2 Mark

Unit – I

- 1. What is table?
- 2. What is mean by median?
- 3. What is arthimetic mean?
- 4. Mention the methods of measures of central tendency.
- 5. Explain the class interval.
- 6. What is meant by mode?
- 7. Define harmonic mean.
- 8. Give the relation between mean, median and mode.
- 9. What is the relationship between arithmetic mean, geometric mean and harmonic mean?
- 10. What is statistics?
- 11. From the following data of marks scored by 7 students in statistics, find out the mean marks

Marks scored : 6,4,9,5,2,8,12

- 12. Write the rules of classification.
- 13. What are the objects of classification?
- 14. What is an average?
- 15. Write any two functions of an average.
- 16. What do you mean classification of data?
- 17. What is a diagram?
- 18. What is a cumulative frequency distribution?
- 19. What is class frequency?
- 20. What is weighted arithmetic mean?

Unit – II

- 1. What is mean deviation?
- 2. Define range
- 3. What is meant by Skewness?
- 4. What is the quartile deviation?
- 5. Calculate coefficient of variation. X = 5.12, standard deviation 2.812
- 6. Give the meaning of the term standard deviation.
- 7. Find out the mean deviation from median from the following data: 240,238,236,245,242,248,237
- 8. What is coefficient of variation?
- 9. Write the significance of measuring variation.
- 10. Define dispersion
- 11. Write any two uses of range.
- 12. What are a quartile of the distribution?

- 13. Explain the Bowley's coefficient of Skewness.
- 14. Find the standard deviation if the sum and the sum of the square of 100 items are 1357 and 24680 respectively.
- 15. What is coefficient of variation?
- 16. State the demerits of mean deviation.

Unit – III

- 1. What is rank correlation?
- 2. What do you mean by regression analysis?
- 3. What is positive correlation?
- 4. Give the rank correlation formula.
- 5. What do you mean by correlation?
- 6. Write the meaning of multiple correlation.
- 7. What is simple correlation?
- 8. Write the formula for spearman's rank correlation coefficient when one value occur 'm' times.
- 9. What are regression analysis?
- 10. If the regression coefficient of X on Y and regression coefficient of Y on X are respectively -0.2337,-0.6643then find the value regression coefficient.
- 11. Write any two assumption of Pearson coefficient.
- 12. Write the uses of regression analysis.
- 13. List the two methods of studying regression.
- 14. From the regression equation 6 X + 10 Y = 700 and 15 X + 16 Y = 1390. Find the mean values.
- 15. If coefficient of correlation r is 0.64 and its P.E = 0.1312 then find the value of N
- 16. State the various types of correlation.
- 17. Mean = 50, coefficient of variation = 40%, Karl Pearson's coefficient = -0.4. find standard deviation and mode.
- 18. Write any two properties of Karl Pearson's coefficient of correlation
- 19. Write down the two regression equation.
- 20.

Unit – IV

- 1. What is meant by moving average?
- 2. Write a short note on seasonal variation.
- 3. What is methods of least squares?
- 4. Explain the term time serious.
- 5. Write any two significance of time serious analysis.
- 6. List out the uses of time series analysis.
- 7. Mention the methods used to estimate secular trend.

8. What is interpolation?

Unit - V

- 1. Define cost of living index.
- 2. What is meant by factor reversal test?
- 3. Define index number.
- 4. What are the types of index numbers?
- 5. What is time reversal test?
- 6. List any two uses of index numbers
- 7. List any two problems in constructing index numbers.
- 8. Give formula for Bowley's Index number.
- 9. What is meant by price index numbers?
- 10. State the condition for Time Reversal Test, Unit Test, Factor Reversal Test and Circular Test.
- 11. What is Circular Test?
- 12. Give the formula for calculating index numbers using the methods of Laspere and Paasehe.

5 Mark

Unit – I

- 1. Explain the special characteristics of classification
- 2. Describe the general rules of preparing tables.
- 3. What is tabulation? State its four objectives?
- 4. Explain the importance of diagram in statistics.
- 5. What are the rules to be followed in tabulation?
- 6. Explain the uses and limitation of statistics.
- 7. Define the term statistics? Explain the uses of statistics in commerce and business.
- 8. Explain classification by giving an example.
- 9. Explain the types of various diagrams.
- 10. Calculate mean from the following data:

Marks: 10-2020-3030-4040-5050-6060-7070-80No. of students:547121084

11. Find Harmonic mean from the data given below

12,10,6,8,15,15

12. Compute harm	nonic r	nean fr	om the	followi	ng data		
Wages (Rs)	: 60	45	25	75	80	15	30
No. of workers	s: 4	9	7	21	6	3	2

13. Calculate the mode of the following frequency distribution

	Wages	:	0	20	40	60	80	100			
	No. of worker	s:	50	45	34	16	6	0			
14.	From the follo	wing da	ata, calc	culate th	e arithe	metic n	nean				
	Family :	А	В	С	D	Е	F	G	Н	Ι	J
	Expenditure :	30	70	10	75	50	8	42	250	40	36
15.	Calculate arith	nmetic r	nean fo	r the fol	lowing	data:					
	Marks	: 20-3	0	30-40	40-50	50-60	60-70	70-80			
	No. of student	s: 5		8	12	15	6	4			
16.	Compute the g	geometr	ic mear	of the	followiı	ng serie	s				
	Marks	: 0- 10) 10-	20 20	-30 30)-40 40	0-50				
	No. of student	s: 5		7	15	25	8				
17.	From the follo	wing fi	nd out t	he mean	n profit						
	Profits per sho	op:100	-200	200-30	00	300-40	00	400-50	00	500-60	00
	No. of shops	: 10		18		20		26		30	
	Profits per sho	op:600	-700	700-80	00						
	No. of shops	: 28		18							
18.	Calculate med	lian :									
	Marks :	10-25	25-40	40-55	55-70	70-85	85-100)			
	Frequency :	6	20	44	26	3	1				
19.	Calculate mea	n from	the folle	owing d	ata						
	Value	:1	2	3	4	5	6	7	8	9	10
	Frequency	:21	30	28	40	26	34	40	9	15	57
20.	Compute med	ian fron	n the fo	llowing							
	Size of shoes:	5	5.5	6	6.5	7	7.5	8			
	Frequency :	10	16	28	15	30	40	34			
21.	Find out the m	nedian f	rom the	follow	ing						
	57,58,61,42,3	8,65,72,	66.								
22.	Calculate mea	n form	the foll	owing d	ata						
	Register No.	:1	2	3	4	5	6	7	8	9	10
	Marks	: 40	50	55	78	58	60	73	35	43	48
23.	Calculate geor	metric n	nean of	the foll	owing c	lata					
	2574, 475,	75,	5,	0.08,	0.005,	0.0009					
24.	Calculate mod	le for th	e data g	given be	low						
	Mid value	: 70	90	110	130	150					
	Frequency	: 43	78	83	125	87					
25.	Calculate the	geometi	ric mear	1							
	125, 1462, 7, 0	0.22, 0.	08, 12.7	' 5, 0.5, 3	38.						
26.	Calculate the	geometi	ric mear	n of the	followi	ng :					
	0.8974, 0.057	0, 0.008	1, 0.56	77, 0.00	02, 0.09	984, 0.0	854, 0.5	5672.			
~7	T ¹ 1 1 1	c .		.1 . 0 . 11							

27. Find the value of median for the following data.

3 6 5	5
2 6 2	2
7 10 6	5
8 6 4	4
3 7 5	5
	3 6 2 2 6 2 7 10 6 8 6 2 3 7 2

28. Compute Geomeric mean from the following data: Marks: 5,10,20,25,40,42,45,48,70,80

29. A distribution consists of 3 components with frequencies 28,36 and 56 having their means 3.2,7.5 and 9.0 respectively. Find the mean of the combined distribution

30. The following data given the average wage and number of workers in firms A,B and C.Firm Average wage No. of workers

	KS.	
А	65.5	100
В	48.6	150
С	55.0	250

Find the average wage for the workers of 3 firms combined.

31. Calculate geometric mean for the given continuous data

X : 0-20 20-40 40-60 60-80 80-100 100-120

F	: 8	12	30	40	20	10

32. The mean weight of 150 students in a class is 60 kg. the mean weight of boys in the class is 70 kg and that of the girl is 55 kg. find the number of girls in the class.

33. Calculate geometric mean from the following data

10, 110, 135, 120, 50, 59, 60, 7

34. The mean wages of 150 workers in a factory is Rs.85. if the arithmetic mean of 80 workers in one section is Rs.92. Calculate the arithmetic mean of wages for other section

35. Calculate quartile deviation from the following data: 25,15,30,45,20,50

36. From the following calculate the median marks:

Marks (more than)	:	0	10	20	30	40	50
No of students	:	50	46	40	20	10	3

37. An analysis of the monthly wages paid to workers in the firm A and B belonging to the same industry gives the following result:

	Firm A	Firm B
No of workers	500	600
Average monthly wage (Rs)	480	475
Variance of distribution of wages(Rs)	400	625

- i. Which firm pays a larger wage bill?
- ii. In which firm is there greater variability in individual wages?
- 38. Calculate geometric mean of the following: 50,72,54,82,93
- 39. Coefficient of variations of two series are 60% and 80% respectively. Their standard deviations are 20 and 16 respectively. What are their arithmetic means?

40.

Unit – II

- 1. State the different methods of measuring depression.
- 2. What are the various requisites of a good average?
- 3. State the merits and demerits of mean deviation.
- 4. Distinguish between mean deviation and standard deviation.
- 5. Explain the various measures of dispersion.
- 6. What is coefficient of variation? Explain its importance?
- 7. What is standard deviation? Explain its importance.
- 8. Find the standard deviation for the following data Production (tones) : 50 100 125 150 200 250 300 5 7 12 9 5 No . of factories :2 3
- 9. Compute quartile deviation and co-efficient of quartile deviation from the following data : 15 35 Marks 25 45 55 65 75 No. of students : 3 2 7 9 12 3 6
- 10. Find mean deviation from mean for the following data

X:10	15	20	25	30
Y:2	4	6	8	5

- 11. Calculate mean deviation from the following data 50,70,45,20,80,90,25,30,40,10.
- 12. Calculate standard deviation from the following data 9,27,18,54,45,72,36,63,81.
- 13. Calculate Karl pearson's co-efficient of skewness
- 14. Define Skewness and write a note on the measures of Skewness
- 15. Compute karl parson's co-efficient of skewness 40,36,42,53,20,65,67,20,36
- 16. From the marks secures by 120 students in section A and 120 students in section B of a class, The following measures are obtained.

Section A: X = 46.83; S.D = 14.8; Mode = 51.67

- Section B: X = 47.83; S.D =14.8; Mode = 47.07
- 17. Calculate the co- efficient of variation of the following: 40,41,45,49,50,51,55,59,60,60.

18. For t	he data	given b	elow, ca	alculate	standar	d devia	tion			
40,50,	60,70,80	0,90,100	Э.							
19. calcul	late stan	dard de	viation	from th	e follov	ving dat	ta			
x:	6	9	12	15	18					
f:	7	12	19	10	2					
20. find o	out the v	alue o c	quartile	deviatio	on and i	ts co-ef	ficient f	from the	follow	ing data
Roll no	o.: 1	2	3	4	5	6	7			
Marks	: 20	28	40	12	30	15	50			
21. calcul	late karl	pearso	n's co-e	fficient	of skev	vness fo	or the fo	ollowing	data	
25	15	23	40	27	25	23	25	20		
22. calcul	late the	standar	d deviat	ion froi	n the fo	llowing	g data			
14,22,	9,15,20,	,17,12,1	1							
23. calcul	late ran	ge and	co-effic	ient of	range					
Day	: Mono	lay	Tuesda	ıy	Wedne	esday	Thursc	lay	Friday	Saturday
Price	: 200		210		208		160		220	250
24. calcul	late co-e	efficient	t of skev	vness fi	rom the	followi	ng			
Marks	above	: 0	10	20	30	40	50	60	70	80
Mo. of	student	ts : 150	0 140	100	80	80	70	30	14	0
25. You a	25. You are given the following data:									
				Х		Y				
	Mean			36		85				
	Standa	rd devia	ation	11		8				
	Correla	ation co	efficien	t 0.66						
	Estima	te the v	alue of	X wher	n Y = 75	5.				
26. Find t	the coef	ficient of	of skewi	ness fro	m the d	ata give	en belov	v:		
Size		: 3	4	5	6	7	8	9	10	
Freque	ency	:7	10	14	35	102	136	43	8	
27. Calcu	late the	coeffic	ient of r	ange fr	om the	followi	ng data			
Profit	(rs. In la	akhs)	: 10-20	20-30	30-40	40-50	50-60			
No. of	compar	nies	: 8	10	12	8	4			
28. Calcu	late me	an devia	ation fro	om the f	followir	ng series	s:			
Х	: 10	11	12	13	14					
Y	: 3	12	18	12	3					
29. A dist	tribution	n had Q	1 = 31.3	8, Q2 =	35 and	Q3 = 36	5.4. calc	culate co	o-efficie	ent of skewness.
30. Calcu	late O3	.D8 and	P23.							
	20 X	,								
Salary	(Rs. '00	00): 15-	19	20-24	25-29	30-34	35-39	40-44		

31. Comput	e quartile d	leviation	for the	followii	ng data					
Size	: 4-8	8-12	12-16	16-20	20-24	24-28/	28-32	32-36	36-40	
No. of ite	ms : 6	10	18	30	15	12	10	6	2	
32. Calculat	32. Calculate pearson's coefficient of skewness for the following data									
Mid valu	e : 20	30	40	50	60	70	80			
Frequenc	y :1	12	55	91	55	12	1			
33. From the	e data give	n below	calculat	e the co	efficien	t of vari	ation:			
Karl pear	son's coef	ficient o	f skewne	ess = 0.4	42					
Arithmet	ic mean = 8	86								
Median =	80.									
34. Calculat	e the mean	deviatio	on from	the mea	n for th	e follow	ving dat	a		
Size	: 2	4	6	8	10	12	14	16		
Frequenc	y : 2	2	4	5	3	2	1	1		
35. Mean of	200 items	is 80 an	d their s	tandard	deviati	on is 10	. Find th	he sum	of the ite	ms
and also	the sum of	f squares	s of all th	ne items						
36. Find out	the Q1, D	1 and P1	for the	followi	ng data					
C.I :	15-19	20-24	Ļ	25-29		30-34		35-39	2	40-44
F :	15	25		40		50		40		30
37. In a freq	uency dist	ribution	the coef	ficient o	of skewn	ness bas	ed on q	uartiles	is 0.6. if	f the
sum of th	e upper an	d lower	quartiles	s is 100	and me	dian is 3	38, find	the valu	ue of upp	er
quartile.										
38. Find the	mean devi	ation fo	r the foll	owing o	data:					
Class	: 0- 1	0 10 -	20 20	- 30	30 - 4	0 40 -	- 50			
Frequenc	y :5	8		15	16	5 6				
39. Find the	Bowley's	skewnes	ss for the	e follow	ing data	ı:				
Monthly	Income(Rs	. '000):	10,27,	24,12,2	7,27,20					
40. Find the	Karl pears	on's ske	ewness fo	or the fo	ollowing	g data				
Class	: 0-1	0 10-20	0 20-30	30-40	40-50					
Frequenc	y :5	8	15	16	6					
41. Calculat	e mean dev	viation f	rom the	followiı	ng data					
Monthly	income(Rs	.) 10	27	24	12	27	27	20		
42. Comput	e quartile d	leviation	from th	e follov	ving dat	a				
Marks	: 58	59	60	61	62	63	64	65	66	
No. of stu	idents: 15	20	32	35	35	22	20	10	8	
43. Comput	e percentile	e range								
30, 9, 21,	29, 18, 24	, 13, 27,	, 7							
44. Find out	bowley's	coefficie	ent of ske	ewness	from th	e follow	ving dat	a		
X :'	7 8	9	10	11	12	13	14			
V ·	3 20	35	40	32	25	18	22			

- 45. Two samples of size 40 andd 60 have 25 and 30 as their respective mean values. If their standard deviation are 4 and 5 respectively, find the mean and standard deviation of the combined group.
- 46. Calculate standard deviation, mode and median when mean is 125, coefficient of variation is 30% and coefficient of skewness is +0.24.
- 47. Calculate mean deviation (taking deviation from mean from the following data:

x:	2	4	6	8	10
f:	1	4	6	4	1

48. From the following series find and out the Karl Pearson's coefficient of skewness.

Measurement	:	11	12	13	14	15
Frequency	:	3	9	6	4	3

49. Given the following data estimate the marks in mathematics for a student who has secured 60 marks in English Anithmatic avanage of manks in Mathematics 00

Anumetic average of	of marks	s III IVIa	28	80				
Arithmetic average of	of marks	s in Eng	glish		50			
SD of marks in Engl	ish				10			
SD of marks in Math	nematics	5			15			
Coefficient of correl		0.4						
50. Calculate the quarti	le devia	tion an	d its co-	efficier	nt			
Age (in years)	: 20	30	40	50	60	70	80	
No. of members	: 3	61	132	153	140	51	3	
51. If Q1 = 18 Q3 = 25	, Mode	= 21; n	nean = 1	8, find	out the	co-effic	cient of ske	wness.

Unit – III

52.

- 1. What are the uses of regression?
- 2. Distinguish between correlation and regression
- 3. What is meant by correlation? What are the properties of the coefficient of correlation?

75

4. Define correlation and distinguish it from rank correlation. Montro . 20 22 40 ~ ~ ~ 7

	Warks		: 50	32	57	42	33	07	09	15
	No. of	students	s:9	11	17	20	10	13	9	11
5.	Calcul	ate co-ei	fficient	of corre	elation f	from the	e follow	ing data	ì.	
	X: 22	24	26	28	30	32	34			
	Y: 40	36	25	50	48	46	38			
6.	Find o	ut the re	gressio	n equati	ion of p	rofit on	sales:			

Average Std. Deviation

Sales (Rs. In '000): 33 8.6 Profit (Rs. In '000) : 42 17.4 r = 0.37

- 7. From the following data, calculate of y when x=12 X = 7.6, Y = 14.8, $\sigma_x = 3.6$, $\sigma_y = 2.5$
- 8. Calculate karl pearson's correlation co-efficient between x and y from the following data n = 13, $\Sigma x = 117$, $\Sigma x^2 = 1313$, $\Sigma y = 260$, $\Sigma y^2 = 6580$, $\Sigma xy = 2827$.
- 9. Find out rank correlation co efficient X:8 7 Y:2 4 10. From the following data, fins out the two regression equations: Х Y Arithmetic mean Standard deviation Correlation co- efficient between x and y = 0.6611. Marks obtained by 8 students in accountancy (x) and statistics (y) are given below. Compute rank correlation X: 15 20 Y:40 30 12. Calculate the coefficient of correlation from the data given below by the method of concurrent deviations. Year : 1959 1960 Import: 85 Prices : 110 115 13. Calculate the regression equations y on x from the following data X: Y: 14. Calculate co-efficient of correlation from the following data X: 12 9
- Y: 14 8 6 9 11 12 3 15. From the following data obtain the two regression equations

Sales :91 97 Purchase: 71 Ranking by manager I 16. Employee Ranking by manager II E F G Η Ι J

Compute the co-efficient of rank correlation

17.	Calcula	ate co-e	fficient	of corre	elation	from the	e follow	ving data	a	
	Х	:12	9	8	10	11	13	7		
	Y	:14	8	6	9	11	12	3		
18.	Calcula	ate co-e	fficient	of corre	elation	from the	e follow	ving data	a	
	Х	: 57	59	62	63	64	65	55	58	57
	Y	: 113	117	126	126	130	129	111	116	112
19.	Calcula	ate the o	co-effici	ient of c	concurre	ent devi	ation fr	om the	followiı	ng data:
	Year	: 2007	2008	2009	2010	2011				
	Supply	: 350	375	410	300	360				
	Price	: 210	220	230	270	320				
20.	Calcula	ate the o	coefficie	ent of co	orrelatio	on by co	ncurrer	nt devia	tion me	thod
	X:17	12	25	41	32	51				
	Y: 12	15	23	32	28	26				
21.	Constr	uct the	regressi	on line	X on Y	for the	followi	ng data		
	X: 10	12	13	12	16	15				
	Y: 40	38	43	45	37	43				
22.	22. From the following data, find the most propbale value of Y when X is 60.									
	X = 53	.2, Y =	27.9							
	Regres	sion co	efficien	t of Y o	on $X = -$	1.5				
	Regres	sion co	efficien	t of X o	n Y = -	0.2				
23.	The rai	nking of	f 10 stu	dents in	two su	bjects A	and B	are as f	ollows:	4
	A: 6	5	3	10	2	4	9	7	8	1
	B: 3	8	4	9	1	6	10	1	5	2
~ (Calcula	ate rank	correla	tion co	efficien	t.				T 7 1 T 7
24.	From t	he data	given b	elow, fi	ind the	correlati	on coef	ficient	betweei	1 X and Y.
	X: 40	45	47	50	53	60	57	51	48	45
25	Y: 75	69	65	64	70	71	75	83	90	92
25.	Calcula	ate the c		ent of co	orrelatio	on betwo	een X a	nd Y fo	r the to	llowing data:
	X	: 6.9	8.5	5.8	8.6	9.6 5.5	8.0	9.7		
26	Y E	: 2.9	5.8	6.5	2.3	5.5 · c	3.5	3.2	37	11
26.	b. From the following data, obtain the line of regression of Y on X and estimate the average									
	value o	or Y, wh	then $X =$	8,16,24	+	10	10	10	14	
	A V	: 2	0	ð 10	11	15	15	15	14 20	
	*	· *	n		17	17	14	14	/11	
77		. o	t of man	10 Ir ac	12	12 Ftham=	1.1 mlza alati	17 	20 10 at	donto in statistics or 1

- 27. The coefficient of rank correlation of the marks obtained by 10 students in statistics and accountancy was found to be 0.2. it was later discovered that the difference in ranks in the two subjects obtained by one of students was wrontly taken as 9 instead 7. Find the correct coefficient of rank correlation.
- 28. Calculate Karl Pearson's coefficient of correlation:

	x:	6	8	12	15	18	20	24	28	31		
	y:	10	12	15	15	18	25	22	26	28		
29	. Find	the price	e in Mu	mbai wł	nen the	price in	Calcut	ta is 70	from th	e follov	ving dat	a
				Calcut	ta	Mumb	ai					
	Arithr	netic m	ean	65		67						
	Stand	ard devi	ation	2.5		3						
	Correl	lation co	oefficien	nt 0.8								
30	. The fo	ollowing	g table g	ives the	score o	btained	l by 11	students	s in Eng	lish and	l Tamil	
	transla	ation. Fi	nd the r	ank cor	relation	co-effi	cient					
	Englis	sh: 40	46	54	60	70	80	82	85	85	90	95
	Tamil	: 45	45	50	43	40	75	55	72	65	42	70
31	. Follov	ving are	given t	he ranks	s of 8 pa	airs. Fir	nd r.					
	Rank	Х	:4	2	7	5	3	1	8	6		
	Rank	Y	: 8	3	6	5	1	2	7	4		
32	. Given	the reg	ression	equation	n of Y o	n X and	d X on `	Y are re	spective	ely Y =	X and 4	4X - Y
	= 3. F	ind the o	correlati	on co-e	fficient	betwee	n X and	łΥ				
33	. Comp	ute the	coefficie	ent of co	orrelatio	on throu	igh cond	current o	deviatio	n meth	od from	the
	follow	ing data	a:									
	Х	: 36	42	59	45	47	44	49	57			
	Y	: 49	53	72	80	21	29	39	30			
34	. Find t	he regre	ssion ec	quation	of X or	Y:						
	Х	:	6	9	12	5	8	14				
	Y	:	5	20	15	12	9	11				
35	. If the	regressi	on equa	tions ar	e 7x – 4	-y - 28	= 0 and	12x - 1	10y - 90	0 = 0, fi	nd the	
	correl	ation co	efficien	t betwee	en x and	ł y.						
36	. Calcu	late corr	relation	co - eff	icient fr	om the	followi	ing data	:			
	Х	:	10	12	18	24	23	27				
	Y	:	13	18	12	25	30	10				
37	•											
Unit –	IV											
1	State (the meri	ts and d	emerits	of mov	ing ave	rage					
1. 2	What	are the a	compon	ents of t	ime ser	ing ave	iuze.					
2. 3	Comp	ute 3 ve	arly mo	ving av	erage fr	om the	followi	no data				
5.	Year	· 2002	2 2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
	Sales	: 55	47	59	151	2000 79	36	2000 45	72	83	89	102
	(in '00)() units)•	07	101	12	20	10	, _	00	0,	102
4	Comn	ute the t	,. trend fro	om the f	ollowin	o hy th	e metho	d of lea	ist sauai	res		
	Years	: 2	000	2001	2002	2003	2004		.st squu			
	Popul	ation : 8	30	920	710	900	1690					
	(in lak	chs)		-	-							

5.	Find the three	e yearly	moving	g averag	e from	the follo	owing d	lata.			
	Year :2008	2009	2010	2011	2012	2013	2014	2015			
	Sales: 30.1	45.4	39.3	41.4	42.2	46.4	46.6	49.2			
6.	Calculate 3 y	early mo	oving av	verage o	of the gi	ven dat	a				
	Year :2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
	Sales : 55	47	59	151	79	36	45	72	83	89	102
	(tons)										
7.	Calculate the	trend va	lue by	the met	hod of l	least squ	uare				
	Year: 1979	1980	1981	1982	1983						
	Sales: 100	120	140	160	180						
8.	Find the seas	onal inde	ex from	the fol	lowing	table by	ratio to	o movir	ng avera	ge metł	nod
	Seasons	2004		2005		2006		2007		2008	
	I quarter	40		42		41		45		44	
	II quarter	35		37		35		36		38	
	III quarter	38		39		38		36		38	
	IV quarter	40		38		42		41		42	
9.	Find the trend	d of prof	ïts by tl	hree yea	ar movi	ng avera	age met	hod			
	Year :2000	2001	200)2 2	003	2004	200	05 2	2006	2007	
	Profit : 15,42	0 14,4	70 15	,520 2	1,020	26,120	0 31,	950 3	35,370	34,670)
10.	Calculate 4	yearly m	noving a	average	for the	followi	ng data				
	Year	: 1975	1976	1977	1978	1978	1980	1981	1982	1983	1984
	Production	: 50.0	36.5	43.0	44.5	38.9	38.1	32.6	41.7	41.1	33.8
11.	From the data	a given b	elow, e	estimate	the pop	oulation	for the	year 18	895 usin	ig interp	olation.
	Year	:	1891	1901	1911	1921	1931				
	Production('0) (000	46	66	81	93	101				
12.	Calculate the	five yea	rly mo	ving ave	erage						
	Year	: 1973	1974	1975	1976	1977	1978				
	Production	: 14	17	22	28	26	18				
	('000 units)										
	Year	: 1979	1980	1981	1982	1983	1984				
	Production	: 29	24	25	29	30	23				
	('000 units)										
13.	From the foll	owing d	ata calc	ulate 5	yearly 1	noving	average	e:			
	Year	:	1984	1995	1996	1997	1998	1999			
	Sales('000)	:	2	6	1	5	3	7			
	Year	:	2000	2001	2002	2003	2004				
	Sales ('000)	:	. 2	6	4	8	3				
14.	Calculate 4 y	early mo	oving av	verage							
	Voor 1004	5 1006	1007	1000	1000	2000	2001	2002	2003		

S	Sales	:116	120	125	132	125	129	134	140	135		
(Rs. '0	00)										
15. 0	Calcula	ate 7 ye	ars mov	ving ave	erage							
Y	Year	: 1987	88	89	90	91	92	93	94	95	96	97
E	Exp.	: 97	87	102	115	122	130	142	140	147	153	160
(Rs. In	(000)										
16. F	From t	he follo	wing de	etails ca	lculate	5 – yea	rs movi	ng aver	age.			
Y	Year	:	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Ν	No of s	students	: 332	317	357	392	402	405	410	427	405	438
17. 0	Calcula	ate 4 ye	ar by m	oving a	verage	for the	followii	ng data:				
Y	Year	:	1993	1994	1995	1996	1997	1998	1999	2000		
Y	Y	:	30.1	45.4	39.3	41.4	42.2	46.4	46.6	49.2		
18.												
Unit – V	7											

- 1. Explain the problems in the construction of index numbers.
- 2. What are the uses of index numbers?
- 3. What are the classification of index numbers?
- 4. Write the characteristics of index number.
- 5. What are the properties of an Ideal Index numbers?
- 6. State the merits of index numbers.
- 7. Calculate Fisher's ideal index number.

		2013	2014	
Commodity	Price	Qty	Price	Qty
А	12	75	30	90
В	3	22.5	9	15
С	1.5	30	3	37.5
D	3	15	7.5	12
Е	1.5	60	4.5	4.5

8. Calculate cost of index number from the following:

Item	: 352	220	230	160	190
Index no. we	eight : 48	10	8	12	15

9. Find price index number by using Fisher's formula from the following data

		2011	2012	
Commodity	Price	Qty	Price	Qty
А	5	15	7	12
В	4	5	6	4
С	7	4	9	3
D	52	2	55	2

10. From	the follo	owing d	ata con	struct a	n price	index fo	or 2005	taking 2004 as base.
Comn	nodities		:	А	В	С	D	E
Price	in 2004	(Rs.)	:	50	40	80	110	20
Price	in 2005	(Rs.)	:	70	60	90	120	20
11. Calcu	late pric	e index	numbe	r				
Comn	nodity	: A	В	С	D	Е		
Quant	ity	: 10	15	15	20	5		
Price	2008	: 100	15	70	20	5		
	2009	: 120	20	60	30	7		
12. Calcu	late the	index n	umber u	using Fi	ishers io	leal form	nula	
	Base y	year	Base y	year	Curre	nt year	Curren	nt year
	Quan	tity	Price		Quant	tity	Price	
А	50		10		60		12	
В	30		8		32		9	
С	35		5		40		7	
13. Comp	ute inde Quant	ex numł ity	ber using Base y	g Fisher year Pri	rs Ideal ce	Formul Quant	a. ity	Current year price
А	12		10			15		12
В	15		7			20		5
С	24		5			20		9
D	5		16			5		14
14. Const	ruct an i	index ni	umber f	or 2008	taking	2007 as	s base	
Comn	nodity	price i	n 2007	Price	in 2008			
	A	1	90		95			
	В		40		60			
	С		90		110			
	D		30		35			
15. Comp	ute Fish	ner's ide	al index	x from 1	the follo	owing d	ata:	
			1981-	82		1982-3	83	
Comn	nodities		Price	Value		Price	value	
	А		4	40		5	50	
	В		8	64		9	80	

	С		10	70		10	70	
	D		2	10		4	16	
16.	From the follo	wing da	ata, calc	ulate pr	rice inde	ex numł	ber	
	Commodities	U	Price (Rs.)	Price (Rs.)		
			1998		1999			
	А		50		70			
	В		40		60			
	С		80		90			
	D		110		120			
	Ē		20		20			
17.	Compute the c	cost of l	iving in	dex nur	nber fro	om the f	ollowin	g data
	Commodity	Base v	ear	Curren	t vear	Weigh	t	0
	5	Price		Price	5	U		
	Food	200		280		30		
	Fuel	150		100		10		
	Clothing	150		120		20		
	House rent	100		200		20		
	Miscellaneous	100		200		20		
18.	From the follo	wing da	ata cons	struct Fi	sher's I	deal ind	ex.	
	Commodity	U	Price				Quanti	ty
	2	2006		2007		2006		2007
	А	4		10		50		40
	В	3		9		10		2
	С	2		4		5		2
19.	From the follo	wing da	ata cons	struct Fi	sher's i	deal ind	ex	
		C		2004			2005	
	Commodities		Price	Expend	diture	Price	Expend	diture
	А		8	80		10	120	
	В		10	120		12	96	
	С		5	40		5	50	
	D		4	56		3	60	
	Е		20	100		25	150	
20.	Compute the c	cost of l	iving in	dex nur	nber fro	om the f	ollowin	g data
	Commodity	Base y	ear Pric	e	Curren	it year p	rice	Weigh

Commodity	Base year Price	Current year price	Weight
Food	12	28	42
Fuel	7	12	8
Clothing	25	70	13

House rent	10	26	15
Education	16	40	6
Miscellaneou	s 9	36	16

21. Construct the index numbers for 2002 on the basis of the price of 2000 from the following data

Commodities	Price in 2000	Price in 2002
	(Rs.)	(Rs.)
1	115	130
2	72	89
3	54	75
4	60	72
5	80	105

22. Calculate index number through Aggregate Expenditure Method: Commodities Quantity consumed Price per unit Price per unit

nmodifies	Quantity consumed	Price per unit	Price per un
		(in 1999)	(in 2005)
А	120	20	22
В	150	15	17
С	160	30	25
D	80	10	20
Е	70	5	15
F	40	12	24
G	30	7	18

23. Calculate Paasche's Index Number for the data:

Commodity	20	005	20	004
	Price	Quantity	Price	Quantity
Х	6.8	24	7.3	30
Y	12.3	16	15.0	20

24. From the following particulars, construct cost of living index number. Index Number Weights

Food	352	48
Fuel	220	10
Clothing	230	8
Rent	160	12
Miscellaneous	190	15

25.

10 Mark

Unit – I

- 1. Explain the types of diagram.
- 2. Explain the functions of statistics as a managerial tool.
- 3. What do you understand by central tendency? Write down the merits and demerits of arithmetic mean.
- 4. What is a statistical table? Explain clearly the essential parts of the goods tables.
- 5. Explain the general rules of tabulation.

6.	Calcula	ate mea	n devia	tion and	l co-effi	cient of	f mean o	deviatio	n from	the follo	owing data
	Х	:0-20	20-40	40-60	60-80	80-100) 10	0-120	120-14	10	140-160
	Y	:4	8	10	15	20		5	9		11
7.	Calcula	ate mea	n and m	nedian f	rom the	follow	ing data	a given l	below:		
	X: 5	10	12	13	17	20	22	25			
	Y: 3	7	15	28	20	12	9	6			
8.	Calcula	ate mod	le from	the foll	owing d	lata					
	Daily	:0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
	wages((Rs.)									
	No. of	: 4	5	15	9	11	14	8	13	7	8
	familie	s									
9.	Calcula	ate mea	n , med	ian and	mode.						
	Marks		: 0-10	10-20	20-30	30-40	40-50				
	No. of	Studen	ts : 3	8	17	20	22				
10.	Calcula	ate the 1	mean, m	nedian a	ind mod	le from	the foll	owing c	lata		
	Marks		: 11-20)21-30	31-40	41-50	51-60	61-70	71-80		
	No. of	student	s: 42	38	120	84	48	36	31		
11.	Calcula	ate the 1	mode fr	om the	followi	ng serie	S				
	Size of	the iter	m: 0-5	5-10	10-15	15-20	20-25				
	Freque	ncy	: 20	24	32	28	20				
12.	Find m	edian f	or the fo	ollowin	g freque	ency dis	tributio	n			
	Wages	(Rs.)	:10-20	20-30	30-40	40-50	50-60	60-70	70-80		
	No. of	persons	5:1	3	11	21	43	32	9		
13.	From t	he follo	wing da	ata, con	npute ar	ithmetic	c mean	by direc	et metho	od.	
	Marks			: 0-10	10-20	20-30	30-40	40-50	50-60		
	No. of	student	S	: 5	10	25	30	20	10		
41.	The ma	arks sco	ored by	60 stud	ents in a	an exam	ination	are give	en belov	w calcul	late arithmetic
	mean.										
	6	10	58	56	0	25	32	35	35	9	

	78	17	60	50	35	38	30	10	48	5			
	63	48	35	30	31	21	23	23	50	72			
	19	25	35	40	46	42	45	25	60	41			
	35	36	38	35	33	46	28	31	35	42			
	46	38	39	45	48	50	28	29	31	55			
42.	Calcul	ate the	mean, 1	nedian	and mo	de form	the fol	lowing	data:				
	Age		No. of	people		Age		No. of	people				
	20-25			14		40-45			20				
	25-30			28		45-50			15				
	30-35			33		50-55			13				
	35-40			30		55-60			7				
43.	Show	that A.n	n>G.M	> H.M	from th	e follow	ving						
	Marks		: 0-19	20-39	40-59	60-79	80-99						
	No. of	student	s : 5	15	35	15	10						
44.	From	the follo	wing da	ata, calo	culate th	ie mean	, media	n and m	ode.				
	Rent		: 15-25	525-35	35-45	45-55	55-65	65-75	75-85	85-95			
	No. of	Houses	: 8	10	15	25	40	20	15	7			
45.	From	the follo	wing da	ata, calo	culate th	e mean	, media	n and m	ode				
	Wages	5	: 0-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50			
	No. of	worker	s: 8	16	30	45	62	32	15	6			
46.	Calcul	ate mod	le from	the foll	owing d	lata							
		Daily i	income	(Rs.)	No. of	familie	s						
		0-10				4							
		10-20				5							
		20-30				15							
		30-40				9							
		40-50				11							
		50-60				14							
		60-70				8							
		70-80				13							
		80-90				7							
		90-100)			8							
47.	Calcul	ate the	missing	freque	ncty from	m the fo	ollowing	g data:					
	Х	:	0 - 10	10 - 2	0 20 -	- 30	30 - 40	40-5	0 50	- 60	60 - 70	0	
	Y	:	4	7	12	2	?	22		11	3		
48.	Calcul	ate the	arithme	tic aver	age of th	he follo	wing da	nta.					
	Marks	: 0 – 10	10 - 20) 20 – 3	0 30 - 4	40 40 -	50 50 -	60 60 -	-70 70	-80 8	0-90	90 - 10	0
	Studer	nts: 33	53	108	221	153	32	43	39	526	495	50	
49.	Calcul	ate the	median	for the	followii	ng data:							

	Value : 0	-4 5-	-9 10-	- 19 20	-29 3	0 – 39	40 - 49	50-4	19 60 -	69	
	Frequency:	320 3	350 72	20 e	660	590	520	380) 24	0	
50.	Calculate the s	standard	d deviat	ion for	the data	given b	below:				
	Marks	:	0 - 10)	10 - 20	0	20 - 30	0	30 - 40	0	40 - 50
	No of students	5:	7		12		24		10		?
51.	Find the value	of qua	rtile dev	viation a	and its c	oefficie	ent from	the fol	lowing	data:	
	Profits : 4	-88	-12 12	2-16-1	16 - 20	20 - 24	4 24 -	28 28	- 32 32	-36 3	6 - 40
	No of Cos:	6	10	18	30	15	1	12	10	6	2
52.	Calculate the r	mean pi	rofit for	the foll	lowing o	lata:					
	Profits 100	- 200	200 - 30	00 300	-400	400 - 50	00 500	- 600	600 - 7	00 700	-800
	No of shops 1	0	18		20	26	3	0	28	1	.8
53.											
	Unit – II										
1.	What is meant	t by me	asure of	dispers	sion? S	tate the	differen	nt meth	ods of n	neasuri	ng it.
2.	Calculate Bow	vley's c	o-effici	ent of sl	kewness	s from t	he follo	wing da	ata		
	Expenses(Rs)	:0-20	20-40	40-60	60-80	80-100) 100-1	20			
	No. of familie	s : 4	21	18	27	37	5				
3.	From the follo	wing ta	able. Co	mpute t	the quar	tile dev	iation a	s well a	s its co-	efficie	nt.
	Size : 4-	- 8	8-12	12-16	16-20	20-24	24-28	28-32	32-36	36-40	
	Frequency : 6		10	18	30	15	12	10	6	2	
4.	Find out stand	ard dev	viation a	nd its c	o-effici	ent					
	Marks :0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40			
	No. of : 14	26	32	45	39	12	9	2			
	Students										
5.	Weekly wages	s of labo	ourer ar	e given	below:						
	Calculate quar	rtile dev	viation a	nd co-e	efficient	of quar	tile dev	iation			
	Weekly wages	s (Rs.):	100	200	400	500	600	Total			
	No. of weeks	:	5	8	21	12	6	52 we	eks		
6.	Calculate the t	three m	ean dev	iations	and the	corresp	onding	co – ef	ficient o	f mean	
	deviations.										
	Age	: 20	25	27	32	41	46	50	55		
	No. of worker	s : 2	3	10	20	15	10	8	2		
7.	Find the stand	ard dev	iation f	rom the	followi	ng					
	Workers	: A	В	С	D	E	F	G	Η	Ι	J
	Wages(Rs.)	: 320	310	315	322	326	340	325	321	320	331
8.	Calculate stan	dard de	viation	from th	e follov	ving dat	a				
	Size of items	:6	7	8	9	10	11	12			
	Frequency	: 3	6	9	13	8	5	4			
0	Calavilata Davi	1		- f - 1	f.	· · · · · · · · · · · · · · · · · · ·	f a 11 a	an data			

9. Calculate Bowley's measure of skewness from the following data:

	Payment of co	mmissi	on	No. of	salesmo	en				
	1000-2000			4						
	1200-1400			10						
	1400-1600			16						
	1600-1800			29						
	1800-2000			52						
	2000-2200			80						
	2200-2400			32						
	2400-2600			23						
	2600-2800			17						
	2800-3000			7						
10.	Calculate stand	dard dev	viation	from the	e follow	ving dat	a.			
	Class interval	: 5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	
	Frequency	:6	5	15	10	5	4	3	2	
11.	Calculate coef	ficient o	of varia	tion						
	Marks	: 0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	
	No. of students	s: 12	18	35	42	50	45	20	8	
12.	Calculate coef	ficient o	of skew	ness for	the fol	lowing	frequen	cy distr	ibution	
	Marks		No. of	student	S					
	More than 10			100						
	More than 20			97						
	More than 30			90						
	More than 40			70						
	More than 50			40						
	More than 60			25						
	More than 70			15						
	More than 80			8						
	More than 90			3						
13.	Compare the s	kewnes	s of A a	and B						
		Q1	М	Q3						
	Series A	40	60	80						
	Series B	62.85	65.25	72.15						
14.	From the follo	wing da	ta, calc	ulate co	oefficiei	nt of var	riation			
	Marks	: 5-7	8-10	11-13	14-16	17-19				
	No. of students	s:14	24	38	20	4				
15.	From the follo	wing da	ita, calc	ulate co	pefficie	nt of var	riation			
	Marks	: 50-53	53-56	56-59	59-62	62-65	65-68	68-71	71-74	74-77
	Frequency	: 3	8	14	30	36	28	16	10	5
16.	The following	inform	ation is	related	with th	e wages	given f	for worl	cers in t	wo factories
			Factor	y I	Factor	y II				

	No. of work	ers	200		450						
	Average wag	ge (Rs.)	83		65						
	Variance of	wage	54		23						
	Calc	ulate the	combin	ed stan	dard dev	viation of	of the t	wo facto	ries. Ir	ı whicl	h factory
	variation of	wages is	greater.								
17.	Calculate the	e standar	d deviat	tion of t	the follo	wing fr	equenc	y distrib	ution o	of marl	ks:
	Marks :	0-1	0 10	- 20	20 - 30	30 -	- 40	40 - 50	50 -	- 60	60 - 70
	No of Studer	nts: 5	1	2	30	4	5	50	3	57	21
18.	Calculate Bo	owley's c	o – effi	cient of	skewne	ess.					
	No of Child	ren per fa	amily	:	0	1	2	3	4	5	6
	No of famili	es		:	7	10	16	25	18	11	8
54.	Calculate me	ean devia	ation (fr	om mea	an) from	the fol	lowing	data			
	Size	3-4	4 - 5	5-6	6-7	7 - 8	8-9	9 – 10			
	Frequency	3	7	22	60	85	32	8			
55	Calculate the	- standar	d devia	tion for	the foll	owing d	lata				
55.	Age	10-1	920 - 3	29 30 -	- 39 40	-495() <u> </u>	60 - 69	70 – 7	79	
	Frequency	3	61	 	223 1	137	53	19	4	/ 2	
56.	Calculate Ka	arl Pearso	on's co	– effici	ent of sk	cewness	s from t	he follo	ving d	ata	
00.	Size	1	2	3	4	5	6	7			
	Frequency	10	18	30	25	12	3	2			
57.	1										
	TT ' TT										
	Unit – III										
1.	What is regr	ession? e	explain i	its impo	ortant fe	atures					
2.	The girls par	ticipate i	in comp	etition	the remain	arks of	three ju	dges on	e as fol	llows.	decide
	which pair ju	udge hav	e neares	st appro	ach						
	Judge I : 1	5	4	8	9	6	10	7	3	2	
	Judge II : 4	8	7	6	5	9	10	3	2	1	
	Judge III : 6	7	8	1	5	10	9	2	3	4	
3.	Find karl pea	arson's c	o-effici	ent of c	orrelatio	on					
	X: 25	35	45	52	20	33	40	30			
	Y: 20	15	10	14	23	18	22	30			
4.	Calculate the	e two reg	ression	equation	ons from	the fol	lowing	data			
	X:10 12	13	12	16	15						
	Y:40 38	43	45	37	43						
	Estimate the	value of	y when	$\mathbf{x} = 20$).						
5.	Compute the	e co-effic	ient of	correlat	ion betw	veen X	- adver	tisemen	t and y	′ – sale	e
	X: 10 12	18	8	13	20	22	15	5	17		
	Y: 88 90	94	86	87	92	96	94	88	85		

6.	Compu	ute the	coeffici	ent of c	orrelatio	on betw	een adv	vertisen	nent exp	oenditur	e (X) an	nd sales
	(Y)				_							
	X:	10	12	18	8	13	20	22	15	5	17	
	Y:	88	90	94	86	87	92	96	94	88	85	
7.	The rat	nking o	of 10 stu	idnets in	n two su	ibjects A	A and E	B are as	follows	5		
	A:	6	5	3	10	2	4	9	7	8	1	
	B:	3	8	4	9	1	6	10	7	5	2	
	Calcul	ate ranl	c correla	ation co	-efficie	nt.						
8.	Give the	he follo	wing da	ata, calc	ulate th	e expec	ted val	ue of Y	when X	K = 12		
				Х		Y						
	Averag	ge		7.6		14.8						
	Standa	rd devi	ation	3.6		2.5						
	r = 0.9	9										
9.	Calcul	ate karl	pearso	n's coef	fficient	of skew	ness fr	om the	followi	ng data:		
		Profit	(Rs. In	Lakhs)		No. of	f Comp	anies				
			70-80			12						
			80-90			18						
			90-10	0		35						
			100-1	10		42						
			110-12	20		50						
			120-13	30		45						
			130-14	40		30						
			140-1	50		8						
10.	Calcul	ate Kar	l pearso	on's co-	efficien	t of ske	wness f	from the	e follow	ving data	a:	
	X:	12.5	17.5	22.5	27.5	32.5	37.5	42.5	47.5	-		
	F:	8	16	30	45	62	32	15	6			
38	. Find o	out the 1	egressi	on coef	fficient	of Y or	n X and	l X on `	Y on th	e basis	of the f	ollowing
	data:		0									0
	$\Sigma X =$	50 ·Σ	$\mathbf{Y} = 60$	$\Sigma \mathbf{X} \mathbf{Y}$	= 350.1	N = 10						
	Variar	$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	I = 00, $Z = A \cdot \mathbf{X}$	Lariance	-550, 1	- 0						
11	Find th	$\frac{1}{2}$	$\mathbf{x} = \mathbf{T}, \mathbf{v}$		tions fo	-) r the fo	llowing	a tavo se	riog			
11.	$\mathbf{V} \cdot 25$	25	20	21	27	24	110w111§	36 36	1105.			
	$\mathbf{X} \cdot 33$	23	29 26	21	27	24	20 20	30				
10	1.23	21 ata Var	20 1 m a a m a a	21 m'a aoa	24 fficient	20 of com	29 alation	50 for the	data air	van hala		
12.	Unioh	ale Kar	i pearso	on s coe		62					w: 70	
	(in inc		spands 2	Δ	00	02	04	00	08	70	12	
		nes):	v V		(1	\mathcal{O}	(2)	\mathcal{O}	C A	65	(7	
	Height	l OI W1V	es r		01	03	03	03	04	03	0/	
10	(1n 1nc)	nes):	•	1	1	00	. .,					
13.		ate spea	arman´s	rank co		on coeff	icient	1.00	170	1.00	170	170
	Height	t of fath	ers	: 180	122	1/0	1/4	160	1/2	100	1/2	172

Height of sons :170 165 14. Given the regression lines as 3x + 2y = 26 and 6x + y = 31. Find \overline{x} and \overline{y} , also find the correlation coefficient between x and y. 15. On the basis of the following data, obtain regression equations: X: Y: 16. Calculate the coefficient of correlation from the following data Х :10 Y :19 17. The co-efficient of rank correlation of the marks obtained by 10 students in statistics and accountancy was found to be 0.5. it was later discovered that the difference in ranks in the two subjects obtained by one of the students was wrongly taken as 3 instead of 7. Find the correct coefficient of rank correlation. 18. Calculate the regression equations x on y and y on x from the following data. Х :8 Y :15 The value of y for a given cvalue of x as 21 a. b. The value of x when the value of y is 30. 19. From the following data, calculate correlation coefficient: Marks in subject I : 37 52 75 11 40 32 50 Marks in subject II : 69 48 80 15 49 70 95 16 21 25 20. Compute co – efficient of correlation from the following: x: y: 21. The marks obtained by students in two different subjects are given below. from this compute rank correlation co - efficient. 1st Subject :60 2nd subject :10 22. From the following data, obtain the two regression equations Sales :91 Purchase :97 23. Determine the regression line of y on x Х :10 Y :40 24. If $\overline{x} = 7.6 \overline{y} = 14.8$; $\sigma x = 3.6$, $\sigma y = 2.5$, r = 0.99, find out the regression equations like X on Y and Y on X. Also find the value of Y when X = 12.

Unit – IV

1. Explain the components of time series.

2.	Fit a straight l	ine tren	d throu	gh the n	nethod	of least	square	for the following data. Also
	estimate the v	alue for	the year	ar 2012.				
	Year	: 2002	2003	2004	2005	2006	2007	2008
	Sales	: 110	115	130	140	145	160	180
	(in units)							
3.	Fit a straight l	ine tren	d throu	gh the n	nethod	of least	square	for the following data and
	estimate the v	alue for	the year	ar 2010.				
	Year	:2001	2002	2003	2004	2005	2006	2007
	Production	:6	8	9	10	12	11	8
	(in '000 units))						
4.	Fit a straight l	ine by t	he meth	nod of le	east squ	ares and	d also c	alculate the trend
	Year : 1995	1996	1997	1998	1999	2000	2001	
	Profit : 430	473	590	522	382	339	401	
5.	Use the metho	od of lea	ast squa	res to fi	t a strai	ght line	to the l	below data.
	Year	: 2001	1 2002	2003	2004	2005	2006	2007
	Profit (Rs.'00	0):60	72	75	65	80	85	95
6.	Calculate tren	d value	from th	e follov	ving da	ta using	g the me	thod of least square.
	Year	: 2003	2004	2005	2006	2007	2008	
	Production	:7	9	12	15	18	23	
7.	The following	g data re	elate to t	the prof	it earne	d by a p	oublic L	td. Company from 1998 to
	2003.							
	Year	: 1998	1999	200	0 20)01	2002	2003
	Profit (Rs.)	: 1000	0 1200	0 150	00 16	5000	18000	19000
	Fit a straight l	ine tren	d by the	e metho	d by lea	ast squa	re to the	e data and tabulate the trend
0	values.	C						
8.	Find the numb	per of w	vorkers (earning	betwee	n Rs. 6:	50 and I	Rs. 680 from the following
	data by applyi	ng a su	itable fo	ormula 1	or inter	polatio	n	
	Salary (RS.)		NO. 01	worker	S			
	Less than 600		38 120					
	Less than 700		120					
	Less than 750		100					
	$L \subset SS (Hall / JU)$		1 7 1 1					
0	Less than 800		250					
	Less than 800	ine tren	250 d by the	e metho	d of lea	et caua	· •	
9.	Less than 800 Fit a straight 1	ine tren	250 250 2002	e metho	d of lea	st squai	res:	2007
9.	Less than 800 Fit a straight 1 Year Production	ine tren : 2001 · 75	250 250 2002 67	e metho 2003 68	d of lea 2004 65	st squai 2005 50	res: 2006 54	2007 41
9.	Less than 800 Fit a straight 1 Year Production (Ton)	ine tren : 2001 : 75	250 ad by the 2002 67	e metho 2003 68	d of lea 2004 65	st squar 2005 50	res: 2006 54	2007 41
9. 10	Less than 800 Fit a straight l Year Production (Ton) From the follo	ine tren : 2001 : 75 owing d	250 d by the 2002 67 ata calc	e metho 2003 68 ulate tre	d of lea 2004 65 end by t	st squar 2005 50 he meth	res: 2006 54 nod of 10	2007 41 east square
9. 10	Less than 800 Fit a straight 1 Year Production (Ton) From the follo Year : 1998	ine tren : 2001 : 75 owing d 1989	250 250 2002 67 ata calc 2000	e metho 2003 68 ulate tre 2001	d of lea 2004 65 end by t 2002	st squar 2005 50 he meth 2003	res: 2006 54 nod of le 2004	2007 41 east square

	(Rs. '000)													
11	. Calculate 6 y	early mo	oving av	verage	from	the t	follow	ving	data	:				
	Year	:	1990	91	92	93	94	95	96	97	98	99	2000	
	Demand													
	(in tones)	:	105	120	115	110	100	130	135	160	155	140	145	
12	. Fit a straight	line tren	d by the	e metho	od of	leas	t squa	res t	to the	e follov	wing	data		
	Year		:	1996	19	97	1998	19	99	2000	20	01	2002	2003
	Profits (Rs in	lakhs)	:	56	55		51	47		42	3	8	35	32
13	. Fit a straight	line tren	d by the	e metho	od of	leas	t squa	ares t	to the	e follov	wing	data	and fin	nd the
	trend values													
	Year	: 1995	1996	1997	19	98	1999	20	00	2001				
	Production	: 80	90	92	83		94	99		92				
14	. Fit a straight	line tren	d for th	e follo	wing	data								
	Year	: 1995	1996	1997	19	98	1999	20	00					
	Production	:7	9	12	15		18	23						
15														
:.	V													
nı –	V													
1.	What is an in	dex num	ber? W	hy are	inde	x nu	mbers	s call	ed e	conom	ic pa	irame	eters.	
2.	Compute the	chain ba	se inde	x numl	ber fi	rom t	he fo	llow	ing i	nforma	ation			
	Year:2008	2009	2010	2011	20	12	2013	20	14					
	FBI: 115	215	310	390	41	0	475	52	0					
3.	Using the foll	lowing d	lata, con	nstruct	Fish	er's i	deal a	and s	show	hoe it	satis	sfies	factor 1	reversal
	test and time	reversal	test?											
	Commodity	Price i	n rupee	s P.U			Numl	ber o	of mi	SS				
		Base y	ear	Curre	ent ye	ear	Base	year		Curre	nt ye	ear		
	А	6		10			50			56				
	В	2		2			100			120				
	С	4		6			60			60				
	D	10		12			50			24				
	E	8		12			40			36				
4	Calculate the	real wa	tes inde	y num	her f	rom	the fo	llow	ing a	lata				
r.	Year · ?	2006	2007	2008	20	09	2010	20	11 11	2012	20	13		
	Wages(Rs): 7	700	900	1100	12	00	1400	16	600	1800	19	00		
	Consumer :	100	120	150	17	5	195	20	0	210	220	0		
	Sourcement .				± / ·	-		-0	~			~		

- Price index
- 5. Compute
 - A) Lasspeyre's
 - B) Paasche's and

c) Fisher's index numbers

Item	price	2	Quantity			
	Base year	Current year	Base year	Current year		
А	6	10	50	50		
В	2	2	100	120		
С	4	6	60	60		
D	10	12	30	25		

- 6. Show that fisher's ideal index satisfies both the time reversal and factor reversal tests, using the following data
- 7. Find price index number by using Fisher's formula from the following data

	Base year			Current year		
Commodity	Price	Qty		Price	Qty	
А	6	50		10	56	
В	2	100		2	120	
С	4	60		6	60	
D	10	30		12	24	
E	8	40		12	36	

8. From the following data construct an index for 2007 taking 2008 as base

Commodity	price in 2007	price in 2008	
	(Rs.)	(Rs.)	
А	50	70	
В	40	60	
С	80	90	
D	110	120	
E	20	20	

9. Construct index numbers of price from the following data by applying Laaspeyres method

Commodity	Price	Quantity	Price	Quantity
	(2007)	(2008)	(2007)	(2008)
А	2	8	4	6
В	5	10	6	5
С	4	14	5	10
D	2	19	2	13

10. calculate Laspeyre's method and paasche's method of index number from the following data:

	Base Year		Current Year		
	Kilo	Rate (rs.)	Kilo	Rate (Rs.)	
Bread	10	3	8	3.25	
Meat	20	15	15	20	
Tea	2	25	3	23	

11. The following data relate to the process and quantities of six commodities in the year 2009 and 2010. Construct the following indices.

- a) Laspeyres's index
- b) Paasche's index and
- c) Fisher's index

Goods	2009		2010		
	Price (Rs.)	Quantity	Price (Rs.)	Quantity	
А	5	14	3	18	
В	8	18	6	25	
С	3	25	1	40	
D	15	36	12	48	
Е	9	14	7	18	
F	7	13	5	19	

12. Find out the cost of living index for the following data:

Expenses on	Food	Rent	Clothing	Fuel	Others
Price (1984) Rs.	150	50	100	20	60
Price (1985) Rs.	174	60	125	25	90

13. Calculate a Fisher's Ideal Index from the following data and show that it satisfies time reversal test:

	20	02	20	03
Items	Price	Qty	Price	Qty
А	10	40	12	45
В	11	50	11	52
С	14	30	17	30
D	8	28	10	29
E	12	15	13	20

14. Calculate Laspeyre's and Bowley's price under numbers from the data given below:

Commodity	Pr	ice	Quantity	
	2006	2007	2006	2007
Р	2	5	20	15
Q	4	8	4	5
R	1	2	10	12
S	5	10	5	6

15. Calculate Laspeyre's, Paasche's and Bowley's price index numbers from the data given below:

	2005		2006		
Commodity	Price	Quantity	Price	Quantity	
А	20	8	40	6	
В	50	10	60	5	
С	40	15	50	15	
D	20	20	20	25	

16. Calculate Fisher's ideal index number and tesyt whether it satisfies time reversal test and factor reversal test.

		2004	200)5
Commodity	Price	Qty	Price	Qty
Rice	12	75	30	90
Milk	3	22.5	9	15
Fire wood	1.5	30	3	37.5
Sugar	3	15	7.5	12
Cloth	1.5	60	4.5	4.5

17. From the following data, interpolate the value of the year 1999:

Year	:	1990	1995	2000	2005	2010
Sales (in tones)	:	195	215	260	280	310

18. Calculate the index number by Fisher's ideal formula and show how it satisfies the factor reversal test.

Commodity	20	2001		01
	Price	Quantity	Price	Quantity
А	6	50	10	56
В	2	100	2	120
С	4	60	6	61
D	8.5	30	12	24
Е	8	40	16	22

19. Compute fisher's Idea index from the following data,. And show that it satisfies time reversal test and factor reversal test

Goods 2009 2010

	Price (Rs.)	Quantity	Price (Rs.)	Quantity
А	4	40	5	50
В	8	64	9	80
С	10	70	10	70
D	2	10	4	16

20. Compute cost of living index number for the following data

Group	Index number	Weight
Food	247	47
Fuel	293	7
Clothing	289	8
Rent	100	13
Miscellaneous	s 236	14

21. Compute cost of living index by family budget method

	Weight		Price	
Commodity		1999		2000
Food	35	350		440
Fuel	10	220		330
Clothing	20	230		400
Rent	15	160		105
Miscellaneous	20	190		340

22. Calculate Laspeyre, paasche's and fisher Ideal index numbers for the following data

Commodity	Quar	ntity	Price	
	2006	2007	2006	2007
Р	20	16	1.2	2
Q	35	38	2.1	2.4
R	10	9	3	4.1
S	45	50	0.8	1.2

23.