IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM.

DEPARTMENT OF MATHEMATICS

CLASS : I M.Sc., MATHS

SUBJECT NAME: **COMPLEX ANALYSIS**

SUBJECT CODE : P16MA21

SEM : II

UNIT : V

FACULTY NAME: Mrs.V.JAYAPRIYA

UNIT – V HARMONIC FUNCTIONS

6.1 Definition and Basic properties

1. Define Laplace equation

Definition: Laplace equation in Cartesian co-ordinates.

$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Laplace equation in Polar co-ordinates.

$$\nabla^2 u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

2. Define Harmonic function (or) Potential function.

Definition: A real valued function u(z) or u(x, y) defined and single valued in a region Ω is said to be harmonic in Ω if it is continuous together with its partial derivatives of the first two orders and satisfies the Laplace equation.

3. Define conjugate Harmonic.

Definition: Let f = u + iv be an analytic function in a region D then v is said to be conjugate harmonic function of u.

4. Define conjugate differential.

Definition: The conjugate differential of du is *du = dv

(i.e.,)
$$dv = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$
.

5. Theorem: The real and imaginary part of an analytic functions are harmonic.

Proof: Let f = u(x, y) + iv(x, y) be an analytic function.

Then u and v have continuous partial derivatives of first order which satisfy C-R equations given by $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

Further
$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$
 and $\frac{\partial^2 v}{\partial x \partial y} = \frac{\partial^2 v}{\partial y \partial x}$
Now, $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{-\partial v}{\partial x} \right)$

$$= \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial^2 v}{\partial x \partial y} = 0.$$

Thus *u* is a Harmonic function.

Similarly, we can prove v is a Harmonic function.

6. Show that log r is harmonic.

Proof: Let
$$u = log r$$

$$\frac{\partial u}{\partial r} = \frac{1}{r}$$
 , $\frac{\partial u}{\partial \theta} = 0$

$$\frac{\partial^2 u}{\partial r^2} = -\frac{1}{r^2}, \quad \frac{\partial^2 u}{\partial \theta^2} = 0$$

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

Therefore log r is harmonic.

7. If u_1 and u_2 are harmonic in a region Ω show that $\int_{\gamma} u_1 * du_2 - u_1 * du_2 = 0$ for every cycle γ which is homologous to zero in Ω .

Proof: Let u_1, u_2 be the harmonic in a region Ω , then u_1, u_2 have harmonic conjugates $*du_1, *du_2$ are harmonic conjugate differential of u_1 and u_2 .

(i.e.,) *
$$du_1 = dv_1$$
, * $du_2 = dv_2$
 $u_1 * du_2 - u_2 * du_1 = u_1 dv_2 - u_2 dv_1$
 $= v_1 du_2 + u_1 dv_2 - u_2 dv_1 - v_1 du_2$
 $= u_1 dv_2 + v_1 du_2 - d(u_2 v_1) \rightarrow (1)$
 $u_1 dv_2 + v_1 du_2 = I.P(u_1 + iv_1)(du_2 + idv_2)$
. $F_1(z) = u_1 + iv_1$, $F_2(z) = u_2 + iv_2$
 $F_2'(z) = du_2 + idv_2$

(1) becomes,

$$\int_{\gamma} u_1 * du_2 - u_2 * du_1 = \int_{\gamma} Im (F_1(z)F_2'(z)dz - \int_{\gamma} d(u_2, v_1)$$

Since Im part of $F_1(z)$ and $F_2'(z)$ is analytic.

By Cauchy's theorem, $\int_{\gamma} Im(F_1(z)F_2'(z)dz) = 0$,S

Similarly,
$$\int_{\gamma} d(u_2, v_1) = 0$$

Hence,
$$\int_{V} u_1 * du_2 - u_2 * du_1 = 0.$$

6.2 The Mean -value property

8. Theorem: Mean value theorem for Harmonic function.

Statement: The arithmetic mean of a harmonic function over a concentric circles |z|=r is a linear function of $\log r \frac{1}{2\pi} \int_{|z|=r} u \ d\theta = \alpha \log r + \beta$ and if u is harmonic in a disk $\alpha=0$ and arithmetic mean is constant.

Proof: Case (i) WKT, if u_1 and u_2 are harmonic in a region, then $\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0$, for all cycle γ which is homologous to zero in Ω .

Also we know that $*du = r\left(\frac{\partial u}{\partial r}\right)d\theta$.

Let us apply this with Ω , let the disk $0 < |z| < \rho$.

Take $u_1 = log r \& u_2 = u$ is harmonic in Ω .

Note that log r is harmonic for γ

We take the cycle $C_1 - C_2$ where C_1 is the circle $|z| = r_1$ and C_2 is the circle $|z| = r_2$ with $0 < r_1 < r_2 < \rho$ described in the positive sense.

$$\int_{\gamma} u_1 * du_2 - u_2 * du_1 = 0$$

$$\int_{\gamma} \log r * du - u * d(\log r) = 0$$

$$\int_{C_1-C_2} \log r * du - u * d(\log r) = 0$$

$$\int_{C_1} \log r * du - u * d(\log r) - \int_{C_2} \log r * du - u * d(\log r) = 0$$

on the circle |z| = r.

$$*du = r\left(\frac{\partial u}{\partial r}\right)d\theta$$

$$\int_{C_1} \log r \, r \left(\frac{\partial u}{\partial r} \right) d\theta - u r \left(\frac{\partial \log r}{\partial r} \right) d\theta - \int_{C_2} \log r \, r \left(\frac{\partial u}{\partial r} \right) d\theta - u r \left(\frac{\partial \log r}{\partial r} \right) d\theta = 0$$

$$\int_{C_1} \log r \, r \left(\frac{\partial u}{\partial r} \right) d\theta - \int_{C_1} u \, d\theta - \int_{C_2} \log r \, r \left(\frac{\partial u}{\partial r} \right) d\theta - \int_{C_2} u \, d\theta = 0$$

In otherwords, it implies that the value of the integral is same.(i.e.,) It's constant on different path C_1 and C_2 . Let it be β'

$$\int_{C_1 - C_2} \log r \cdot r \left(\frac{\partial u}{\partial r} \right) d\theta - \int_{C_2} u \, d\theta = \beta'$$

$$\int_{|z|=r} \log r \, r \, \frac{\partial u}{\partial r} \, d\theta - u \, d\theta = \beta'$$

Also,
$$\int_{V} * du = 0$$
.

For any harmonic function u in Ω and for every cycle γ which is homologous to zero in Ω

$$\int_{V} * du = 0 \Longrightarrow \int_{C_1 - C_2} * du = 0$$

$$\int_{C_1} * du - \int_{C_2} * du = 0$$

$$\int_{C_1} r\left(\frac{\partial u}{\partial r}\right) d\theta - \int_{C_2} r\left(\frac{\partial u}{\partial r}\right) d\theta = 0$$

$$\int_{C_1} r\left(\frac{\partial u}{\partial r}\right) d\theta = \int_{C_2} r\left(\frac{\partial u}{\partial r}\right) d\theta$$

Hence $\int_{|z|=r} r \frac{\partial u}{\partial r} d\theta$ is a constant say α' .

Thus
$$\int_{|z|=r} r \frac{\partial u}{\partial r} d\theta = \alpha'$$
 \rightarrow (2)

$$(1) \Rightarrow \int_{|z|=r} \log r \, r \, \frac{\partial u}{\partial r} d\theta - u \, d\theta = \beta'$$

$$logr \alpha' - \int_{|z|=r} u \ d\theta = \beta'$$

$$\int_{|z|=r} u \ d\theta = \log r \ \alpha' - \beta'$$

Divide both sides by 2π

$$\frac{1}{2\pi} \int u \, d\theta = \log r + \beta \qquad \rightarrow (A)$$

where
$$\alpha = \frac{\alpha'}{2\pi}$$
 and $\beta = -\frac{\beta'}{2\pi}$

Thus the arithmetic mean of a harmonic function over concentric circles |z| = r is a linear function of log r.

Case (ii) If u is harmonic in whole disc then $\int_{\gamma} *du = 0$

$$\Longrightarrow \int_{\gamma} r \frac{\partial u}{\partial r} d\theta = 0$$

$$\int_{|z|=r} r \frac{\partial u}{\partial r} \ d\theta = 0$$

$$\alpha' = 0 \implies \alpha = 0$$

Sub in (A),

$$\frac{1}{2\pi} \int u \, d\theta = \beta .$$

Hence if u is harmonic in a disc then the arithmetic mean is constant. The arithmetic mean is constant.

9. Theorem: Mean value theorem for Harmonic function.

Statement: A non constant harmonic function has neither a maximum nor a minimum in its region of definition. Consequently, the maximum and the minimum on a closed bounded set E are taken on the boundary of E.

Proof: If u is harmonic throughout the circular disc $|z| \le r$ then by the mean value property its arithmetic mean is constant.

$$\frac{1}{2\pi} \int_{|z|=r} u(z) \quad d\theta = const = \beta = u(0)$$

By Continuity
$$u(0) = \frac{1}{2\pi} \int_{|z|=r} u(z) d\theta$$

By change of origin to
$$z_0$$
 we have , $u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) \ d\theta \to (A)$

This shows that the value of u(z) at the centre is z_0 .

That is, $u(z_0)$ = The arithmetic mean of the values of u(z) on the circumference.

Suppose |u(z)| is maximum at z_0 in Ω then

$$\left|u(z_0+re^{i\theta})\right| \leq |u(z_0)|, 0 \leq \theta \leq 2\pi.$$

Assume that this inequality is strict for a single value θ .

By continuing it will held on whole arc. This means that

$$|u(z_0)| = \left| \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\uparrow\pi} |u(z_0 + re^{i\theta}) d\theta|$$

$$= \frac{1}{2\pi} \int_0^{2\pi} |u(z_0)| |d\theta|$$

$$= \frac{1}{2\pi} |u(z_0)| [\theta]_0^{2\pi}$$

$$= v|u(z_0)|$$

$$|u(z_0)| = |u(z_0)|$$

This is a contradiction. Thus equality holds through

$$\frac{1}{2\pi} \int_0^{2\pi} |u(z_0 + re^{i\theta})| \ d\theta = \frac{1}{2\pi} \int_0^{2\pi} |u(z_0)| \ d\theta$$
$$\int_0^{2\pi} |u(z_0)| - |u(z_0 + re^{i\theta})| \ d\theta = 0$$

Since the integral is non negative and continuous $|u(z_0)| - |u(z_0 + re^{i\theta})| = 0$

This equation holds an all circle $|z - z_0| = r$ and therefore |u(z)| is constant in any neighbourhood of z_0 .

Hence V is constant on Ω

This is a contradiction.

Then the maximum and minimum are taken on the boundary of E.

6.3 Poisson's Formula

10. Theorem: State and prove Poisson's Formula.

Statement: Suppose that u(z) is harmonic for |z| < R and continuous for $|z| \le R$, then

(a)
$$u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta$$
 for all $|a| < R \rightarrow (A)$

(b)
$$u(a) = \frac{1}{2\pi} \int_{|z|=R} Re\left(\frac{z+a}{z-a}\right) u(z) d\theta \rightarrow (B)$$

(c) If we replace $a = re^{i\varphi}$ and $z = Re^{i\theta}$

$$u(re^{i\varphi}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2 u(Re^{i\theta})}{R^2 - 2rR\cos(\theta - \varphi) + r^2} d\theta \rightarrow (c)$$

Proof: u(z) is harmonic for then $|z| \le R$.

Consider the linear transformation
$$z = S(t) = \frac{R(Rt+a)}{R+\bar{a}t} = \frac{R(a)}{R} = a. \rightarrow (1)$$

$$S(0) = a$$
 at $t = 0$.

Since u(z) is harmonic u(s(t)) is also harmonic in |t| = 1.

From the Mean value property , $u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(z) \ d\theta \rightarrow (2)$

$$u(s(0)) = \frac{1}{2\pi} \int_{|t|=1} u(s(t)) d(\arg t)$$

As t = 0 corresponds to z = a.

$$S(t) = z \Rightarrow S(0) = a$$

$$u(a) = \frac{1}{2\pi} \int_{|t|=1} u(z) d(\arg t)$$
 \rightarrow (3)

Now,
$$S(t) = z = \frac{R(Rt+a)}{R+\bar{a}t}$$

$$z(R + \bar{a}t) = R(Rt + a)$$

$$zR + z\overline{at} = R^2t + aR$$

$$zR - Ra = R^2a - z\bar{a}t$$

$$R(z-a) = t(R^2 - z\bar{a})$$

$$t = \frac{R(z-a)}{R^2 - z\bar{a}} \to (4)$$

Next we compute $d(arg\ t)$ by putting $t = e^{i\varphi}$

$$\log t = i\varphi .$$

Differentiate with respect to 't'

$$\frac{1}{t} dt = i d\varphi \implies -i \frac{dt}{t} = d(\arg t)$$

From (4)
$$t = \frac{R(z-a)}{R^2-z\bar{a}}$$

Taking log on both sides,

$$\log t = \log \frac{R(z-a)}{R^2 - z\bar{a}}$$

$$= \log R (z-a) - \log \mathbb{R}^2 - z\bar{a}$$

$$= \log R + \log (z-a) - \log \mathbb{R}^2 - z\bar{a}$$

Differentiate with respect to 'z'

$$\frac{1}{t} dt = 0 + \frac{1}{z - a} dz - \frac{1}{R^2 - z\bar{a}} (-a) dz$$

$$\frac{dt}{t} = \left(\frac{1}{z-a} + \frac{\bar{a}}{R^2 - z\bar{a}}\right) dz$$

Thus
$$d(\arg t) = -i \frac{dt}{t}$$
.

$$=-i\left(\frac{1}{z-a}+\frac{\bar{a}}{R^2-z\bar{a}}\right)dz \qquad \rightarrow (A)$$

Put =
$$e^{i\theta}$$
, $dz = ie^{i\theta} d\theta$

$$-i dz = z d\theta$$
.

Substitute in (A), we get

$$-i\frac{dt}{t} = z \ d\theta \ (\frac{1}{z-a} + \frac{\bar{a}}{R^2 - z\bar{a}})d\theta$$

$$d (\arg t) = \left(\frac{z}{z-a} + \frac{z\bar{a}}{R^2 - z\bar{a}}\right) d\theta$$

On substituting $R^2 = z\bar{z}$ then the co efficient of $d\theta$ in the last expression is

$$\left[\left(\frac{z}{z-a} \right) + \left(\frac{z\bar{a}}{R^2 - z\bar{a}} \right) \right] d\theta$$

$$= \left[\left(\frac{z}{z-a} \right) + \left(\frac{z\bar{a}}{R^2 - z\bar{a}} \right) \right] d\theta$$

$$= \left[\left(\frac{z}{z-a} \right) + \left(\frac{z\bar{a}}{z\bar{z}-z\bar{a}} \right) \right] d\theta$$

$$= \left[\left(\frac{z}{z-a} \right) + \left(\frac{\bar{a}}{\bar{z}-\bar{a}} \right) \right] d\theta$$

$$= \left[\frac{z(\bar{z}-\bar{a})+\bar{a}(z-a)}{(z-a)(\bar{z}-\bar{a})}\right]d\theta$$

$$= \left[\frac{z\bar{z} - \bar{a}a}{(z - a)(\bar{z} - \bar{a})} \right] d\theta$$

$$= \left[\frac{z\bar{z} - \bar{a}a}{(z-a)(\bar{z} - \bar{a})} \right] d\theta$$

$$=\frac{R^2-|a|^2}{|z-a|^2}\,d\theta$$

$$d (\arg t) = \frac{R^2 - |a|^2}{|z - a|^2} d\theta \qquad \rightarrow (5)$$

Sub (5) in (1),

$$u(a) = \frac{1}{2\pi} \int_{|t|=1} u(z) \ d(\arg t)$$
.

$$u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta.$$

(b) Consider
$$\operatorname{Re}\left(\frac{z+a}{z-a}\right) = \frac{\frac{z+a}{z-a} + \frac{\overline{z}+\overline{a}}{\overline{z}-\overline{a}}}{2}$$

$$\operatorname{Re}\left(\frac{z+a}{z-a}\right) = \frac{z \, \bar{z} - a \, \bar{a}}{(z-a)(\bar{z} - \bar{a})}$$

Thus the poisson formula becomes,

$$u(a) = \frac{1}{2\pi} \int_{|z|=R} Re \left(\frac{z+a}{z-a}\right) u(z) d\theta.$$

$$(c) u(a) = \frac{1}{2\pi} \int_{|z|=R} \frac{R^2 - |a|^2}{|z-a|^2} u(z) d\theta$$

Put
$$a = re^{i\varphi}$$
, $z = Re^{i\theta}$,

$$u(re^{i\varphi}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |re^{i\varphi}|^2}{|Re^{i\theta} - re^{i\varphi}|^2} u(Re^{i\theta}) d\theta \longrightarrow (6)$$

$$|a|^2 = r^2 (7)$$

$$Re^{i\theta} - re^{i\varphi} = R(\cos\theta + i\sin\theta) - r(\cos\varphi + i\sin\varphi)$$

= $R\cos\theta - r\cos\varphi + i(R\sin\theta - r\sin\varphi)$

$$Re^{-i\theta} - re^{-i\varphi} = R(\cos\theta - i\sin\theta) - r(\cos\varphi - i\sin\varphi)$$

= $R\cos\theta - r\cos\varphi - i(R\sin\theta - r\sin\varphi)$

$$\begin{aligned} \left| Re^{-i\theta} - re^{-i\varphi} \right|^2 &= \left(Re^{i\theta} - re^{i\varphi} \right) \left(Re^{-i\theta} - re^{-i\varphi} \right) \\ &= \left[R(\cos\theta + i\sin\theta) - r(\cos\varphi + i\sin\varphi) \right] \\ &= \left[R(\cos\theta - i\sin\theta) - r(\cos\varphi - \sin\varphi) \right] \\ &= \left(R\cos\theta - r\cos\varphi \right)^2 + \left(R\sin\theta - r\sin\varphi \right)^2 \\ &= R^2 + r^2 - 2Rr[\cos\theta\cos\varphi + \sin\theta\sin\varphi] \end{aligned}$$

$$|z - a|^2 = R^2 + r^2 - 2Rr[\cos(\theta - \varphi)] \rightarrow (8)$$

Sub (7) & (8) in (6),

$$u(re^{i\varphi}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2 u(Re^{i\theta})}{R^2 - 2rR\cos(\theta - \omega) + r^2} d\theta$$

6.4 Schwarz's Theorem

11.Define Poisson integral of U

Definition: If $U(\theta)$ is harmonic in $0 \le \theta \le 2\pi$ and piecewise continuous in $0 \le \theta \le 2\pi$ then we defined $P_U(z) = \frac{1}{2\pi} \int_0^{2\pi} Re \; \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) \; d\theta$ and this integral is called Poisson Integral of U.

12.Theorem: State and prove Schwarz's Theorem

Statement: The function $P_U(z)$ is harmonic for |z| < 1 and $\lim_{z \to e^{i\theta}} U(\theta_0)$ only if U is continuous of θ_0

Proof:

$$P_U(z) = \frac{1}{2\pi} \int_0^{2\pi} Re \, \frac{e^{i\theta} + z}{e^{i\theta} - z}$$

$$P_U(z) = Re\{\frac{1}{2\pi} \int_0^{2\pi} Re \; \frac{e^{i\theta} + z}{e^{i\theta} - z}\}$$

Let
$$t = e^{i\theta}$$
 then $U(t) = U(e^{i\theta})$

$$dt = i e^{i\theta} d\theta$$

$$\frac{dt}{dt} = d\theta$$

Thus,

$$P_{U}(z) = Re\left\{\frac{1}{2\pi} \int_{|t|=1} \frac{t+z}{t-z} \ u(t) \frac{dt}{it}\right\}$$

$$P_{U}(z) = Re\left\{\frac{1}{2\pi i} \int_{|t|=1} \frac{t+z}{t-z} \ u(t) \frac{dt}{t}\right\}$$

 $P_U(z)$ is an real part of an analytical function.

$$P_U(z) = Re\left\{\frac{1}{2\pi i} \int_{|t|=1} \frac{t+z}{t-z} u(t) \frac{dt}{t}\right\} + ic$$

Therefore it's harmonic

Let c_1 , c_2 be two complementary arcs of unit circles such that $u_1=u$ on c_1 , $u_1=0$ on c_2 and $u_2=0$ on c_1 , $u_2=u$ on c_2

(i.e)
$$u_1 = \begin{cases} u \ on \ c_1 \\ 0 \ on \ c_2 \end{cases}$$

$$u_2 = \begin{cases} 0 \text{ on } c_1 \\ u \text{ on } c_2 \end{cases}$$

Then $u = u_1 + u_2$

This implies
$$P_U = P_{U_1} + P_{U_2} \rightarrow (1)$$

By continuity $U|\theta_0|=0$.

Now given t > 0

We can find c_1, c_2 such that $e^{i\theta_0}$ is a interior point of c_2 . $|u_2(\theta)| < \frac{\epsilon}{2}$ for $e^{i\theta} \epsilon c_2 \to (2)$

By continuity $u(\theta_0) = 0$. Now given t > 0. We can find c_1, c_2 such that $e^{i\theta_0}$ is a interior point of c_2

$$P_{U_2}(z) = \frac{1}{2\pi} \int_0^{2\pi} Re \left(\frac{e^{i\theta} + z}{e^{i\theta} - z} \right) u_2(\theta) d\theta$$

Further

$$\left(\frac{e^{i\theta} + z}{e^{i\theta} - z}\right) = Re \left(\frac{e^{i\theta} + z}{e^{i\theta} - z} \cdot \frac{e^{-i\theta} + \bar{z}}{e^{-i\theta} - \bar{z}}\right)
= Re \left(\frac{e^{i\theta} \cdot e^{-i\theta} + ze^{-i\theta} - \bar{z}e^{i\theta} \cdot -z\bar{z}}{(e^{i\theta} - z) (e^{-i\theta} - \bar{z})}\right)
= Re \left(\frac{1 - |z|^2 + ze^{-i\theta} - \bar{z}e^{i\theta}}{|e^{i\theta} - z|^2}\right) \rightarrow (A)$$

$$ze^{-i\theta} - \bar{z}e^{i\theta} = (a+ib)(\cos\theta - i\sin\theta) - (a-ib)(\cos\theta + i\sin\theta)$$

$$= (a\cos\theta - ia\sin\theta + ib\cos\theta + b\sin\theta) - (a\cos\theta - ia\sin\theta + ib\cos\theta + b\sin\theta)$$

$$= 2ib\cos\theta - 2ia\sin\theta$$

$$= 2i(b\cos\theta - a\sin\theta)$$

 $ze^{-i\theta} - \bar{z}e^{i\theta}$ is purely imaginary.

Equation (A) becomes

$$\operatorname{Re}\left(\frac{e^{i\theta}+z}{e^{i\theta}-z}\right) = \frac{1-|z|^2}{\left|e^{i\theta}-z\right|^2} < 1 \qquad \to (B)$$

(i.e.,) multiplying by the conjugate both numerator and denominator has |z| < 1

$$\begin{aligned} \left| P_{U_2}(z) \right| &\leq \frac{1}{2\pi} \int_0^{2\pi} |u_2(\theta)| \ d\theta \\ &\leq \frac{1}{2\pi} |u_2(\theta)| \int_0^{2\pi} \ d\theta \end{aligned}$$

$$\leq \frac{1}{2\pi} |u_2(\theta)|$$
$$= u_2(\theta)$$

Therefore
$$|P_{U_2}(z)| \le \frac{\epsilon}{2}$$
 \to (3)

Since u_1 is continuous and vanishes at $e^{i\theta_0}$ there exist $\delta > 0$ such that

(2) implies

$$|P_{U_2}(z)| \le \frac{\epsilon}{2} \quad \text{for } |z - e^{i\theta}| < \delta$$

$$\left|P_{U_2}(z)\right| \leq \left|P_{U_1}(z)\right| + \left|P_{U_1}(z)\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

(i.e.,)
$$\lim_{z\to e^{i\theta_0}} P_U(z) = U(\theta_0)$$

6.5 Reflection Principle

13. Theorem: Let Ω^+ be the part in the upper half plane of a symmetric region Ω , and let σ be the part of the real axis in Ω . Suppose that V(x) is continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ and zero on σ , then V has a harmonic extension to which satisfies the symmetry relation $V(\overline{z}) = -V(z)$. In the same situation, if V is the imaginary part of an analytic function f(z) in Ω^+ , then f(z) has an analytic extension which satisfies $f(z) = \overline{f(\overline{z})}$

Proof: Consider the function $V: \Omega \to C$ defined by

$$V(Z) = \begin{cases} V(z)if \ z \in \Omega^+ \\ 0 \ if \ z \in \sigma \\ -V(z)if \ z \in \Omega^- \end{cases}$$

Where $\Omega^- = \{z \in \Omega : Im \ z < 0\}$

To prove that :V is harmonic in Ω .

For a point x_0 in σ . Consider a disk with centre x_0 contained in Ω and let P_v denote the poisson Integral with respect to this disk formed with bounded values v.

$$P_{v}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} Re\left(\frac{e^{i\theta} + z}{e^{i\theta} - z}\right) V(\theta) d\theta$$

From Schwarz theorem, the function $P_v(z)$ is harmonic for |z| < 1 and $\lim_{z \to e^{i\theta_0}} P_v(z) = v(\theta_0)$

Provided that V is continuous at θ_0 .

Consider the difference $V - P_V$

 $V - P_{V_{\cdot}}$ is harmonic in the upper half of the disc. $V - P_{V_{\cdot}}$ vanishes on the real diameter and consequently $P_{V_{\cdot}}$ is zero on the real diameter.

This together $V - P_{V_{\cdot}}$ is zero on the boundary of upper half circle. The maximum and minimum principle implies that $V - P_{V_{\cdot}} = 0$ in upper half disk. (i.e.,) $V = P_{V_{\cdot}}$ in the upper half disk.

Therefore V(z) is harmonic in whole disk. Hence V(z) is harmonic in Ω .

Also, $V(\bar{z}) = -V(z)$. Now assume that V is the imaginary part of analytic function f(z) in Ω^+ .

We have already extended V in the whole disk. Let $-u_0$ be the conjugate harmonic function of v in the same disk. We normalized so that $u_0 = Re(f(z))$ in upper half.

Consider
$$u_0(z) = \overline{u_0(z)} - u_0(\overline{z})$$
 on the real diameter. It's clear that $\frac{\partial u_0}{\partial x} = 0$ also $\frac{\partial v_0}{\partial y} = 2\left(\frac{\partial u_0}{\partial y}\right)$.

$$\Rightarrow \frac{\partial v_0}{\partial y} = 2\left(\frac{-\partial v}{\partial x}\right) = -2\left(\frac{\partial v}{\partial x}\right) = 0$$

It follows that the analytic function $\frac{\partial u_0}{\partial x} - i \frac{\partial u_0}{\partial y}$ vanishes on the real axis and hence identical.

Therefore u_0 is a constant and this constant is evidently zero.

$$\therefore u_0(z) = u_0(\overline{z}).$$

14. Theorem: State and prove the reflection principle (or) Symmetry principle.

Statement:

- (i) If u(z) is harmonic function in Ω then $u(\bar{z})$ is a harmonic function in Ω^* .
- (ii) If f(z) is analytic function in Ω then $\overline{f(\overline{z})}$ is an analytic function in obtained by reflecting Ω in real axis (i.e.,) $z \in \Omega^*$ if and only if $\overline{z} \in \Omega$.

Proof: consider the case of symmetric region $\Omega = \Omega^*$.

Since Ω is connected it must intersect the real axis along at least one open interval.

Assume that f(z) is analytic in Ω and real on at least one interval of the real axis.

Since $f(z) - \overline{f(\overline{z})}$ is analytic and vanishes on an interval it must be identically zero.

$$f(z) - \overline{f(\bar{z})} = 0$$

$$f(z) = \overline{f(\bar{z})}$$
 in Ω .

We know that, f = u + iv

$$u(z) = u(\bar{z}), v(z) = -v(\bar{z}).$$

 Ω^+ =The intersection of Ω in the upper half plane.

 σ = The intersection of Ω with real axis.

Suppose that f(z) is defined on $\Omega^+ \cup \sigma$ analytic in Ω^+ , continuous and real on σ By symmetry condition $f(z) = \overline{f(\overline{z})}$.
