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UNIT V 

PART-A 

 

1. Define invariant subspaces with example. 

          Let V be a vector space and T a linear operator on V. If W is a 

subspace of V, we say that W is invariant under T if for each vector α in 

W the vector Tα is in W, that  if T(W) is contained in W.   

Example:  If T is any linear operator on V, then V is invariant under T, as 

is the zero subspace. The range of T and the null space of T are also 

invariant under T. 

 

2. Define Projection. 

         If V is a vector space, a projection of V is a linear operator E on V 

such that E2 = E. 

 

3. Write down the T-conductor of α into W. 

         Let W be an invariant subspace for T and let α be a vector in V. The  

T-conductor of  α into W is the set ST(α;W), which consists of all 

polynomial g such that g(T)α is in W. 

 

4. When the subspaces be  linearly independent ? 

        Let W1,… ..  Wk  be subspaces of a vector space V. Then W1,… ..  

Wk  are called linearly independent if  w1 +…..+wk =0 for each wi Wi  

holds only for w1=w2……..=wk=0. 

 

5. Define direct sum. 

       If W1,… ..,Wk  are independent and if  W=W1+W2+……..+Wk,  then W  

is the direct sum of  W1,… ..  Wk and its denoted by kWWW = .........1  



                                                     Part -B 

1. Let V be a finite dimensional vector space V over the field F & let T be a 

linear operator on V.  Then T is diagonalizable if and only if the minimal 

polynomial for T has the form p = (x – c1)...(x – ck) where c1,...,ck are 

distinct elements of  F. 

Proof  

If T is diagonalizable, its  minimal polynomial is a product of distinct linear 

factors . 

Conversely, let W be the subspace spanned by all of the characteristic vectors of 

T, and suppose W ≠ V.  By the lemma, Let V be a finite-dimensional vector 

space over the field F and let T be a linear operator on V. Then T is triangulable 

if and only if the minimal polynomial for T is a product of linear polynomials 

over F. There is a vector  α not in W and a characteristic value cj of T such that 

the vector β = (T - cjI)α lies in W. Since β is in W, k ........21 +=  where 

kicT iii = 1,  and therefore the vector kkchchchTh  )(........)()()( 2211 ++= is 

in W, for every polynomial h. Now p = (x - cj)q, for some polynomial q and also 

q - q (cj) = (x – cj)h and  q(T)α - q(cj)α = h(T) (T – cjI)α = h(T)β . But h(T)β is 

in W and,  Since 0= p (T)α = (T - cjI)q(T)α the vector q(T)α is in W.  Therefore, 

q(cj)α is in W. Since a is not in W, we have q(cj) = 0. That contradicts the fact 

that p has distinct roots.  

 

2.    If kWWV = .........1 , then there exist k linear operators kEE ,........1 on V such 

      that 

(i) each Ei is a projection ii EE =2   

(ii) Ei Ej = 0, if i ≠ j  

(iii) I = E1 + ... + Ek  

(iv) the range of Ei is Wi. 



Conversely, if kEE ,........1 are k linear operators on V which satisfy conditions 

(i), (ii), and (iii), and if we let Wi be the range of Ei, then kWWV = .........1 . 

 

Proof  

Suppose  kEE ,........1  are linear operators on V which satisfy the first three 

conditions, and let Wi be the range of Ei. Then certainly V = W1 + . . . + Wk ;for, 

by condition (iii) and α = E1 α+ . . . + Ek α  for each α in V, and Ei α is in Wi.  

This expression for a is unique, because if α=α1 +……αk with αi in Wi, say 

 αi = Ei βi, then using (i) and (ii)  
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Hence V is the direct sum of the Wi. 

 

3.   Let T be a linear operator on the space V, and let W1, . . . , Wk  and                    

      E1, …. , Ek be k linear operator  as in Theorem 2. Then a necessary and 

sufficient condition that each subspace Wi be invariant under T is that T 

commute with each of the projections Ei, i.e., TE j = EiT, i = 1, . . . , k. 

 

Proof. 

Suppose T commutes with each Ei. Let yT(Wi).  

Then y=Tx where xWi 

y=TEix 

   =EiTx R(Ei)=Wi 



Conversely  suppose that T(Wi)  Wi  

Let x  V ; x=E1x+ E2x+…… Ekx 

Tx   =TE1x+T E2x+…… +TEkx 

       = E1y1+ E2y2+…… Ekyk 
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 Hence TEi= EiT 

                                

                                                   PART-C 

1. Let T be a linear operator on a finite-dimensional space V. If T is 

diagonalizable and if  c1,c2,…..ck are the distinct characteristic values of T, 

then there exist linear operators E1, . . . , Ek on V such that 

(i) T = c1E1 + . . . + ckEk 

(ii) I = E1 + . . . + Ek ; 

(iii) EiE j =0, i ≠ j ; 

(iv) ii EE =2
 i  

(v) the range of Ei is the characteristic space for T associated with ci . 

Conversely, if there exist k distinct scalars ci, ….. , ck and k non-zero linear 

operators E1, . . . , Ek which satisfy conditions (i), (ii) , and (iii), then T is 

diagonalizable, c1 , …., ck are the distinct characteristic values of T, and 

conditions (iv) and (v) are satisfied also. 

 

 

 



Proof.  

Suppose that T is diagonalizable, with distinct characteristic values c1, . . . , ck . 

Let Wi be the space of characteristic vectors associated with the characteristic 

value ci  and kWWV = .........1 . Let E1, …., Ek be the projections associated 

with this decomposition.  Then (ii), (iii), (iv) and (v) are satisfied.  To verify (i), 

proceed as follows. For each α in V, 

α  = E1 α+ . . . + Ekα 

Tα = TE1α + . . . + TEkα 

     = c1E1α + . . . + ckEkα. 

In other words, T = c1E1 + . . . + ckEk. Now suppose that we are given a linear 

operator T along with distinct scalars ci and non-zero operators Ei which satisfy 

(i), (ii) and (iii). Since E iEj = 0 when i ≠ j, we multiply both sides of  

I = E1 + . . . + Ek by Ei and obtain immediately E2
i = Ei.  Multiplying T = c 1E 1 

+ . . . + c kE k by Ei,  then  TE i = ciEi, which shows that any vector in the range 

of  Ei is in the null space of (T – ci I). Since assumed that Ei  ≠ 0, this proves that 

there is a non-zero vector in the null space of ( T – ciI) , that ci is a characteristic 

value of T. Furthermore, the ci are all of the characteristic values of T; for, if c is 

any scalar, then   T - cI = (c1 - c)E1 + . . . + (ck - c)Ek so if (T - cI)α = 0  and 

have (ci - c)Ei α = 0.  If α is not the zero vector, then E i ≠ 0 for some i, that for 

this i ,to get ci - c = 0. Certainly T is diagonalizable, since we have shown that 

every nonzero vector in the range of Ei is a characteristic vector of T, and the 

fact that I = E1 + . . . + Ek shows that these characteristic vectors span V. All 

that remains to be demonstrated is that the null space of (T – ciI) is exactly the 

range of Ei. But this is clear, because if Tα = ciα, then 
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 hence 0)( =− jij Ecc   and then ijE j = ;0 . Since α = E 1α + . . . + E k α, and 

Ej α= 0 for j ≠ i, we have α = E iα, which proves that a is in the range of E i. 



2. State and Prove Primary decomposition theorem. 

Let T be a linear operator on the finite-dimensional vector space V over the 

field F. Let p be the minimal polynomial for T, 𝒑𝟏
𝒓𝟏 … . 𝒑𝒌

𝒓𝒌 where pi are 

distinct irreducible monic polynomials over F and the ri are positive 

integers.  Let Wi be the null space of Pi(T)ri, i = 1, ...,k.  Then 

 (𝒊)𝑽 =  𝑾𝟏 ⊕ … ⨁𝑾𝒌;  

 (ii) each Wi is invariant under T; 

 (iii) if Ti is the operator induced on Wi by T, then the minimal polynomial 

 for Ti is Pi
r1. 

 

Proof   

For each I, fi =  ∏ pj
ri

j≠i  Since pi′ s   are distinct prime polynomials, 

 the polynomial fi
′′s are relatively prime.  Thus there are polynomials g1, … gk 

to show that the polynomials hi = figi;  El + . . . +Ek=I    and EiEj =: 0, if i # j. 

Thus the Ei are projections which correspond to some direct-sum decomposition 

of the space V.  To show that the range of Ei is exactly the subspace Wi.  It is 

clear that each vector in the range of Ei is in Wi , for if α is in the range of Ei, 

then α = Eα and so pi(T)riα = pi(T)ri Ei α = P i(T)’f i,(T)gi(T)α = 0.  Because prfigi 

is divisible by the minimal  polynomial p. 

Conversely, suppose that a is in the null space of pi( T)ri. If j ≠ i, then f jgj is 

divisible by pi, i.e., E jα = 0 for j ≠ i.  But then it is immediate that Eα= α, i.e., 

that α is in the range of Ei. This completes the proof of statement (i).  It is 

certainly clear that the subspaces Wi are invariant under T. If Ti is the operator 

induced on Wi by T, then evidently pi(Ti)
ri = 0, because by definition pi(T) is 0 

on the subspace Wi.  This shows that the minimal polynomial for Ti divides pi.  

Conversely, let g be any polynomial such that g(Ti) = 0. Then g(T)fi(T) = 0. 

Thus gfi is divisible by the minimal polynomial p of T:, i.e., pi
rifi divides gfi.  

It is easily seen that pi divides g. Hence the minimal polynomial for Ti is pi
ri. 


