IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM.

pAYd e

O

0
'(

ﬁLASS

SUBJECT NAME
SUBJECT CODE
SEM

UNIT

FACULTY NAME :

\_

. I M.Sc.,, MATHS \

: COMPLEX ANALYSIS

: P16MA21

: I1

:V

Myrs.V.JAYAPRIYA

/




6.1 Definition and Basic properties

1. Define Laplace equation

Definition: Laplace equation in Cartesian co-ordinates.

3%u 3%u
vy =22 % -
dx2 i dy?

Laplace equation in Polar co-ordinates.
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2. Define Harmonic function (or) Potential function.

Definition: A real valued function u(z) or u(x, y) defined and single valued in a region Q
is said to be harmonic in Q if it is continuous together with its partial derivatives of the first
two orders and satisfies the Laplace equation.

3. Define conjugate Harmonic.

Definition: Let f = u + iv be an analytic function in a region D then v is said to be
conjugate harmonic function of u.

4. Define conjugate differential.

Definition: The conjugate differential of du is * du = dv
- = _ ou
(i.e.,) dv = % dx + P dy.

5. Theorem : The real and imaginary part of an analytic functions are harmonic.
Proof: Let f = u(x,y) + iv(x,y) be an analytic function.

Then u and v have continuous partial derivatives of first order which satisfy C-R

) ) du dv du dav
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Thus u is a Harmonic function.
Similarly , we can prove v is a Harmonic function.
6. Show that log r is harmonic.

Proof: Letu = logr

du 1 ou
—=-,—= 0

or r 00
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Therefore log r is harmonic.

7. If u; and u, are harmonic in a region Q show that fy uy xduy, — ug xduy, =0

for every cycle y which is homologous to zero in Q.

Proof: Let uy,u, be the harmonic in a region Q , thenu,, u, have harmonic conjugates
* duq,* du, are harmonic conjugate differential of u; and u,.

(le,) 83 du1 = dvl g & du2 = dvz

Uy *duy, — uy *xduy = uydv, — udv;

= Ulduz + uldvz — uZdvl - UlduZ

= uldvz + UlduZ — d(qul)

uldvz + UlduZ =]P (u1 + ivl)(duZ + idvz)

c Fl(Z) = U +iU1 ,Fz(Z) = U +iv2

FZI(Z) = duZ ar idvz




(1) becomes,
fy Uy *dup; — up *duy = fy Im (F1(2)F;'(z)dz — fy d(uz, v1)
Since Im part of F; (2) and F;'(z) is analytic.
By Cauchy’s theorem, fy Im (F,(2)F;'(2)dz) = 0,S
Similarly, fy d(u,,v;) =0
Hence , fy u; * duy — uy *duy = 0.

6.2 The Mean -value proverty

8. Theorem: Mean value theorem for Harmonic function.

Statement: The arithmetic mean of a harmonic function over a concentric circles |z| = risa
. q 1
linear function of log r —

2m Vlz|=r

arithmetic mean is constant.

udf = alogr + £ and if u is harmonic in a disk @« = 0 and

Proof: Case (i) WKT, if u; and u, are harmonic in a region, then fy Uy xduy; — up xduy =

0 ,for all cycle y which is homologous to zero in €.
Also we know that *du = r (a—“) deo.

ar
Let us apply this with Q, let the disk 0 < |z| < p.
Take u; =logr & wu, =wuisharmonic in Q.

Note that log r is harmonic for y

We take the cycle C; — C, where C; is the circle |z| = r; and C, isthe circle |z] = r, with
0 <7 <1 < pdescribed in the positive sense.

fy up *du, — up *duy = 0
fy logr *du — uxd(logr) = 0

fcl—cz logr *du— uxd(logr) = 0




fcl logr *du — u xd(logr) — sz logr *du— uxd(logr) = 0
on the circle |z| = r.

x du = r( )d@

fcl logrr(g—l:) do — ur(m;rgr) d@—fcz logrr(%) do — ur(al(;)rgr) dd =0
Je 1ogrr( )d@ f udé - [, logrr( )d@—fczud9= 0

In otherwords, it implies that the value of the integral is same.(i.e.,) It’s constant on different path
C, and C,. Let it be g’

Je ¢ logr r( )d@— fczud9= g

1=
f|Z|:r logrr g—:d@ —udd=p - (1)

Also,fy *du= 0.

For any harmonic function u in Q and for every cycle y which is homologous to zero in Q
fy xdu= 0= fC1—C2* du= 0

fcl* du — fcz* du = 0

Lr(3)do—-[, r(5)do = o

Jor (5) 6 =k, 7 (57) a0

Hence flz|:rrg—’r‘ d6 is a constant say a .

Thus fIZI rg—u do =a - (2)

Ju '
(= f|Z|:r logrr —df —udf = f

logr a — flz|:ru EN




f|Z|=ru do =logra —f

Divide both sides by 21

1
%fudezlogr+/3 - (A)

Whereazj—ﬂand g=-5

2n

Thus the arithmetic mean of a harmonic function over concentric circles |z| = r is a linear
function of log r.

Case (ii) If u is harmonic in whole disc thenfy xdu =10

= r2 g9=0
Y or

du
f|z|=rr; dé =0

ad =0 =a=0

Sub in (A),
—Judg=p .

Hence if u is harmonic in a disc then the arithmetic mean is constant. The arithmetic mean is
constant.

9. Theorem: Mean value theorem for Harmonic function.

Statement : A non constant harmonic function has neither a maximum nor a minimum in its
region of definition . Consequently, the maximum and the minimum on a closed bounded set E
are taken on the boundary of E.

Proof: If u is harmonic throughout the circular disc |z| < r then by the mean value property its
arithmetic mean is constant.

1

EIIZI=r u(z) df = const = B = u(0)

By Continuity u(0) = - [ \_ u(z) do

By change of origin to z, we have , u(z,) = %f()zﬂ u(zy +re®) do — (A)

This shows that the value of u(z) at the centre is z,.




That is, u(z,) = The arithmetic mean of the values of u(z) on the circumference .
Suppose |u(z)| is maximum at z, in Q then

lu(zo +re®)| <lu(z)l,0< 6 < 2m.

Assume that this inequality is strict for a single value 6.
By continuing it will held on whole arc . This means that
[u(zo)| = |5 Jy " u(zo + re)do)|

1 2T

< —J lu(zo + 1e?)do|

=—J, "u(zo)! Ide|
= o [u(zo) | [013"
= V|u(zy)|

lu(zo)| = |u(zo)l

This is a contradiction. Thus equality holds through

1 2m ' | 1 2m
— u(zg +re?)| do = —f lu(z,| d@
ano | 2m ),

2m
j lu(zo)| — |u(zo + rei9)| dd =0
0

Since the integral is non negative and continuous |u(zo| — [u(z, + re®®)|=0

This equation holds an all circle |z — zy| = r and therefore |u(z)| is constant in any

neighbourhood of z,.
Hence V is constant on €
This is a contradiction.

Then the maximum and minimum are taken on the boundary of E.




6.3 Poisson’s Formula

10. Theorem: State and prove Poisson’s Formula.

Statement :Suppose that u(z) is harmonic for |z| < R and continuous for |z| < R, then

1 R%—|a|?
(@) u(a) = = f|Z|=Rm u(z)df forall la] < R - (A)

1 +
() u(@) = 5 f,,_ Re C=) u(2)dé > (B)
(c) If we replace a = re'” and z = Re'®

1 2@ R%2—r2u(Re'®)

(re'?) 2r Y0 RZ—2rRcos (0 —¢)+r?2

Z—a

deg - (0

Proof: u(z) is harmonic for then |z | <R .

R (Rtj—a) — R(a) = a. -
R+at R

Consider the linear transformation z = S(t) =
S(0)=aatt =0.
Since u(z) is harmonic u(s(t)) is also harmonic in |t| = 1.
2m
From the Mean value property , u(0) = %fo u(z) doé - (2)
1
u(s(O)) = — u(s(t))d(argt)
21 J)p 121
As t = 0 corresponds to z = a.

S(t) =z = S0) = a

u(a) = %fm:l u(z)d(argt) - (3)
Now, S(t) = z = %

z(R + at) = R(Rt + a)
ZR + zat = R*t + aR

ZR — Ra = R%a — zat




R(z —a) = t(R? — za)

__ R(z—a)
~ R2—za

- (4)
Next we compute d(arg t) by putting t = e'®
logt =igp .

Differentiate with respectto ‘t’

%dt:idgo > —i & = d(argt)

R(z—a)
R%Z—za

From(4) t =

Taking log on both sides,

R(z—a)
R%2—za

log t = log
=logR (z — a) — log#{R? — za)
=logR + log (z — a) — logi{R? — za)

Differentiate with respectto ‘z’

1
R%2—za

d—t=(i+ a )dz

t z—a R?2—za

Tdt=0+—dz - (—a)dz
t Z—Qa

Thus d(argt) = —i dt—t.

(1 a
-t (E t R2—zd) dz > (4)
Put=e  dz =ie?d@
—idz=2zd0.

Substitute in (A),we get

—i%=zdo (—+
t Z—a

RZ—Zﬁ)de

d (argt) = (= +—22) do

R2—za




On substituting R? = zz then the co efficient of d@ in the last expression is

)+ @)l e
=|G2) + @)l «
=|G2) + G=R)]
=[2)+ () =

__[z@Z-a)+a(z—a)
0 (z—a)(Z—a) ]dQ

_[ zZ—aa ]d@
"~ E-a)@E-a)
ZZ aa

(z—a)(Z-a)

_ R*—|al?

" |z—al?

2_|a|2

d (argt) = do - (5)

|z—al?

Sub (5) in (1),

u(a) = i =1 u(@) d(argt) .

1 Z_|a
u(a) - |z|=R |Z el l u(z)de.
zZ+a  z+a
+
(b) Consider Re(z a) — z=a Z-—a
Z—a 2

R (Z+a) _  zz—aa
¢ z—a (z—a)(z—a)
Thus the poisson formula becomes,

u(a) = fIZI < R (Z+a) u(z)de.




(c)u(a) = if Ri-fal® u(z)de

|z|=R |z—a|?
Puta = re'?, z = Re'?,

: 1 2 R%*=|rei®|’ :
u(re) = Zfo nﬁ u(Re®)do - (6)

lal* = r? - (7)
Re® —re'? = R (cos6 + i sind) — r(cosp + i sing)

=R cosO —r cos@ + i(R sinf — rsing)

Re™® —re™® = R (cosO — i sinf) — r(cos — i sing)
=R cosO — r cosg — i(R sinf — rsing)
i . 2 i . i .
Re™® — re™|" = (Re!® —re'?) (Re™™® —re™®)
= [R(cosB + isin@) — r(cose + ising)]

[R(cosO — isin@) — r(cosp — sing)]
(R cos@ — rcosp)? + (R sinf — rsing)?

R? + 12 — 2Rr[cosBOcose + sinfsing]
|z— a|?> = R? +r% — 2Rr[cos(6 — ¢)] - (8)
Sub (7) & (8) in (6),

u(re) 1 (2m R?—r?u(Re'?)
re = —
2w 70 R2-2rRcos (8 —¢)+r?2

6.4 Schwarz’s Theorem

11.Define Poisson integral of U

Definition: If U(0) is harmonic in 0 < 8 < 2w and piecewise continuous in 0 < 6 < 2w
6

2 i
then we defined Py (z) = % fo " Re :iG Z U(8) dé and this integral is called Poisson

Integral of U.




12.Theorem :State and prove Schwarz’s Theorem

Statement: The function Py (z) is harmonic for |z| < 1 andlim,_ i U(6,) only if U is
continuous of 6,

Proof:
1 2 0 4
PU(Z):Zfon ei@ i
1 (2 €% +2
Py(z) = Re{% J;) Re - Z}

Lett = e then U(t) = U(e?)

dt = i e de
LT
it
Thus,
1 t+z dt
P,(z) = Re {— —
v () € {27‘[ f|t|=1 t—z ) it }
1 t+2z dt
Py(z) = Re {zm jm:lt—z u(t) T}

Py (2) is an real part of an analytical function.

Py(z) = Re {Lﬁ 22 u(t) %}Hc

2mi Jtl=1t—z
Therefore it’s harmonic

Let ¢y, c; be two complementary arcs of unit circles such that u; =uwon ¢; ,u; =0o0n ¢, and
U, =00Nnc;, uy =uon ¢,

. B {u on ¢
(ie) uy = 0onc,

Oonc
U, =
uonc,

Thenu=1u; +u,

This implies Py = Py, + Py, - (1)




By continuity U|6,|= 0.
Now givent>0
We can find ¢y, c, such that e is a interior point of ¢, . |u,(0)| < ; fore®ec, - (2)

By continuity u(6,) = 0 .Now given t > 0. We can find c;, c, such that e is a interior
point of c,

1 2m e +z
PU2 (Z) = Z fO Re (ew—z) u2(9)d9
Further
el +z _ el +z e W4z
(eig —z) =i (eie -z ‘e7i0—z )

elf-g=0 y7e=10 _7oib._57 )
(e7~2) (¥ -2)

=Re(

1—|z|24+ze 0 —ze'®

=Re ( 010 —z|2 ) =4

ze % — ze®® = (a+ib) (cos 6 —isin @) — (a — ib) (cos 6 + isin 6)
=(acos 8 —iasind +ibcos @ + bsinf) — (acos B —iasinf + ib cos 6 + b sin 9)
= 2ib cos 6 — 2ia sinf
= 2i(b cos 6 — a sinf)

ze 9 — ze® s purely imaginary .

Equation (A) becomes

i6 Y
Re(e +Z)_1|Z|2<1 S (B)

elt —z e —|

(i.e.,) multiplying by the conjugate both numerator and denominator has |z| < 1
1 (2¢
|Py, ()| < gfo lu,(6)| o - (2)

1 2
< @)l f," 6




< ——[u,(9)]
=u;(0)
Therefore |Py,(2)| < % - (3)
Since u; is continuous and vanishes at e’ there exist § > 0 such that
(2) implies
Py, ()| <5 for|z—e?| <6

€

=€
2

|PU2 (Z)| < |PU1(Z)| + |PU1(Z)| < §+
(i.e.)lim,_ iy Py(z) = U(6))

6.5 Reflection Principle

13. Theorem : Let Q" be the part in the upper half plane of a symmetric region Q , and let abe
the part of the real axis in Q. Suppose that V(x) is continuous in Q* U ¢ ,harmonic in Q* and
zeroon o , then V has a harmonic extension to which satisfies thesymmetry relation

V(z) = —V(2) . In the same situation , if VV is the imaginary part of an analytic function f(z)

inQ* | then f(z) has an analytic extension which satisfies f(z) = f(z)
Proof: Consider the function V: Q — C defined by

V(2)if z€ QF
V(Z) = Oif z€o
—V(2)if ze Q™

Where O~ ={z € Q:Im z < 0}
To prove that :V is harmonic in Q.

For a point x, in o. Consider a disk with centre x, contained in Q and let P, denote the
poisson Integral with respect to this disk formed with bounded values v.

2T i0
P % f Re (e +Z> V(0)do
0

el —z

From Schwarz theorem, the function P,(z) is harmonic for |z| < 1 and lim,_ e, P,(z) = v(8,)

Provided that IV is continuous at 6,




Consider the difference V — Py

V' — Py _is harmonic in the upper half of the disc. V — P, vanishes on the real diameter and
consequently Py is zero on the real diameter.

This together V' — Py, is zero on the boundary of upper half circle. The maximum and
minimum principle implies that V' — P, = 0 in upper half disk. (i.e.,) V = Py in the upper half
disk.

Therefore V(z) is harmonic in whole disk . Hence V(z) is harmonic in Q.
Also, V(z) = =V (z). Now assume that V is the imaginary part of analytic function f(z) in Q*.

We have already extended V in the whole disk. Let —u, be the conjugate harmonic function of v
in the same disk. We normalized so that u, = Re(f(z)) in upper half.

_ _ . 0

Consider uy(z) = ug(z) — uy(2) on the real diameter. It’s clear that% =0 also
o _ p (2
dy 2 ay /'

- 2o 2(3) = 2(3) -0

. . 0 , 0 . .
It follows that the analytic function % — laiyo vanishes on the real axis and hence

identical.

Therefore u, is a constant and this constant is evidently zero.

= ug(2) = ug(2).
14. Theorem : State and prove the reflection principle (or) Symmetry principle.
Statement:

(i) If u(z) is harmonic function in Q then u(z)is a harmonic function in Q.

(i) If f(2) is analytic function in Q then f(z)is an analytic function in obtained by
reflecting (0 in real axis (i.e.,) z € Q*.ifand only if Z € Q.

Proof: consider the case of symmetric region Q = Q*.
Since Q is connected it must intersect the real axis along atleast one open interval.

Assume that f(z) is analytic in Q and real on atleast one interval of the real axis.




Since f(z) — f(2) is analytic and vanishes on an interval it must be identically
zero.

f@-f@=0
f(2) =f(2) inQ.
We know that, f = u+iv
u(z) = u(2),v(z) = —v(2).
Q1 =The intersection of Q in the upper half plane.
o = The intersection of Q with real axis.
Suppose that f(z) is defined on Q* U ¢ analytic in Q*,continuous and real on o

By symmetry condition f(z) = f(2).
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