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IMPORTANT QUESTIONS
FROM UNIT I - UNIT V

Definition 1 Let N and N
′

be normed linear space and let T : N → N
′

be a

mapping with domain N and the range in N
′
. The graph of T is defined to be

a subset of NXN
′

which consist of all ordered pairs (x, T (x)). If is denoted

by GT

GT = {(x, T (x))/x ∈ N}

Theorem 2

Statement

If B and B
′

are Banach spaces and if T is a linear transformation of B into

B
′
, then T is continuous iff its graph is closed.

That is, GT is closed.

Proof

Given that B and B
′

are Banach space and T : B → B
′

is linear transforma-

tion.

Suppose GT is closed.

We have to prove T is continuous.

Let B1 be given Banach space renamed by ‖‖.

‖ x ‖ = ‖ x ‖ + ‖ T (x) ‖

‖ T (x) ‖ ≤ ‖ x ‖ + ‖ T (x) ‖

= ‖ x ‖

⇒‖ T (x) ≤ ‖ x ‖

Therefore T is bounded from B1 to B
′
.

Therefore It is continuous from B1 to B
′
.
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Now we have to prove T : B → B
′

is continuous.

It is sufficient to prove B1 and B have the same topology.

It is enough if we prove B1 and B are homeomorphic.

Let I : B1 → B defined by

‖ I(x) ‖=‖ x ‖,∀x ∈ B1

Therefore I is always 1-1 and onto.

‖ I(x) ‖ = ‖ x ‖

≤ ‖ x ‖ + ‖ T (x) ‖

= ‖ x ‖

⇒‖ I(x) ‖ = ‖ x ‖

⇒ I is bounded and it is continuous .

Therefore B1 and B are homeomorphic.

⇒ B1, B are having same topology.

Therefore B1, B are homeomorphic.

T is continuous linear transformation from B → B
′
.

Now we have to show that B1 or B is complete under ‖‖.

Let ‖ {xn} be a cauchy sequence in B.

Given ε ≥ 0, there exists a positive integer n0 such that

‖ xn − xm ‖ + ‖ T (xn − xm) ‖ < ε, ∀n,m ≥ n0

⇒‖ xn − xm ‖ + ‖ T (xn − xm) ‖ < ε

⇒‖ xn − xm ‖ < ε, ∀ n,m ≥ n0 or

‖ T (xn − xm) ‖ < ε

{xn} is a cauchy’s sequence in B. xn → x as n→∞
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Therefore xn → x and T (xn)→ T (x). ‖ T (xn)− T (x) ‖< ε

Therefore ‖ xn − x ‖ + ‖ T (xn)− T (x) ‖ < 2ε, n ≥ n0

‖ xn − x ‖ + ‖ T (xn − T (x) ‖ < 2ε

‖ xn − x ‖ < 2ε,∀ n ≥ n0

That is B1 is complete.

Therefore T is continuous linear transformation from B → B
′

Conversely, T : B → B
′

is continuous.

We have to prove GT is closed.

It is sufficient to prove that GT = GT .

GT ⊂ GT is always true ————–(1)

We have to prove GT ⊂ GT .

Let (x, y) ∈ GT

Then there exists a sequence (xn, T (xn)) in GT such that (xn, T (xn))→ (x, y)

⇒ xn → x and T (xn)→ y

T is continuous.

Thereforexn → x andT (xn)→ T (x) as n→∞

⇒ y = T (x)

That is, (x, y) = (x, T (x))

(x, y) ∈ GT

Therefore GT ⊂ GT ————–(1)

Therefore from (1) and (2)GT = GT .

Therefore GT is closed.

Hence the theorem.

Theorem 3

State and prove Parallelogram law in a Hilbert space.
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Statement

If x and y are any two vectors in a Hilbert space, then ‖ x+y ‖2 + ‖ x−y ‖2=

2(‖ x ‖2 + ‖ y ‖2).(OR)

The sum of the squares of the sides equals the sum of the squares of its diag-

onals.

Proof

‖ x+ y ‖2 + ‖ x− y ‖2 = (x+ y, x+ y) + (x− y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y) + (x, x)− (x, y)− (y, x) + (y, y)

= 2 ‖ x ‖2 +2 ‖ y ‖2

= 2(‖ x ‖2 + ‖ y ‖2)

‖ x+ y ‖2 + ‖ x− y ‖2 = 2(‖ x ‖2 + ‖ y ‖2)

Theorem 4

Prove that M
′
i s span H.

Proof

We Know that M
′
i s are closed linear subspaces of H and since there are pair

wise orthogonal by a Known theorem.

M = M1 +M2 +M3 + ...+Mm is a closed linear space of H.

Let P1 + P2 + P3 + ...+ Pm be its associated projections.

Since Mi reduces T , by a known theorem

TPi = PiT , for each Pi

Now, TP =
∑
TPi =

∑
PiT = PT

Hence M also reduces T .

Consequently M⊥ is invariant under T .

Let if possible M⊥ 6= (0).

Now, since all the eigen vector of T are in M , the restriction of T to M⊥ is an
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operator on a non trivial finite dimensional Hilbert which has no eigen vectors

and hence no eigen values.

By a Known result, this situation is impossible.(The set if all eigen values

cannot be empty).

Hence we conclude that M⊥ = (0) and M = H.

Thus M
′
i s span H

Theorem 5

Let H be a Hilbert space. Let y ∈ H be a fixed vector.Define a function

fy : H → C by fy(x) = (x, y), then fy ∈ H∗. That is, fy is a continuous linear

functionals on H.

Proof

y ∈ H is a fixed vector

fy : H → C by

fy(x) = (x, y)∀x ∈ H

For, α, β ∈ C and x1, x2 ∈ H.

fy(αx1 + βx2) = (αx1 + βx2, y)

= α(x1, y) + β(x2, y)

= αfy(x1) + βfy(x2)

fy(αx1 + βx2) = αfy(x1) + βfy(x2)

Therefore fy is linear.

Further | fy(x) |=| (x, y) |≤‖ x ‖‖ y ‖

‖ fy ‖≤‖ y ‖

Therefore fy is a bounded functional and hence continuous.

Therefore fy is a continuous linear functional.

Therefore fy ∈ H∗
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Theorem 6

Prove that in any Banach algebra the multiplication is jointly continuous.

Proof

Given that A is Banach algebra.

Now, we have to prove the multiplication is jointly continuous.

It suffices to prove that, if xn → x and yn → y, then xnyn → xy

‖ xn − x ‖< ε and ‖ yn − y ‖< ε for n > n0, ε > 0

‖ xnyn − xy ‖ = ‖ xnyn − xny + xny − xy ‖

= ‖ xn(yn − y) + y(xn − x) ‖

≤ ‖ xn ‖‖ yn − y ‖ + ‖ y ‖‖ xn − x ‖

But xn → x and yn → y as n→∞

Therefore ‖ xnyn − xy ‖→ xy

Therefore xnyn → xy

Definition 7

An element z in a Banach algebra A is called a topological divisors of zero if

there exist a sequence {zn} in A such that ‖ zn ‖= 1 and either znz → 0

Definition 8

The spectrum of X is denoted by σ(x) and it is the subset of complex plane

defined by

σ(x) = {λ : X → λI is singular }

Definition 9

Radical of A is denoted by R and it is the intersection of all its maximal ideals.

That is, R = ∩{M ;M ∈ A}, where A is the set of all Maximal ideals of A.

Definition 10

The r(x) is defined by r(x) = sup{| λ |: λ ∈ σ(x)} is called spectral radius of



8

x.

Definition 11

The algebra A is called semi simple of the radical consist of the zero vector

alone.

Theorem 12

If I is proper closed two sided ideal in A, then quotient algebra A/I is a Banach

algebra.

Proof

Given that A is a Banach algebra and I is a proper closed ideal.

⇒ A/I is well defined.

A/I is a linear space, for all x ∈ A

x+ I ∈ A/I

‖ x+ I ‖ is defined by

‖ x+ I ‖= inf{‖ x+ i ‖; i ∈ I}

Stage (1)

In this stage, we have to prove A/I is a Normed linear space.

(i) ‖ x+ I ‖= inf{‖ x+ i ‖; i ∈ I}, since x ∈ A and i ∈ I, x+ i ∈ A.

A is normed linear space.

‖ x+ I ‖≥ 0

Which implies ‖ x+ I ‖= inf{‖ x+ i ‖; i ∈ I} ≥ 0

(ii) ‖ (x+ I) + (y + I) ‖ = inf{‖ (x+ i1) + (y + i2) ‖; i1, i2 ∈ I}

≤ inf{‖ x+ i1 ‖ + ‖ y + i2 ‖; i1, i2 ∈ I}

∴‖ (x+ I) + (y + I) ‖ ≤ inf{‖ (x+ i1) ‖; i1 ∈ I}+ inf{‖ (y + i2) ‖; i2 ∈ I}

⇒‖ (x+ I) ‖ + ‖ (y + I) ‖ ≤ ‖ x+ I ‖‖ y + I ‖
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(iii) ‖ α(x+ I) ‖ = inf{‖ α(x+ i) ‖; i ∈ I}

= inf{‖ αx+ i ‖; i ∈ I}

= inf{| α || x+ i |; i ∈ I}

= | α | inf{‖ x+ i ‖; i ∈ I}

= | α |‖ x+ I ‖

‖ α(x+ I) ‖ = | α |‖ x+ I ‖

Stage (2)

Now, in this stage, we have to prove A/I is a Banach space.

Let {xn + I} is a cauchy sequence in A/I, xn ∈ ∀∀n

Given ε > 0, there exist n ≥ n0 such that

‖ (xn + I)− (xm) ‖ < ε

⇒ inf{‖ (xn + I)− (xm + I) ‖; i ∈ I} < ε

⇒ inf{‖ (xn − xm) + I ‖; i ∈ I} < ε

⇒ ‖ xn − xm ‖< ε∀ n,m ≥ n0

Since A is complete, xn → x as n→∞

inf{‖ (xn − x+ i) ‖; i ∈ I} < ε∀ n ≥ n0

inf{‖ (xn + i)− (x+ i) ‖; i ∈ I} < ε

‖ (xn + I)− (x+ I) ‖< ε

⇒‖ (xn + I)− (x+ I) ‖→ 0 as n→∞

{xn + I} → {x+ I}

Therefore A/I is complete.

Which implies A/I is a Banach space.

Stage (3)
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In this stage, we have to prove A/I is an algebra.

Let (x+ I), (y + I) ∈ A/I

Now, (x+ I), (y + I) = xy + I

‖ (x+ I)(y + I) ‖ = ‖ xy + I ‖

= inf{‖ xy + i ‖, i ∈ I}

= inf{‖ (x+ i1)(y + i2) ‖, i1, i2 ∈ I}

≤ inf{‖ x+ i1 ‖, i1 ∈ I}inf{‖ y + i2 ‖, i2 ∈ I}

≤ ‖ x+ I ‖‖ y + I ‖

‖ (x+ I)(y + I) ‖ ≤ ‖ x+ I ‖‖ y + I ‖

Note that A/I is a Banach algebra with identity e+ I.

‖ e+ I ‖ = inf{‖ e+ i ‖, i ∈ I}

≤ ‖ e ‖= 1

‖ e+ I ‖ ≤ 1−−−−−−−−(1)

‖ e+ I ‖ = ‖ ee+ I ‖

= ‖ (e+ I)(e+ I) ‖

≤ ‖ e+ I ‖‖ e+ I ‖

‖ e+ I ‖ ≤ ‖ e+ I ‖‖ e+ I ‖

1 ≤ ‖ e+ I ‖

i.e., ‖ e+ I ‖≥ 1−−−−−−−−− (2)

From (1) and (2) ‖ e+ I ‖= 1

Hence from stage(1), stage(2), stage(3) A/I is a Banach Algebra.

Theorem 13



11

If N1 and N2 are normal operators on H with the property that either com-

mutes with the adjoint of the other than N1 +N2 and N1N2 are normal.

Proof

N1 and N2 are normal operators.

N1N
∗
1 = N∗1N1 ——-(1)

N2N
∗
2 = N∗2N2 ——-(2)

Further it is given that

N1N
∗
2 = N∗2N1

N2N
∗
1 = N∗1N2

(N1 +N2)(N1 +N2)
∗ = (N1 +N2)(N

∗
1 +N∗2 )

= N1N
∗
1 +N2N

∗
1 +N1N

∗
2 +N2N

∗
2

= N∗1N1 +N∗2N1 +N∗1N2 +N∗2N2

= (N∗1 +N∗2 )(N1 +N2)

= (N1 +N2)
∗(N1 +N2)

(N1 +N2)(N1 +N2)
∗ = (N1 +N2)

∗(N1 +N2)

Therefore N1 +N2 is a normal operator. Now,

(N1N2)(N1N2)
∗ = (N1N2)(N

∗
1N
∗
2 )

= (N1(N2N
∗
2 )N∗1 )

= N1(N
∗
2N2)N

∗
1

= (N1N
∗
2 )(N2N

∗
1 )

= N∗2 (N∗1N1)N2)

= (N∗2N
∗
1 )(N1N2)

(N1N2)(N1N2)
∗ = (N∗2N

∗
1 )(N1N2)
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Therefore N1N2 is a normal operator.

Theorem 14

The mapping x→ x−1 of G into G is continuous and is therefore a homomor-

phism of G onto itself.

Proof

Given that x→ x−1 is a mapping from G into G.

Let x0 ∈ G and {xn} be a sequence in G such that x→ x−1 as n→∞.

Now, we have to prove that x→ x−1 is continuous.

It is enough if we prove x→ x−1

‖ x−1n − x−10 ‖ = ‖ x−1n x0x
−1
0 − x−1n xnx

−1
0 ‖

= ‖ x−1n (x0 − xn)x−10 ‖

≤ ‖ x−1n ‖‖ x0 − xn ‖‖ x−10 ‖

‖ x−1n − x−10 ‖ ≤ ‖ x−1n ‖‖ x0 − xn ‖‖ x−10 ‖ − −−− (1)

Since xn → x.

Therefore given ε > 0, there exists n0 such that ‖ xn − x0 ‖< ε,∀n > n0

We take ε = 1
2‖x−1

0

‖

‖ xn − x0 ‖≤ 1
2‖x−1

0

‖ ——(2)

Consider,

‖ e− x−10 xn ‖ = ‖ x−10 x0 − x−10 xn ‖

= ‖ x−10 (x0 − xn)) ‖

≤ ‖ x−10 ‖‖ x0 − xn ‖

‖ e− x−10 xn ‖ ≤ ‖ x−10 ‖‖ x0 − xn ‖ − −−−−−−− (3)

Substitute (2)in (3), we get
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‖ e− x−10 xn ‖≤‖ x−10 ‖ 1
2‖x−1

0

‖≤ 1
2

That is, ‖ e− x−10 xn ‖≤ 1
2

(x−10 xn)−1 = e+
∑

(e− x−10 xn)n

x−1n x0 = e+
∑

(e− x−10 xn)n

‖ x−1n x0 ‖ = ‖ e+
∑

(e− x−10 xn)n ‖

≤ ‖ e ‖ +
∑
‖ e− x−10 xn) ‖n

≤ 1 + (e− x−10 xn) + (e− x−10 xn)2 + ...

=
1

1− (e− x−10 xn)

=
1

1− 1
2

=
1
1
2

= 2

Therefore ‖ x−1n x0 ‖ ≤ 2

‖ x−1n ‖ = ‖ x−1n x0x
−1
0 ‖

≤ ‖ x−1n x0 ‖‖ x0 ‖

‖ x−1n ≤ 2 ‖ x−10 ‖ − −−−−−−−−(4)

Sub(2)and (4) in 1, we get

‖ x−1n − x−10 ‖ ≤ ‖ x−1n ‖‖ x0 − xn ‖‖ x−10 ‖

≤ 2 ‖ x−10 ‖
1
1

2‖x−1
0 ‖

AS n→∞, ‖ xn − x0 ‖→ 0.

So ‖ x−1n − x−10 → 0

That is, x−1n → x−10
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Therefore mapping x → x−1 of G into G is continuous and is therefore a

homomorphism of G onto itself.


