IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM

DEPARTMENT OF MATHEMATICS

UNIT V PART-A

1. Define invariant subspaces with example.

Let V be a vector space and T a linear operator on V. If W is a subspace of V, we say that W is invariant under T if for each vector α in W the vector $T\alpha$ is in W, that if $T(W)$ is contained in W.

Example: If T is any linear operator on V, then V is invariant under T, as is the zero subspace. The range of T and the null space of T are also invariant under T.

2. Define Projection.

 If V is a vector space, a projection of V is a linear operator E on V such that $E^2 = E$.

3. Write down the T-conductor of α into W.

Let W be an invariant subspace for T and let α be a vector in V. The T-conductor of α into W is the set $S_T(\alpha;W)$, which consists of all polynomial g such that $g(T)\alpha$ is in W.

4. When the subspaces be linearly independent ?

Let W_1, \ldots W_k be subspaces of a vector space V. Then W_1, \ldots . W_k are called linearly independent if $w_1 + \ldots + w_k = 0$ for each $w_i \in W_i$ holds only for $w_1=w_2$ ……..= $w_k=0$.

5. Define direct sum.

If W_1, \ldots, W_k are independent and if $W=W_1+W_2+\ldots+W_k$, then W is the direct sum of W_1, \ldots ... W_k and its denoted by $W = W_1 \oplus \ldots \oplus W_k$

Part -B

1. Let V be a finite dimensional vector space V over the field F & let T be a linear operator on V. Then T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1)$ **...** $(x - c_k)$ **where** c_1 **,...,** c_k **are distinct elements of F.**

Proof

If T is diagonalizable, its minimal polynomial is a product of distinct linear factors .

Conversely, let W be the subspace spanned by all of the characteristic vectors of T, and suppose $W \neq V$. By the lemma, Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F. There is a vector α not in W and a characteristic value c_i of T such that the vector $\beta = (T - c_j I)\alpha$ lies in W. Since β is in W, $\beta = \beta_1 + \beta_2$, β_k where $T\beta_i = c_i \beta_i, 1 \le i \le k$ and therefore the vector $h(T)\beta = h(c_1)\beta_1 + h(c_2)\beta_2$+ $h(c_k)\beta_k$ is in W, for every polynomial h. Now $p = (x - c_i)q$, for some polynomial q and also $q \cdot q(c_j) = (x - c_j)h$ and $q(T)\alpha \cdot q(c_j)\alpha = h(T)(T - c_jI)\alpha = h(T)\beta$. But $h(T)\beta$ is in W and, Since $0 = p(T)a = (T - c_iI)q(T)a$ the vector $q(T)a$ is in W. Therefore, $q(c_i)\alpha$ is in W. Since a is not in W, we have $q(c_i) = 0$. That contradicts the fact that p has distinct roots.

- **2.** If $V = W_1 \oplus \dots \oplus W_k$, then there exist k linear operators E_1, \dots, E_k on V such **that**
	- (i) each \mathbf{E}_i is a projection $E_i^2 = E_i$
	- **(ii)** $\mathbf{E}_i \mathbf{E}_j = \mathbf{0}$, if $i \neq j$
	- **(iii)** $I = E_1 + ... + E_k$
	- **(iv) the range of Eⁱ is Wi.**

Conversely, if E_1 ,........ E_k are k linear operators on V which satisfy conditions (i), (ii), and (iii), and if we let W_i be the range of E_i , then $V = W_i \oplus \dots \oplus W_k$.

Proof

Suppose E_1 ,........ E_k are linear operators on V which satisfy the first three conditions, and let W_i be the range of E_i . Then certainly $V = W_1 + ... + W_k$; for, by condition (iii) and $\alpha = E_1 \alpha + \ldots + E_k \alpha$ for each α in V, and $E_i \alpha$ is in W_i. This expression for a is unique, because if $\alpha = \alpha_1 + \ldots + \alpha_k$ with α_i in W_i, say $\alpha_i = E_i \beta_i$, then using (i) and (ii)

$$
E_j \alpha = \sum_{i=1}^k E_j \alpha_j
$$

\n
$$
E_j \alpha = \sum_{i=1}^k E_j E_i \beta_j
$$

\n
$$
= E_j^2 \beta_j
$$

\n
$$
= E_j \beta_j
$$

\n
$$
= \alpha_j
$$

Hence V is the direct sum of the W_i .

3. Let T be a linear operator on the space V, and let W_1, \ldots, W_k and **E1, …. , E^k be k linear operator as in Theorem 2. Then a necessary and sufficient condition that each subspace Wⁱ be invariant under T is that T commute with each of the projections** E_i **, i.e.,** $TE_j = E_iT$, $i = 1, \ldots, k$.

Proof.

Suppose T commutes with each E_i . Let $y \in T(W_i)$. Then $y=Tx$ where $x \in W_i$ $y=TE_ix$ $=E_iTx \in R(E_i)=W_i$

Conversely suppose that $T(W_i) \subseteq W_i$ Let $x \in V$; $x=E_1x+E_2x+\ldots+E_kx$ $Tx = TE_1x + TE_2x + \ldots + TE_kx$ $E_{1}y_{1} + E_{2}y_{2} + \ldots + E_{k}y_{k}$ $=\sum^k$ *i* $\int\limits_{1}^{r} E_j \, y_j$ $\sum_{i=1}$ = *k j* $E_i Tx = \sum E_j E_i y_j$ 1 $=$ E_j y_j $= TE_i x$

Hence $TE_i= E_iT$

PART-C

- **1. Let T be a linear operator on a finite-dimensional space V. If T is diagonalizable and if c1,c2,…..c^k are the distinct characteristic values of T, then there exist linear operators** E_1, \ldots, E_k **on V such that**
	- (i) **T** = $c_1E_1 + \ldots + c_kE_k$

$$
(ii) I = E_1 + \ldots + E_k ;
$$

- (iii) $E_iE_j = 0, i \neq j;$
- (iv) $E_i^2 = E_i \quad \forall i$

(v) the range of Eⁱ is the characteristic space for T associated with cⁱ .

Conversely, if there exist k distinct scalars ci, ….. , c^k and k non-zero linear operators E_1, \ldots, E_k **which satisfy conditions (i), (ii), and (iii), then T is diagonalizable, c¹ , …., c^k are the distinct characteristic values of T, and conditions (iv) and (v) are satisfied also.**

Proof.

Suppose that T is diagonalizable, with distinct characteristic values c_1, \ldots, c_k . Let Wi be the space of characteristic vectors associated with the characteristic value c_i and $V = W_1 \oplus \dots \oplus W_k$. Let E_1, \dots, E_k be the projections associated with this decomposition. Then (ii) , (iii) , (iv) and (v) are satisfied. To verify (i) , proceed as follows. For each α in V,

 $\alpha = E_1 \alpha + \ldots + E_k \alpha$

 $T\alpha = TE_1\alpha + \ldots + TE_k\alpha$

 $= c_1E_1\alpha + \ldots + c_kE_k\alpha$.

In other words, $T = c_1E_1 + ... + c_kE_k$. Now suppose that we are given a linear operator T along with distinct scalars c_i and non-zero operators E_i which satisfy (i), (ii) and (iii). Since $E_iE_j = 0$ when $i \neq j$, we multiply both sides of

 $I = E_1 + ... + E_k$ by E_i and obtain immediately $E_i^2 = E_i$. Multiplying $T = c_1 E_1$ $+ \ldots + c_k E_k$ by E_i , then TE $i = c_i E_i$, which shows that any vector in the range of E_i is in the null space of $(T - c_i I)$. Since assumed that $E_i \neq 0$, this proves that there is a non-zero vector in the null space of $(T - c_i I)$, that c_i is a characteristic value of T. Furthermore, the c_i are all of the characteristic values of T; for, if c is any scalar, then $T - cI = (c_1 - c)E_1 + ... + (c_k - c)E_k$ so if $(T - cI)\alpha = 0$ and have $(c_i - c)E_i \alpha = 0$. If α is not the zero vector, then $E_i \neq 0$ for some i, that for this i ,to get c_i - c = 0. Certainly T is diagonalizable, since we have shown that every nonzero vector in the range of E_i is a characteristic vector of T, and the fact that $I = E_1 + ... + E_k$ shows that these characteristic vectors span V. All that remains to be demonstrated is that the null space of $(T - c_i I)$ is exactly the range of E_i. But this is clear, because if $T\alpha = c_i\alpha$, then

$$
\sum_{j=1}^k (c_j - c_i) E_j \alpha = 0
$$

hence $(c_j - c_i)E_j \alpha = 0$ and then $E_j \alpha = 0$; $j \neq i$. Since $\alpha = E_1 \alpha + \ldots + E_k \alpha$, and E_i α = 0 for j \neq i, we have α = E_i α , which proves that a is in the range of E_i.

2. State and Prove Primary decomposition theorem.

Let T be a linear operator on the finite-dimensional vector space V over the field F. Let p be the minimal polynomial for T, $p_1^{r_1} \dots p_k^{r_k}$ where p_i are **distinct irreducible monic polynomials over F and the rⁱ are positive integers.** Let W_i be the null space of $P_i(T)^{ri}$, $i = 1, ..., k$. Then

 $(i)V = W_1 \oplus ... \oplus W_k;$

(ii) each Wⁱ is invariant under T;

(iii) if T_i is the operator induced on W_i by T , then the minimal polynomial for T_i is P_i^{r1} .

Proof

For each I, $f_i = \prod_{j \neq i} p_j^{r_i}$ Since p_i 's are distinct prime polynomials,

the polynomial f_i $\mathbf{g}_\mathbf{i}'$ s are relatively prime. Thus there are polynomials $\mathbf{g}_\mathbf{1},... \mathbf{g}_\mathbf{k}$ to show that the polynomials $h_i = f_i g_i$; $E_1 + \ldots + E_k = I$ and $E_i E_j =: 0$, if $i \neq j$. Thus the E_i are projections which correspond to some direct-sum decomposition of the space V. To show that the range of E_i is exactly the subspace W_i . It is clear that each vector in the range of E_i is in W_i, for if α is in the range of E_i , then $\alpha =$ E α and so $p_i(T)^{ri} \alpha = p_i(T)^{ri} E_i \alpha = P_i(T)^{r} f_i(T) g_i(T) \alpha = 0$. Because $p^{r} f_i g_i$ is divisible by the minimal polynomial p.

Conversely, suppose that a is in the null space of $p_i(T)^{ri}$. If $j \neq i$, then f ig_i is divisible by p_i, i.e., E_i $\alpha = 0$ for $j \neq i$. But then it is immediate that E $\alpha = \alpha$, i.e., that α is in the range of E_i. This completes the proof of statement (i). It is certainly clear that the subspaces W_i are invariant under T. If T_i is the operator induced on W_i by T, then evidently $p_i(T_i)^{ri} = 0$, because by definition $p_i(T)$ is 0 on the subspace W_i . This shows that the minimal polynomial for T_i divides p_i . Conversely, let g be any polynomial such that $g(T_i) = 0$. Then $g(T)f_i(T) = 0$. Thus gf_i is divisible by the minimal polynomial p of T:, i.e., p_i ^{ri}f_i divides gf_i. It is easily seen that p_i divides g. Hence the minimal polynomial for T_i is p_i ^{ri}.