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Unit v
Maximal and Prime Ideal

Definition 1 Maximal ideal

Let R be a ring. An ideal M 6= R is said to be a maximal ideal of R if whenever

U is an ideal of R such that M ⊂ U ⊂ R then either U = M or U = R. That

is, there is no proper ideal of R properly containing M .

Example 2 (2) is a maximal ideal in Z.

For, let U be an ideal properly containing (2).

Therefore U contains an odd integer say, 2n + 1.

Therefore 1 = (2n + 1) − 2n ∈ U . Therefore U = Z.Thus there is no proper

ideal of Z properly containing (2)

Hence (2) is a maximal ideal of Z.

Definition 3 Let R be a commutative ring. An ideal P 6= R is called a prime

ideal if ab ∈ P ⇒ either a ∈ P or b ∈ P

Example 4 Let R be an integral domain. (0) is a prime ideal of R.

For, ab ∈ (0)⇒ ab = 0

⇒ a = 0 or b = 0(Since R is an I.D)

⇒ a ∈ (0) or b ∈ (0)

Definition 5 Let R and R
′

be rings. A function f : R → R
′

is called a

homomorphism if

i f(a + b) = f(a) + f(b) and

ii f(ab) = f(a)f(b) for all a, b ∈ R

Example 6 Let f : RXR→ R given by f(x, y) = x is a ring homomorphism.
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For,

f(a, b) + f(c, d) = f((a + c, b + d)

= a + c

= f(a, b) + f(c, d)

Also, f(a, b) + f(c, d) = f(ac, bd) = f(a, b)f(c, d)

Definition 7 The kernel K of a homomorphism f of a ring R to a ring R
′

is

defined by

{a/a ∈ R and f(a) = 0}

Definition 8 Let R be a commutative ring without zero-divisors. R is called

an Euclidean domain or an Euclidean ring if for every non-zero element a ∈ R

there is defined a non-negative integer d(a) satisfying the following conditions

• (i) For any two non-zero elements a, b ∈ R, d(a) ≤ d(ab)

• (ii) For any two non-zero elements a, b ∈ R, there exist a, r ∈ R such

that a = qb + r where either r = 0 or d(r) < d(b)

Example 9 Z is an Euclidean domain where d(a) = |a|

Proof

d(ab) = |ab| = |a||b| ≥ |a| = d(a).

Let a, b be two non-zero elements of Z. Let q be the quotient and r be the

remainder when a is divided by b.

Then a = qb + r and 0 ≤ r < |b|

Hence Z is an Euclidean domain.

Example 10 Two elements a and b of an Euclidean domain R are said to be

relatively prime if their g.c.d is unit in R.

Theorem 11 Let R be any commutative ring with identity. Let P be an ideal
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of R. Then P is a prime ideal iff R/P is an integral domain

Proof

Let P be a prime ideal.

Since R is a commutative ring with identity R/P is also commutative ring

with identity.

Now,

(P + a)(P + b) = P + 0

⇒ P + ab = P

⇒ ab ∈ P

⇒ a ∈ P or b ∈ P (since P is a prime ideal)

⇒ P + a = P or P + b = P

Thus R/P has no zero divisors.

Therefore R/P is integral domain.

Conversely,

suppose R/P is an integral domain.

We have to prove P is a prime ideal of R.

Let ab ∈ P . Then P + ab = P .

Therefore (P + a)(P + b) = P .

Therefore P + a = P or P + b = P .(since R/P has no zero divisors).

Therefore a ∈ P or b ∈ P .

Thus P is a prime ideal of R.

Hence Let R be any commutative ring with identity. Let P be an ideal of R.

Then P is a prime ideal iff R/P is an integral domain

Theorem 12 The Fundamental theorem of ring homomorphism
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Statement

Let R and R
′

be rings and f : R → R
′

be an epimorphism. Let K be the

kernel of f . Then R/K ' R
′

Proof

Define ϕR/K → R
′

by ϕ(K + a) = f(a).

(i) ϕ is well defined, for let K + b = K + a.

Then b ∈ K + a.

Therefore b = k + a where k ∈ K

Therefore f(a) = f(k + a) = f(k) + f(a) = 0 + f(a) = f(a)

Therefore ϕ(K + b) = f(b) = f(a) = ϕ(K + a)

(ii)ϕ is 1-1.

For,

ϕ(K + a) = ϕ(K + b)⇒ f(a) = f(b)

⇒ f(a)− f(b) = 0

⇒ f(a) + f(−b) = 0

⇒ f(a− b) = 0

⇒ a− b ∈ K

⇒ a ∈ K + b

⇒ K + a = K + b

ϕ(K + a) = ϕ(K + b) ⇒ K + a = K + b

(iii)ϕ is onto

For, let a
′ ∈ R

′

Since f is onto, there exists a
′ ∈ R such that f(a) = a

′
.

Hence f(a) = a
′
.
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Hence ϕ(K + a) = f(a) = a
′

(iv) ϕ is homomorphism.

For,

ϕ[(K + a)(K + b)] = ϕ[K + (a + b)]

= f(a + b)

= f(a) + f(b), sincefisahomomorphism

= ϕ(K + a) + ϕ(K + b)

ϕ[(K + a)(K + b)] = ϕ(K + ab)

= f(ab)

= f(a)f(b)sincefishomomorphism

ϕ(K + a)ϕ(K + b)

Hence ϕ is an isomorphism.

Hence R/K ' R
′

Theorem 13 Let R be a ring and I be a subgroup of (R,+). The multiplica-

tion in R/I given by (I +a)(I + b) = I +ab is well defined iff I is an ideal of R

Proof

Let I be an ideal R.

To prove multiplication is well defined, let I + a1 = I + a and I + b+ 1 = I + b

Then a1 ∈ I + a and b1 ∈ I + b

Therefore a1 = i1 + a and b1 = i2 + b where i1, i2 ∈ I

Hence a1b1 = (i1 + a)(i2 + b) = i1i2 + i1b + ai2 + ab

Now since I is an ideal we have i1i2, i1b, ai2 ∈ I

Hence a1b1 = i3 where i3 = i1i2 + i1b + ai2 ∈ I
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Therefore a1b1 ∈ I + ab

Hence I + ab = I + a1b1 Conversely,

Suppose that the multiplication in R/I given by (I + a)(I + b) = I + ab is well

defined.

To prove that I is an ideal of R.

Let i ∈ I and r ∈ R. We have to prove that ir, ri ∈ I

Now,

I + ir = (I + i)(I + r)

= (I + 0)(I + r)

= I + or

= 0

Therefore ir ∈ I

Similarly,

I + ri = (I + r)(I + i)

= (I + r)(I + 0)

= I + r0

= 0

Therefore ri ∈ I

Hence I is and ideal.

Hence Let R be a ring and I be a subgroup of (R,+). The multiplication in

R/I given by (I + a)(I + b) = I + ab is well defined iff I is an ideal of R

Definition 14 Let R be any ring and I be an ideal of R. Well-defined binary
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operations in R/I given by (I+a)+(I+b) = I+(a+b) and (I+a)(I+b) = I+ab.

The ring R/I is called quotient ring of R modulo I.

Example 15 The subset I = {0, 3} of Z6 is an ideal.

Solution

Z6/I = {I, I + 1, I + 2} is a ring isomorphic to Z3.

Here Z6 is not an integral domain but the quotient ring Z6/I is an integral

domain.

Theorem 16 Let R be an Euclidean domain and I be an ideal of R. Then

there exists an element a ∈ I such that I = aR. (i.e.,) Every ideal of an

Euclidean domain is a principal ideal.

Proof

If I 6= 0, then we take a = 0. Hence we assume that I 6= 0.

Leta ∈ I be a non-zero element such that d(a) is minimum.

Now, we claim that I = aR

Let x ∈ I. Then there exist q, r ∈ R such that x = qa + r where r = 0 or

d(r) < d(a).

Now a ∈ I ⇒ qa ∈ I

Also s ∈ I. Hence r = x− qa ∈ I.

Now, suppose r 6= 0. Then d(r) < d(a) which is contradiction to the choice of

a and hence r = 0 .

Therefore x = qa and hence I = aR

Theorem 17 Any Euclidean domain R has an identity element.

Since R is an ideal of R, there exists c ∈ R such that R = cR.

Therefore Every element of R is a multiple of c.

In particular c = ec for some e ∈ R.

Now, let x ∈ R. Then x = cy for some y ∈ R
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Therefore

ex = e(cy)

= (ec)y

= cy

= x

ex = x

Therefore e is the required identity element.

Hence Any Euclidean domain R has an identity element.

Theorem 18 Let a be a non-zero element of an Euclidean domain R. Then

a is unit in R iff d(a) = d(1)

Proof

Suppose a is a unit in R.

Therefore d(a) = d(aa−1)

= d(1)

Therefore d(a) = d(1).

Conversely,

Let d(a) = d(1)

Suppose a in not a unit in R.

Then d(1.a) > d(1)

Therefore d(a) > d(1) which is contradiction.

Therefore a is a unit.

Hence let a be a non-zero element of an Euclidean domain R. Then a is unit

in R iff d(a) = d(1)

Theorem 19 Let R be an Euclidean domain. Let a, b, c ∈ R. Then a|bc and

(a, b) = 1⇒ a|c
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Proof

Let R be an Euclidean domain.

Let a, b, c ∈ R.

We have to prove a|bc and (a, b) = 1⇒ a|c

Since (a, b) = 1, there exist s, y ∈ R such that ax + by = 1.

Therefore acx + bcy = c.

Now, a|acx.

Also a|bc⇒ a|bcy.

Therefore a|(acx + bcy).

Hence a|c.

Theorem 20 Let R be an Euclidean domain R. Let a and b two non-zero

elements of R.Then

• (i) b is not a unit in R⇒ d(a) < d(ab)

• (ii) b is a unit in R⇒ d(a) = d(ab)

Proof

(i) Suppose b is not a unit in R.

By definition of Euclidean domain there exist elements q, r ∈ R such that

a = q(ab) + r—–(1)

where either r = 0 or d(r) < d()ab.

Now, suppose r = 0 then a = q(ab)

Therefore a− q(ab) = 0⇒ a(1− qb) = 0

Now, R has no zero-divisors and a 6= 0.

Therefore 1− qb = 0. Hence qb = 1.

Therefore b is a unit in R which is a contradiction.

Therefore r 6= 0. Hence d(a) < d(ab) ———(2)
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Now r = a(1− qb) by (1)

Therefore d(r) = d[a(1− qb)] ≥ d(a)————(3)

Therefore d(a) ≤ d(r) < d(ab)

(ii) Suppose b is a unit in R.

Now, d(a) ≤ d(ab).

Also, d(a) = d[(ab)b−1] ≥ d(ab).

Therefore d(a) ≤ d(ab). Therefore d(a) = d(ab)


