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Unit v

Maximal and Prime Ideal

Definition 1 Maximal ideal

Let R be aring. Anideal M # R is said to be a maximal ideal of R if whenever
U is an ideal of R such that M C U C R then either U = M or U = R. That
is, there is no proper ideal of R properly containing M.

Example 2 (2) is a maximal ideal in Z.

For, let U be an ideal properly containing (2).

Therefore U contains an odd integer say, 2n + 1.

Therefore 1 = (2n 4+ 1) — 2n € U. Therefore U = Z.Thus there is no proper
ideal of Z properly containing (2)

Hence (2) is a maximal ideal of Z.

Definition 3 Let R be a commutative ring. An ideal P # R is called a prime
ideal if ab € P = either a € P or b € P

Example 4 Let R be an integral domain. (0) is a prime ideal of R.

For, ab € (0) = ab=0

= a =0 or b=0(Since R is an 1.D)

= a € (0) orbe (0)

Definition 5 Let R and R be rings. A function f : R — R is called a

homomorphism if
i f(a+0b)= f(a)+ f(b) and
it f(ab) = f(a)f(b) for all a,b € R

Example 6 Let f : RXR — R given by f(z,y) = z is a ring homomorphism.



For,

fla,b)+ f(c,d) = f((a+c,b+4d)
= a-+c

= f(a’vb)+f(cad)

Also, f(a,b) + f(c,d) = f(ac,bd) = f(a,b)f(c,d)

Definition 7 The kernel K of a homomorphism f of a ring R to a ring R’ is
defined by

{a/a € R and f(a) =0}

Definition 8 Let R be a commutative ring without zero-divisors. R is called
an Euclidean domain or an Euclidean ring if for every non-zero element a € R

there is defined a non-negative integer d(a) satisfying the following conditions
e (i) For any two non-zero elements a,b € R,d(a) < d(ab)

e (ii) For any two non-zero elements a,b € R, there exist a,7 € R such

that a = gb + r where either r = 0 or d(r) < d(b)

Example 9 Z is an Euclidean domain where d(a) = |a|

Proof

d(ab) = |ab| = lal[b] > |a| = d(a).

Let a,b be two non-zero elements of Z. Let g be the quotient and r be the
remainder when a is divided by b.

Then a = gb+r and 0 < r < |b]

Hence Z is an Fuclidean domain.

Example 10 Two elements a and b of an Euclidean domain R are said to be
relatively prime if their g.c.d is unit in R.

Theorem 11 Let R be any commutative ring with identity. Let P be an ideal



of R. Then P is a prime ideal iff R/P is an integral domain

Proof

Let P be a prime ideal.

Since R is a commutative ring with identity R/P is also commutative ring
with identity.

Now,

(P4+a)(P+b) = P+0
= P+ab=P

= abeP

= a € Porbe P (since P is a prime ideal)
=P+a=PorP+b=P

Thus R/P has no zero divisors.

Therefore R/P is integral domain.

Conversely,

suppose R/P is an integral domain.

We have to prove P is a prime ideal of R.

Let ab € P. Then P +ab = P.

Therefore (P + a)(P +b) = P.

Therefore P +a = P or P+ b= P.(since R/P has no zero divisors).
Therefore a € P or b € P.

Thus P is a prime ideal of R.

Hence Let R be any commutative ring with identity. Let P be an ideal of R.

Then P is a prime ideal iff R/P is an integral domain

Theorem 12 The Fundamental theorem of ring homomorphism



Statement

Let R and R be rings and f : R — R’ be an epimorphism. Let K be the
kernel of f. Then R/K ~ R’

Proof

Define 9R/K — R by o(K +a) = f(a).

(i) p is well defined, for let K +b = K + a.

Then b € K + a.

Therefore b = k + a where k € K

Therefore f(a) = f(k +a) = f(k) + f(a) = 0+ f(a) = f(a)
Therefore (K +b) = f(b) = f(a) = p(K + a)

(ii)¢ is 1-1.

For,

(K +a) =K +b)= fla) = fb)

S
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(K +a) = (K +0)

(iii) is onto
For, let a' € R’
Since f is onto, there exists ¢’ € R such that f(a) = a’.

/

Hence f(a) =a .



’

Hence (K +a) = f(a) =a
(iv) ¢ is homomorphism.

For,

Pl(K +a)(K+b)] = @K+ (a+D)
= fla+0)
= f(a) + f(b), since fisahomomorphism
= @(K +a)+ oK +0)
o[(K+a)(K+0b)] = oK +ab)
= f(ab)

= f(a)f(b)sincefishomomorphism

o(K +a)p(K +b)
Hence ¢ is an isomorphism.

Hence R/K ~ R’

Theorem 13 Let R be a ring and I be a subgroup of (R, +). The multiplica-
tion in R/I given by (I 4+a)({ +b) = I 4 ab is well defined iff I is an ideal of R
Proof

Let I be an ideal R.

To prove multiplication is well defined, let [ +a; = I4+aand I +b+1=1+b
Thena, € I +aand by € I+ b

Therefore a; = 71 + a and by = iy + b where i1,15 € 1

Hence a1by = (i1 + a)(iz + b) = t14s + i1b + aiz + ab

Now since [ is an ideal we have i1io, 210, ato €

Hence a1b; = i3 where i3 = i1i9 + 110+ aiy €



Therefore a1b; € I + ab

Hence I 4+ ab = I + a1b; Conversely,

Suppose that the multiplication in R/I given by (I +a)(I +b) = I +ab is well
defined.

To prove that I is an ideal of R.

Let « € I and r» € R. We have to prove that ir,ri € I

Now,

I+ir = (I+i)(I+7r)
= ([+0)(I+r)

= IT+or

Therefore ir € 1

Similarly,

T+ri = (I+7)I+i)
= (I+r)(I+0)

= I+7r0

Therefore ri € [
Hence 7 is and ideal.

Hence Let R be a ring and I be a subgroup of (R,+). The multiplication in
R/I given by (I +a)(I +b) = I + ab is well defined iff I is an ideal of R

Definition 14 Let R be any ring and I be an ideal of R. Well-defined binary



operations in R/I given by (I4+a)+(I+b) = I+(a+b) and (I+a)(I+b) = I+ab.
The ring R/I is called quotient ring of R modulo I.

Example 15 The subset I = {0, 3} of Zg is an ideal.

Solution

Zs)I ={I,I+ 1,1+ 2} is a ring isomorphic to Z3.

Here Zg is not an integral domain but the quotient ring Zs/I is an integral
domain.

Theorem 16 Let R be an Euclidean domain and I be an ideal of R. Then
there exists an element a € [ such that I = aR. (i.e.,) Every ideal of an
Euclidean domain is a principal ideal.

Proof

If I # 0, then we take a = 0. Hence we assume that I # 0.

Leta € I be a non-zero element such that d(a) is minimum.

Now, we claim that I = aR

Let z € I. Then there exist ¢,7 € R such that x = ga + r where r = 0 or
d(r) < d(a).

Nowael =qael

Also s € I. Hence r =z —qa € I.

Now, suppose r # 0. Then d(r) < d(a) which is contradiction to the choice of
a and hence r =0 .

Therefore x = ga and hence I = aR

Theorem 17 Any Euclidean domain R has an identity element.

Since R is an ideal of R, there exists ¢ € R such that R = cR.

Therefore Every element of R is a multiple of c.

In particular ¢ = ec for some e € R.

Now, let x € R. Then x = cy for some y € R



Therefore

exr = e(cy)
= (eq)y
= ¢y
=z

ex = x

Therefore e is the required identity element.

Hence Any Euclidean domain R has an identity element.

Theorem 18 Let a be a non-zero element of an FEuclidean domain R. Then
a is unit in R iff d(a) = d(1)

Proof

Suppose a is a unit in R.

Therefore d(a) = d(aa™")

=d(1)

Therefore d(a) = d(1).

Conversely,

Let d(a) = d(1)

Suppose a in not a unit in R.

Then d(1.a) > d(1)

Therefore d(a) > d(1) which is contradiction.

Therefore a is a unit.

Hence let a be a non-zero element of an Euclidean domain R. Then a is unit
in R iff d(a) =d(1)

Theorem 19 Let R be an Euclidean domain. Let a,b,c € R. Then a|bc and

(a,b) = 1= alc
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Proof

Let R be an Euclidean domain.

Let a,b,c € R.

We have to prove a|bc and (a,b) =1 = alc

Since (a,b) = 1, there exist s,y € R such that az + by = 1.
Therefore acx + bey = c.

Now, alacz.

Also albc = albey.

Therefore a|(acz + bey).

Hence alc.

Theorem 20 Let R be an Euclidean domain R. Let a and b two non-zero

elements of R.Then

e (i) bis not a unit in R = d(a) < d(ab)

e (ii) b is a unit in R = d(a) = d(ab)

Proof

(i) Suppose b is not a unit in R.

By definition of Euclidean domain there exist elements ¢, € R such that
a = q(ab) + r—(1)

where either » = 0 or d(r) < d()ab.

Now, suppose r = 0 then a = g(ab)

Therefore a — q(ab) =0 = a(l —¢b) =0

Now, R has no zero-divisors and a # 0.

Therefore 1 — gb = 0. Hence gb = 1.

Therefore b is a unit in R which is a contradiction.

Therefore r # 0. Hence d(a) < d(ab) ——(2)



Now 7 = a(1 — gb) by (1)

Therefore d(r) = dla(1 — gb)] > d(a)———(3)
Therefore d(a) < d(r) < d(ab)

(ii) Suppose b is a unit in R.

Now, d(a) < d(ab).

Also, d(a) = d[(ab)b="] > d(ab).

Therefore d(a) < d(ab). Therefore d(a) = d(ab)
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