R.

% Testing functional dependencies
Tocheck if a fynctional dependencxa — P holds (or, in other

words, isin F), just check if p € a..

That is, we compute a by using attribute closure, and then check
if it contains.
Is a simple and cheap test, and very useful

%+ Computing closure of F

+ +
For each y € R, we find the closure y, and for each S €y ,we
output a functional dependency y — S.
Canonical Cover

%+ Sets of functional dependencies may have redundant dependenciesthat
can be inferred from the others
For example: A— Cis redundantin: {A— B,B — C,4— C}
Parts of a functional dependency may be redundant
E.g.:onRHS: {A— B,B — C, A— CD}can be
simplified to
{A—-B,B—>C,A—-D}
E.g..onLHS: {A—B,B— C,AC — D} canbe
simplified to
{A—B,B—C,A—-D}
% Intuitively, a canonical cover of F is a —minimallsetof functional
dependencies equivalent to F, having no redundant dependenciesor
redundant parts of dependencies

ExtraneousAttributes

% Consider a set F of functional dependenciesand the functional
dependency a — B in F.
AttributeAis extraneousin a if A €,
and F logically implies (F - {o. — B}) U {(a.— A) —B}.
Attribute A is extraneous in p if A €
and the set of functional dependencies
(F-{a— B} U {a —(p - A)} logically implies E
% Note: implication in the opposite direction is trivial in each of the cases
above, since a —strongarlfunctional dependency always implies a weaker
one
% Example: GivenF={A— C,AB - C}
B is extraneous in AB — C because {A — C, AB— C} logically
implies A — C (l.e. the result of dropping B from AB —C).
% Example: Given F ={A— C, AB —CD}

C is extraneous in AB — CD since AB — C can be inferredeven
after deleting C

Testing if an Attribute is Extraneous

% Consider a set F of functional dependenciesand the functional

dependency a — B in F.]
«»» Totest if attribute A ea is extraneous ina
+

compute ({o} —A) using the dependencies inF

check that ({a} —A) contains B; if it does, Ais extraneousina
% Totestif attribute A € is extraneousinf
+

compute a using only the
dependenciesin F’= (F - {a — B})
U {o—(p-A),

check that a contains A; if it does, A is extraneous inf

Canonical Cover

% Acanonical cover for F is a set of dependencies F scuch that
F logically implies all dependencies in Fciand
F logically implies all dependencies in Fand
N((:J functional dependency in F C(:ontains an extraneous attribute,

and
Each left side of functional dependency in F Cis unique.

% Tocompute a canonical cover for F:repeat
Use the union rule to replace any dependencies in F
. a1—>.[$fi1nda—l>ﬁw12tha—>1[$|3 L2

Find a functional dependency o — B with an
extraneous attribute either in o or in 8
/* Note: test for extraneous attributes done using F notF*/

If an extraneous attribute is found, delete it from a — g until F

does not change

“ Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

Computing a Canonical Cover

o

» R=(A B, C)
F={A—BC
B - C
A —- B
AB —C}
% Combine A— BCand A— Binto A— BC
Setisnow {A — BC,B — C, AB — C}
» Alisextraneousin AB —C
Check if the result of deleting A from AB — C is implied by the other
dependencies
4 Yes: in fact, B — C is already present!
Setisnow {A — BC,B — C}
Cisextraneousin A —BC
Check if A — C s logically implied by A — B and the other dependencies
4 Yes: using transitivityon A— Band B — C.
Can use attribute closure of A in more complex cases
The canonical coveris: A—B

B—-C
Lossless-join Decomposition

)
%

R

)
S

°,
%

o,

% Forthe case of R = (R, R), we require that for all possible relations r on schemaR
1 2

. r=[lra(r) [R)

% A decomposition of R into R Pnd R ig lossless join if at leastone of thefollowing
+

dependenciesisin F :
RNR—>R
1 2 1
RNR—R
1 2 2
% The above functional dependencies are a sufficient condition for lossless join
decomposition; the dependencies are a necessary condition only if all constraintsare
functional dependencies
Example

* R=(A B C)
F={A— B B— C)

Can be decomposed in two different ways
* RW=(A B) R,=(B C)
Lossless-join decomposition:
R, N R, ={Byand B— BC
Dependency preserving
* R;=(A B) R, =(A C)
Lossless-join decomposition:
Ry NR, ={Arand A — AB

Not dependency preserving
(cannot check 8 — Cwithout computing ~; > R)

Dependency Preservation

“ LetF be the set of dependencies F that include only attributes in R,
A decomposition is dependency preserving, if

+ +

(FUFU..UF)=F
1 2 n

If it is not, then checking updates for violation offunctional
dependencies may require computing joins, which is
expensive.

Testing for Dependency Preservation

% Tocheck if a dependency a — p is preserved in a decomposition of R into
. R éR , ..., R We apply the following test (with attribute closure donewith
n

respect to F)
result = awhile (changes to result)do
for each Riin thedecomposition

t=(resultNR) NR

result = result Ut

If result contains all attributes in B, then the functional dependency
o — [is preserved.
“» We apply the test on all dependencies in F to check if a decompositionis
dependency preserving
% This procedure takes pglynomial time, instead of+ the exponential time

required to compute F and (F Y F Uy U F)]

Example

“ R=(A B,C)

F={A>B
B —-C}
Key = {A}

% RisnotinBCNF
%+ Decomposition R1: (A,B),R :Z(B, C)

Rland R i2n BCNF

L ossless-join decomposition
Dependency preserving

Testing for BCNF

% Tocheck if a non-trivial dependency a —# causes a violation of BCNF

+

1. compute a (the attribute closure of a),and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

% Simplified test: To check if a relation schema R is in BCNF, it suffices to
check only the dependencies in the given set F for violation of BCNF,

rather than checking all dependenciesin F .
If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F will cause a violation of BCNF
either.

% However, simplified test using only F is incorrect when testing arelation
in a decomposition of R

ConsiderR=(A,B, C, D, E), withF={A— B,BC — D}
Decompose R into R1: (A,B)and R = (A,C,D,E)

Neither of the dependencies in F contain onlyattributes
from

(A,C,D,E) so we might be mislead into thinking R 2satis.fies.
BCNF

In fact, dependency AC — D in F shows R ig not inBCNF.

Testing Decomposition for BCNF

% Tocheck if a relation R !n a decomposition of R is in BCNF,
Either test Rifor BCNF with respect to the restriction of FtoR

(that is, all FDs in F that contain only attributes fromR) ,

or use the original set of dependencies F that hold on R, butwith
the following test:

+
for every set of attributes @ SR, check that a (the

attribute closure of a) either includes no attribute of

R - a, or includes all attributes of R.
I 1

If the condition is violated by some a — £ in F, the
dependency

og—((@-a)N Rlcan be shown to hold on R ,iandR i

violates BCNF.
We use above dependency to decomposeR

BCNF DecompositionAlgorithm

result :={R };done = false;
compute F*;while (not done)do
if (there is a schema R;in resu/f that is not in BCNF)
then begin
leta | — £ be a nontrivial functional dependency
that
holds on R; such that a/ | — R;is notin F*,
andaN g =0;
result = (result- R;)U (Ri=p) U (a, B),
end
else done = true;

Note: each R;is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition
“ R=(AB,C)

F={A—B
B —-C}
Key = {A}

< Risnotin BCNF (B — C but B is not superkey)
% Decomposition
R= (B,C)

R=(AB)

Example of BCNF Decomposition

% class (course_id, title, dept_name, credits, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

% Functional dependencies:
course_id— title, dept_name, credits
building, room_number—-capacity
course_id, sec_id, semester, year—building, room_number,
time_slot_id

% Acandidate key {course_id, sec_id, semester,year}.

% BCNF Decomposition:

course_id— title, dept_name, credits holds
v" but course_id is not a superkey.
We replace class by:
v~ course(caurse_id, title, dept_name, credits)

v class-I"(course_id, sec_id, semester, year,
building, room_number, capacity,
time_slot _i

18Fatimah AL-Shaikh

BCNF Decomposition (Cont.)

% course is in BCNF
How do we know this?
% building, room_number—-capacity holds on class-1
but {building, room_number} is not a superkey forclass-1.
We replace class-1 by:
classroom (building, room_number, capacity)
section (course_id, sec_id, semester, year, building,
room_number, time_slot_id)
% classroom and section are in BCNF.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition thatis
dependency preserving
% R=(J,K,L)
F={JK—-L
L—K}
Two candidate keys = JK and JL
% Risnotin BCNF
“ Any decomposition of R will fail to preserve

JK—L
This implies that testing for JK — L requires ajoin

Third Normal Form: Motivation

% There are some situations where
BCNF is not dependency preserving,and
efficient checking for FD violation on updates isimportant

% Solution: define a weaker normal form, called Third Normal

Form (3NF)

Allows some redundancy (with resultant problems; we will see
examples later)
But functional dependencies can be checked onindividual
relations without computing a join.
There is always a lossless-join, dependency-preserving
decomposition into 3NF.

3NF Example

% Relation dept_advisor:
dept_advisor (s_ID, i_ID, dept_name)
F ={s_ID, dept_ hame — i_ID, i_ID —dept_name}
Two candidate keys: s_ID, dept_name, andi_ID,s_ID
Risin 3NF
v s_ID, dept_ name —i_ID s_ID
dept_name is a superkey
v i_ID — dept_name
dept_name is contained in a candidate key
Redundancy in 3NF

< There is some redundancy in this schema
< Example of problems due to redundancy in 3NF

R=(J K L)

F={/K— L L— K} | I | Ll K|
Vi Lo K
L A&
A | Ak
null | b | K

++ repetition of information (e.g., the relationship /4, &)
(LD, dept name)
%+ need to use null values (e.g., to represent the relationship
5, k> where there is no corresponding value for J).

(/_/D, dept_namel) if there is no separate relation mapping
instructors to departments

Testing for 3NF

DS

G

superkey.

» Optimization: Need to check only FDs in F, need not check all FDs in F.
» Use attribute closure to check for each dependency a — B, if a isa

+

% If a is not a superkey, we have to verify if each attribute in p iscontained

in a candidate key of R

this test is rather more expensive, since it involve finding candidate

keys
testing for 3NF has been shown to be NP-hard

Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time

3NF DecompositionAlgorithm

Let F.be a canonical cover for F;
/:= 0;for each functional dependency a — £in F.do
if none of the schemas A; 1 =/ = /contains a g

then begin
i e o i
R =apg
end
if none of the schemas R; 1 =/ = /contains a candidate key for /
then begin
=7 +1,;

R;:= any candidate key for R
end /* Optionally, remove redundant relations */

repeat
if any schema R,is contained in another schema Ry
then /* delete R; */
Rj= R’.’.
/=l-1return (Ry, Rs, R))

3NF Decomposition Algorithm(Cont.)

% Above algorithm ensures:
each relation schema R is in 3NF
decomposition is dependency preserving and lossless-join
Proof of correctness is at end of this presentation (click here)
3NF Decomposition: AnExample

«» Relation schema:

cust_banker_branch = (customer_id. emplovee_id, branch_name, type)

% The functional dependencies for this relation schema are:
customer_id, employee_id — branch_name, type
employee_id — branch_name
customer_id, branch_name — employee_id

“» We first compute a canonical cover

st
branch_name is extraneous in the r.h.s. of the 1 dependency
No other attribute is extraneous, so we get F =
C

customer _id, employee_id — type
employee_id — branch_name
customer_id, branch_name — employee_id

3NF Decompsition Example (Cont.)

<> The for loop generates following 3NFschema:
(customer_id, employee _id, type)

(emplovee_id, branch_name)

(customer_id, branch_name, employee_id)

Observe that (customer_id, employee_id, type) contains a candidate
kgyé oé the original schema, so no further relation schema needs be
adde

% Atend of for loop, detect and delete schemas, such as (emplovee_id,
branch_name), which are subsets of otherschemas

result will not depend on the order in which FDs are considered

% The resultant simplified 3NF schema is:
(customer_id, employee _id, type)

(customer_id, branch_name, employee_id)

Comparison of BCNF and 3NF

% Itis always possible to decompose a relation into a set of relationsthat
are in 3NF such that:
the decomposition is lossless
the dependencies are preserved

% Itis always possible to decompose a relation into a set of relations thatare
in BCNF such that:
the decomposition is lossless
it may not be possible to preserve dependencies. Design
Goals

% Goal for a relational database designis:
BCNF.
Lossless join.
Dependency preservation.
“ If we cannot achieve this, we accept one of
Lack of dependency preservation
Redundancy due to use of 3NF
“ Interestingly, SQL does not provide a direct way of specifying functional
dependencies other thansuperkeys.

Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)
% Even if we had a dependency preserving decomposition, using SQL we
would not be able to efficiently test a functional dependency whose left
hand side is not a key.

Example

% Let R be a relation schema with a set of attributes that are partitioned
into 3 nonempty subsets.

Y, Z, W
% We say that Y —»— Z (Y multidetermines Z)if and only if for all possible
relationsr (R)
<y,z,w>eand<y,z,w>er
11 1 1 2 2

then

<y,z,w>eand<y,z,w>er
1 1 2 1 2 1

+» Note that since the behavior of Z and W are identical it followsthat

Y>—>ZifY>—>W
Example (Cont.)

“ Inourexample:

ID —— child_name
ID —— phone_number

% The above formal definition is supposed to formalize the notion thatgiven
a particular value of Y (ID) it has associated with it a set of values of Z
(child_name) and a set of values of W (phone_number), and these two sets
are in some sense independent of each other.

% Note:

IfY—>ZthenY »—Z

Indeed we have (in above notation) Z = Z The claim follows.
1 2

Use of Multivalued Dependencies

% We use multivalued dependencies in two ways:

1. Totest relations to determine whether they are legal under agiven
set of functional and multivalued dependencies

2. Tospecify constraints on the set of legal relations. We shall thus
concern ourselves only with relations that satisfy a given set of
functional and multivalued dependencies.

% If a relation r fails to satisfy a given multivalued dependency, we can
construct a relations r' that does satisfy the multivalued dependencyby
adding tuplestor.

Theory of MVDs

K/

%+ From the definition of multivalued dependency, we can derive the
following rule:
Ifa— B, theno ——

That is, every functional dependency is also a multivalued dependency
+

«» The closure D of D is the set of all functional and multivalued
dependencies logically imp+lied by D.

We can compute D from D, using the formal definitionsof
functional dependencies and multivalued dependencies.

We can manage with such reasoning for very simple multivalued
dependencies, which seem to be most common in practice

For complex dependencies, it is better to reason about setsof

dependencies using a system of inference rules (see AppendixC).
Fourth Normal Form

% Arelation schema R is in 4NF with respect to a set D of functionaland

+

multivalued dependencies if for all multivalued dependencies in D of the
form o —— B, where o € R and p SR, at least one of the following hold:
o —>— Bistrivial i.e,pSaoraUp=R)
a is a superkey for schemaR
% Ifarelationisin 4NFitisinBCNF

Restriction of Multivalued Dependencies
n Therestrictionof Dto R iis the set D cpnsisting of

+
All functional dependencies in D that include only attributes of R .
All multivalued dependencies of theform

a—— (BNR)
i
where @ SR and o >— BisinD
ANF DecompositionAlgorithm

+

result: = {R};done := false;compute D ;
Let Didenote the restriction of D toR

while (not done)

if (there is a schema R in result that is not in 4NF) then
I

begin

let a —— P be a nontrivial multivalued dependency that holds
on Risuch thata —» R !s notinD, iand aNp=0;

result := (result - R)I U (R - B) U (a, B); end else done:=true;

Note: each R is in 4NF, and decomposition is lossless-join

Example
“ R=(A/B,C,G,H,I)F
={A—>—B
B —-—HI

CG—->—H}
% Risnotin 4NF since A—— B and Ais not a superkey for R
%+ Decomposition

a) R1: (A, B) (Rlis iN4NF)
b) R2: (A,C,G,H, I (Rzis not in 4NF, decompose into R a3nd R) \
c) R3= (C,G, H) (R3is in4NF)
d) R4: (A,C,G, 1) (R4is not in 4NF, decompose into R a5nd R) .

A——Band B —»— HI = A—— HI,(MVD
transitivity), and
and hence A —— | (MVD restriction to RZ

e) R5: (A1 (R5is in 4NF)
(RGis in 4NF) f)R6= (A, C,G)

Further Normal Forms

% Join dependencies generalize multivalued dependencies
lead to project-join normal form (PJNF) (also called
fifth normal form)
% Aclass of even more general constraints, leads to a normalform
called domain-key normal form.
% Problem with these generalized constraints: are hard to reason
with, and no set of sound and complete set of inference rules exists.
Hence rarely used

Overall Database Design Process

% We have assumed schema R is given
R could have been generated when converting E-R diagram toa
set of tables.
R could have been a single relation containing all attributesthat
are of interest (called universal relation).
Normalization breaks R into smaller relations.
R could have been the result of some ad hoc design of relations,
which we then test/convert to normal form.

ER Model and Normalization

% When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

%+ However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributesof
the entity

Example: an employee entity with attributes
department_name and building,

and a functional dependency
department_name— building

Good design would have made department anentity
% Functional dependencies from non-key attributes of a relationshipset
possible, but rare --- most relationships are binary

Denormalization for Performance

< May want to use non-normalized schema for performance

< For example, displaying preregs along with course id, and title requires
join of course with prereq

< Alternative 1: Use denormalized relation containing attributes of course as
well as prereqg with all above attributes

faster lookup
extra space and extra execution time for updates
extra coding work for programmer and possibility of error in extra code

< Alternative 2: use a materialized view defined as
course prereq

Benefits and drawbacks same as above, except no extra coding work
for programrrlléer and avoids possible errors

Other Design Issues

%+ Some aspects of database design are not caught by normalization
+» Examples of bad database design, to beavoided:
Instead of earnings (company_id, year, amount), use
earnings_2004, earnings_2005, earnings_2006, etc., all onthe
schema (company_id, earnings).
v Above are in BCNF, but make querying across years
difficult and needs new table each year
company_year (company_id, earnings_2004, earnings_2005,
earnings_2006)
v Also in BCNF, but also makes querying across years
difficult and requires new attribute each year.
v Is an example of a crosstab, where values for oneattribute
become column names
v~ Used in spreadsheets, and in data analysistools

Modeling Temporal Data

% Temporal data have an association time interval during which the data
are valid.

Asnapshot is the value of the data at a particular pointin time
» Several proposals to extend ER model by adding valid time to
attributes, e.g., address of an instructor at different points intime
entities, e.g., time duration when a student entity exists
relationships, e.g., time during which an instructor wasassociated

with a student as an advisor.
» But no accepted standard

» Adding a temporal component results in functional dependencies like
ID — street, city

not to hold, because the address varies overtime

% Atemporal functional dependency X — Y holds on schema R if the
functional dependency X — Y holds on all snapshots for all legal
instances r (R).

Modeling Temporal Data (Cont.)

>

R/
A

G

DG

G

% In practice, database designers may add start and end time attributesto
relations

E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
Constraint: no two tuples can have overlapping valid times
Hard to enforce efficiently
% Foreign key references may be to current version of data, or to data ata
point in time
E.g., student transcript should refer to course information at the
time the course was taken
End of Chapter

Proof of Correctness of 3NF DecompositionAlgorithm

Correctness of 3NF DecompositionAlgorithm

% 3NF decomposition algorithm is dependency preserving (since there isa
relation for every FD In F

K/

%+ Decomposition is lossless

A candidate key (C) is in one of the relations R jndecomposition

Closure of candidate key under F must contain all attributes in R.
C

Follow the steps of attribute closure algorithm to show there is
only one tuple in the join result for each tuple inR i

Correctness of 3NF Decomposition Algorithm(Cont’d.)

Claim: if a relation R is in the decomposition generated by the

above algorithm, then R satisfies SNF.

R/
A X4

Let Ribe generated from the dependency o —
Let y — B be any non-trivial functional dependency on R ; (We needonly

consider FDs whose right-hand side is a single attribute.)
% Now, B can be in either p or a but not in both. Consider each case
separately.

R/
A X4

% Casel: IfBing:

If y is a superkey, the 2nd condition of 3NF issatisfied
Otherwise e must contain some attribute not iny

Since y — B is in F it must be derivable from F, byusing

attribute closure ony.

Attribute closure not have used o —. If it had been used, amust
be contained in the attribute closure of y, which is not possible,
since we assumed v is not a superkey.

Now, using a— (B- {B}) and y — B, we can derive a —B

(sincey C a B, and B ¢y since y — B isnon-trivial)
Then, B is extraneous in the right-hand side of & —f; which isnot
possible since a —p is in F,

Thus, if B is in p then y must be a superkey, and the second
condition of 3NF must be satisfied.

Correctness of 3NF Decomposition (Cont’d.)

% Case2:Bisina.
Since a is a candidate key, the third alternative in the definition of
3NF is trivially satisfied.
In fact, we cannot show that y is asuperkey.
This shows exactly why the third alternative is present inthe
definition of 3NF.

Q.E.D.

Figure 8.02

| ID | name | salary | dept_name | building | budget
22222 | Einstein | 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter | 120000
32343 | El Said 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. | Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
15151 | Mozart 40000 | Music Packard | 80000
33456 | Gold 87000 | Physics Watson 70000
76543 | Singh 80000 | Finance Painter | 120000
Figure 8.03
I 1D | name | street city salary
57:766 Kim Main | Perryridge 75000
98.776 Kim North | Hampton 67000
employee
1D namie name T street city salary
57:766 Kim Kzs'm Main | Perryridge 75000
98776 | Kim Kl:lll North | Hampton 67000
\ natural join/
l ID I namel street I city I salary |
57:766 Kim Main Perryridge 75000
57766 Kim North Hampton 67000
98776 | Kim Main Perryridge 75000
98776 Kim North Hampton 67000
Figure 8.04
A B C D
a | by | ¢ | 4
a | by | ¢ | d,
a | by | ¢ | d
a, | by | ¢ | d
ay | by | ¢ | dy

Figure 8.05

| building | room_number |capacity |

Packard 101 500
Painter 514 10
Taylor 3128 70
Watson 100 30
Watson 120 50
Figure 8.06
department
dept _name
building
budget
instructor student
ID dept_advisor ID
name name
salary tot_cred
Figure8.14
dept_name 1D street city
Physics 22222 | North | Rye
Physics 22222 | Main Manchester
Finance 12121 | Lake Horseneck
Figure 8.15
dept_name ID street city
Physics | 22222 | North [Rye
Math 22222 | Main Manchester
Figure8.17
Al B [C
a | by | g
O I
a, | by | ¢
a, | by | o

Thank You

