IDHAYA COLLEGE FOR WOMEN, KUMBAKONAM DEPARTMENT OF MATHEMATICS

IMPORTANT QUESTIONS FROM UNIT I - UNIT V

Definition 1 Let N and N' be normed linear space and let $T : N \to N'$ be a mapping with domain N and the range in N' . The graph of T is defined to be a subset of NXN' which consist of all ordered pairs $(x, T(x))$. If is denoted by GT

 $GT = \{(x, T(x))/x \in N\}$

Theorem 2

Statement

If B and B' are Banach spaces and if T is a linear transformation of B into B' , then T is continuous iff its graph is closed.

That is, GT is closed.

Proof

Given that B and B' are Banach space and $T: B \to B'$ is linear transformation.

Suppose GT is closed.

We have to prove T is continuous.

Let B_1 be given Banach space renamed by $\| \|.$

$$
\| x \| = \| x \| + \| T(x) \|
$$

$$
\| T(x) \| \le \| x \| + \| T(x) \|
$$

$$
= \| x \|
$$

$$
\Rightarrow \| T(x) \le \| x \|
$$

Therefore T is bounded from B_1 to B' .

Therefore It is continuous from B_1 to B' .

Now we have to prove $T : B \to B'$ is continuous.

It is sufficient to prove B_1 and B have the same topology.

It is enough if we prove B_1 and B are homeomorphic.

Let $I:B_1\to B$ defined by

 $|| I(x) ||=|| x ||, \forall x \in B_1$

Therefore I is always 1-1 and onto.

$$
\| I(x) \| = \| x \|
$$

\n
$$
\le \| x \| + \| T(x) \|
$$

\n
$$
= \| x \|
$$

\n
$$
\Rightarrow \| I(x) \| = \| x \|
$$

 \Rightarrow I is bounded and it is continuous.

Therefore B_1 and B are homeomorphic.

 \Rightarrow B₁, B are having same topology.

Therefore B_1, B are homeomorphic.

T is continuous linear transformation from $B \to B'$.

Now we have to show that B_1 or B is complete under $\|\|$.

Let $\|\{x_n\}$ be a cauchy sequence in B.

Given $\epsilon \geq 0$, there exists a positive integer n_0 such that

$$
\|x_n - x_m\| + \|T(x_n - x_m)\| < \epsilon, \forall n, m \ge n_0
$$
\n
$$
\Rightarrow \|x_n - x_m\| + \|T(x_n - x_m)\| < \epsilon
$$
\n
$$
\Rightarrow \|x_n - x_m\| < \epsilon, \forall n, m \ge n_0 \text{ or}
$$
\n
$$
\|T(x_n - x_m)\| < \epsilon
$$

 ${x_n}$ is a cauchy's sequence in B. $x_n \to x$ as $n \to \infty$

Therefore $x_n \to x$ and $T(x_n) \to T(x)$. $|| T(x_n) - T(x) || < \epsilon$

Therefore
$$
||x_n - x|| + ||T(x_n) - T(x)|| < 2\epsilon, n \ge n_0
$$

 $||x_n - x|| + ||T(x_n - T(x)|| < 2\epsilon$
 $||x_n - x|| < 2\epsilon, \forall n \ge n_0$

That is B_1 is complete.

Therefore T is continuous linear transformation from $B \to B'$

Conversely, $T : B \to B'$ is continuous.

We have to prove GT is closed.

It is sufficient to prove that $GT = \overline{GT}$.

 $GT \subset \overline{GT}$ is always true $\qquad \qquad (1)$

We have to prove $\overline{GT} \subset GT$.

Let $(x, y) \in \overline{GT}$

Then there exists a sequence $(x_n, T(x_n))$ in GT such that $(x_n, T(x_n)) \to (x, y)$

 $\Rightarrow x_n \to x$ and $T(x_n) \to y$

 T is continuous.

Therefore $x_n \to x$ and $T(x_n) \to T(x)$ as $n \to \infty$

$$
\Rightarrow y = T(x)
$$

That is, $(x, y) = (x, T(x))$

 $(x, y) \in GT$

Therefore $\overline{GT} \subset GT$ ————(1)

Therefore from (1) and $(2)GT = \overline{GT}$.

Therefore GT is closed.

Hence the theorem.

Theorem 3

State and prove Parallelogram law in a Hilbert space.

Statement

If x and y are any two vectors in a Hilbert space, then $||x+y||^2 + ||x-y||^2 =$ $2(\parallel x \parallel^2 + \parallel y \parallel^2).(\text{OR})$

The sum of the squares of the sides equals the sum of the squares of its diagonals.

Proof

$$
||x + y ||^2 + ||x - y ||^2 = (x + y, x + y) + (x - y, x - y)
$$

= $(x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y)$
= $2 ||x||^2 + 2 ||y||^2$
= $2(||x||^2 + ||y||^2)$
 $||x + y ||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$

Theorem 4

Prove that M_i' i_i 's span H.

Proof

We Know that M_i' s_i 's are closed linear subspaces of H and since there are pair wise orthogonal by a Known theorem.

 $M = M_1 + M_2 + M_3 + \ldots + M_m$ is a closed linear space of H.

Let $P_1 + P_2 + P_3 + \ldots + P_m$ be its associated projections.

Since M_i reduces T , by a known theorem

 $TP_i = P_iT$, for each P_i

Now, $TP = \sum TP_i = \sum P_i = PT$

Hence M also reduces T .

Consequently M^{\perp} is invariant under T.

Let if possible $M^{\perp} \neq (0)$.

Now, since all the eigen vector of T are in M , the restriction of T to M^{\perp} is an

operator on a non trivial finite dimensional Hilbert which has no eigen vectors and hence no eigen values.

By a Known result, this situation is impossible.(The set if all eigen values cannot be empty).

Hence we conclude that $M^{\perp} = (0)$ and $M = H$.

Thus M_i' i_i 's span H

Theorem 5

Let H be a Hilbert space. Let $y \in H$ be a fixed vector. Define a function $f_y: H \to C$ by $f_y(x) = (x, y)$, then $f_y \in H^*$. That is, f_y is a continuous linear functionals on H.

Proof

 $y \in H$ is a fixed vector

 $f_y: H \to C$ by $f_y(x) = (x, y) \forall x \in H$

For, $\alpha, \beta \in C$ and $x_1, x_2 \in H$.

$$
f_y(\alpha x_1 + \beta x_2) = (\alpha x_1 + \beta x_2, y)
$$

$$
= \alpha(x_1, y) + \beta(x_2, y)
$$

$$
= \alpha f_y(x_1) + \beta f_y(x_2)
$$

$$
f_y(\alpha x_1 + \beta x_2) = \alpha f_y(x_1) + \beta f_y(x_2)
$$

Therefore f_y is linear.

Further $| f_y(x) | = | (x, y) | \le ||x|| ||y||$

 $\parallel f_y \parallel \leq \parallel y \parallel$

Therefore f_y is a bounded functional and hence continuous.

Therefore f_y is a continuous linear functional.

Therefore $f_y \in H^*$

Theorem 6

Prove that in any Banach algebra the multiplication is jointly continuous.

Proof

Given that A is Banach algebra.

Now, we have to prove the multiplication is jointly continuous.

It suffices to prove that, if $x_n \to x$ and $y_n \to y$, then $x_n y_n \to xy$ $\|x_n - x\| < \epsilon$ and $\|y_n - y\| < \epsilon$ for $n > n_0, \epsilon > 0$

$$
\| x_n y_n - xy \| = \| x_n y_n - x_n y + x_n y - xy \|
$$

$$
= \| x_n (y_n - y) + y (x_n - x) \|
$$

$$
\le \| x_n \| \| y_n - y \| + \| y \| \| x_n - x \|
$$

But $x_n \to x$ and $y_n \to y$ as $n \to \infty$

Therefore $|| x_ny_n - xy || \rightarrow xy$

Therefore $x_n y_n \to xy$

Definition 7

An element z in a Banach algebra A is called a topological divisors of zero if there exist a sequence $\{z_n\}$ in A such that $\|z_n\|=1$ and either $z_nz\to 0$

Definition 8

The spectrum of X is denoted by $\sigma(x)$ and it is the subset of complex plane defined by

 $\sigma(x) = {\lambda : X \to \lambda I \text{ is singular }}$

Definition 9

Radical of A is denoted by R and it is the intersection of all its maximal ideals.

That is, $R = \bigcap \{M; M \in A\}$, where A is the set of all Maximal ideals of A.

Definition 10

The $r(x)$ is defined by $r(x) = \sup\{|\lambda|: \lambda \in \sigma(x)\}$ is called spectral radius of

x.

Definition 11

The algebra A is called semi simple of the radical consist of the zero vector alone.

Theorem 12

If I is proper closed two sided ideal in A, then quotient algebra A/I is a Banach algebra.

Proof

Given that A is a Banach algebra and I is a proper closed ideal.

 $\Rightarrow A/I$ is well defined.

 A/I is a linear space, for all $x \in A$

$$
x + I \in A/I
$$

 $|| x + I ||$ is defined by

 $\|x + I\| = \inf\{\|x + i\|; i \in I\}$

Stage (1)

In this stage, we have to prove A/I is a Normed linear space.

(i) $\|x + I\| = \inf\{\|x + i\|; i \in I\}$, since $x \in A$ and $i \in I, x + i \in A$.

A is normed linear space.

$$
\parallel x + I \parallel \geq 0
$$

Which implies $|| x + I || = inf{|| x + i ||; i \in I} \ge 0$

(*ii*)
$$
|| (x + I) + (y + I) || = inf \{ || (x + i_1) + (y + i_2) ||; i_1, i_2 \in I \}
$$

\n $\leq inf \{ || x + i_1 || + || y + i_2 ||; i_1, i_2 \in I \}$
\n∴ $|| (x + I) + (y + I) || \leq inf \{ || (x + i_1) ||; i_1 \in I \} + inf \{ || (y + i_2) ||; i_2 \in I \}$
\n⇒ $|| (x + I) || + || (y + I) || \leq || x + I || || y + I ||$

$$
(iii) \| \alpha(x+I) \| = \inf \{ \| \alpha(x+i) \|; i \in I \}
$$

= $\inf \{ \| \alpha x + i \|; i \in I \}$
= $\inf \{ \| \alpha \| | x + i |; i \in I \}$
= $|\alpha| \inf \{ \| x + i \|; i \in I \}$
= $|\alpha| \| x + I \|$
 $\| \alpha(x+I) \| = \| \alpha| \| x + I \|$

Stage (2)

Now, in this stage, we have to prove A/I is a Banach space. Let $\{x_n+I\}$ is a cauchy sequence in $A/I, x_n\in \forall \forall n$ Given $\epsilon > 0$, there exist $n \geq n_0$ such that

$$
\| (x_n + I) - (x_m) \| < \epsilon
$$
\n
$$
\Rightarrow \inf \{ \| (x_n + I) - (x_m + I) \|; i \in I \} < \epsilon
$$
\n
$$
\Rightarrow \inf \{ \| (x_n - x_m) + I \|; i \in I \} < \epsilon
$$
\n
$$
\Rightarrow \| x_n - x_m \| < \epsilon \forall n, m \ge n_0
$$

Since A is complete, $x_n \to x$ as $n \to \infty$ *inf* { $\| (x_n - x + i) \|; i \in I$ } < $\epsilon \forall n \geq n_0$ in f{ $\{ \| (x_n + i) - (x + i) \|; i \in I \} < \epsilon$ $|| (x_n + I) - (x + I) || < \epsilon$ \Rightarrow $(x_n + I) - (x + I) \parallel \rightarrow 0$ as $n \rightarrow \infty$ ${x_n + I} \to {x + I}$ Therefore A/I is complete. Which implies A/I is a Banach space.

Stage (3)

In this stage, we have to prove A/I is an algebra.

Let
$$
(x + I), (y + I) \in A/I
$$

Now, $(x + I), (y + I) = xy + I$

$$
\| (x + I)(y + I) \| = \| xy + I \|
$$

\n
$$
= \inf \{ \| xy + i \|, i \in I \}
$$

\n
$$
= \inf \{ \| (x + i_1)(y + i_2) \|, i_1, i_2 \in I \}
$$

\n
$$
\leq \inf \{ \| x + i_1 \|, i_1 \in I \} \inf \{ \| y + i_2 \|, i_2 \in I \}
$$

\n
$$
\leq \| x + I \| \| y + I \|
$$

\n
$$
\| (x + I)(y + I) \| \leq \| x + I \| \| y + I \|
$$

Note that A/I is a Banach algebra with identity $e + I$.

$$
|| e + I || = inf{ || e + i ||, i \in I }
$$

\n
$$
\le || e || = 1
$$

\n
$$
|| e + I || \le 1 - - - - - - - - - (1)
$$

\n
$$
|| e + I || = || e e + I ||
$$

\n
$$
= || (e + I)(e + I) ||
$$

\n
$$
\le || e + I || || e + I ||
$$

\n
$$
|| e + I || \le || e + I ||
$$

\n
$$
1 \le || e + I ||
$$

\n $i.e., || e + I || \ge 1 - - - - - - - - - (2)$

From (1) and (2) $\parallel e + I \parallel = 1$

Hence from $stage(1)$, $stage(2)$, $stage(3)$ A/I is a Banach Algebra.

Theorem 13

Proof

 \mathcal{N}_1 and \mathcal{N}_2 are normal operators.

$$
N_1 N_1^* = N_1^* N_1 \quad \text{(1)}
$$

$$
N_2 N_2^* = N_2^* N_2 \quad \text{---}(2)
$$

Further it is given that

$$
N_1 N_2^* = N_2^* N_1
$$

$$
N_2 N_1^* = N_1^* N_2
$$

$$
(N_1 + N_2)(N_1 + N_2)^* = (N_1 + N_2)(N_1^* + N_2^*)
$$

\n
$$
= N_1N_1^* + N_2N_1^* + N_1N_2^* + N_2N_2^*
$$

\n
$$
= N_1^*N_1 + N_2^*N_1 + N_1^*N_2 + N_2^*N_2
$$

\n
$$
= (N_1^* + N_2^*)(N_1 + N_2)
$$

\n
$$
= (N_1 + N_2)^*(N_1 + N_2)
$$

\n
$$
(N_1 + N_2)(N_1 + N_2)^* = (N_1 + N_2)^*(N_1 + N_2)
$$

Therefore $N_1 + N_2$ is a normal operator. Now,

$$
(N_1N_2)(N_1N_2)^* = (N_1N_2)(N_1^*N_2^*)
$$

$$
= (N_1(N_2N_2^*)N_1^*)
$$

$$
= N_1(N_2^*N_2)N_1^*
$$

$$
= (N_1N_2^*)(N_2N_1^*)
$$

$$
= N_2^*(N_1^*N_1)N_2)
$$

$$
= (N_2^*N_1^*)(N_1N_2)
$$

$$
(N_1N_2)(N_1N_2)^* = (N_2^*N_1^*)(N_1N_2)
$$

Therefore N_1N_2 is a normal operator.

Theorem 14

The mapping $x \to x^{-1}$ of G into G is continuous and is therefore a homomorphism of G onto itself.

Proof

Given that $x \to x^{-1}$ is a mapping from G into G.

Let $x_0 \in G$ and $\{x_n\}$ be a sequence in G such that $x \to x^{-1}$ as $n \to \infty$. Now, we have to prove that $x \to x^{-1}$ is continuous.

It is enough if we prove $x \to x^{-1}$

$$
\|x_n^{-1} - x_0^{-1}\| = \|x_n^{-1}x_0x_0^{-1} - x_n^{-1}x_nx_0^{-1}\|
$$

$$
= \|x_n^{-1}(x_0 - x_n)x_0^{-1}\|
$$

$$
\leq \|x_n^{-1}\| \|x_0 - x_n\| \|x_0^{-1}\|
$$

$$
\|x_n^{-1} - x_0^{-1}\| \leq \|x_n^{-1}\| \|x_0 - x_n\| \|x_0^{-1}\| - - - - (1)
$$

Since $x_n \to x$.

Therefore given $\epsilon > 0$, there exists n_0 such that $\| x_n - x_0 \| < \epsilon, \forall n > n_0$ We take $\epsilon = \frac{1}{2\pi\epsilon}$ $\frac{1}{2\|x_0^{-1}}$ || $\|x_n - x_0\| \leq \frac{1}{2\|x_0^{-1}} \|$ ——(2) Consider,

$$
\| e - x_0^{-1} x_n \| = \| x_0^{-1} x_0 - x_0^{-1} x_n \|
$$

$$
= \| x_0^{-1} (x_0 - x_n)) \|
$$

$$
\leq \| x_0^{-1} \| \| x_0 - x_n \|
$$

$$
\| e - x_0^{-1} x_n \| \leq \| x_0^{-1} \| \| x_0 - x_n \| - - - - - - - (3)
$$

Substitute (2) in (3) , we get

$$
\|e - x_0^{-1}x_n\| \le \|x_0^{-1}\| \frac{1}{2\|x_0^{-1}}\| \le \frac{1}{2}
$$

That is,
$$
\|e - x_0^{-1}x_n\| \le \frac{1}{2}
$$

$$
(x_0^{-1}x_n)^{-1} = e + \sum (e - x_0^{-1}x_n)^n
$$

$$
x_n^{-1}x_0 = e + \sum (e - x_0^{-1}x_n)^n
$$

$$
\|x_n^{-1}x_0\| = \|e + \sum (e - x_0^{-1}x_n)^n\|
$$

\n
$$
\leq \|e\| + \sum \|e - x_0^{-1}x_n\|^{n}
$$

\n
$$
\leq 1 + (e - x_0^{-1}x_n) + (e - x_0^{-1}x_n)^2 + \dots
$$

\n
$$
= \frac{1}{1 - (e - x_0^{-1}x_n)}
$$

\n
$$
= \frac{1}{1 - \frac{1}{2}}
$$

\n
$$
= \frac{1}{\frac{1}{2}}
$$

\n
$$
= 2
$$

\nTherefore $||x_n^{-1}x_0|| \leq 2$
\n $||x_n^{-1}|| = ||x_n^{-1}x_0x_0^{-1}||$
\n
$$
\leq ||x_n^{-1}x_0|| ||x_0||
$$

$$
\|x_n^{-1} \leq 2 \|x_0^{-1}\| - - - - - - - - - (4)
$$

Sub (2) and (4) in 1, we get

$$
\| x_n^{-1} - x_0^{-1} \| \le \| x_n^{-1} \| \| x_0 - x_n \| \| x_0^{-1} \|
$$

$$
\le 2 \| x_0^{-1} \| \frac{1}{\frac{1}{2 \| x_0^{-1} \|}}
$$

AS $n \to \infty$, $\parallel x_n - x_0 \parallel \to 0$. So $\| x_n^{-1} - x_0^{-1} \to 0$ That is, $x_n^{-1} \to x_0^{-1}$