IDHAYA COLLEGE FOR WOMEN KUMBAKONAM - 612 001

PG & RESEARCH DEPARTMENT OF COMPUTER SCIENCE

ACADEMIC YEAR : 2019 - 2020

SEMESTER : II

 $\mathbf{CLASS} \qquad \qquad \mathbf{I} - \mathbf{M.Sc} \ (\mathbf{CS})$

SUBJECT IN-CHARGE: N. AARTHI

SUBJECT NAME : OOAD & UML

SUBJECT CODE : P16CS21

UNIT – V UML

UML, Examples on Behavioral models, Structural models, Architectural models from real world problems

Models

- Behavioral model
- Structural model
- Architectural model

Behavioral model

- Behavioral models describe the internal dynamic aspects of an information system that supports the business processes in an organization.
- Behavioral model describes the interaction in the system.
- It represents the interaction among the structural diagrams.
- Behavioral modeling shows the dynamic nature of the system.

They consist of the following

- Activity diagrams
- Sequence Diagram
- Collaboration Diagram
- State-Chart Diagram
- Use case diagrams

Activity diagrams

- An activity diagram depicts the flow of activities which are ongoing non-atomic operations in a state machine. Activities result in actions which are atomic operations.
- Activity diagrams comprise of
 - Activity states and action
 - states Transitions
 - **❖** Objects
- Activity diagrams are used for modeling –
- workflows as viewed by actors, interacting with the system.
- It gives the details of operations or computations usingflowcharts.

 The following figure shows an activity diagram of a portion of the Automated Trading House System.

Sequence Diagrams

- Sequence diagrams are interaction diagrams that illustrate the ordering of messages according to time.
- These diagrams are in the form of two-dimensional charts.
- The objects that initiate the interaction are placed on the x-axis.
- The messages that these objects send and receive are placed along the y-axis, in the order of increasing time from top to bottom.

• A sequence diagram for the Automated Trading House System is shown in the following figure.

Collaboration diagram

- Collaboration diagrams are interaction diagrams
 that illustrate the structure of the objects that send
 and receive messages.
- Notations In these diagrams, the objects that participate in the interaction are shown using vertices.
- The links that connect the objects are used to sendand receive messages.
- The message is shown as a labeled arrow.

• Collaboration diagram for the Automated Trading House System is illustrated in the figure below.

State-Chart Diagrams

- A state—chart diagram shows a state machine that depicts the control flow of an object from one state to another. A state machine portrays the sequences of states which an object undergoes due to events and their responses to events.
- **❖ State-Chart Diagrams comprise of -**
- **States: Simple or Composite**
- Transitions between states
- **Events causing transitions**
- Actions due to the events

 In the Automated Trading House System, let us model Order as an object and trace its sequence.
 The following figure shows the corresponding state—chart diagram.

Use casediagrams

- Use case diagrams present an outside view of the manner the elements in a system behave and how they can be used in the context.
- Use case diagrams comprise of –
- Use cases
- **Actors**
- Relationships like dependency, generalization, and association

• Let us consider an Automated Trading House System.

StructuralModel

- Structural modeling captures the static features of a system.
- They consist of the following -
- 1. Classes diagrams
- 2. Objects diagrams
- 3. Component diagram
- 4. Deployment diagrams

Classes diagrams

- A class diagram models the static view of a system.
- It comprises of the classes, interfaces, and collaborations of a system; and the relationships between them.

- Relationships
- 1. A Bank "has—a" number of Branches composition, one—to—many
- 2. A Branch with role Zonal Head Office supervises other Branches –unary association, one–to-many
- 3. A Branch "has—a" number of accounts aggregation, one—to—many
- From the class Account, two classes have inherited, namely, Savings Account and Current Account.
- 1. A Customer can have one Current Account association, one–to–one
- 2. A Customer can have one Savings Account association, one–to–one
- 3. A Branch "has—a" number of Loans aggregation, one—to—many
- 4. A Customer can take many loans association, one–to–many

ObjectDiagram

- An object diagram models a group of objects and their links at a point of time.
- It shows the instances of the things in a class diagram.
- Object diagram is the static part of an interaction diagram.

 The following figure shows an object diagram of a portion of the class diagram of the Banking System.

Component diagrams

- Component diagrams show the organization and dependencies among a group of components.
- Component diagrams comprise of –
- Components
- Interfaces
- Relationships
- Packages and Subsystems (optional)

Componentdiagrams areused for....

- constructing systems through forward and reverse engineering.
- modeling configuration management of source code files while developing a system using an object-oriented programming language.
- representing schemas in modeling databases.
- modeling behaviors of dynamic systems.

- The following figure shows a component diagram to model a system's source code that is developed using C++.
- It shows four source code files, namely, myheader.h,
 otherheader.h, priority.cpp, and other.cpp. Two versions of
 myheader.h are shown, tracing from the recent version to
 its ancestor.
- The file priority.cpp has compilation dependency on other.cpp. The file other.cpp has compilation dependency on otherheader.h.

Deployment Diagram

- A deployment diagram puts emphasis on the configuration of runtime processing nodes and their components that live on them.
- They are commonly comprised of nodes and dependencies, or associations between the nodes.

Deployment diagramsareused to....

- Model devices in embedded systems that typically comprise of software-intensive collection of hardware.
- represent the topologies of client/server systems.
- model fully distributed systems.

- The following figure shows the topology of a computer system that follows client/server architecture.
- The figure illustrates a node stereotyped as server that comprises of processors.

Architectural model

- Architectural model represents the overall framework of the system.
- It contains both structural and behavioral elements of the system.
- Architectural model can be defined as the blueprint of the entire system.
- Package diagram comes under architectural modeling.

All the Best...