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UNIT V
PART-A

1. Define invariant subspaces with example.
Let V be a vector space and T a linear operator on V. If W is a
subspace of V, we say that W is invariant under T if for each vector a in
W the vector Ta is in W, that if T(W) is contained in W.
Example: If T is any linear operator on V, then V is invariant under T, as
Is the zero subspace. The range of T and the null space of T are also

invariant under T.

2. Define Projection.
If V is a vector space, a projection of V is a linear operator E on V
such that E2=E.

3. Write down the T-conductor of a into W.
Let W be an invariant subspace for T and let a be a vector in V. The
T-conductor of o into W is the set St(a;W), which consists of all

polynomial g such that g(T)a is in W.

4. When the subspaces be linearly independent ?
Let Wa,... .. Wi Dbe subspaces of a vector space V. Then W4,... ..
W are called linearly independent if w; +.....+wy =0 for each w; e W;
holds only for wi=w;,_ .
5. Define direct sum.

If Wa,... ..,W are independent and if W=W+W,+__+Wy, then W

is the direct sum of Wi,... .. Wand its denoted by W =W, ©........OW,




Part -B

1. Let V be a finite dimensional vector space V over the field F & let T be a
linear operator on V. Then T is diagonalizable if and only if the minimal
polynomial for T has the form p = (X — c1)...(X — ¢x) where cu,...,.ck are

distinct elements of F.

Proof

If T is diagonalizable, its minimal polynomial is a product of distinct linear
factors .

Conversely, let W be the subspace spanned by all of the characteristic vectors of
T, and suppose W # V. By the lemma, Let V be a finite-dimensional vector
space over the field F and let T be a linear operator on V. Then T is triangulable
if and only if the minimal polynomial for T is a product of linear polynomials
over F. There is a vector o not in W and a characteristic value c; of T such that
the vector B = (T - cjDa lies in W. Since B is in W, 8=, +f,......5. Where
TB, =c, B, 1<i<k and therefore the vector h(T)B=h(c,)B, +h(c,)B,........ +h(c,) B, I1s
in W, for every polynomial h. Now p = (x - ¢;)q, for some polynomial g and also
q-4(c) = (x—cphand g(Ta - a(c)a = h(T) (T - gjl)a = h(T)5 . But h(T)B is
in W and, Since 0=p (T)a = (T - ¢;1)q(T)a the vector q(T)a is in W. Therefore,
q(cj)a is in W. Since a is not in W, we have q(c;) = 0. That contradicts the fact

that p has distinct roots.

2. Ifv=w ... ®W,, then there exist k linear operators E,......... E,on V such
that
(i) each E;j is a projectionE? = E;
(I EE=0,ifi#]
(i)  =E1+ ... + Ex
(iv) the range of Ej is W..




Conversely, if E,,........ E, are k linear operators on V which satisfy conditions

(1), (i), and (iii), and if we let Wi be the range of Ej, then v =W, ®......... AW, .

Proof

Suppose  E,,....... E, are linear operators on V which satisfy the first three
conditions, and let W; be the range of E;. Then certainly V =W, + ... + W ;for,
by condition (iii) and o = E; o+ ... + Ex a foreach ainV, and E; a is in W;.
This expression for a is unique, because if =04 +...... ax With o in W, say

a;i = E; S, then using (i) and (i)

[
Eja:;EjaJ—

K
Eja=zl“EjEiﬁj

:EJZﬁJ
:Ejﬂi

J

Hence V is the direct sum of the W,.

Let T be a linear operator on the space V, and let Wy, . . ., Wk and
Ei, ...., Ex be Kk linear operator asin Theorem 2. Then a necessary and
sufficient condition that each subspace Wi be invariant under T isthat T

commute with each of the projections Ej, i.e.,, TEj=ET,i=1,...,k.

Proof.
Suppose T commutes with each E;. Let ye T(W,).
Then y=Tx where xe W,
y=TEiX
=E;Tx e R(E)=W;




Conversely suppose that T(W;)c Wi
Let xe V ; x=Eix+ Ex+...... Exx
TX =TEX+T Ex+...... +TEX

= E1y1+ Exyot...... Evy«

Hence TEi= E;T

PART-C

1. Let T be a linear operator on a finite-dimensional space V. If T is
diagonalizable and if cyCs,....Ck are the distinct characteristic values of T,
then there exist linear operators Ey, . .., Exon V such that
(i) T=ciEa+ ... +ckExk
(i)l =E1+...+Exk;
(i) EEE;j=0,i#];
(iv) Ef =E vi
(v) the range of E; is the characteristic space for T associated with c; .
Conversely, if there exist k distinct scalars ci, ..... , ck and k non-zero linear
operators E, . . ., Ex which satisfy conditions (i), (ii) , and (iii), then T is
diagonalizable, ¢ , ...., ck are the distinct characteristic values of T, and

conditions (iv) and (v) are satisfied also.




Proof.
Suppose that T is diagonalizable, with distinct characteristic values cy, . . ., Ck .
Let Wi be the space of characteristic vectors associated with the characteristic

value ¢; and V=w,@...... ®W,. Let Ey, ...., Ex be the projections associated

with this decomposition. Then (ii), (iii), (iv) and (v) are satisfied. To verify (i),
proceed as follows. For each o in V,
o =Ejat+...+Ex
Ta=TEija+ ...+ TEk
=k +. ..+ ckEka.

In other words, T = ¢1E; + . . . + ckEx. Now suppose that we are given a linear
operator T along with distinct scalars c; and non-zero operators E; which satisfy
(1), (if) and (iii). Since E iE; = 0 when i # j, we multiply both sides of

| =E; + ...+ Ex by Ej and obtain immediately E% = E;. Multiplying T=c¢ iE
+...+cE by Ej, then TE ;= c¢iE;, which shows that any vector in the range
of E;is in the null space of (T — c;l). Since assumed that E; # 0, this proves that
there is a non-zero vector in the null space of ( T —¢;il) , that ¢; is a characteristic
value of T. Furthermore, the c; are all of the characteristic values of T; for, if c is
any scalar,then T-cl=(ci-C)E1+ ...+ (ck-CExsoif (T-cl)a=0 and
have (Ci - ¢)Ei o = 0. If a is not the zero vector, then E ; # 0 for some i, that for
this i ,to get ¢; - ¢ = 0. Certainly T is diagonalizable, since we have shown that
every nonzero vector in the range of E; is a characteristic vector of T, and the
fact that | = E; + ... + Ex shows that these characteristic vectors span V. All
that remains to be demonstrated is that the null space of (T — c;l) is exactly the
range of E;. But this is clear, because if Ta = cja, then

K
> (¢;-¢)E,a=0
=

I

hence (¢; -¢;)E;a=0 and then E,a=0;j=i.Sincea=E.a+...+Ea,and

E; a=0 for j #1i, we have o = E ja, which proves that a is in the range of E ;.




2. State and Prove Primary decomposition theorem.
Let T be a linear operator on the finite-dimensional vector space V over the
field F. Let p be the minimal polynomial for T, pil ....p,r(" where pi are
distinct irreducible monic polynomials over F and the r; are positive
integers. Let Wi be the null space of Pi(T)", i =1, ....k. Then
OV=W,D. W,
(it) each Wi is invariant under T,
(iii) if Ti is the operator induced on W; by T, then the minimal polynomial
for Tiis Pi'™.

Proof

Foreach I, f, = [i;p:' Since p;’s are distinct prime polynomials,
i j=i Pj Pi p poly

the polynomial fi',s are relatively prime. Thus there are polynomials g, ... g
to show that the polynomials hi=figi; E;+...+Ex=1 and EiE;=: 0, if i #].
Thus the E;are projections which correspond to some direct-sum decomposition
of the space V. To show that the range of E; is exactly the subspace W;. It is
clear that each vector in the range of E; is in W, , for if a is in the range of E;,
then a = Ea and so pi(T)"a = pi(T)" Eia. =P i(T)fi,(T)gi(T)o. = 0. Because p'fig;
is divisible by the minimal polynomial p.

Conversely, suppose that a is in the null space of pi( T)". If j # i, then f jg; is
divisible by pj, i.e., E ja = 0 for j # i. But then it is immediate that Eo= a, i.e.,
that o is in the range of E;. This completes the proof of statement (i). It is
certainly clear that the subspaces Wi are invariant under T. If T; is the operator
induced on W; by T, then evidently pi(T;)" = 0, because by definition pi(T) is O
on the subspace W;. This shows that the minimal polynomial for T; divides pi.
Conversely, let g be any polynomial such that g(T;) = 0. Then g(T)fi(T) = 0.
Thus gf; is divisible by the minimal polynomial p of T:, i.e., pi"f; divides gf;.

It is easily seen that p; divides g. Hence the minimal polynomial for T is pi".




