IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM.

DEPARTMENT OF MATHEMATICS

CLASS : III B.Sc., MATHS

SUBJECT NAME: **COMPLEX ANALYSIS**

SUBJECT CODE : 16SCCMM13

SEM : VI

UNIT : V

FACULTY NAME: Mrs.V.JAYAPRIYA

UNIT – V

8.1 Residues

1. Define residue.

Definition: Let 'a' be an isolated singularity for f(z) then the residue of f(z) at 'a' is defined to be the co-eff of $\frac{1}{z-a}$ in the Laurent's series expansion of f(z) about 'a' and its denoted by Res $\{f(z); a\}$.

2. Find the residue of $\frac{ze^z}{(z-1)^3}$ at its poles.

Solution: Let f (z) =
$$\frac{ze^z}{(z-1)^3}$$

z = 1 is a pole of order 3 for f(z).

Let
$$g(z) = ze^{z}$$
 so that $g'(z) = e^{z}(z+1)$, $g''(z) = e^{z}(z+2)$

Then Res
$$\{f(z); 1\} = \frac{g''(1)}{2!} = 3e / 2$$

8.2 Cauchy Residue theorem

3. State Cauchy's Residue theorem.

Statement: Let f(z) be a function which is analytic inside and on a simple closed curve C except for a finite number of singular points, $z_1, z_2, ..., z_n$ inside C then

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{j=1}^{n} Res \{f(z); z_j\}.$$

Proof: Let $C_1, C_2, ..., C_n$ be the circles with centre $z_1, z_2, ..., z_n$ respectively such that all circles are interior to and are disjoint with each other inside C.

By Cauchy's theorem for multiply connected regions we have,

$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz + \dots + \int_{C_{n}} f(z)dz$$
$$= \sum_{j=1}^{n} 2\pi i \operatorname{Res} \{f(z), z_{j}\}$$

4.State Argument Theorem.

Statement: Let f be analytic and on a simple closed curve C except for a finite number of poles inside C also let f(z) have number of zeros on C then $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} dz = N - P$. Where N is the number of zeros of f(z) inside c and P is the number of poles of f(z) inside C.

Proof: We observe that the singularities of the function $\frac{f'(z)}{f(z)}$ inside C are the poles and zeros of f(z) lying inside C.

Let z_0 be a zero for f(z). Let C_1 be a circle with centre z_0 such that it is the only zero of f(z) inside C.

Then
$$f(z) = (z - z_0)^n g(z)$$

Then
$$f'(z) = (z - z_0)^{n-1}g(z) + (z - z_0)^n g'(z)$$
.

$$\frac{f^{'}(z)}{g^{'}(z)} = \frac{n(z-z_0)^{n-1} g(z)}{(z-z_0)^n g(z)} + \frac{(z-z_0)^n g^{'}(z)}{(z-z_0)^n g(z)}$$

Where g(z) is analytic and non zero inside C_1 , $\frac{g'(z)}{g(z)}$ is also analytic and hence can be expanded in Taylor's series about z_0 .

Res
$$\{\frac{f'(z)}{f(z)}; z_0\} = n$$

Similarly if z_1 . Is a pole of order p for (z), then Res $\{\frac{f'(z)}{f(z)}; z_1\} = -P$

Hence by Cauchy's residue theorem, $\frac{1}{2\pi i} \int_C \frac{f'(z)}{f(z)} = N-P$. Where N is the number of zeros and P is the number of poles of f(z) within C

5.State Rouche's theorem.

Statement: If f(z) and g(z) are analytic inside and on a simple closed curve C and if |g(z)| < |f(z)| on C then f(z) + g(z) and f(z) have the same number of zeros.

Proof:
$$f(z) + g(z) = f(z) \left[1 + \frac{f(z)}{g(z)} \right] = f(z) \varphi(z)$$
 where $\varphi(z) = \left[1 + \frac{f(z)}{g(z)} \right]$

$$[f(z) + g(z)]' = f'(z) + g'(z) = f(z) \varphi'(z) + f'(z) \varphi(z)$$

$$\frac{f'(z) + g'(z)}{f(z) + g(z)} = \frac{f(z) \varphi'(z) + f'(z) \varphi(z)}{f(z) \varphi(z)}$$
$$= \frac{f'(z)}{f(z)} + \frac{\varphi'(z)}{c}$$

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z) + g'(z)}{f(z) + g(z)} dz = \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz + \frac{1}{2\pi i} \int_{C} \frac{\varphi'(z)}{\varphi(z)} dz. \to (1)$$

By hypothesis |g(z)| < |f(z)| and hence $\left|\frac{g(z)}{f(z)}\right| < 1$ on C, $|\varphi(z)| < 1$ on C.

Hence by maximum modulus theorem, $|\varphi(z) - 1| < 1$ for every point z lies inside C.

Therefore $\varphi(z) \neq 0$ for every point inside C.

Hence $\int_{\mathcal{C}} \frac{\varphi'(z)}{\varphi(z)} dz$ = Number of zeros of $\varphi(z)$ within C.

$$=0$$

Hence from (1), we have
$$\frac{1}{2\pi i} \int_{C} \frac{f^{'}(z) + g^{'}(z)}{f(z) + g(z)} dz = \frac{1}{2\pi i} \int_{C} \frac{f^{'}(z)}{f(z)} dz$$
.

Therefore $N_1 = N_2$ where N_1 and N_2 denote respectively the number of zeros of f(z) + g(z) and f(z) inside C.

6. State Fundamental theorem of algebra.

Statement: A polynomial of degree n with complex coefficients has n zeros in C.

8.3 Evaluation of Definite Integrals

Type: 1

 $\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta \text{ where } f(\cos\theta, \sin\theta) \text{ rational function of } \cos\theta \text{ and } \sin\theta.$

To evaluate this type of integral we substitute $z=e^{i\theta}$. As θ varies from 0 to 2π , z describes the unit circle |z|=1.

Also,
$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z + z^{-1}}{2}$$
 and $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z - z^{-1}}{2i}$

Substituting these values in the given integrand is transformed into $\int_{\mathcal{C}} \theta(z) dz$ where

$$\theta(z) = f\left[\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2i}\right]$$
 and C is the positively oriented unit circle $|z| = 1$. The integral

 $\int_C \theta(z)dz$ can be evaluated using the residue theorem.

Problem 1. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$$
.

Solution: Let
$$I = \int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$$

Put
$$z = e^{i\theta}$$
. Then $dz = id\theta$ and $\sin \theta = \frac{z - z^{-1}}{2i}$.

The given integral is transformed to $I = \int_C \frac{dz}{iz\left[5+4\left(\frac{z-z^{-1}}{2i}\right)\right]}$ where C is the unit circle

|z|=1.

$$= \int_C \frac{dz}{2z^2 + 5iz + 2}$$

Let
$$f(z) = \frac{dz}{2z^2 + 5iz + 2} = \frac{dz}{2(z+2i) + (z+i/2)}$$

Therefore -2i and -i/2 are simple poles of f(z) and the pole -i/2 lies inside C.

Also Res {
$$f(z)$$
; $-i/2$ } = $\lim_{z \to -i/2} \frac{1}{2(z+2i)} = \frac{1}{3i}$

Hence by Cauchy's residue theorem $I = 2\pi i \left(\frac{1}{3i}\right) = \frac{2\pi}{3}$.

Problem 2. Prove that
$$\int_0^{2\pi} \frac{d\theta}{1 + a \sin \theta} = \frac{2\pi}{\sqrt{1 + a^2}}, (-1 < a < 1)$$

Solution: Let
$$I = \int_0^{2\pi} \frac{d\theta}{1 + a \sin \theta}$$

Put
$$z = e^{i\theta}$$
. Then $dz = id\theta$ and $\sin \theta = \frac{z - z^{-1}}{2i}$.

The given integral is transformed to $I = \int_C \frac{dz}{iz\left[1+a\left(\frac{z-z^{-1}}{2i}\right)\right]}$ where C is the unit circle

|z|=1.

$$= \int_C \frac{2dz}{az^2 + 2iz - a}$$

Let
$$f(z) = \frac{dz}{az^2 + 2iz - a}$$

The poles of f(z) are given by $z = \frac{-2i \pm \sqrt{-4 + 4a^2}}{2a}$

$$=\frac{-i \pm \sqrt{1-a^2}}{a}$$
 (since $(-1 < a < 1)$)

Let
$$z_1 = \frac{-i + \sqrt{1 - a^2}}{a}$$
 and $z_2 = \frac{-i - \sqrt{1 - a^2}}{a}$

We note that
$$|z_2| = \frac{-i - \sqrt{1 - a^2}}{a} > 1$$
.

 $z_1 = \frac{-i + \sqrt{1 - a^2}}{a}$ is the only simple pole lies inside C.

Res
$$\{f(z); z_1\} = \lim_{z \to z_1} (z - z_1) \left[\frac{2/a}{(z - z_1)(z - z_2)} \right]$$
$$= \frac{2/a}{(z_1 - z_2)}$$

$$=\frac{1}{i\sqrt{1-a^2}}$$

By residue theorem
$$\int_0^{2\pi} \frac{d\theta}{1 + a \sin \theta} = 2\pi i \left[\frac{1}{\sqrt{1 + a^2}} \right]$$
$$= \frac{2\pi}{\sqrt{1 + a^2}}.$$

Type : 2

$$\int_{-\infty}^{\infty} f(x) dx \text{ where } f(x) = \frac{g(x)}{h(x)} \text{ and } g(x) \text{ , } h(x) \text{ are polynomials in } x \text{ and the degree of } h(x)$$

exceeds that of g(x) by atleast two.

Problem 1. Evaluate
$$\int_0^\infty \frac{dx}{1+x^4}$$
.

Solution: Let
$$f(z) = \frac{dz}{1+z^4}$$

The poles of f(z) are given by the roots of the equation $1 + z^4 = 0$, which are the four fourth roots of -1.

By Demoivre's theorem they are given by $e^{i\pi/4}$, $e^{i3\pi/4}$, $e^{i5\pi/4}$, $e^{i7\pi/4}$ and all are simple poles.

We choose the contour C consisting of the interval [-r, r] on the real axis and the upper semicircle |z| = r which we denoted by C_1 .

Therefore
$$\int_{\mathcal{C}} f(z)dz = \int_{-r}^{r} f(x)dx + \int_{\mathcal{C}_{1}} f(z)dz$$
. \rightarrow (1)

The poles of f(z) lying inside the contour C are obviously $e^{i\pi/4}$ and $e^{i3\pi/4}$ only.

We find the residues of f(z) at these points.

Res
$$\left\{f(z); e^{\frac{i\pi}{4}}\right\} = \frac{h\left(e^{\frac{i\pi}{4}}\right)}{k'\left(e^{\frac{i\pi}{4}}\right)}$$
 where $h(z) = 1$ and $k(z) = 1 + z^4$ so that $k'(z) = 4z^3$.

$$\therefore Res\left\{f(z); e^{\frac{i\pi}{4}}\right\} = \frac{e^{-i3\pi/4}}{4}$$

Similarly Res
$$\left\{ f(z); e^{\frac{i3\pi}{4}} \right\} = \frac{e^{-i9\pi/4}}{4}$$

By residue theorem,

$$\int_C f(z)dz = 2\pi i \left[\frac{e^{-\frac{i3\pi}{4}}}{4} + \frac{e^{-\frac{i9\pi}{4}}}{4} \right]$$
$$= \frac{\pi}{\sqrt{2}}.$$

From (1),
$$\int_{-r}^{r} \frac{dx}{1+x^4} + \int_{C_1} f(z) dz = \frac{\pi}{2}$$
.

As
$$r \to \infty$$
, $\int_{C_1} f(z)dz \to 0$

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4} = \frac{\pi}{\sqrt{2}}.$$

$$2\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{\sqrt{2}}.$$

$$\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}.$$

Problem 2. **Prove that**
$$\int_0^\infty \frac{x^4 dx}{x^6 - 1} = \frac{\pi\sqrt{3}}{6}$$
.

Solution: Let
$$f(z) = \frac{z^4}{z^6 - 1}$$
.

The poles of f(z) are given by the sixth roots of unity namely $e^{2n\pi i/6}$, n=0,1,...,5

Therefore f(z) has 2 simple poles on the real axis, viz., 1 and -1 and the two poles $e^{\pi i/3}$ and $e^{2\pi i/3}$ lie on the upper half of the plane.

Now choose the contour C,
$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{-r}^{-1-\epsilon_{1}} f(x)dx + \int_{C_{2}} f(z)dz + \int_{-1+\epsilon_{1}}^{-1-\epsilon_{2}} f(x)dx + \int_{C_{3}} f(z)dz + \int_{1+\epsilon_{2}}^{-r} f(x)dx.$$
 \to (1)

Now,
$$\int_{C_2} f(z)dz = -\pi i \operatorname{Res} \{f(z); -1\}$$

= $-\pi i \left(\frac{h(-1)}{k'(-1)}\right)$ where $h(z) = z^4$ and $k(z) = z^6 - 1$
= $\pi i / 6$.

Similarly,
$$\int_{C_3} f(z)dz = -\pi i \operatorname{Res} \{f(z); 1\}$$

$$= -\pi i \left(\frac{h(1)}{k'(1)} \right) \text{ where } h(z) = z^4 \text{ and } k(z) = z^6 - 1$$

$$= \pi i / 6. \qquad \to (3)$$
Also $\int_{C} f(z) dz = 2\pi i \left[Res \left\{ f(z); e^{\frac{\pi i}{3}} \right\} + Res \left\{ f(z); e^{\frac{2\pi i}{3}} \right\} \right]$

$$= 2\pi i \left[\frac{h\left(e^{\frac{\pi i}{3}}\right)}{6e^{\frac{5\pi i}{3}}} + \frac{e^{\frac{8\pi i}{3}}}{6e^{\frac{10\pi i}{3}}} \right]$$

$$= 2\pi i \left[\frac{e^{\frac{4\pi i}{3}}}{6e^{\frac{5\pi i}{3}}} + \frac{e^{\frac{8\pi i}{3}}}{6e^{\frac{10\pi i}{3}}} \right]$$

$$= \frac{\pi i}{3} \left(e^{\frac{-\pi i}{3}} + e^{\frac{-2\pi i}{3}} \right)$$

$$= \frac{\pi\sqrt{3}}{3}. \qquad \to (4)$$

Substituting (2), (3), (4) in (1) and taking limits as \in_1 , $\in_2 \to 0$ and $r \to \infty$, we get

$$\int_{-\infty}^{\infty} \frac{x^4 dx}{x^6 - 1} + \frac{\pi i}{6} - \frac{\pi i}{6} = \frac{\pi \sqrt{3}}{3}.$$

$$2 \int_{0}^{\infty} \frac{x^4 dx}{x^6 - 1} = \frac{\pi \sqrt{3}}{3}.$$

$$\int_{0}^{\infty} \frac{x^4 dx}{x^6 - 1} = \frac{\pi \sqrt{3}}{6}.$$

Type: 3

 $\int_{-\infty}^{\infty} \frac{g(x)}{h(x)} \cos ax \, dx \text{ or } \int_{-\infty}^{\infty} \frac{g(x)}{h(x)} \sin ax \, dx, \text{ where } g(x) \text{ and } h(x) \text{ are real polynomials such that the degree of } h(x) \text{ exceeds that of } g(x) \text{ by at least one and } a > 0.$

Problem 1. Prove that
$$\int_0^\infty \frac{\cos x \ dx}{1+x^2} = \frac{\pi}{2e}$$
.

Solution: Let
$$f(z) = \frac{e^{iz}}{1+z^2}$$
.

The poles of f(z) are given by $z^2 + 1 = 0$.

$$z = -i$$
 and i .

The poles of f(z) that lies within C is i.

Hence by residue theorem,

$$\int_{C} f(z)dz = 2\pi i \operatorname{Res} \{f(z); i\}$$

$$= 2\pi i \frac{h(i)}{k'(i)} \text{ where } h(z) = e^{iz} \operatorname{and} k(z) = 1 + z^{2}$$

$$= \frac{2\pi i e^{-1}}{2i}$$

$$= \frac{\pi}{e}.$$

$$\int_{-r}^{r} \frac{e^{iax}}{x^{2}+1} dx + \int_{C_{1}} \frac{e^{iaz}}{z^{2}+1} dz = \frac{\pi}{e}$$

when $r \to \infty$, the integral over C_1 tends to zero.

$$\therefore \int_{-\infty}^{\infty} \frac{e^{iax}}{x^2 + 1} dx = \frac{\pi}{e}.$$

Equating real parts we get, $\int_{-\infty}^{\infty} \frac{\cos x \, dx}{1+x^2} = \frac{\pi}{e}.$

$$\int_0^\infty \frac{\cos x \, dx}{1+x^2} = \frac{\pi}{2e}.$$

Problem 2. Prove that
$$\int_0^\infty \frac{\sin x \ dx}{x} = \frac{\pi}{2}$$
.

Solution: Let $f(z) = \frac{e^{iz}}{z}$.

The only singular point of f(z) is 0 which is a simple pole and it lies on the real axis. Now choose the contour C

Then,
$$\int_{\mathcal{C}} f(z)dz = \int_{-r}^{-\epsilon} f(x)dx + \int_{\mathcal{C}_2} f(z)dz + \int_{\epsilon}^{r} f(x)dx + \int_{\mathcal{C}_1} f(z)dz$$
. \rightarrow (1)

Since
$$f(z)$$
 is analytic within $\int_C f(z)dz = 0$ \rightarrow (2)

Also,
$$\int_{C_2} f(z)dz = -\pi i \operatorname{Res} \{f(z); 0\}$$

= $-\pi i e^0 = -\pi i$ \rightarrow (3)

when $r \to \infty$, the integral over C_1 tends to zero.

Substituting (2), (3) in (1) and taking limit $r \to \infty$, we get

$$0 = \int_{-\infty}^{0} f(x)dx - \pi i + \int_{0}^{\infty} f(x)dx$$

$$\int_{-\infty}^{\infty} f(x) dx = \pi i$$

Equating the imaginary parts we get, $\int_{-\infty}^{\infty} \frac{\sin x \, dx}{x} = \pi$

$$, \int_0^\infty \frac{\sin x \, dx}{x} = \frac{\pi}{2}$$
