5-4 MAIN-GROUP ORGANOMETALLICS

I. PREPARATION

Direct Synthesis

Li +
$$C_4H_4Br \longrightarrow C_4H_9Li$$
 + LiBr
Mg + $C_6H_5Br \longrightarrow C_6H_5MgBr$

Mixed metal synthesis:

2 Na + Hg + 2 CH₃Br
$$\longrightarrow$$
 (CH₃)₂Hg + 2 NaBr
4 Na/Pb + 4 C₂H₅Cl \longrightarrow (C₂H₅)₄Pb + 3 Pb + 4 NaCl

 $\triangle H_f^{\circ}(NaX)$ boosts the driving force.

Side reactions:

RLi +
$$CH_3CH_2OCH_2CH_3$$
 \longrightarrow $\begin{bmatrix} CH_3CH_2-O-CHCH_3 \\ \downarrow & \\ CH_3CH_2OLi + CH_2=CH_2 \end{bmatrix}$ + RH

Transmetallation

Zn +
$$(CH_3)_2Hg$$
 \longrightarrow $(CH_3)_2Zn$ + Hg
 $\triangle H = -35 \text{ kJ/mol}$

This general method may be applied to $M = Li \sim Cs$, Be \sim Ba, Al, Ga, Sn, Pb, Bi, Se, Te, Zn, Cd.

Metal exchange

4 PhLi + (CH₂=CH)₄Sn → 4 (CH₂=CH)Li + Ph₄Sn
$$\checkmark$$

This method is useful for making certain organolithium compounds from derivatives of less electropositive metals.

Metal Halogen Exchange

Acidity: *n*-Bu-H < Ph-H

Metallation of C–H acids

Metallation (replacement of H by M) are acid/base equilibrium. The arenes with their higher acidities are appropriate substrates and the method is particularly valuable for the preparation of aryllithium compounds.

R + BuLi + BuH
R = MeO, Me₂N, CONMe₂, SO₂Me, etc.
PhNa + PhCH₃
$$\longrightarrow$$
 PhH + PhCH₂Na

EtMgBr + RC
$$\equiv$$
CH \longrightarrow RC \equiv CMgBr + CH₃CH₃

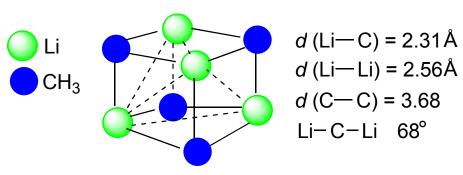
EtMgBr + \downarrow + CH₃CH₃

H MgBr

+ Na $\xrightarrow{\text{THF}}$ C₅H₅Na + 1/₂ H₂

Carbometallation and Hydrometallation

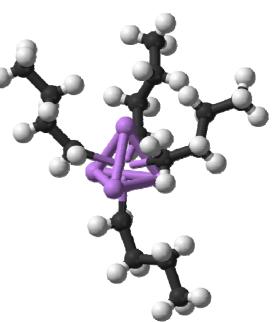
Carbometallation


n-BuLi + Ph—C
$$\equiv$$
C—Ph $\frac{1. Et_2O}{2. H^+}$ Ph—C \equiv C—Ph $\frac{1. Et_2O}{1. Et_2O}$ n-Bu $\frac{1. Et_2O}{1. Et_2O}$ n-Bu

Hydroalumination

$$(C_2H_5)_2AI - H + H_2C = CH_2 - CH_2CH_3$$

II. Organolithium reagents


Organolithium reagents can be aggregated, with lithium coordinating to more than one carbon atom and carbon coordinating to more than one lithium atom.

Schematic drawing of the unit (LiCH₃)₄

Solid methyllithium: cubic body-centered packing of $(LiCH_3)_4$ units, the latter consisting of Li_4 -tetrahedron with methyl groups capping the triangular faces. 立方体心堆积

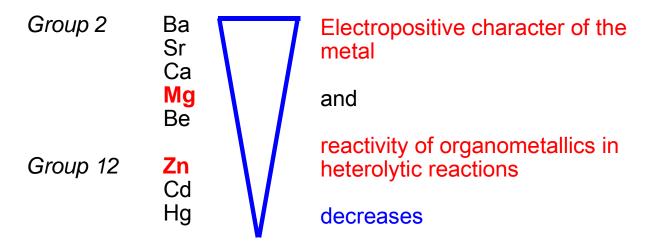
In the aggregates (LiR)_n, the "electron deficiency" is compensated for by the formation of multicenter bonds.

n-Butyllithium

Three general factors affect aggregation: the electrostatic interaction between opposite charges, the coordination sphere of lithium (solvent molecules or Lewis base) and the steric hindrance of the hydrocarbon part.

LiR	Solvent	Aggregation	
LiCH ₃	hydrocarbon	Hexamer (Li ₆ octahedron)	
	THF, Et ₂ O	Tetramer (Li ₄ tetrahedron)	
	${ m Me}_2{ m NCH}_2{ m CH}_2{ m NMe}_2$	monomer	
n-BuLi	cyclohexane	hexamer	
	Et ₂ O	tetramer	
t-BuLi	hydrocarbon	nydrocarbon tetramer	
PhLi	THF, Et ₂ O	dimer	
PhCH ₂ Li	THF, Et ₂ O	monomer	
C_3H_5Li (ally1)	THF	monomer	

REACTIONS


 Metalation or Li/H exchange reaction: The metalation reaction is an important synthetic method for the preparation of many organolithium compounds.

- Reaction with ketones and aldehydes to alcohols.
- Reaction with carboxylic acid salts and acid chlorides to the corresponding ketone.
- Reaction with oximes to the corresponding amines. (房)
- Reaction with isonitriles to the corresponding lithium aldimine (醛亚胺). Subsequent hydrolysis effectively converts the organolithium compound to its aldehyde.
- Reaction with certain epoxides to the corresponding alkenes.

Organic Syntheses, Vol. 85, p1 (2008)

III. Organomagnesium and Organozinc

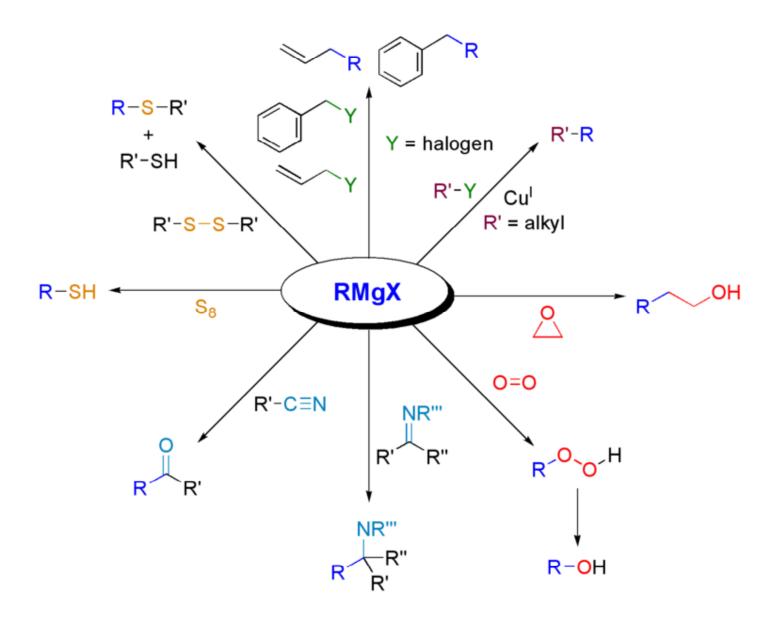
In many ways the chemistry of group 2 elements (the alkaline earth metals) mimics that of group 12 elements because both groups have filled s shells for valence electrons.

Among the organometallic compounds of groups 2 and 12, organomagnesium compounds are of prime importance because of their application in organic synthesis. Organomagnesium compounds combine in a unique way high reactivity and ease access.

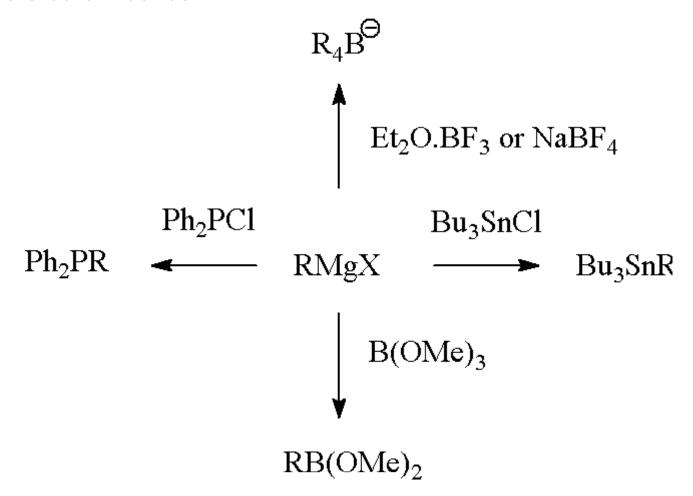
Grignard reagent

➤ Grignard reagents are formed via the action of an alkyl or aryl halide on magnesium metal. Typical solvents are Et₂O and THF. The reaction proceeds through single electron transfer..

Mg + RX
$$\xrightarrow{\text{Et}_2\text{O}}$$
 RMgX(Et₂O)_n X = Br, I


- The addition of I_2 activates the Mg surface; Mg I_2 thus formed, binds the last traces of water in the reaction mixture.
- Schlenk equilibrium, Grignard reagents form varying amounts of diorganomagnesium compounds (R = organic group, X = halide):

$$2 \text{ RMgX} \longrightarrow R_2 \text{Mg} + \text{MgX}_2$$


$$S \longrightarrow Mg \longrightarrow R$$

$$X \longrightarrow Mg \longrightarrow R$$

$$S \longrightarrow Mg$$

 Also the Grignard reagent is very useful for forming carbonheteroatom bonds.

ORGANOZINC COMPOUND

Several general methods:

- o Oxidative addition. The original Et_2Zn synthesis by Frankland was an oxidative addition of C_5H_2I to Zn metal with hydrogen gas as a "protective" blanket.
- o Halogen zinc exchange. Two main halogen zinc exchange reactions are *iodine zinc exchange* and *boron zinc exchange*.
- Transmetalation. In a typical transmetalation, diphenylmercury reacts with zinc metal to Ph₂Zn and metallic Hg in Et₂O.

Reformatsky reaction

Br
$$\frac{4 \text{ eq. n-BuLi}}{\text{t-BuOMe, -78°C}} \frac{2 \text{nCl}_2}{25^{\circ}\text{C}} \frac{2 \text{nCl}_2}{25^{\circ}\text{C}} + \text{LiBr}$$

2. 0.05 eq. MIB | 1. TEEDA | 1. TEEDA | C₆H₅CH₃ | C₆H₅CH₅ | C₆H₅CH

92% ee

IV. ORGANOMETALLICS OF THE BORON GROUP

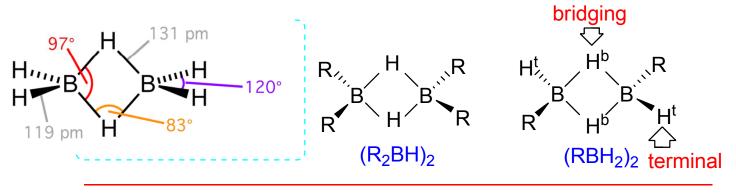
A. Organoboron Compounds

Organoborane or organoboron compounds are organic derivatives of BH₃, for example trialkyl boranes. Organoboron compounds are important reagents in organic chemistry enabling many chemical transformations, the most important one called hydroboration.

$$Et_2O \cdot BF_3 + 3RMgX \longrightarrow R_3B + 3MgXF + Et_2O$$

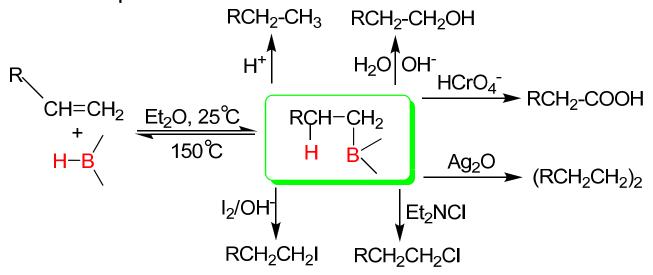
$$(R = alkyl, aryl)$$

$$HB + RCH = CH_2 \xrightarrow{Hydroboration} RCH_2 - CH_2B$$


Characteristics:

- C-B bond, low polarity (electronegativity C 2.55, B 2.04)
- Electron-rich groups like vinyl or phenyl provide the C–B bond with partial double bond character.

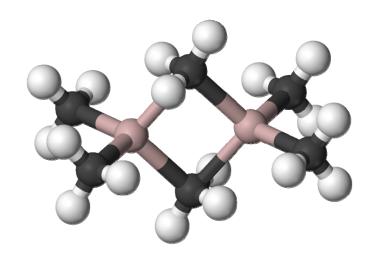
$$\begin{bmatrix} B - CH = CH_2 & \longrightarrow & B = CH - CH_2 \end{bmatrix}$$


$$\begin{bmatrix} B - \ddot{E} & \longrightarrow & B = E \end{bmatrix}$$

➤ Organoboron hydrides R₂BH and RBH₂ form dimers which always display hydride bridges rather than alkyl bridges:

$$\begin{array}{c} & \text{Stretching frequency} \quad \text{Intensity} \\ \\ v (B \xrightarrow{\text{Hb}} B) \text{symm.} & 1500\text{-}1600 \text{ cm}^{\text{-}1} \quad \text{strong} \\ \\ v (B \xrightarrow{\text{Hb}} B) \text{asymm.} & 1850 \quad \text{medium} \\ \\ v (B \xrightarrow{\text{H}^{\text{t}}}) & 2500\text{-}2600 \\ \end{array}$$

Hydroboration-oxidation reaction. One of the most versatile methods in organic synthesis is hydroboration. Herein, rather than the resulting organoboranes themselves, the products of their subsequent reactions are important:


- Regioselective anti-Markovnikov addition, the hydrogen adds to the most-substituted carbon. The reason is that boron is less electronegative than hydrogen.
- Stereospecificity addition in a syn mode, that is on the same face of the alkene.

$$\begin{array}{c} H_{3}C \\ H_{3}C \end{array} = CH_{2} \xrightarrow{BH_{3}} H_{3}C - \overset{H}{C} - \overset{B}{C}H_{2} \xrightarrow{OH} H_{3}C - \overset{H}{C} - \overset{O}{C}H_{2} \xrightarrow{C} + \overset{H}{C}H_{3} & \overset{H}{C} - \overset{G}{C} - \overset{G}{C}H_{2} & \overset{H}{C} + \overset{G}{C} + \overset{G}{$$

The so called anti-Markovnikov addition is most pronounced when the boron compound has very bulky substituents. Thus, bis-(1,2-dimethylpropyl)borane ("disiamylborane") adds to 1-pentene, leaving 2-pentene, unaffected (selectivity > 99%).

B. Organoaluminum Compounds

The chemistry of organoaluminium compounds can be understood in terms of the dynamic nature of the C-Al bond and the high Lewis acidity of the monomeric species.

Al₂Me₆ exists as a dimer. the metalloids are connected by a 3-center-2-electron bond as with diborane.

¹H NMR: At -25°C the 1H NMR of Me₆Al₂ comprises two signals in 1:2 ratio, as expected from the solid state structure. At 20°C, only one signal is observed because exchange of terminal and bridging methyls is too fast to be resolved by NMR.

Laboratory preparation

Metathesis with RLi or RMgX

$$AICI_3 + 3 BuLi \rightarrow Bu_3AI + 3 LiCI$$

Transmetalation

$$2 \text{ Al} + 3 \text{ HgPh}_2 \rightarrow 2 \text{ AlPh}_3 + 3 \text{ Hg}$$

Industrially, simple aluminium alkyls (Me, Et) can be prepared by a direct process:

4 AI + 6MeCI
$$\rightarrow$$
 2 Me₃AI₂CI₃ \rightarrow Me₄AI₂CI₂ + Me₂AI₂CI₄ \rightarrow Me₄AI₂CI (I) + 2 Na[MeAICI₃] (s) \rightarrow Me₃AI + AI + 6 NaCI

CH₂CH(CH₃)₂

o Diisobutylaluminium hydride is $(CH_3)_2CHCH_2$ Prepared by β-hydride elimination:

$$(i\text{-Bu}_3\text{AI})_2 \rightarrow (i\text{-Bu}_2\text{AIH})_2 + 2(\text{CH}_3)_2\text{C=CH}_2$$

$$\text{CH}_3\text{CHCH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3\text{CH}_2\text{CH}_3\text{CH}_2\text{CH}_3\text$$

Reactions

- o Organoaluminium compounds are hard Lewis acids and readily form adducts with bases such as <u>pyridine</u>, <u>THF</u> and <u>amines</u>.
- Reaction with protonic reagents:

$$AIR'_3 + ROH \rightarrow (R'_2AI - OR)_n + R'H$$

Hydroalumination of C=C double bonds

$$R_{2}AIH + -C = C - \longrightarrow -C - C - R_{2}AI H$$

- Readiness: RCH=CHR < R₂C=CH₂ < RCH=CH₂ < CH₂=CH₂
- Stereosepecity (cis) and regioselectivity (anti-Markvonikov).

HAIR' ₂	RCH=CH ₂	PhCH=CH ₂
anti-Markvonikov	97	75
Markvonikov	3	25

V. ORGANOSILICON

Organosilicon compounds are organic compounds containing carbon silicon bonds.

➤ Like carbon, the organically bound silicon is tetravalent and tetrahedral.

C—Si 1.86 Å, 318 kJ/mol; electronegativity: Si 1.90, C 2.55

Preparation

Direct process
$$2 \text{ RCI} + \text{Si/Cu} \xrightarrow{\Delta T} \text{R}_2 \text{SiCl}_2 + ...$$
 (R=alkyl, aryl)

Metathesis reactions
$$SiCl_4 + 4 RLi \longrightarrow R_4Si + 4 LiCl$$
 $R_3SiCl + R'MgX \longrightarrow R_3R'Si + MgXCl$ $2 R_2SiCl_2 + LiAlH_4 \longrightarrow 2 R_2SiH_2 + LiCl + AlCl_3$

Hydrosilation
$$HSiCl_3 + R-CH=CH_2 \longrightarrow RCH_2CH_2SiCl_3$$

Property and Reactions

- The trimethylsilyl cation, Me₃Si⁺, departs from a carbon atom more readily than does a proton.
- Peta-silicon effect: The beta-silicon effect also called silicon hyperconjugation is a special type of hyperconjugation and describes the stabilizing effect of a silicon atom placed in a position once removed (β) from a carbocation.

These two properties are manifest in reactions of vinylsilanes. Thus, many electrophiles give substitution rather addition, the silicon being eliminated as a cation and the configuration at the double bond is retained.

➤ The readiness to undergo heterolytic Si-C bond cleavage (desilyation):

Type: **(I) (II)** (III) (iV) Si—C(aryl) Si-C(aryl) Si—C(alkyl) Si-C(alkyl) attacking El Nu EI Nu species: reflux NaOH The desilyation proceeds much MeOH / H₂O more rapidly if good leaving groups are present (β -effect). Alsol®:

Alsol®: (PhCH₂O)₂MeSiCH₂CH₂CI