IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM DEPARTMENT OF MATHEMATICS

SUBJECT NAME	:	ABSTRACT ALGEBRA
SUBJECT CODE	:	16SCCMM12
CLASS	:	III B.Sc., MATHEMATICS
SEMESTER	:	VI
TOPICS COVERED:		UNIT V
STAFF NAME	:	Dr. T. RAJESWARI

Unit v

Maximal and Prime Ideal

Definition 1 Maximal ideal

Let R be a ring. An ideal $M \neq R$ is said to be a maximal ideal of R if whenever U is an ideal of R such that $M \subset U \subset R$ then either U = M or U = R. That is, there is no proper ideal of R properly containing M.

Example 2 (2) is a maximal ideal in Z.

For, let U be an ideal properly containing (2).

Therefore U contains an odd integer say, 2n + 1.

Therefore $1 = (2n + 1) - 2n \in U$. Therefore U = Z. Thus there is no proper

ideal of Z properly containing (2)

Hence (2) is a maximal ideal of Z.

Definition 3 Let R be a commutative ring. An ideal $P \neq R$ is called a prime ideal if $ab \in P \Rightarrow$ either $a \in P$ or $b \in P$

Example 4 Let R be an integral domain. (0) is a prime ideal of R.

For,
$$ab \in (0) \Rightarrow ab = 0$$

 $\Rightarrow a = 0 \text{ or } b = 0$ (Since *R* is an I.D)
 $\Rightarrow a \in (0) \text{ or } b \in (0)$

Definition 5 Let R and R' be rings. A function $f : R \to R'$ is called a homomorphism if

i
$$f(a+b) = f(a) + f(b)$$
 and

ii
$$f(ab) = f(a)f(b)$$
 for all $a, b \in R$

Example 6 Let $f : RXR \to R$ given by f(x, y) = x is a ring homomorphism.

For,

$$f(a,b) + f(c,d) = f((a+c,b+d))$$
$$= a+c$$
$$= f(a,b) + f(c,d)$$

Also, f(a,b) + f(c,d) = f(ac,bd) = f(a,b)f(c,d)

Definition 7 The kernel K of a homomorphism f of a ring R to a ring R' is defined by

 $\{a/a \in R \text{ and } f(a) = 0\}$

Definition 8 Let R be a commutative ring without zero-divisors. R is called an Euclidean domain or an Euclidean ring if for every non-zero element $a \in R$ there is defined a non-negative integer d(a) satisfying the following conditions

- (i) For any two non-zero elements $a, b \in R, d(a) \le d(ab)$
- (ii) For any two non-zero elements $a, b \in R$, there exist $a, r \in R$ such that a = qb + r where either r = 0 or d(r) < d(b)

Example 9 Z is an Euclidean domain where d(a) = |a|

Proof

 $d(ab) = |ab| = |a||b| \ge |a| = d(a).$

Let a, b be two non-zero elements of Z. Let q be the quotient and r be the remainder when a is divided by b.

Then a = qb + r and $0 \le r < |b|$

Hence Z is an Euclidean domain.

Example 10 Two elements a and b of an Euclidean domain R are said to be relatively prime if their g.c.d is unit in R.

Theorem 11 Let R be any commutative ring with identity. Let P be an ideal

of R. Then P is a prime ideal iff R/P is an integral domain

Proof

Let P be a prime ideal.

Since R is a commutative ring with identity R/P is also commutative ring with identity.

Now,

$$(P+a)(P+b) = P+0$$

$$\Rightarrow P+ab = P$$

$$\Rightarrow ab \in P$$

 $\Rightarrow a \in P \text{ or } b \in P \text{ (since } P \text{ is a prime ideal)}$

 $\Rightarrow P + a = P \text{ or } P + b = P$

Thus R/P has no zero divisors.

Therefore R/P is integral domain.

Conversely,

suppose R/P is an integral domain.

We have to prove P is a prime ideal of R.

Let $ab \in P$. Then P + ab = P.

Therefore (P+a)(P+b) = P.

Therefore P + a = P or P + b = P.(since R/P has no zero divisors).

Therefore $a \in P$ or $b \in P$.

Thus P is a prime ideal of R.

Hence Let R be any commutative ring with identity. Let P be an ideal of R.

Then P is a prime ideal iff R/P is an integral domain

Theorem 12 The Fundamental theorem of ring homomorphism

Statement

Let R and R' be rings and $f:R\to R'$ be an epimorphism. Let K be the kernel of f. Then $R/K\simeq R'$

Proof

Define $\varphi R/K \to R'$ by $\varphi(K + a) = f(a)$. (i) φ is well defined, for let K + b = K + a. Then $b \in K + a$. Therefore b = k + a where $k \in K$ Therefore f(a) = f(k + a) = f(k) + f(a) = 0 + f(a) = f(a)Therefore $\varphi(K + b) = f(b) = f(a) = \varphi(K + a)$ (ii) φ is 1-1. For,

$$\varphi(K+a) = \varphi(K+b) \Rightarrow f(a) = f(b)$$

$$\Rightarrow f(a) - f(b) = 0$$

$$\Rightarrow f(a) + f(-b) = 0$$

$$\Rightarrow f(a - b) = 0$$

$$\Rightarrow a - b \in K$$

$$\Rightarrow a \in K + b$$

$$\Rightarrow K + a = K + b$$

$$\varphi(K+a) = \varphi(K+b) \Rightarrow K + a = K + b$$

 $(iii)\varphi$ is onto

For, let $a' \in R'$ Since f is onto, there exists $a' \in R$ such that f(a) = a'. Hence f(a) = a'. Hence $\varphi(K + a) = f(a) = a'$ (iv) φ is homomorphism.

For,

$$\varphi[(K+a)(K+b)] = \varphi[K+(a+b)]$$

$$= f(a+b)$$

$$= f(a) + f(b), since f is a homomorphism$$

$$= \varphi(K+a) + \varphi(K+b)$$

$$\varphi[(K+a)(K+b)] = \varphi(K+ab)$$

$$= f(ab)$$

$$= f(a)f(b) since f is homomorphism$$

 $\varphi(K+a)\varphi(K+b)$

Hence φ is an isomorphism.

Hence $R/K \simeq R'$

Theorem 13 Let R be a ring and I be a subgroup of (R, +). The multiplication in R/I given by (I + a)(I + b) = I + ab is well defined iff I is an ideal of R

Proof

Let I be an ideal R.

To prove multiplication is well defined, let $I + a_1 = I + a$ and I + b + 1 = I + b

Then $a_1 \in I + a$ and $b_1 \in I + b$

Therefore $a_1 = i_1 + a$ and $b_1 = i_2 + b$ where $i_1, i_2 \in I$ Hence $a_1b_1 = (i_1 + a)(i_2 + b) = i_1i_2 + i_1b + ai_2 + ab$

Now since I is an ideal we have $i_1i_2,i_1b,ai_2\in I$

Hence $a_1b_1 = i_3$ where $i_3 = i_1i_2 + i_1b + ai_2 \in I$

Therefore $a_1b_1 \in I + ab$

Hence $I + ab = I + a_1b_1$ Conversely,

Suppose that the multiplication in R/I given by (I + a)(I + b) = I + ab is well defined.

To prove that I is an ideal of R.

Let $i \in I$ and $r \in R$. We have to prove that $ir, ri \in I$ Now,

$$I + ir = (I + i)(I + r)$$
$$= (I + 0)(I + r)$$
$$= I + or$$
$$= 0$$

Therefore $ir \in I$

Similarly,

$$I + ri = (I + r)(I + i)$$
$$= (I + r)(I + 0)$$
$$= I + r0$$
$$= 0$$

Therefore $ri \in I$

Hence I is and ideal.

Hence Let R be a ring and I be a subgroup of (R, +). The multiplication in R/I given by (I + a)(I + b) = I + ab is well defined iff I is an ideal of R

Definition 14 Let R be any ring and I be an ideal of R. Well-defined binary

operations in R/I given by (I+a)+(I+b) = I+(a+b) and (I+a)(I+b) = I+ab.

The ring R/I is called quotient ring of R modulo I.

Example 15 The subset $I = \{0, 3\}$ of Z_6 is an ideal.

Solution

 $Z_6/I = \{I, I+1, I+2\}$ is a ring isomorphic to Z_3 .

Here Z_6 is not an integral domain but the quotient ring Z_6/I is an integral domain.

Theorem 16 Let R be an Euclidean domain and I be an ideal of R. Then there exists an element $a \in I$ such that I = aR. (i.e.,) Every ideal of an Euclidean domain is a principal ideal.

Proof

If $I \neq 0$, then we take a = 0. Hence we assume that $I \neq 0$.

Let $a \in I$ be a non-zero element such that d(a) is minimum.

Now, we claim that I = aR

Let $x \in I$. Then there exist $q, r \in R$ such that x = qa + r where r = 0 or d(r) < d(a).

Now $a \in I \Rightarrow qa \in I$

Also $s \in I$. Hence $r = x - qa \in I$.

Now, suppose $r \neq 0$. Then d(r) < d(a) which is contradiction to the choice of a and hence r = 0.

Therefore x = qa and hence I = aR

Theorem 17 Any Euclidean domain R has an identity element.

Since R is an ideal of R, there exists $c \in R$ such that R = cR.

Therefore Every element of R is a multiple of c.

In particular c = ec for some $e \in R$.

Now, let $x \in R$. Then x = cy for some $y \in R$

Therefore

$$ex = e(cy)$$
$$= (ec)y$$
$$= cy$$
$$= x$$
$$ex = x$$

Therefore e is the required identity element.

Hence Any Euclidean domain R has an identity element.

Theorem 18 Let *a* be a non-zero element of an Euclidean domain *R*. Then *a* is unit in *R* iff d(a) = d(1)

Proof

Suppose a is a unit in R.

Therefore $d(a) = d(aa^{-1})$

= d(1)

Therefore d(a) = d(1).

Conversely,

Let d(a) = d(1)

Suppose a in not a unit in R.

Then d(1.a) > d(1)

Therefore d(a) > d(1) which is contradiction.

Therefore a is a unit.

Hence let a be a non-zero element of an Euclidean domain R. Then a is unit in R iff d(a) = d(1)

Theorem 19 Let R be an Euclidean domain. Let $a, b, c \in R$. Then a|bc and $(a, b) = 1 \Rightarrow a|c$

Proof

Let R be an Euclidean domain.

Let $a, b, c \in R$.

We have to prove a|bc and $(a,b) = 1 \Rightarrow a|c$

Since (a, b) = 1, there exist $s, y \in R$ such that ax + by = 1.

Therefore acx + bcy = c.

Now, a | acx.

Also $a|bc \Rightarrow a|bcy$.

Therefore a|(acx + bcy).

Hence a|c.

Theorem 20 Let R be an Euclidean domain R. Let a and b two non-zero elements of R. Then

- (i) b is not a unit in $R \Rightarrow d(a) < d(ab)$
- (ii) b is a unit in $R \Rightarrow d(a) = d(ab)$

Proof

(i) Suppose b is not a unit in R.

By definition of Euclidean domain there exist elements $q, r \in R$ such that a = q(ab) + r—(1) where either r = 0 or d(r) < d()ab. Now, suppose r = 0 then a = q(ab)Therefore $a - q(ab) = 0 \Rightarrow a(1 - qb) = 0$ Now, R has no zero-divisors and $a \neq 0$. Therefore 1 - qb = 0. Hence qb = 1. Therefore b is a unit in R which is a contradiction. Therefore $r \neq 0$. Hence d(a) < d(ab)—(2) Now r = a(1 - qb) by (1) Therefore $d(r) = d[a(1 - qb)] \ge d(a)$ —(3) Therefore $d(a) \le d(r) < d(ab)$ (ii) Suppose b is a unit in R. Now, $d(a) \le d(ab)$. Also, $d(a) = d[(ab)b^{-1}] \ge d(ab)$. Therefore $d(a) \le d(ab)$. Therefore d(a) = d(ab)