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Particle in a Box 

        Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case 

provides lessons for understanding quantum mechanics in more complex systems. The energy of 

the particle is quantized as a consequence of a standing wave condition inside the box. 

          Consider a particle of mass m that is allowed to move only along the x-direction and its 

motion is confined to the region between hard and rigid walls located at x=0 and at x=L . 

Between the walls, the particle moves freely.  

 This physical situation is called the infinite square well, described by the potential energy 

function 

                           

Combining this equation with Schrӧdinger’s time-independent wave equation gives 

                                             

where E is the total energy of the particle. What types of solutions do we expect? The energy of 

the particle is a positive number,   

 The value of the wave function is positive (right side of the equation), the curvature of 

the wave function is negative, or concave down (left side of the equation).  

 Similarly, if the value of the wave function is negative (right side of the equation), the 

curvature of the wave function is positive or concave up (left side of equation). 

 This condition is met by an oscillating wave function, such as a Sine or Cosine wave. 

Since these waves are confined to the box, we envision standing waves with fixed 

endpoints at x=0 and x=L. 

The potential  energy  function  that  confines the particle in a one-dimensional box. 
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Solutions  to this equation have a probabilistic interpretation.  

 In particular, the square  represents the probability density of finding the particle 

at a particular location x.  

 This function must be integrated to determine the probability of finding the particle in 

some interval of space. 

  Therefore looking for a normalizable solution that satisfies the following normalization 

condition: 

  

The walls are rigid and impenetrable, which means that the particle is never found beyond the 

wall. Mathematically, this means that the solution must vanish at the walls: 

        

We expect oscillating solutions, so the most general solution to this equation is 

     

where k is the wave number, and Ak and Bk are constants. Applying the boundary condition 

expressed by figure gives 

                                        

                                        Ak=0, the solution must be 

                                         



Quantum mechanics P16PY22 
 

ICW-KUM Page 4 
 

If  Bk is zero  for all values of x and the normalization condition,  cannot be satisfied. 

Assuming Bk=/0, figure for x=L then gives 

                                            

The discard the n=0 solution because  for this quantum number would be zero every 

where—an un-normalizable and therefore unphysical solution. Substituting  into figure gives 

                                         

Computing these derivatives leads to 

  

According to de Broglie, p=ћk so this expression implies that the total energy is equal to the 

kinetic energy, consistent with our assumption that the “particle moves freely.” Combining  the 

results of figure. 

                                            

A particle bound to a one-dimensional box can only have certain discrete (quantized) values of 

energy. Further, the particle cannot have a zero kinetic energy—it is impossible for a particle 

bound to a box to be “at rest.” 

    To evaluate the allowed wave functions that correspond to these energies, we must find 

the normalization constant Bn. We impose the normalization condition figure on the wave 

function 

                                            

                       

Hence, the wave functions that correspond to the energy values given in (figure.) are 

                                              

For the lowest energy state or ground state energy, we have 

                                                

https://opentextbc.ca/universityphysicsv3openstax/chapter/the-quantum-particle-in-a-box/#fs-id1170902745126
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All other energy states can be expressed as 

                                                

The index n is called the energy quantum number or principal quantum number.  

 The state for n=2 is the first excited state, the state for n=3 is the second excited state, and    

           so on. The first three quantum states (for n=1,2and3 of a particle in a box are shown  

          in figure. 

 The wave functions in (fig) are sometimes referred to as the “states of definite energy.”  

          Particles in these states are said to occupy energy levels, which are represented by the        

         horizontal lines. Energy levels are analogous to rungs of a ladder that the particle   

        can “climb” as it gains or loses energy. 

 The wave functions in (figure.) are also called stationary states and standing wave states.    

          These functions are “stationary,” because their probability density functions, , do   

not vary in time, and “standing waves” because their real and imaginary parts oscillate up 

and down like a standing wave—like a rope waving between two children on a 

playground. Stationary states are states of definite energy. 

 Energy quantization is a consequence of the boundary conditions. If the particle is not 

confined to a box but wanders freely, the allowed energies are continuous. However, in 

this case, only certain energies( E1,4E1,9E1…) are allowed. The energy difference 

between adjacent energy levels is given by 

  

Conservation of energy demands that if the energy of the system changes, the energy difference 

is carried in some other form of energy. The expectation value of the position for a particle in a 

box is given by 

  

We can also find the expectation value of the momentum or average momentum of a large 

number of particles in a given state: 

https://opentextbc.ca/universityphysicsv3openstax/chapter/the-quantum-particle-in-a-box/#fs-id1170901793948
https://opentextbc.ca/universityphysicsv3openstax/chapter/the-quantum-particle-in-a-box/#fs-id1170901793948
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The average particle energy in the nth quantum state—its expectation value of energy—is 

    

The result is not surprising because the standing wave state is a state of definite energy. Any 

energy measurement of this system must return a value equal to one of these allowed energies.  

Illustrate how this principle works for a quantum particle in a box, we plot the probability 

density distribution 

  

for finding the particle around location x between the walls when the particle is in quantum 

state . figure.The probability density distribution  for a quantum particle in a box for: 

(a) the ground state, n=1; (b) the first excited state, n=2; and, (c) the nineteenth excited 

state, n=20. 

                                        

The probability density of finding a classical particle between x and x+x depends on how much 

time  the particle spends in this region.  
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