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UNIT – V 

5.1 THE EQUATION  𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 = 𝒄𝒄 

1. Theorem: Let a, b and c be integers with not both a and b equal to zero, and let 𝒈𝒈 =

 𝒈𝒈. 𝒄𝒄.𝒅𝒅. (𝒂𝒂,𝒃𝒃). If 𝒈𝒈 ∤ 𝒄𝒄 then the equation 𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 = 𝒄𝒄 has no solutions in integers. If 𝒈𝒈/𝒄𝒄 

then this equations has infinitely many solutions. If the pair (𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏) is one integral solution, 

then all others are of the form 𝒙𝒙 = 𝒙𝒙𝟏𝟏 + 𝒌𝒌𝒌𝒌/𝒈𝒈,  𝒚𝒚 = 𝒚𝒚𝟏𝟏 − 𝒌𝒌𝒌𝒌/𝒈𝒈 where k is an integer. 

Proof : Consider the equation 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐.Let us find all the solutions of the equation in which 

x and y are integers. If 𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐 = 0, then the pair (𝑥𝑥,𝑦𝑦) of integers is a solution of 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 =

𝑐𝑐, whereas if 𝑎𝑎 = 𝑏𝑏 = 0 and 𝑐𝑐 ≠ 0,𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐 has no solution. 

 Now suppose that at least one of a and b is nonzero, and let 𝑔𝑔 =  𝑔𝑔. 𝑐𝑐.𝑑𝑑. (𝑎𝑎, 𝑏𝑏). If  𝑔𝑔 ∤ 𝑐𝑐 

then the equation 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐 has no solutions. [∵ a|b and a|c inply a|(bx+cy) for any integers 

𝑥𝑥 and 𝑦𝑦]. 

On the other hand by known theorem , there exists integers 𝑥𝑥0, 𝑦𝑦0 such that 𝑎𝑎𝑥𝑥0 + 𝑏𝑏𝑦𝑦0 =

𝑔𝑔,and hence if g|c the by n the pair (𝑐𝑐𝑥𝑥0/𝑔𝑔  , 𝑐𝑐𝑦𝑦0/𝑔𝑔) is an integral solution of 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐. We 

may find 𝑥𝑥0, 𝑦𝑦0 by  applying Euclidean algorithm. Once a single solution is known, say 𝑎𝑎𝑥𝑥1 +

𝑏𝑏𝑦𝑦1 = 𝑐𝑐, the other solution are given by taking 𝑥𝑥 =  𝑥𝑥1 + 𝑘𝑘𝑘𝑘/𝑔𝑔 , 𝑦𝑦 =  𝑦𝑦1 − 𝑘𝑘𝑘𝑘/𝑔𝑔. Here k is an 

arbitrary integer. Thus 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐 has infinitely many integral solutions if it has one.  

Next to show that 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐  has no integral solutions beyond the ones we have 

already found. For suppose that the pairs (𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥,𝑦𝑦) are integral solutions of 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑐𝑐. 

By subtracting , we find that 𝑎𝑎(𝑥𝑥 − 𝑥𝑥1) + 𝑏𝑏(𝑦𝑦 − 𝑦𝑦1) = 0. We divide through by g and 

rearrange that (𝑎𝑎 𝑔𝑔⁄ )(𝑥𝑥 − 𝑥𝑥1) = (𝑏𝑏 𝑔𝑔⁄ )(𝑦𝑦1 − 𝑦𝑦) 



That is,𝑎𝑎 ∕ 𝑔𝑔 divides the product (𝑏𝑏 𝑔𝑔⁄ )(𝑦𝑦1 − 𝑦𝑦). But (𝑎𝑎 𝑔𝑔⁄ , 𝑏𝑏 𝑔𝑔⁄ ) = 1. [By theorem, If 

𝑑𝑑 𝑎𝑎⁄ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑 > 0, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 �𝑎𝑎
𝑑𝑑

, 𝑏𝑏
𝑑𝑑  
� =  1

𝑑𝑑
(𝑎𝑎, 𝑏𝑏).�  If (𝑎𝑎, 𝑏𝑏) =  𝑔𝑔, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 � 𝑎𝑎

𝑔𝑔
 , 𝑏𝑏
𝑔𝑔
� = 1 and If 𝑐𝑐 ∕ 𝑎𝑎𝑎𝑎 

and (𝑏𝑏, 𝑐𝑐) = 1 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑐𝑐 𝑎𝑎⁄ .] 

It follows that 𝑎𝑎 ∕ 𝑔𝑔 divides (𝑦𝑦1 − 𝑦𝑦). That is, 𝑘𝑘𝑘𝑘 𝑔𝑔⁄ = (𝑦𝑦1 − 𝑦𝑦) for some integer k. On 

substituting this in the equation , we have (𝑥𝑥 − 𝑥𝑥1) = 𝑘𝑘𝑘𝑘 𝑔𝑔⁄ . 

2. Find all solutions of 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 − 𝟒𝟒𝟒𝟒𝟒𝟒 = 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓. 

Solution : 

By division algorithm, 999 = 20 . 49 + 19. 

Writing the equation in the form 19𝑥𝑥 − 49(𝑦𝑦 − 20𝑥𝑥) = 5000. 

Putting 𝑥𝑥′ = 𝑥𝑥,𝑦𝑦′ =  −20𝑥𝑥 + 𝑦𝑦 . The original equation is expressed by the condition 19𝑥𝑥′ −

49𝑦𝑦′ = 5000. 

Since 49 = 2 . 19 + 11,we write this equation as 19(𝑥𝑥′ − 2𝑦𝑦′) − 11𝑦𝑦′ = 5000. (𝑖𝑖. 𝑒𝑒. , )19𝑥𝑥′′ −

11𝑦𝑦′′ = 5000 where 𝑥𝑥′′ = 𝑥𝑥′ − 2𝑦𝑦′and 𝑦𝑦′′ = 𝑦𝑦. 

Since 19 = 2 . 11 − 3, we write this equation as −3𝑥𝑥′′ − 11(−2𝑥𝑥′′ + 𝑦𝑦′′ ) = 5000.  (𝑖𝑖. 𝑒𝑒. , ) −

3𝑥𝑥(3) − 11𝑦𝑦(3) = 5000  where 𝑥𝑥(3) = 𝑥𝑥′′ and 𝑦𝑦(3) = (−2𝑥𝑥′′ + 𝑦𝑦′′ ). 

As 11 = 4 .3 − 1,we write the equation as −3�𝑥𝑥(3) + 4𝑦𝑦(3)� + 𝑦𝑦(3) = 5000. (𝑖𝑖. 𝑒𝑒. , ) − 3𝑥𝑥(4) +

𝑦𝑦(4) = 5000. where 𝑥𝑥(4) = 𝑥𝑥(3) + 4𝑦𝑦(3) and 𝑦𝑦(4) =  𝑦𝑦(3). 

Making the change of variables 𝑥𝑥(5) = 𝑥𝑥(4), 𝑦𝑦(5) = −3𝑥𝑥(4) + 𝑦𝑦(4). 

The original equation is equivalent to the equation 𝑦𝑦5 = 5000. The value of 𝑦𝑦(5)  is a fixed 

integer, and 𝑥𝑥(5) is an arbitrary integer. Since the pairs (𝑥𝑥, 𝑦𝑦) are in one –to-one correspondence 

with pairs of integers (𝑥𝑥(5),𝑦𝑦(5)) , it follows that the original equation has infinitely many 

solution in integers. 



To express 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦 explicitly in terms of 𝑥𝑥(5)𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦(5), we first determine 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦 in terms of 

𝑥𝑥′𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦′ , then in terms of 𝑥𝑥′′ and 𝑦𝑦′′ , and so on. These transformations can be developed at the 

same time the original equation is being simplified. We start by writing 

  999𝑥𝑥 − 49𝑦𝑦 = 5000,  

                            𝑥𝑥                 = 𝑥𝑥,      ⇢   (1) 

                                          𝑦𝑦 = 𝑦𝑦 . 

Then we rewrite these equations in the form 

  19𝑥𝑥 − 49(−20 + 𝑦𝑦) = 5000, 

  𝑥𝑥                                     = 𝑥𝑥,    ⇢   (2)  

  20𝑥𝑥 + (20𝑥𝑥 + 𝑦𝑦)        = 𝑦𝑦. 

 

That is,  

               19𝑥𝑥′ − 49𝑦𝑦′ = 5000, 

    𝑥𝑥 ′                    = 𝑥𝑥,    ⇢   (3)  

  20𝑥𝑥′ +      𝑦𝑦′   = 𝑦𝑦. 

We rewrite this as  

  19(𝑥𝑥′ − 2𝑦𝑦′) − 11𝑦𝑦′ = 5000,  

  𝑥𝑥 − 2𝑦𝑦′             + 2𝑦𝑦′   = 𝑥𝑥,   ⇢   (4)  

  20(𝑥𝑥′ − 2𝑦𝑦′)   + 41𝑦𝑦′ = 𝑦𝑦. 

That is 

                      19𝑥𝑥′′ − 11𝑦𝑦′′ = 5000,    

  𝑥𝑥′′ + 2𝑦𝑦′′      = 𝑥𝑥,    ⇢   (5)  

  20𝑥𝑥′′ + 41𝑦𝑦′ = 𝑦𝑦. 

We write this as  

             −3𝑥𝑥′′ − 11(−2𝑥𝑥′′ + 𝑦𝑦′′ )  = 5000, 

  5𝑥𝑥′′  + 2(−2𝑥𝑥′′ + 𝑦𝑦′′ )     = 𝑥𝑥,  ⇢   (6)  

  102𝑥𝑥′′ + 41(−2𝑥𝑥′′ + 𝑦𝑦′′) = 𝑦𝑦. 

That is  

                        −3𝑥𝑥(3) − 11𝑦𝑦(3)  = 5000,  

   5𝑥𝑥(3) + 2𝑦𝑦(3)        = 𝑥𝑥,                ⇢   (7)  



  102𝑥𝑥(3) + 41𝑦𝑦(3) = 𝑦𝑦. 

 

We write this as  

                            (−3𝑥𝑥(4) + 𝑦𝑦(4))  = 5000,  

  −49𝑥𝑥(4) − 18(−3𝑥𝑥(4) + 𝑦𝑦(4))     = 𝑥𝑥,      ⇢   (8)  

  −999𝑥𝑥(4) − 367(−3𝑥𝑥(4) + 𝑦𝑦(4)) = 𝑦𝑦. 

That is  

                           𝑦𝑦(5)  = 5000,  

    −49𝑥𝑥(5) − 18 𝑦𝑦(5)    = 𝑥𝑥,                ⇢   (9)  

      999𝑥𝑥(5) − 367𝑦𝑦(5) = 𝑦𝑦. 

Inserting this value of  𝑦𝑦(5) , and writing 𝑘𝑘 in place value of  𝑥𝑥(5), we conclude that the solutions 

of the proposed equation are given by taking  

𝑥𝑥 =  −49𝑘𝑘 − 9000, 

𝑦𝑦 = −999𝑘𝑘 − 1835000 

This parameterization of the solution is not unique. For example we set 𝑘𝑘 =  −1837 −𝑚𝑚 ,the 

above equations become 

𝑥𝑥 = 49𝑚𝑚 + 13 

           𝑦𝑦 = 999𝑚𝑚 + 163. 

 

3. Find all integers 𝒙𝒙 and 𝒚𝒚 such that 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 = 𝟑𝟑𝟑𝟑𝟑𝟑. 

Solution: (Short form of previous problem) 

We write  

147 258 369   147 111 369  36 111 369 

1 0   → 1 −1  → 2 −1  →  

0 1               0   1   −1    1 

 

36 3 369   0 3 369   

2 −7   → 86 −7     

−1 4               −49   4    

 



 Let the variables that are implicit in this last array be called 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣.Since 3𝑣𝑣 = 369, we 

deduce that 𝑣𝑣 = 123, and that the full set of solutions is given by taking 𝑥𝑥 = 86𝑢𝑢 − 861,𝑦𝑦 =

−49𝑢𝑢 + 492.  The variables 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 were obtained from the original variables 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 by 

homogeneous change of coordinates. 

 We may reduce the size of the constant term by introducing an homogeneous change of 

variables. For example, if we put 𝑢𝑢 = 𝑡𝑡 + 10, then we find 𝑥𝑥 = 86𝑡𝑡 − 1,𝑦𝑦 = −49𝑡𝑡 + 2. 

 

5.2  SIMULTANEOUS LINEAR EQUATIONS 

4. Find all solutions of integers of 𝟐𝟐𝟐𝟐 + 𝟑𝟑𝟑𝟑 + 𝟒𝟒𝟒𝟒 = 𝟓𝟓. 

Solution:  

We write  

2 3 4 5  2 1 0 5  

1 0 0  → 1 −1 −2    →   

0 1 0              0    1   0   

0 0 1   0    0   1 

 

0 1 0 5       

3 −1 −2 

−2 1  0  

 0 0 1                                         

This last array represents simultaneous equations involving three new variables , say 𝑡𝑡,𝑢𝑢, 𝑣𝑣. The 

first line gives the condition 𝑢𝑢 = 5. On substituting this in the lower lines, we find that every 

solution of the given equation in integers mat be expressed in the form 

𝑥𝑥 = 3𝑡𝑡 − 2𝑣𝑣 − 5 

     𝑦𝑦 = −2𝑡𝑡      + 5        

                                                                 𝑧𝑧 =          𝑣𝑣              



Where 𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣  are integers. We know that the triples (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of integers satisfying the given 

equation are in one-to-one correspondence with triples of integers (𝑡𝑡,𝑢𝑢, 𝑣𝑣) for which 𝑢𝑢 = 5. 

hence each solution of the given equation in integers is given by a unique part of integers (𝑡𝑡, 𝑣𝑣).         

  

5. Find all solutions of integers  𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟒𝟒𝟒𝟒𝟒𝟒 + 𝟓𝟓𝟓𝟓𝟓𝟓 = 𝟏𝟏𝟏𝟏 ,𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 + 𝟏𝟏𝟏𝟏𝟏𝟏 = 𝟏𝟏𝟏𝟏. 

Solution:  

 Among the coefficients of 𝑥𝑥, 𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧, the coefficient 11 is smallest. Using operation (𝐶𝐶1) 

and the division algorithm, reduce the coefficients of 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 in the second row (𝑚𝑚𝑚𝑚𝑚𝑚11) 

We write  

20 44 50 10  −80 −6 50 10  

17 13 11   −5          2       11        19 

1 0 1  → 1 0  0    →   

0 1 0              0    1   0   

0 0 1   −2   −1   1 

 

The coefficient of least absolute value is now in the second row and second column. We use 

operation (𝐶𝐶1) to reduce the other coefficients in the second row (𝑚𝑚𝑚𝑚𝑚𝑚 2). 

−98 −6 80 10     

1 2 1 19 

1 0  0  

3 1 −5  

−5       −1          6        

 

There are now two coefficients of minimal absolute value. We use the one in the first column as 

our pivot and use the operation (𝐶𝐶1) to reduce the other coefficients in the second row 

 

 

 

 −98 190 178 10     



 1  0  0 19 

 1 −2 −1  

 3 −5 −8  

−5       9           11       

 

 The coefficient of least nonzero absolute value is unchanged, so we move to operation (𝑅𝑅1) to 

reduce the coefficient −98 (𝑚𝑚𝑚𝑚𝑚𝑚11)  and then we use (𝑅𝑅2) to interchange the two rows.       

 

 0 190 178 1872       1 0 0 19       

 1  0  0 19    0 190 178 1872     

 1 −2 −1   →  1 −2 −1   →  

 3 −5 −8      3 −5 −8 

−5       9           11           −5       9           11 

 

We now ignore the first row and first column. Among the remaining coefficients ,the one of least 

nonzero absolute value is 178. We use operation (𝐶𝐶1) to reduce 190 (𝑚𝑚𝑚𝑚𝑚𝑚178), obtaining a 

remainder 12. Then we use (𝐶𝐶1) to reduce 178 (𝑚𝑚𝑚𝑚𝑚𝑚12), obtaining a remainder−2. 

 

1 0 0 19    1 0 0 19       

 0 12 178 1872    0 12 −2 1872     

 1 −1 −1   →  1 −1 14   →  

 3 3 −8     3   3 −53 

−5        −2        11          −5       −2          41 

 

Next we use (𝐶𝐶2) to reduce 12 (𝑚𝑚𝑚𝑚𝑚𝑚2).  Then we use (𝐶𝐶2) to interchange the second and third 

columns, and finally use (𝐶𝐶3) to replace −2 𝑏𝑏𝑏𝑏 2: 

 

 

1 0 0 19    1 0 0 19       

 0  0 −2 1872    0 2 0 1872     

 1 83 14   →  1 −14 83   →  



 3 −315 −53      3 53 −315 

−5         244     41          −5       −41       244 

 

Let the variables in our new set of equations be called 𝑡𝑡,𝑢𝑢,𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣. The two original equations 

have been replaced by h two  new equations 1 𝑡𝑡 = 19 and 2 𝑢𝑢 = 1872. This fixes the values of 𝑡𝑡 

and 𝑢𝑢. Since 1 |19 and 2 |1872 these values are integers: 𝑡𝑡 = 19 and  𝑢𝑢 = 936. With these values 

for 𝑡𝑡  and  𝑢𝑢 the bottom three rows above give the equations. 

 

𝑥𝑥 = 𝑡𝑡 − 14𝑢𝑢 + 83𝑣𝑣 = 83𝑣𝑣 − 13085 

𝑦𝑦 = 3𝑡𝑡 − 53𝑢𝑢 − 315𝑣𝑣 = 315𝑣𝑣 + 49665 

𝑧𝑧 = −5𝑡𝑡 − 41𝑢𝑢 + 244𝑣𝑣 = 244𝑣𝑣 − 38471  

 

By making the further change of variable 𝑤𝑤 = 𝑣𝑣 − 158 we may adjust the constant terms, so that 

𝑥𝑥 = 83𝑤𝑤 + 29 

𝑦𝑦 = −315𝑤𝑤 − 105 

𝑧𝑧 = 244𝑤𝑤 + 81 

 

6. Find all solutions of the simultaneous congruences 

 𝟑𝟑𝟑𝟑 + 𝟑𝟑𝟑𝟑 ≡ 𝟏𝟏(𝒎𝒎𝒎𝒎𝒎𝒎 𝟓𝟓),𝟒𝟒𝟒𝟒 − 𝟑𝟑𝟑𝟑 + 𝒛𝒛 ≡ 𝟏𝟏(𝒎𝒎𝒎𝒎𝒎𝒎 𝟓𝟓). 

Solution:  

 We construct an array of coefficients . Using operation (𝐶𝐶1) ,we add the third column to 

both columns 1 and 2.   

 

3 0 3 1  1 3 3 1  

4 −1 1 3 → 0 0 1   3 →   

1 0  0             1         0  0   

0 1   0    0 1 0 

0    0   1   1 1 1 

 

Using (𝑅𝑅1), we multiply the second row by 2 and add the result to the first row. Then we 

interchange the first and third columns and the first and second rows. 



1 3 0 2  1 0 0 3  

0 0 1 3 → 0 3 1  2 →   

1 0  0              0         0  1   

0  1   0    0 1 0 

1  1   1   1 1 1 

 

Next we multiply the third column by 2 and add the result to the second column, and then 

interchange the second and third columns. 

  

1 0 0 3  1 0 0 3  

0 0 1 2 → 0 3 1  2 →   

0 2 1              0         1  2   

0 1 0    0 0  1 

1  3 1   1 1 3 

 

Thus we arrive at a new system of congruences, in cariable 𝑡𝑡,𝑢𝑢, 𝑣𝑣 say. We see that 𝑡𝑡 ≡

3 (𝑚𝑚𝑚𝑚𝑚𝑚 5), 𝑢𝑢 ≡ 2 (𝑚𝑚𝑚𝑚𝑚𝑚 5).  While 𝑣𝑣can take any value (𝑚𝑚𝑚𝑚𝑚𝑚 5). Thus the given system has 

five solutions, given by  

𝑥𝑥 ≡ 𝑢𝑢 + 2𝑣𝑣 ≡ 2𝑣𝑣 + 2 (𝑚𝑚𝑚𝑚𝑚𝑚 5), 

                                                          𝑦𝑦 ≡           𝑣𝑣    ≡  𝑣𝑣  (𝑚𝑚𝑚𝑚𝑚𝑚5)  , 

 

7. If the system of linear equations  

𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝟏𝟏 + 𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝒏𝒏 = 𝒃𝒃𝟏𝟏, 

𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝟏𝟏 + 𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝒏𝒏 = 𝒃𝒃𝟐𝟐,        ⟶ (1) 

⋮         ⋮     ⋮              ⋮ 

𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝟏𝟏 + 𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝒏𝒏 = 𝒃𝒃𝒎𝒎,      

has a real solution, and if the system of congruences  

 𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝟏𝟏 + 𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝟏𝟏𝟏𝟏𝒙𝒙𝒏𝒏 = 𝒃𝒃𝟏𝟏 (𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒) , 



𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝟏𝟏 + 𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝟐𝟐𝟐𝟐𝒙𝒙𝒏𝒏 = 𝒃𝒃𝟐𝟐 (𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒),       ⟶ (2) 

⋮         ⋮     ⋮              ⋮ 

𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝟏𝟏 + 𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝟐𝟐 + ⋯+ 𝒂𝒂𝒎𝒎𝒎𝒎𝒙𝒙𝒏𝒏 = 𝒃𝒃𝒎𝒎 (𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒)  

has a solution for every modulus q, then the equations (1) have an integral solution

Solution: 

 Suppose a particular row operation, applied to the 𝑚𝑚 × 𝑛𝑛 matrix 𝐴𝐴,  gives the matrix 𝐴𝐴′ . 

Let 𝑅𝑅 denote the matrix obtained by applying this same row operation to the 𝑚𝑚 × 𝑚𝑚 identity 

matrix 𝐼𝐼𝑚𝑚 .  Then 𝐴𝐴′ = 𝑅𝑅𝑅𝑅. We call such a matrix 𝑅𝑅 an elementary  row matrix. Note that the 

elementary row matrices form a proper subset of the elementary row matrices defined over 𝑅𝑅.     

 Similarly,  if  a particular column operation takes 𝐴𝐴 𝑡𝑡𝑡𝑡 𝐴𝐴′′ 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝑛𝑛  𝑡𝑡𝑡𝑡 𝐶𝐶 , then 𝐴𝐴′′ = 𝐴𝐴𝐴𝐴 

and we call 𝐶𝐶 an elementary column matrix. Thus the sequence of row and column operations 

that we have performed in our reduction process may be expressed by matrix multiplication,  

𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1𝐴𝐴𝐶𝐶1𝐶𝐶2 …𝐶𝐶ℎ−1𝐶𝐶ℎ = 𝐷𝐷                   ⟶ (1) 

Where D is an 𝑚𝑚 × 𝑛𝑛 diagonal matrix . The matrix 𝑉𝑉 allows us to express the original variables 

𝑋𝑋 in terms of our new variables 𝑌𝑌 is constructed by applying the same column operations to the 

identity matrix . That is, 

𝑉𝑉 =  𝐶𝐶1𝐶𝐶2 …𝐶𝐶ℎ−1𝐶𝐶ℎ                                                       ⟶ (2) 

Similarly, the new constant terms 𝐵𝐵′ obtained at the end of the reducyion process are created by 

applying the row operations to the original set 𝐵𝐵 of constant terms, so that 

𝐵𝐵′ =  𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1𝐵𝐵                                                  ⟶ (3) 

8. Define Unimodular 

Definition:  A square matrix 𝑈𝑈 with integral elements is called unimodular if det (𝑈𝑈) =  ±1.    



 

9. Theorem: Let 𝑼𝑼 be an  be an 𝒎𝒎 × 𝒎𝒎 matrix with integral elements. Then the following are 

equivalent: 

(i) U is unimodular 

(ii) The inverse matrix 𝑼𝑼−𝟏𝟏 exists and has integral elements 

(iii) 𝑼𝑼 may be expressed as a product of elementary row matrices 𝑼𝑼 =  𝑹𝑹𝒈𝒈𝑹𝑹𝒈𝒈−𝟏𝟏 …𝑹𝑹𝟐𝟐𝑹𝑹𝟏𝟏. 

(iv) 𝑼𝑼 may be expressed as a product of elementary column matrices 𝑼𝑼 =  𝑪𝑪𝟏𝟏𝑪𝑪𝟐𝟐 …𝑪𝑪𝒉𝒉−𝟏𝟏𝑪𝑪𝒉𝒉. 

Solution:  

(i) ⇒ (𝒊𝒊𝒊𝒊) 

From the definition of adjoint matrix 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎  it is evident that if 𝑈𝑈 has integral elements then so 

does 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 . Since 𝑈𝑈−1 = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎

det (𝑈𝑈)
 it follows that 𝑈𝑈−1 has integral elements if det (𝑈𝑈) =  ±1. 

(𝒊𝒊𝒊𝒊)  ⟹ (𝒊𝒊)  

 Since 𝑈𝑈𝑈𝑈−1 = 𝐼𝐼, it follows that det(𝑈𝑈) det(𝑈𝑈−1) = det(𝐼𝐼) = 1. But det(𝑈𝑈) is an integer    

if 𝑈𝑈 has integral elements,so from (ii) we deduce that both det(𝑈𝑈) 𝑎𝑎𝑎𝑎𝑎𝑎 det(𝑈𝑈−1) are integers. 

That is det(𝑈𝑈) divides 1. As the only divisors of 1 are ± 1. It follows that U is unimodular.  

(𝒊𝒊𝒊𝒊𝒊𝒊)  ⟹ (𝒊𝒊)  

 We know that the product of two unimodular matrices is again unimodular. Thus 

𝑈𝑈 =  𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1. Then U is unimodular. 

      (𝒊𝒊)  ⟹ (𝒊𝒊𝒊𝒊𝒊𝒊)  

 If 𝐴𝐴 is an 𝑚𝑚 × 𝑛𝑛 matrix with integral elements then there exist elementary row matrices 

such that 𝐴𝐴 =  𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1𝑇𝑇                            ⟶ (1) 

 Where 𝑇𝑇  is an upper – triangular 𝑚𝑚 × 𝑛𝑛  matrix with integral elements. We proceed as in 

Gaussian elimination , except the row operations (𝑅𝑅1), (𝑅𝑅2)𝑎𝑎𝑎𝑎𝑎𝑎 (𝑅𝑅3).  We apply these row 

operations to 𝐴𝐴 as follows. In the first column containing nonzero elements, say the first column , 

we apply the division algorithm and (𝑅𝑅1) until only one elemnetin this column is non zero. By 



means of (𝑅𝑅2) we may replace this non zero entry in the first row, By (𝑅𝑅3).  we may arrange 

that this element is positive. We now repeat this process on the columns to the right of the one 

just considered, but we ignore the first row. Thus the second column operated on may have two 

non zero elements in the first and second rows. Continuing in this manner , we arrive at an upper 

triangular matrix 𝑇𝑇. That is 𝑇𝑇 =  𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1𝐴𝐴 for suitable elementary row matrices 𝑅𝑅𝑖𝑖 . 

Hence 𝐴𝐴 =  𝑅𝑅1
−1𝑅𝑅2

−1 …𝑅𝑅𝑔𝑔−1
−1 𝑅𝑅𝑔𝑔−1𝑇𝑇. Since the inverse of an elementary row matrix is again an 

elementary row matrix. Take 𝐴𝐴 = 𝑈𝑈 𝑖𝑖𝑖𝑖 (𝑖𝑖), we deduce that det(𝑇𝑇) = ±1. But since 𝑇𝑇 is upper-

triangular , det(𝑇𝑇)  is the product of its diagonal elements. As these diagonal elements are non 

negative integers, it follows thatr each diagonal element is 1. We may now apply row operation 

(𝑅𝑅1) 𝑡𝑡𝑡𝑡 𝑇𝑇 to clear all entries above diagonal, leaving us with the identity matrix 𝐼𝐼𝑚𝑚 . That is T is 

the product of elementary row matrices, and hence by (i) , so also is 𝑈𝑈. 

(𝒊𝒊)  ⟹ (𝒊𝒊𝒊𝒊)  

 Alternatively , we observe that 𝑅𝑅 is an elementary row matrix if and only if 𝑅𝑅′ is an 

elementary column matrix. If 𝑈𝑈 is unimodular then 𝑈𝑈′ is unimodular and by (iii) we deduce that  

𝑈𝑈 =  𝑅𝑅𝑔𝑔𝑅𝑅𝑔𝑔−1 …𝑅𝑅2𝑅𝑅1  for suitable elementary row matrices 𝑅𝑅𝑖𝑖 .  Hence 𝑈𝑈 =  𝑅𝑅1
𝑡𝑡𝑅𝑅2

𝑡𝑡 …𝑅𝑅𝑔𝑔−1
𝑡𝑡 𝑅𝑅𝑔𝑔𝑡𝑡 , a 

product of column matrices. 

5.3   PYTHAGOREAN TRIANGLES 

10. Lemma: If 𝒖𝒖 and 𝒗𝒗 are relatively prime positive integers whose product 𝒖𝒖𝒖𝒖 is a perfect 
square, then 𝒖𝒖 and 𝒗𝒗 are both perfect squares. 

Proof: Let 𝑝𝑝 be a prime that divides 𝑢𝑢,  and let 𝛼𝛼 be the exact power of 𝑝𝑝 in 𝑢𝑢. Since 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 are 

relatively prime , 𝑝𝑝 does not divide 𝑣𝑣, and hence 𝑝𝑝𝛼𝛼 ∥ 𝑢𝑢𝑢𝑢. But 𝑢𝑢𝑢𝑢 is a perfect square , so  is a 

perfect square , so 𝛼𝛼 must be even. Since this holds for all primes 𝑝𝑝 dividing 𝑢𝑢, it follows that 𝑢𝑢is 

a perfect square. Similarly 𝑣𝑣 must be a perfect square 



11. Theorem : The equation 𝒙𝒙𝟑𝟑 + 𝟐𝟐𝒚𝒚𝟑𝟑 + 𝟒𝟒𝒛𝒛𝟑𝟑 = 𝟗𝟗𝒘𝒘𝟑𝟑 has no non trivial solution. 

Proof:  We show that the congruence 𝑥𝑥3 + 2𝑦𝑦3 + 4𝑧𝑧3 = 9𝑤𝑤3 (𝑚𝑚𝑚𝑚𝑚𝑚 27) has no solution for 

which 𝑔𝑔. 𝑐𝑐.𝑑𝑑. (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑤𝑤, 3) = 1. We note that for any integer 𝑎𝑎, 𝑎𝑎3 ≡ 0 𝑜𝑜𝑜𝑜 ± 1 (𝑚𝑚𝑚𝑚𝑚𝑚 9). 

Thus 𝑥𝑥3 + 2𝑦𝑦3 + 4𝑧𝑧3 = 9𝑤𝑤3 (𝑚𝑚𝑚𝑚𝑚𝑚 9) implies that 𝑥𝑥 ≡ 𝑦𝑦 ≡ 𝑧𝑧 ≡ 0 (𝑚𝑚𝑚𝑚𝑚𝑚 3).  But then 

𝑥𝑥3 + 2𝑦𝑦3 + 4𝑧𝑧3 = 9𝑤𝑤3 (𝑚𝑚𝑚𝑚𝑚𝑚 27), so that 3 ∕ 𝑤𝑤3. Hence  3 𝑤𝑤⁄ .  This contradicts the 

assumptions that 𝑔𝑔. 𝑐𝑐.𝑑𝑑. (𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑤𝑤, 3) = 1. 

12. Theorem : The Diophantine equation 𝒙𝒙𝟒𝟒 + 𝒙𝒙𝟑𝟑 + 𝒙𝒙𝟐𝟐 + 𝒙𝒙 + 𝟏𝟏 = 𝒚𝒚𝟐𝟐 has the integral 
solutions �–𝟏𝟏,𝟏𝟏�, (𝟎𝟎,𝟏𝟏), (𝟑𝟑,𝟏𝟏𝟏𝟏),𝒂𝒂𝒂𝒂𝒂𝒂 𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐. 

 Proof:  Put 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥4 + 4𝑥𝑥3 + 4𝑥𝑥2 + 4𝑥𝑥 + 4.  

Since 𝑓𝑓(𝑥𝑥) = (2𝑥𝑥2 + 𝑥𝑥)2 +  3(𝑥𝑥 + 2/3)2 + 8/3, it follows that 𝑓𝑓(𝑥𝑥) > (2𝑥𝑥2 + 𝑥𝑥)2  

  for all real 𝑥𝑥. On the other hand , 𝑓𝑓(𝑥𝑥) = (2𝑥𝑥2 + 𝑥𝑥 + 1)2 – (𝑥𝑥 + 1)(𝑥𝑥 + 3). Here the last term 

is positive except for those real numbers 𝑥𝑥 in the interval 𝐼𝐼 = [−1,3]. That is                                

𝑓𝑓(𝑥𝑥) < (2𝑥𝑥2 + 𝑥𝑥 + 1)2  provided that 𝑥𝑥 ∉ 𝐼𝐼., Then 𝑓𝑓(𝑥𝑥) lies between two consecutive perfect 

squares, namely = (2𝑥𝑥2 + 𝑥𝑥)2  𝑎𝑎𝑎𝑎𝑎𝑎 (2𝑥𝑥2 + 𝑥𝑥 + 1)2 . 

 Hence 𝑓𝑓(𝑥𝑥) cannot be a perfect square , except possibly for those integers 𝑥𝑥𝜖𝜖 𝐼𝐼 
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