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UNIT – V 

Differential Geometry Of Surfaces In The Large : 

Different geometry of surfaces in the large is the study of relations between the local and 

global proportions of surfaces. 

Compact surfaces whose points are umbilics. 

For the first few theorems we will the definitionof surface given and assume that each point has a 

neighborhoodhomeomorphism to an open 2-cell which can be described by parametric equation 

𝑟̅ = 𝑟̅(𝑢, 𝑣) 

THEOREM : 

The only compact surfaces of class≥ 2for which every point is an umbilic are spheres. 

We shall prove that in the neighborhoodof any point the surface is either spherical or plane. 

We use the property of compacts surface of class ≥ 2 for which every point is an umbilic. 

Let p be any pt on s, and let v be a coordinate neighborhood of s containing p, in which part of s 

is represented parametrically by 𝑟̅ = 𝑟̅(𝑢, 𝑣). 

Since point of v is an umbilic it follows that every curve lying in v, must be a line of curvature.  

Hence from rodrigues formula at all points of v 

𝑑𝑁 + 𝑘𝑑𝑟 = 0           → (1) 

Where k is the normal curvature of s in the direction dr. 

𝑑𝑁 = −𝑘𝑑𝑟  ,   ∫ 𝑑𝑟 =  ∫
𝑑𝑁

−𝑘
 => 𝑟 

𝑁̅1 = −𝑘𝑟1and𝑁̅2 = −𝑘𝑟2 

Using the identify 𝑁12 = 𝑁21 with the abve equations we get 

Since, 𝑘2𝑟1 − 𝑘1𝑟2 = 0 

𝑟1and𝑟2 are linearly independent. We obtain 

𝑘1 = 𝑘2 = 0 , so that k is a compact surface. 

Integrating (1) we get 

𝑟 = 𝑎 − 𝐾−1𝑁 → (2) 



For 𝑘 ≠ 0 showing that v lies n the surface of a sphere of centre𝑎̅ and radius 𝑘−1. 

When k=0, (1 ) gives 𝑁̅ = 𝑏̅ → (3) 

Showing that v lies on the Plane. This completes the local part of the theorem. i,e., so far 

all we have proved is that in the neighborhood f any point the surface is spherical or plane. 

Associate with each point p on the surface a neighborhood v, having the above property. 

The set f all neighborhoods 𝑉𝑝 covers S and from the compactness we conclude that S is 

covered by a finite subcover formed by 𝑉𝑖 (i =1,2,…N) 

Consider two over lapping neighborhoodvi,vj, from the previous local agreement it 

follows that k is constant in vi and also in vj. By considering the value of k at the points in vi n vj 

we find that k has the same value over the whole of the surface would of the and would not be 

compact. 

Hence the surface must be a sphere. 

HILBERT’S LEMMA: 

In a closed region R of a surface of constant positive mansion curvature with outumblies, 

the principle curvature take their extreme values of the boundary. 

Let us restate the lemma in a slightly different form suggested by withnewm. 

If at a point po of any surface, the principle curvatures Ka, Kb are such that either(1), Ka>Kb, Ka 

has a minimum at po and Kb has a minimum point at po[or] Ka< Kb, Ka has minimum at po, Kb 

has a maximum at po then the gaussian curvature K cannot be positive at po.  

PROOF: 

We shall prove the lemma by the method f contradiction.  

Suppose the lemma a is false then is a point po at which the principle curvature have distinct 

extreme values, one maximum and the others minimum. 

Taking the lines of curvature as parametric curves the principle curvature are  

𝐾𝑎 =
𝐿

𝑎
, 𝐾𝑏 =

𝑁

𝐺
      →   (1) 

The codazzi equations are  

𝐿2 =
1

2
𝐸2 (

𝐿

𝐸
+

𝑁

𝐺
) 



𝑁1 =
1

2
𝐺1 (

𝐿

𝐸
+

𝑁

𝐺
) 

𝜕𝐾𝑎

𝜕𝑣
=  

𝐸𝐿2 − 𝐿𝐸2

𝐸2
 

=  
𝐸

1

2
𝐸2 (

𝐿

𝐸
+

𝑁

𝐺
) − 𝐿𝐸2

𝐸2
 

=  

1

2
𝐸𝐸2 (

𝑁

𝐺
) −

1

2
𝐿𝐸2

𝐸2
 

=
1

2

𝐸2

𝐸
(𝐾𝑏 − 𝐾𝑎) 

Similarly , 

𝜕𝐾𝑎

𝜕𝑢
=

1

2

𝐺1

𝐺
(𝐾𝑎 − 𝐾𝑏) 

Since the principle curvatures have extema , the L.H.S members vanish at P0. It follows that P0. 

𝐸2 = 𝐺1 = 0and hence at P0. 

𝜕2𝐾𝑎

𝜕𝑣2
=

1

2

𝐸22

𝐸
(𝐾𝑏 − 𝐾𝑎) 

𝜕2𝐾𝑎

𝜕𝑢2
=

1

2

𝐺11

𝐺
(𝐾𝑎 − 𝐾𝑏)     → (4) 

These are (2) possibilities 

Either (i) Ka has maximum 

In this case 𝐾𝑎 − 𝐾𝑏 > 0 

𝜕2𝐾𝑎

𝜕𝑣2
≤ 0  ,

𝜕2𝐾𝑎

𝜕𝑢2
≥ 0     → (5) 

(i) Ka has a minimum 

In this case 𝐾𝑏 − 𝐾𝑎 > 0 

𝜕2𝐾𝑎

𝜕𝑣2
≥ 0  ,

𝜕2𝐾𝑎

𝜕𝑢2
≤ 0     → (6) 

In either case 𝐸22 ≥ 0 and 𝐺11 ≥ 0 



But this contradicts the fact that the Gaussian curvature k satisfies  

𝑘 = −
1

2𝐸𝐺
(𝐸22 + 𝐺11) 

R.H.S is negative or zero while k is assumed strictly positive. 

This contradiction completes the proof of the lemma. 

 

Characterization of complete surfaces : 

 In this section we shall consider three properties each of which can be used characterize 

complete surfaces. The properties are: 

(a) Every Cauchy sequence of points of S is convergent 

(b) Every Geodesic can be prolonged indefinitely in either direction or else it forms closed 

curve. 

(c) Every bounded set of points of S is relatively compact. 

It is clear that condition (c ) implies (a)  

Let us prove that (a ) implies (b) 

If 𝛾 be a closed curve, then condition (b) is satisfied. 

If 𝛾 is not a closed curve and if P(x) is some point on 𝛾 then there is some number  . 

Such that 𝛾 can be prolonged for distances (measured along  ) less than 𝑙 , but cannot be 

prolonged for distances greater than 𝑙. 

Consider the sequence of points {𝑥𝑛} lying on 𝛾 at distance from P along 𝛾 given by 

𝑙 (1 −
1

𝑛
). 

Clear {𝑥𝑛} is a Cauchy sequence and by (a) converges to some point Q on 𝛾 whose 

distance from P is precisely 𝑙. 

If {𝑥𝑛
′} is another Cauchy sequence such that (𝑥𝑛, 𝑥𝑛

′) → 𝑙 , then {𝑥𝑛
′} tends to some 

limit 𝑄′. 

Now the sequence 𝑥1, 𝑥1
′, 𝑥2, 𝑥2

′, 𝑥3, 𝑥3
′, … is also a cauchy sequence tending to both Q 

and 𝑄′. Hence = 𝑄′ , and there exists a unique end point Q at a distance 𝑙 from P along 𝛾. 

Consider now a co-ordinate neighborhood of S which contains (1). 

At Q there is uniquely determined a direction 𝑡̅. Which is the direction of the geodesic – 𝛾 

which starts at (1). 

 In this coordinate neighborhood there is a unique geodesic at Q which has the 

direction (−𝑡̅) , and this gives a continuation of 𝛾 beyond Q, contrary to the hypothesis. 

 If follows that 𝛾 must satisfy condition (b). thus we have proved that (a) implies 

(b), since (c) implies (a) we conclude than (c) implies (b). 



 Now we have only to prove that (b) implies (c) so that all the conditions 

equivalent. 

Suppose property (b) holds for S. consider the point a of S and geodesic arc which 

start at a. we define the initial vector of a geodesic arc starting at a to be the tangent to 

this arc at a which has the same sense as the geodesic and whose length is equal to the 

length of the geodesic arc. Since property (b) is true for S, it follows that every tangent 

vector to S at a, whatever its length, is the initial vector of some geodesic arc stating at a 

which is uniquely determined. This arc may cut itself or if it forms part of a closed 

geodesic, may even cover part of itself. 

 Let 𝑆𝑟 = {𝑥 ∈ 𝑠/𝜌(𝑥, 𝑎) ≤ 𝑟} and let 𝐸𝑟 be the set of points x of 𝑆𝑟 which can be 

joined to a by a geodesic arc whose length is equal to 𝜌(𝑥, 𝑎). 

 We claim that the set of points 𝐸𝑟 is compact. 

Let {𝑥𝑛 →  𝑥ℎ}ℎ=1
∞  be a sequence of points of 𝐸𝑟. 

Let 𝑇ℎ be the initial vector of a geodesic arc of length 𝜌(𝑎, 𝑥ℎ) joining a to 𝑥𝑛. 

Then the sequence of vectors {𝑇̅ℎ} regarded as a sequence of points in two dimensional 

Euclidean space, admits at least one vector of accumulation 𝑇̅. Moreover this vector 𝑇̅is 

the initial vector of a geodesic arc whose extremity belongs to 𝐸𝑟 and is accumulation 

point of {𝑥𝑛}. 

This proves that 𝐸𝑟 is compact. 

We next claim that 𝐸𝑟 = 𝑆𝑟  → (1) 

Obviously (1) is true for 𝑟 = 0 also if it is true for > 0 , then it is certainly true for 𝑟 < 𝑅. 

We now prove that conversely if (1) is true 𝑟 < 𝑅 then it is still true for 𝑟 = 𝑅. 

Now every point of 𝑆𝑅 is the limit point of  a sequence of points whose distance from a is 

less than R. by hypothesis these points belong to 𝐸𝑅 , and since 𝐸𝑅 is closed. It follows that limit 

belongs to 𝐸𝑟. Thus (1) is true for 𝑟 = 𝑅. 

In order to prove (1) completely , it is necessary show that if it holds for 𝑟 = 𝑅 then it 

still holds 𝑟 = 𝑅 + 𝑆 , 𝑆 > 0. 

This follows because it would then be possible to extend the range of validity of (1) to an 

arbitrary extent by an appropriate number of extends of the range by an amount S. 

We next show that to any point y such that 𝜌(𝑎, 𝑦) > 𝑅 there is a point x such that, 

𝜌(𝑎, 𝑥) = 𝑅  → (2) 

And 𝜌(𝑎, 𝑦) = 𝑅 + 𝜌(𝑦, 𝑥) 



Since 𝜌(𝑎, 𝑦) has been defined as the lowest bound of the lengths of arcs from a to y, it 

follows that we can join a to y by a curve 𝛾 whose length is less than 𝜌(𝑎, 𝑦) + ℎ−1 for any 

integer h. Let 𝑥𝑛 be the last point of this curve belonging to 𝐸𝑅 = 𝑆𝑅 

Now we have 𝜌(𝑎, 𝑦) ≤ 𝜌(𝑎, 𝑥ℎ) + 𝜌(𝑥ℎ, 𝑦)  → (3) 

i.e., ≤ 𝑅 + 𝜌(𝑥ℎ, 𝑦) , 𝜌(𝑎, 𝑥ℎ) = 𝑅 

(or) 𝜌(𝑥ℎ, 𝑦) ≥ 𝜌(𝑎, 𝑦) − 𝑅  →    (4) 

Since the arc length of 𝛾 from a to y is the sum of the arc lengths from a to 𝑥ℎ and from 

𝑥ℎto y we have, 

𝜌(𝑥ℎ, 𝑦) ≤ 𝑎𝑟𝑐 (𝑥ℎ, 𝑦) 

𝜌(𝑥ℎ, 𝑦) ≤ 𝑎𝑟𝑐 (𝑎, 𝑦) − 𝑎𝑟𝑐 (𝑎, 𝑥ℎ) 

≤ 𝜌(𝑎, 𝑦) + ℎ−1 − 𝑅 

Let ℎ →  ∞ ; {𝑥𝑛} will have at least are point of accumulation x with the property. 

𝜌(𝑥, 𝑦) ≤ 𝜌(𝑎, 𝑦) − 𝑅  →    (5) 

Comparing (4) and (5) , we find that  

𝜌(𝑎, 𝑦) = 𝑅 + 𝜌(𝑦, 𝑥) 

 Thus we have proved the existence of a point x satisfying (2) and (3) 

We have seen earlier that provided two points x, y are not toofor apart, then the point Y is 

the extremity of the one and only one geodesic arc of origin x and of length 𝜌(𝑥, 𝑦). More 

precisely there exists a continuous function 𝑠(𝑥) > 0 such that if 𝜌(𝑥, 𝑦) < 𝑠(𝑥), the point y is 

the extremity of the unique geodesic arc of length 𝜌(𝑥, 𝑦) joining x to y. further the continuous 

function s(x) attains a positive minimum value on the compact set 𝐸𝑅 and we take S to be this 

minimum. 

If (1) is true for 𝑟 = 𝑅 and if 𝑅 < 𝑟(𝑎, 𝑦) ≤ 𝑅 + 𝑆 there exists an 𝑥 ∈ 𝐸𝑅 such that 

𝜌(𝑎, 𝑥) = 𝑅 and 𝜌(𝑥, 𝑦) = 𝜌(𝑎, 𝑦) − 𝑅 ≤ 𝑆 consequently there exists a geodesic arc 𝐿′ of length 

𝑃(𝑎, 𝑥) joining a to x and a geodesic arc 𝐿′′ of length 𝜌(𝑥, 𝑦) joining x to y. the composite arc is 

a geodesic formed by 𝐿′ and 𝐿′′ joins a to y and has its length 𝜌(𝑎, 𝑦). The composite arc formed 

by is geodesic arc and y is thus joined to a by a geodesic arc whose length is equal to the distance 

of y form a. 

Hence 𝑌 ∈ 𝐸𝑅+𝑆 and the range of validity of (1) is thus extended from 𝐸𝑟 to 𝐸𝑅+𝑆 we 

have proved incidentally that hypothesis (c) implies that any two points of S can be joined by a 

geodesic arc whose length is equal to their distance. 



Suppose we are now given a bounded set of points of M on S. Clearly we can find some 

R. such that M is contained in 𝑠𝑅 and some R such that M is contained in 𝑆𝑅 and since 𝑆𝑅(= 𝐸𝑅) 

is compact , it follows that M is relatively compact. 

We have thus shown that (b) implies (c) and hence the equivalence of all the three 

conditions (a) , (b) and (c). 

Hilbert’s theorem : 

A complete analytic surface free from singularities, with constant negative Gaussian 

curvature, cannot exist in three dimensional Euclidean space. 

We have already seen that a compact surface with these properties cannot exist, but here 

the condition of compact ness is relaxed to completeness and hence the proof is much more 

difficult. 

In the proof the theorem, the notation of universal covering space of a given space is 

being used. 

Let P be a point on the surface S, and let a be the set of all paths of S which begin at P. 

Let us divide the set Q into classes, putting into each class the totality of paths that are 

homologically equivalent. 

Let 𝑆′ denote the set of these classes, so that a point of 𝑆′ is an equivalence class of paths 

on S. 

There is a natural mapping Ф of the set 𝑆′ on the space S, for if A is a point of 𝑆′, then all 

the equivalent paths in S belonging to A must end in the same point a, and we write 𝑎 = Ф(𝐴). 

It is shown that the set of points 𝑆′ can be considered as forming a surface called the 

universal covering surface which has the following properties. 

(1) The natural mapping of 𝑆′ on 𝑆 is a continuous open mapping. Moreover , Ф is 

locally homeomorphism mapping, i.e., for every point A of 𝑆′ there exists a 

neighborhood 𝑈∗ such that the mapping Ф is homeomorphism on the neighborhood 

𝑈∗ 

(2) The universal covering of surface 𝑆′ of a surface 𝑆 is always simply connected. 

Property (1) implies that S and 𝑆′ are locally homeomorphism so that all the local 

properties of the space S are automatically true for 𝑆′ , Moreover, the differential 

geometric structure on S induces a differential geometric structure on 𝑆′ 

 

 



Proof of Hilbert’s theorem : 

Let us assume that a surface S exists having the required properties and we arrive at a 

contradiction. 

Consider an arbitrary geodesic line on the surface S and take an arbitrary point O on this 

geodesic as origin. 

Let S denote the arc length of this geodesic measured O , Since S is complete, the 

geodesic can be continued in both directions from −∞ 𝑡𝑜 + ∞. 

It is possible that the geodesic will ultimately cross itself so that the same point of S will 

have two different S – values. 

However, if we consider instead of S its universal covering surface 𝑆′ , then different 

values of 𝑆 will correspond to different points on 𝑆′, this follows because on a surface of 

negative Gaussian Curvature two geodesic arcs cannot enclose a simply connected region. 

At each point of parameter ‘S’ on the given geodesic , consider the orthogonal geodesic 

line and let its arc length t be chosen as parameter so the equation of geodesic is 𝑡 = 0. 

Now two of these geodesic arc at 𝑆1, 𝑆2 cannot meet on the surface S in order to form 

with the geodesic arc 𝑆1𝑆2  a simply connected region. For if this were the case, then the sum of 

the angles of the geodesic triangle so formed would not be less than 2𝜋, contrary to the results. 

Let us denote a point in the converging space 𝑆′ by the pair of coordinates (𝑠, 𝑡) and it 

can be seen that different pairs (s, t) correspond to different point on 𝑆′. Out claim is that every 

point of S can be represented on the covering surface 𝑆′ in this manner. 

The line element of the surface assumes the form 𝑑𝑠2 + 𝐺(𝑆)𝑑𝑡2 

Suppose now that a point p of the surface S remained uncovered by our construction join 

P to O (s=0, t=0) by some rectifiable curve 𝛾. 

Then there must be some point Q on 𝛾 with the property that all points between O and Q 

can be covered, while points on 𝛾 arbitrarily near Q on the side if Q remote from O cannot be 

covered. If Q1 lies on 𝛾 between O and Q it follows from the form of the metric that the length of 

the curve QQ1 is greater than or equal to SQ1 where SQ1 is the S – coordinate of the 

corresponding point of 𝑆′ 



 

The set of values {𝑆𝑄1} is bounded, and we define 𝑆𝑄 to be the last upper bound of this 

set. 

Let R be the point on the geodesic t=0 distant SQ from Q, and consider the orthogonal 

geodesic along some interval on the geodesic t=0 which contains R. 

These geodesic will cover a strip of the surface which certainly contains the point Q, and 

the points beyond Q on the curve 𝛾 which gives a contradiction and we conclude that every point 

of the surface S can be covered in this way. 

Thus there is a local homemorphism between points of /s and the (s-t) plane. But this 

correspondence may not be (1-1) in the large. However the covering space 𝑆′ is homemorphic 

with the (s-t) plane. 

Consider the asymptotic lines on the surface S. 

These lines are given by the differential equation 𝐿𝑑𝑠2 + 2𝑀𝑑𝑠𝑑𝑡 + 𝑁𝑑𝑡2 = 0 

Since 𝑘 < 0 , we conclude that 𝐿𝑁 − 𝑀2 < 0 and hence that at each point of S, the 

asymptotic directions are real and different. Hence at each point of 𝑆′ these determine two 

distinct directions and similarly at each point of the (s-t) plane. 

Since the (s-t) plane is simply connected, the differential equation gives rise to two vector 

fields which can be continued over the whole plane. 

The Lipchitiz condition for uniqueness of the solution of the differential equation is 

satisfied for we have assumed that S is of class w. 

Thus throughout the (s-t) plane there are two systems of asymptotic lines with the 

property that a curve from each system passes through an arbitrary point. 

S=0 

Q1𝛾 

t=0 o R 

Q 

P 



Further since S is free from singularities, the differential equation has no Singularities. 

From the theorem of Bendixon that each asymptotic line can be prolonged to an arbitrary 

extent in both directions and if 𝜏 denoted the arc length. 

Then lim
𝜏→ −∞

(𝑆2 + 𝑡2) = ∞ , lim
𝜏→ +∞

(𝑆2 + 𝑡2) = ∞ 

Let us next prove that two such lines cut in at most one point. Suppose this is not so. 

Then three would be a region of the s-t plane bounded by two asymptotic lines of different 

systems. 

Consider the first case when the asymptotic lines meet at A and B such that the 

continuation of the lines does not contain any interior point of the region bounded by the two 

lines. Let P be the point on one of the lines lying between A and B and consider asymptotic line 

of the Second system which passes through P. because this second line through P cannot 

intersect the line AB of the opposite system in a further point Q. moreover as P moves from A 

towards the end B. there must be one point where P and Q coincide at that point the asymptotic 

directions will coincide. This contradicts the fact 𝑘 < 0. 

Consider now the second case, where by continuation of the asymptotic lines at least one 

line penetrates the region bounded by the two asymptotic line. 

Then this asymptotic line will meet the line of the opposite system at a second point C. 

Then the continuation BC together with the asymptotic line BC from a system of the type 

discussed above and again we arrive at a contradiction. 

Thus we have proved that each asymptotic line of one system cannot meet each 

asymptotic line of the other system is more than one point. 

In order to prove such lines must meet in atleast one point, it is convenient to refer to the 

asymptotic lines as parametric lines. 

Suppose that N is a neighborhood of S in which the lines of curvature are chosen as 

parametric lines. 

If Ka , Kb denote the principal curvatures at a point P on N  and if 𝑘 =
1

𝑎2 is the constant 

negative Gaussian curvature, we can write 𝐾𝑎 = 𝑎−1 cot 𝑃 , 𝐾𝑏 = 𝑎−1 tan 𝑃 , 0 < 𝑃 <
𝜋

2
 

Using an argument similar to section 3, we obtain  

𝜕𝐾𝑎

𝜕𝑣
=

1

2

𝐸2

𝐸
(𝐾𝑏 − 𝐾𝑎) 



𝜕𝐾𝑎

𝜕𝑢
=

1

2

𝐺1

𝐺
(𝐾𝑎 − 𝐾𝑏) 

Using 𝐾𝑎 = 𝑎−1 cot 𝜌 and 𝐾𝑏 = −𝑎−1 tan 𝜌 we get 

𝐸2

𝐸
= 2𝜌2 cot 𝜌 

𝐺1

𝐺
= −2𝜌1 tan 𝜌 

From these equations on integration we obtain  

𝐸 = 𝑈(𝑢)𝑠𝑖𝑛2𝜌 ; 𝐺 = 𝑉(𝑢)𝑐𝑜𝑠2𝜌  → (3) 

Where U(u) , V(v) are certain functions of u and v respectively, 

By means of a suitable parameterization, these functions may be taken as unity and the first 

fundamental form becomes, 

𝑠𝑖𝑛2𝜌𝑑𝑢2 + 𝑐𝑜𝑠2𝜌𝑑𝑣2 

In terms of the new parameters 

𝐿 = 𝐾𝑎𝐸 = 𝑎−1 sin 𝜌 cos 𝜌 

𝑁 = 𝐾𝑏𝐺 = −𝑎−1 sin 𝜌 cos 𝜌 

𝑀 = 0 , and the asymptotic lines are given by 𝑑𝑢2 − 𝑑𝑣2 = 0 

Choose new parameter 𝜎, 𝜏 where 𝜎 =
1

2
(𝑣 + 𝑢) , 𝜏 =

1

2
(𝑢 − 𝑣) 

Then , the parametric curves 𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , 𝜏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are asymptotic lines. 

Moreover, the metric assumes the form 

𝑑𝜎2 + 2 cos 2𝜌  𝑑𝜏 + 𝑑𝜏2               →    (4) 

And 𝜎, 𝜏 measure the arc length of the asymptotic lines. 

Through O of the (s-t) plane there pass two asymptotic lines. 

Through each point on these two lines we draw the asymptotic lines of opposite system. 

Then we prove that each point of the (s-t) plane lies on one asymptotic line of each system. 

 Suppose that there is a point P on the plane which cannot be reached in this way. Join P 

to O by a continuous curve 𝛾 then there will be a point Q on 𝛾 with the property that every point 



𝛾 between O and Q can be reached in this way, but points on 𝛾 arbitrarily near to Q on the side 

remote from O and possibly including Q cannot be reached. 

Consider a neighborhood of Q which is covered by the asymptotic lines and has the property that 

each pair of lines from different systems cur in a single point in this neighborhood. Consider a 

point 𝑄0 lying in this neighborhood and let asymptotic lines through 𝑄0 cut the coordinate curve 

𝑡 = 0, 𝜎 = 0 in two points 𝑄0
(1), 𝑄0

(2)
 respectively. 

 Let 𝑄1 denote a typical point which lies on 𝛾 between 𝑄0 and Q. let the asymptotic lines 

through 𝑄1 meet the coordinate curves at 𝑄1
(1), 𝑄1

(2)
  and let these lines meet the lines through 

𝑄0 𝑖𝑛 𝑄̅0
(1)

, 𝑄̅0
(2)

 

Then 𝑄0𝑄̅1
(1)

= 𝑄̅0
(1)

𝑄𝑖
(1)

and 𝑄0𝑄̅𝑖
(2)

= 𝑄̅0
(2)

𝑄𝑖
(2)

,  

Provided 𝑄𝑖 lies in a neighborhood of 𝑄0 where the line element is of the form given by (4). 

Any asymptotic line which cuts 𝑄0𝑄1
(1)

 between 𝑄0𝑎𝑛𝑑  𝑄1
(1)

 which is sufficiently near to 𝑄0 

Will cut equal lengths from all asymptotic lines which meet 𝑄0𝑄0
(1)

. 

If this were not true for all the asymptotic lines meeting 𝑄0𝑄1
(1)

 , we could choose a 

point R on the asymptotic line joining 𝑄0𝑡𝑜  𝑄1
̅̅ ̅  such that all points between 𝑄0 and R posses 

this property, but there are points arbititarily close to R (may be R itself) which does not possess 

this property the asymptotic line through R will cut the coordinate line 𝜏 = 0 in the point 𝑅(1) 

such that the lengths 𝑄0𝑅, 𝑄0
(1)𝑅(1) are equal and further all the asymptotic lines between 𝑄0

(1)
 

and 𝑄0 will have equal lengths intercepted by the asymptotic lines through R. let us measure off 

from all these asymptotic lines the length 𝑄0𝑅 in the direction of increasing 𝜎. 

 We assert that the end points of these segments form an asymptotic line. This is clearly 

the case when we consider neighborhoods of points on the line 𝑅𝑅(1) and make use of the net of 

asymptotic lines in this neighborhood. 

 It is true for all asymptotic lines which meet 𝑄0𝑄1 in a neighborhoods of points on the 

line 𝑅𝑅(1) and make use of the net of asymptotic lines in this neighborhood of R and in 

particular it is true for the asymptotic lines through 𝑄1
̅̅ ̅ and for those in a certain neighborhood of 

𝑄1 which contradicts the hypothesis. 

 Thus the two asymptotic lines through O will cut an arbitrary asymptotic line in the 

planer, and sine the point O has been chosen arbitrarily, it follows that each asymptotic line of 

one system meets every asymptotic line of the other system in exactly one point. We can take 

(𝜎, 𝜏) as coordinates for points in the whole plane and the metric is of the form 𝑑𝜎2 +

2 cos 2𝜌 𝑑𝜎𝑑𝜏 + 𝑑𝜏2 



Let w be the angle between the parametric curve. 

Thus cos 𝑤 =
𝐹

√𝐸𝐺
= cos 2𝜌 

Here 𝐹 = cos 2𝜌 , 𝐸 = 1, 𝐺 = 1 

𝑤 = 2𝜌and hence 0 < 𝑤 < 𝜋 

Now using 𝑘 = −
1

2𝐻
{

𝜕

𝜕𝑢
(

𝐺1

𝐻
) +

𝜕

𝜕𝑣
(

𝐸2

𝐻
)} for the Gaussian curvature we obtain 𝑘 = −

1

𝑎2 

Also 
𝜕2𝑤

𝜕𝑠𝜕𝑡
= −𝑘 sin 𝑤 

Consider now the quadrilateral formed by the asymptotic lines 𝜎 = ±∞, 𝜏 = ±∞ 

Total curvature 

= ∬ 𝑘 𝑑𝑠 = ∬ 𝑘 sin 𝑤 𝑑𝜎 𝑑𝜏 

= 𝑤1 − 𝑤2 + 𝑤3 − 𝑤4 

= 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 − 2𝜋 

It follows that the absolute magnitude of the total curvature of an arbitrarily large region cannot 

exceed 2𝜋.Consider the first form of metric 

𝑑𝑠2 + 𝐺(𝑠)𝑑𝑡2 

We have 𝑘 = −
1

2𝐺

𝜕

𝜕𝑠
(

𝐺𝑠

√𝐺
)and √𝐺 = cos ℎ (

𝑠

𝑎
) 

The total curvature over a region bounded by parametric lines 𝑠 = ±𝑙 , 𝑡 = ±𝑙 is 

∬ 𝑘 𝑑𝑠 = ∬ 𝑘√𝐺𝑑𝑠 𝑑𝑡 

= −
1

2
∬

𝜕

𝜕𝑠
(

𝐺𝑠

√𝐺
) 𝑑𝑠 𝑑𝑡 

= −
4𝑙

𝑎
sin ℎ

𝑙

𝑎
 

But in magnitude this tends to ∞ 𝑎𝑠 𝑙 →  ∞ which contradicts the earlier assertion that the 

absolute magnitude of the total curvature cannot exceed 2𝜋. 

This complete the proof of Hilbert’s theorem. 



Definition : Field of Geodesics 

 A field of geodesics is meant a one parameter set of geodesics defined over a region R of 

a surface such that through each point of R passes one and only one curve of the set. 

Bonnet theorem Statement : 

 If along a geodesic the Gaussian curvature exceeds a positive constant 
1

𝑎2
 , then the curve 

cannot be the shortest distance between its extremities along an arc length exceeding 𝜋𝑎. 

Strum’s theorem Statement : 

 Consider the two distinct differential equations 
𝑑2𝑉

𝑑𝑥2 = 𝐻𝑉 ,
𝑑2𝑉

𝑑𝑥2 = 𝐻′𝑉 where for all 

values of x in the range considered ,𝐻′(𝑥) ≥ 𝐻(𝑥). 

 Then if Ф(𝑥) is a solution of the first equation having to consecutive zero at 𝑥0 and 𝑥1 a 

solution of the second equation which has a zero at 𝑥0 cannot have another zero in the closed 

interval [𝑥0, 𝑥1]. 

 

 

 

 

 

 

 

 

 

 


